JP2008127582A - 複合型スパッタ装置及び複合型スパッタ方法 - Google Patents

複合型スパッタ装置及び複合型スパッタ方法 Download PDF

Info

Publication number
JP2008127582A
JP2008127582A JP2006310531A JP2006310531A JP2008127582A JP 2008127582 A JP2008127582 A JP 2008127582A JP 2006310531 A JP2006310531 A JP 2006310531A JP 2006310531 A JP2006310531 A JP 2006310531A JP 2008127582 A JP2008127582 A JP 2008127582A
Authority
JP
Japan
Prior art keywords
magnetic field
target
targets
space
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006310531A
Other languages
English (en)
Other versions
JP4614936B2 (ja
Inventor
Yoshihiko Ueda
吉彦 植田
Soichi Ogawa
倉一 小川
Takayuki Haraguchi
孝之 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ogawa Soichi
Osaka Vacuum Ltd
Original Assignee
Ogawa Soichi
Osaka Vacuum Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ogawa Soichi, Osaka Vacuum Ltd filed Critical Ogawa Soichi
Priority to JP2006310531A priority Critical patent/JP4614936B2/ja
Publication of JP2008127582A publication Critical patent/JP2008127582A/ja
Application granted granted Critical
Publication of JP4614936B2 publication Critical patent/JP4614936B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

【課題】一対のターゲットの中心間距離を短くすることなく、ターゲット間に形成されるプラズマ及び二次電子等の荷電粒子のターゲット間への閉じ込め効果を大きくし、且つカソードへの投入電力を大きくすることができる複合型スパッタ装置及び複合型スパッタ方法を提供することを課題とする。
【解決手段】本発明は、一対のマグネトロンカソード(10a及び20a、10b及び20b)を対向配置し、ターゲット10a,10b間空間に沿って、且つ少なくとも前記ターゲット10a,10bと基板Bとの間を遮るような位置に、一方のターゲット10aから他方のターゲット10bに向かう磁力線を有するような補助磁場空間を発生させてスパッタリングすることを特徴とする。
【選択図】図1

Description

本発明は、基板上に薄膜を作製するのに用いられるスパッタ装置及びスパッタ方法に関し、特に、低温・低ダメージ成膜が必要とされる有機物薄膜の上に、又は、基板が高分子材料であるフィルム、樹脂基板上に金属、合金、化合物からなる高機能薄膜等を作製するスパッタ装置及びスパッタ方法に関する。具体的な用途分野としては、有機EL(有機エレクトロ・ルミネッセンス)素子への透明導電膜、電極膜、封止膜(ガスバリア膜)。また、高分子フィルムに透明導電膜、金属膜、保護膜、及び有機物薄膜(例えば、有機薄膜半導体等)の上への金属膜、保護膜を作製する。さらに、従来の対向ターゲット式カソード及び傾斜型カソード(V型カソード)を用いて、基板に薄膜を作製している汎用的な薄膜作製分野(電子部品、磁気ヘッド部品等)にも利用可能である。
従来より、基板上に薄膜を作製するのに、例えば、図10(イ)に示すように、ターゲット51と、該ターゲット51の裏面側にターゲット51の表面中心部から外周部に向けて磁力線Xが弧状となるような湾曲磁場空間を発生させる湾曲磁場発生手段50とを備え、該湾曲磁場によりターゲット51の表面から出た電子に、該電場に対して直交する磁場成分によって回転運動を与え、ターゲット51の表面でサイクロイド運動をさせてガス分子との衝突確率を上げるためと、湾曲磁場が電子を湾曲中心に押し戻す作用とによりターゲット51の表面に強いプラズマを作ってターゲット51のスパッタ面52でスパッタリングを行い、ターゲット51と対向する位置に配置された基板53の対向面(成膜面)54上に成膜することができるマグネトロン(式)スパッタ装置及びマグネトロンスパッタ方法が知られている。
上述のようなマグネトロンスパッタ装置及びマグネトロンスパッタ方法では、ターゲット表面52に形成される湾曲磁場空間の形状により、ターゲット51表面中心部における該表面と直交する方向(図10(イ)の矢印γ)の磁場強度が小さくなる。そのため、かかる部分から、プラズマの影響、さらに言えば、ターゲット表面から放出された二次電子や負イオン等の荷電粒子(負荷電粒子)が、ターゲットと対向するように配置された被成膜対象である基板53まで飛散し、基板53や基板上に形成された薄膜に影響を与え易いといった問題が生じていた。
そこで、図10(ロ)に示すように、前記ターゲット51のスパッタ面52と基板53の成膜面54とのなす角度が90°となるようにそれぞれ配置してスパッタリングを行うマグネトロンスパッタ装置及びマグネトロンスパッタ方法が提供された。このような配置にすることで、基板53に形成された薄膜へのプラズマの影響や二次電子等の到達を少なくすることができたが、ターゲット51から基板53方向へ飛散するスパッタ粒子の数も減少するため、成膜速度が下がり、薄膜の生産性が非常に悪くなった。
そのため、図11に示すように、一対のターゲット51,51と、一方のターゲット51の裏面側には、ターゲット51の表面中心部から外周部に向けて磁力線Xが弧状となるような湾曲磁場空間を発生させる湾曲磁場発生手段50と、他方のターゲット51の裏面側には、ターゲット51の表面外周部から中心部に向けて磁力線X’が弧状となるような湾曲磁場発生手段50’と、をそれぞれ備える一対のマグネトロンカソード55,55’を、ターゲット51,51のスパッタ面52,52が互いに平行になるよう、間隔をおいて対向するように配置させることで成膜速度を向上させた(平行平板型)マグネトロンスパッタ装置及び(平行平板型)マグネトロンスパッタ方法が提供された(特許文献1参照)。
特開2005−179716号公報
ところで、一対のターゲット間へのプラズマの閉じ込め効果の大きい対向ターゲット式のスパッタ装置(平行平板型とV型とを含む)において、基板位置にラングミュアプルーブを設置し、基板への二次電子等の荷電粒子の飛来量を測定した結果を図12に示す。
上記測定結果から、従来の一対のターゲットを平行に向かい合わせた(対向させた)平行平板型対向ターゲット式スパッタ装置、及び膜の成膜速度(生産性)を向上させるために一対のターゲットの各対向面を基板側にそれぞれ傾斜させたV型対向ターゲット式スパッタ装置の両装置において、一般的な平行平板型マグネトロンスパッタ装置と比較すると大幅に減少しているが、未だ、少量ではあるが二次電子等の荷電粒子が基板に飛来(到達)していることがわかる。
ここで、前記平行平板型対向ターゲット式スパッタ装置では、対向するターゲット間中央部における、ターゲットの対向面に対して垂直な方向の磁場強度は、約200ガウス以上である。これに対し、一般的な平行平板型マグネトロンスパッタ装置では、ターゲット外周部での該ターゲット面に対して垂直方向の磁場強度は、ターゲット面(スパッタ面)上50mmの位置で100ガウス以下である。以上より、平行平板型マグネトロンスパッタ装置では、ターゲット間中央部における、前記ターゲット外周部に対応する位置でのターゲット面に対して垂直方向の磁場強度は、前記平行平板型対向ターゲット式スパッタ装置の場合(約200ガウス以上)に比べ、かなり低い値になることがわかる。
従って、平行平板型マグネトロンスパッタ装置及び平行平板型マグネトロンスパッタ方法では、対向する一対のターゲット間に形成される空間を閉じ込めるような磁場空間が極僅かしか形成されず、湾曲磁場空間からはみ出したプラズマや、飛び出した二次電子等の荷電粒子のターゲット間での閉じ込めを完全には行うことができない。
そのため、特に、低温・低ダメージ成膜が必要とされる有機物薄膜等の上に金属、合金、化合物からなる高機能薄膜等を作製する場合に、湾曲磁場空間からはみ出したプラズマの影響によって基板の温度が上昇して基板上に成膜された薄膜の膜質が低下したり、また、スパッタ面から基板へ飛んでくる二次電子や負イオン等の荷電粒子により、基板上に形成された薄膜の機能が格子不整や歪みのため低下するといった問題が生じる場合がある。
上記問題を解消するため、ターゲット間に形成される空間を閉じ込めるべく、互いのターゲットの中心間距離を短く設定することによって対向するターゲット外周部間に形成される磁場空間の磁場強度を大きくし、プラズマや二次電子等をよりターゲット間に形成される空間(ターゲット間空間)内に閉じ込めるようにすることも考えられるが、その場合、ターゲットの中心間距離が極めて短く、即ち、一対のターゲット間の間隔が極めて狭くなるため、ターゲットから基板方向に飛散してくるスパッタ粒子が減少すると共に基板成膜面積が減少してしまい、生産性が低下するといった問題が生じる。
また、基板に対するプラズマダメージ(二次電子や負イオン等の荷電粒子、反跳アルゴン等の基板への入射)が小さい、若しくは、殆どないスパッタ装置として一対のターゲットが対向するように配置された対向ターゲット式スパッタ装置、成膜する基板側に前記一対のターゲットの対向面(スパッタ面)をそれぞれ傾斜させたV型対向ターゲット式スパッタ装置、又はターゲット間に形成されるターゲット間磁場空間よりも磁場強度が強く且つ前記ターゲット間磁場空間を包むと共に磁力線の向きが同一となるような補助磁場空間を形成するため、各ターゲットの周囲にそれぞれ補助磁場発生手段を備えたV型対向ターゲット式スパッタ装置がある。
しかし、例えば、W125mm×L300mm×5mmtのITOターゲットの場合の前記V型対向ターゲット式スパッタ装置、前記補助磁場発生手段をターゲットの周囲に備えたV型対向ターゲット式スパッタ装置及び前記平行平板型マグネトロンスパッタ装置の放電特性(I−V特性)を示す図13からわかるように、V型対向ターゲット式スパッタ装置及び補助磁場発生手段を備えたV型対向ターゲット式スパッタ装置では、カソードへ投入する電流値が約6A以上になると、ターゲット間に形成されるプラズマが中心部に集中する様な現象が現れ、それに伴って放電が不安定となり、長時間の安定放電が困難になるため、前記電流値を上げることができなくなる(図13の(1)乃至(4)参照)。
これに対し、一般的な平行平板型マグネトロンスパッタ装置でITOターゲットを使用した場合は、V型対向ターゲット式スパッタ装置及び補助磁場発生手段を備えたV型対向ターゲット式スパッタ装置よりも放電電圧は高くなるが、電流値が6A以上であっても安定放電が得られるため、カソードに投入する電流値を6A以上に上げ続けることができる(図13の(5)参照)。
そのため、上記V型対向ターゲット式スパッタ装置及び補助磁場発生手段を備えたV型対向ターゲット式スパッタ装置は、平行平板型マグネトロンスパッタ装置と比較して、カソードへの投入電力を大きくすることが困難であるため、成膜速度が遅いという問題があった。
そこで、本発明は、上記問題点に鑑み、マグネトロンカソードを対向配置する複合型スパッタ装置及び複合型スパッタ方法において、一対のターゲットの中心間距離を短くすることなく、ターゲット間空間へのプラズマ及び二次電子等の荷電粒子の閉じ込め効果を大きくすることで、低温・低ダメージ成膜が可能、且つカソードへの投入電力を大きくすることができる複合型スパッタ装置及び複合型スパッタ方法を提供することを課題とする。
そこで、上記課題を解消すべく、本発明に係る対向配置のマグネトロンカソードを備える複合型スパッタ装置は、間隔をおいて互いに対向するように配置される一対のターゲットと、該ターゲット表面に磁力線が弧状となるような湾曲磁場空間を発生させるために設けられる湾曲磁場発生手段と、一対のターゲット間の側方位置に配置される成膜対象となる基板とを備え、一方の湾曲磁場発生手段は、磁力線がターゲット表面の外周部から中心部に向かうように極性が設定され、他方の湾曲磁場発生手段は、磁力線がターゲット表面の中心部から外周部に向かうように極性が設定されているマグネトロンスパッタ装置であって、前記対向するターゲット間空間に沿うような位置に補助磁場空間を発生させる補助磁場発生手段をさらに備え、該補助磁場発生手段は、補助磁場空間における磁力線が前記一方のターゲットから他方のターゲットに向かうように極性が設定されると共に、少なくとも前記ターゲット間空間と前記基板との間を遮るような位置に前記補助磁場空間を発生させるように前記一対のターゲットの周辺に配置されることを特徴とする。
かかる構成によれば、補助磁場空間は、一対のターゲットの各ターゲット周辺にそれぞれ配置される前記補助磁場発生手段によって、一対のターゲット間に形成されるターゲット間空間に沿って形成される(発生する)。そして、該補助磁場空間は、少なくともターゲット間空間と成膜される基板との間を遮るような位置に、且つ前記補助磁場空間における磁力線が一方のターゲットから他方のターヘットへ向かうように形成される(発生する)。
このように補助磁場発生手段が湾曲磁場発生手段の周辺に別途配置され、ターゲット間空間に沿うように補助磁場空間が形成されることで、一対のターゲットの中心間距離を短く(小さく)することなく、ターゲット間空間と基板との間に磁場強度の大きな空間を形成することができる。そのため、プラズマのターゲット間への閉じ込め効果、及び、二次電子等の荷電粒子のターゲット間への閉じ込め効果が良好となる。
即ち、前記補助磁場発生手段が別途配置されることで、ターゲット間空間外側の少なくとも前記基板側には、補助磁場空間が形成される。そのため、少なくともターゲット表面(対向面)に形成される湾曲磁場空間と基板との間に補助磁場空間が形成され、湾曲磁場空間からはみ出したプラズマが補助磁場空間によって閉じ込められ(基板側へはみ出すのを妨げられ)て、該プラズマ等による基板への影響を減少させることができる。
また、前記湾曲磁場空間から基板側に飛び出してくる二次電子等の荷電粒子も、前記補助磁場空間がターゲット間空間に沿うと共に、少なくとも湾曲磁場空間と基板との間に形成されているため、ターゲット間空間内への荷電粒子の閉じ込め効果が大きくなる。即ち、荷電粒子のターゲット間空間内から基板側への飛び出しが減少する。
さらに、マグネトロン方式のカソードを使用していることから、該カソードへ投入する電流値を大きくしても、対向ターゲット式カソードの様に、プラズマが中心部に集中する現象が現れて放電が不安定とならず、ターゲット表面近傍に形成されるプラズマが長時間安定放電することができる。
また、前記補助磁場発生手段は、前記一対のターゲットを囲むようにその周縁に沿って配置される構成であってもよい。
かかる構成によれば、補助磁場発生手段が一対のターゲットの周縁に沿って配置されることで、ターゲット間空間の外周に沿って筒状に補助磁場空間が形成される。即ち、一対のターゲットの各スパッタ面間を繋ぐように形成される柱状のターゲット間空間の外周を、全周に亘って包むように補助磁場空間が形成される。
従って、補助磁場空間は、ターゲット表面に形成される弧状の湾曲磁場空間の形成されているターゲット間空間全体を包み込むような筒状に形成される。そのため、湾曲磁場空間からはみ出したプラズマの閉じ込め効果、及び飛び出した二次電子等の荷電粒子の閉じ込め効果がより良好となる。
その結果、一対のターゲットの中心間距離を短くすることなく、成膜対象である基板へのプラズマの影響及びスパッタ面から飛来する二次電子等による影響を極めて小さくすることができ、低温・低ダメージ成膜が可能となる。
また、前記補助磁場発生手段は、前記補助磁場空間の磁場強度がターゲットの中心部から離れるに従って強くなるように設定される構成であってもよい。
かかる構成によれば、ターゲット周縁部の磁場強度がT−T線から離れるに従って強くなるような磁場分布を得ることができる。
その結果、ターゲット間空間を包み込むような筒状の補助磁場空間の磁場強度が強く、湾曲磁場からはみ出したプラズマ及び飛び出した二次電子等の荷電粒子の閉じ込め効果がより良好となる。
従って、一対のターゲットの中心間距離を短くすることなく、成膜対象である基板へのプラズマの影響及びスパッタ面から飛来する二次電子等による影響を極めて小さくすることができ、低温・低ダメージ成膜が可能となる。
また、前記一対のターゲットは、互いに対向する面が前記基板の被成膜面に向くように傾斜させてそれぞれ配置される構成であってもよい。
かかる構成によれば、一対のターゲットの各対向面(スパッタ面)が基板の被成膜面方向に向くため、該対向面からスパッタリングされたスパッタ粒子の前記被成膜面方向へ飛散する量が増加し、成膜速度が向上する。
また、前記一対のターゲットは、それぞれ180°位相がずれた交流電場を印加可能な交流電源が接続される構成であってもよい。
かかる構成によれば、一方のターゲット(カソード)に負の電位が印加された時に、他方のターゲット(カソード)に正の電位又はアース電位が印加されることで該他方のターゲット(カソード)がアノードの役割を果たし、これによって、負の電位が印加された一方のターゲット(カソード)がスパッタされる。また、他方のターゲットに負の電位が印加された時に、一方のターゲットに正の電位又はアース電位が印加されることで該一方のターゲットがアノードの役割を果たし、他方のターゲットがスパッタされる。
このようにターゲット印加電位を交互に切り替えることにより、ターゲット表面の酸化物、窒化物のチャージアップがなくなり、長時間、安定放電が可能になる。
また、本発明に係るマグネトロンスパッタ方法は、間隔をおいて互いに対向する一対のターゲットの表面において、一方のターゲット表面には外周部から中心部に向かい、他方のターゲットの表面には中心部から外周部へ向かうよう、磁力線が弧状となるような湾曲磁場空間を発生させてスパッタリングし、該スパッタリングされたスパッタ粒子で前記一対のターゲット間の側方位置に配置される基板上の成膜面に成膜するマグネトロンスパッタ方法であって、前記ターゲット間に形成される空間に沿って、且つ少なくとも前記ターゲット間に形成される空間と前記基板との間を遮るような位置に、一方のターゲットから他方のターゲットに磁力線が向かうような補助磁場空間を発生させてスパッタリングすることを特徴とする。
かかる構成によれば、一対のターゲット間に形成される該ターゲット間空間に沿って、少なくとも前記ターゲットと前記基板との間を遮るような位置に磁力線が一方のターゲットから他方のターゲットに向かうように磁場強度の大きな補助磁場空間を形成してスパッタリングを行うことができる。そのため、前記同様に、湾曲磁場空間からのプラズマ及び二次電子等の荷電粒子のターゲット間空間から基板側へのはみ出し及び飛び出しを有効に防ぐことができる。
また、前記同様、マグネトロン方式のカソードを使用していることから、該カソードへ投入する電流値を大きく、即ち、カソードへの投入電力を大きくしてもターゲット表面近傍に形成されるプラズマが不安定とならず長時間安定放電することができ、成膜速度が向上する。
また、前記補助磁場空間は、前記ターゲット間に形成される空間の周囲を囲むよう、筒状に形成される構成であってもよい。
かかる構成によれば、ターゲット間空間が全周に亘って筒状に形成された補助磁場空間によって囲まれた状態でスパッタリングされることから、前記同様、ターゲット間空間へのプラズマの閉じ込め効果、及び二次電子等の荷電粒子の閉じ込め効果がより良好となる。
以上より、本発明によれば、複合型スパッタ装置及び複合型スパッタ方法において、一対のターゲットの中心間距離を短くすることなく、ターゲット間に形成される空間へのプラズマ及び二次電子等の荷電粒子の閉じ込め効果を大きくすることで、低温・低ダメージ成膜が可能、且つカソードへの投入電力を大きくすることができる複合型スパッタ装置及び複合型スパッタ方法を提供することができるようになる。
以下、本発明の一実施形態について、添付図面を参照しつつ説明する。
図1に示すように、複合型スパッタ装置1は、一対のターゲット10a,10bを先端部に配置するターゲットホルダー11a,11b、真空容器(チャンバー)2、スパッタ電力供給用電源3、基板ホルダー4、排気装置5、ガス供給装置6を備えている。
一対のターゲット10a,10bは、本実施形態においては、何れもインジウム錫合金(ITO:Indium Tin Oxide)で構成されている。このターゲット10a,10bは、それぞれの大きさが幅125mm×長さ300mm×厚み5mmの矩形の板状体に形成されている。そして、このターゲット10a,10bは、真空容器2内に対向配置され、対向面(スパッタされる面)10a’,10b’が所定の間隔(ここでは、対向面10a’,10b’の中心Ta,Tb間、図中d=160mmの間隔)を有して配置されている。ターゲットホルダー11a,11bは、バッキングプレート12a,12bを介して、それぞれターゲット10a,10bを支持、固定するもので、真空容器2内部にその先端側が位置するよう、絶縁板(図示省略)を介して該真空容器2に取り付けられている。
一対のターゲット10a,10bは、ターゲットホルダー11a,11bによって、真空容器2内で、両対向面10a’,10b’が何れも基板ホルダー4で固定されている基板Bの被成膜面B’に向くように傾斜して配置されている。具体的には、両対向面10a’,10b’のなす角度A、より詳細に言えば、両対向面10a’,10b’に沿う方向に伸びる面のなす角度Aが0°以上、且つ90°以下である。かかる角度Aは、5°から45°がより好ましく、本実施形態においては、20°である。本実施形態のように、両対向面10a’,10b’が略V字状になる配置のターゲット10a’,10b’を「複合V型カソード」と呼び、また、両対向面が平行になる配置のターゲットを「複合平行型カソード」と呼ぶことがある。
ターゲット10a,10bを固定しているバッキングプレート12a,12bの外側面(ターゲット10a,10bが固定されている面と反対側の面)には、湾曲磁場発生手段20a,20bが配置されている。湾曲磁場発生手段は、ターゲット10a,10bの対向面近傍に磁力線が弧状となるような磁場空間(湾曲磁場空間)を発生させる(形成する)ための手段であり、本実施形態においては、永久磁石で構成されている。
湾曲磁場発生手段(永久磁石)20a,20bは、フェライト系、ネオジウム系(例えば、ネオジウム、鉄、ボロン)磁石やサマリウム・コバルト系磁石等の強磁性体で構成されており、本実施形態においては、フェライト系磁石で構成されている。また、図2にも示すように、湾曲磁場発生手段20a,20bは、枠状磁石21a,21bと、該枠状磁石21a,21bと反対の磁極を有する中心磁石22a,22bとが、ヨーク23a,23bに配置されることで形成されている。より詳細には、湾曲磁場発生手段20a,20bは、正面視矩形の枠状に形成された枠状磁石21a,21bと、その開口中心に位置する正面視矩形状の中心磁石22a,22bとが正面視枠状磁石21a,21bと外周縁が同形状である一定厚さの板状のヨーク23a,23bにそれぞれ固定されることで形成されている(図2(ロ)及び(ハ)参照)。
そして、一方の湾曲磁場発生手段20aは、枠状磁石21aがN極で中心磁石22aがS極となるようにバッキングプレート12aの外側面に配置され、他方の湾曲磁場発生手段20bは、枠状磁石21bがS極で中心磁石22bがN極となるようにバッキングプレート12bの外側面に配置されている。このようにして、一方のターゲット10aには、磁力線が該ターゲット10a表面(対向面10a’)の外周部から中心部に向かって弧状となるような湾曲磁場空間が形成され、他方のターゲット10bには、磁力線が該ターゲット10b表面(対向面10b’)の中心部から外周部に向かって弧状となるような湾曲磁場空間が形成される。
補助磁場発生手段30a,30bは、湾曲磁場発生手段20a,20bと同様に永久磁石で形成されており、図3にも示すように、ターゲットホルダー11a,11bの外周に沿うような(外嵌可能な)角筒状に形成されている。本実施形態においては、ネオジウム系のネオジウム・鉄・ボロン磁石等で構成されている補助磁場発生手段30a,30bは、正面視矩形の枠状に形成され、前後方向に沿った周壁の厚みが一定(図3(ロ)及び(ハ)参照)となるような角筒状に形成されている。そして、補助磁場発生手段30a,30bを構成する周壁の厚みは、天壁31が一番薄く、次いで側壁32,32が薄く、底壁33が最も厚くなるように形成されている。
この周壁の厚みは、各ターゲット10a,10bの中心Ta,Tbを結ぶ線(以下、単に「T−T線」と言うことがある。)とその中間点で直交する仮想面における磁場強度が一定となるよう、その厚みが設定されている。従って、両対向面10a’,10b’のなす角Aによって、厚みの差が変化する。そのため、前記なす角Aが大きくなる場合には、側壁32,32の厚みが天壁31から底壁33に向かって徐々に厚くなるように設定される場合もある(図3(イ)の点線参照)。
そして、補助磁場発生手段30a,30bは、先端側の磁極が湾曲磁場発生手段20a,20bの枠状磁石21a,21bと同じとなるように、ターゲットホルダー11a,11bの先端側外周に外嵌するように配置されている(図3(ニ)参照)。このように配置することで、ターゲット間空間に沿うと共に、磁力線の向きが前記一方のターゲット10aから他方のターゲット10bへ向かうような補助磁場空間が形成される。
スパッタ電力供給用電源3は、DCの定電力を印加可能な電源であり、接地電位(アース電位)にある真空容器2を陽極(アノード)とし、ターゲット10a,10bを陰極(カソード)としてスパッタ電力を供給するものである。
基板ホルダー4は、基板Bを支持すると共に基板Bの被成膜面B’がターゲット10a,10bにより両対向面10a’,10b’間に形成される空間(ターゲット間空間)Kに向くように配置される。尚、ターゲット10a,10bの両対向面10a’,10b’の中心Ta,Tbを結ぶ直線(T−T線)と被成膜面B’との最短距離は、本実施形態においては、図中e=175mmとしている。
真空容器2には、排気装置5が接続されると共に、放電用ガスのガス供給装置6が接続されている。ガス供給装置6は、ターゲット10a,10bの近傍にそれぞれ配置される不活性ガス(本実施形態においては、アルゴン(Ar)ガス)を供給するための不活性ガス導入パイプ6’,6’を含んでいる。
本実施形態に係るスパッタ装置は、以上の構成からなり、次に、スパッタ装置の動作について説明する。
基板Bの被成膜面B’への薄膜形成にあたり、まず、排気装置5により真空容器(チャンバー)2内を排気する。その後、ガス供給装置6により不活性ガス導入パイプ6’,6’からアルゴンガス(Ar)を導入して所定のスパッタ操作圧力(ここでは、0.13Pa)とする。
そして、スパッタ電力供給用電源3にて基板ホルダー4とターゲット10a,10bとの間にスパッタ電力を供給すると共に湾曲磁場発生手段20a,20bによってターゲット10a,10bの対向面10a’,10b’にそれぞれ湾曲磁場を発生させ、さらに、補助磁場発生手段30a,30bにより該ターゲット10a,10bの対向面10a’,10b’間に形成される柱状の空間Kを包むように筒状の補助磁場が形成されている。
すると、湾曲磁場内には、ターゲット10a,10bの対向面10a’,10b’がスパッタされて、スパッタ粒子、二次電子及びアルゴンガスイオン等が飛散したプラズマが形成される。そして、該湾曲磁場からはみ出したプラズマや飛び出した二次電子等の荷電粒子は、補助磁場により、該補助磁場に包まれた空間(ターゲット間空間)K内に閉じ込められる。
こうして、ターゲット10a,10bから飛びだしたスパッタ粒子を、前記ターゲット間空間Kに被成膜面B’が向くように配置されている基板Bに付着させて薄膜が形成される。
その際、補助磁場発生手段30a,30bが別途配置されることで、ターゲット間空間K外側の少なくとも前記基板B側には、補助磁場空間が形成される。そのため、少なくともターゲット10a,10b表面(対向面10a’,10b’)に形成される湾曲磁場と基板Bとの間に補助磁場空間が形成され、湾曲磁場空間からはみ出したプラズマが補助磁場空間によって閉じ込められ(基板B側へはみ出すのを妨げられ)て、該プラズマ等による基板Bへの影響を減少させることができる。
また、前記湾曲磁場空間から基板B側に飛び出してくる二次電子等の荷電粒子も、前記補助磁場空間がターゲット間空間Kに沿うと共に、少なくとも湾曲磁場空間と基板Bとの間に形成されているため、ターゲット間空間K内への荷電粒子の閉じ込め効果が大きくなる。即ち、荷電粒子のターゲット間空間K内からの基板側への飛び出しが減少する。
その結果、成膜対象である基板Bは、プラズマの影響及びスパッタ面10a,10bから飛来する二次電子等による影響を極めて小さくすることができ、低温・低ダメージ成膜が可能となる。
さらに、マグネトロン方式の複合V型カソードを使用していることから、該カソードへ投入する電流値を大きくしても、対向ターゲット式カソードの様に、プラズマが中心部に集中する現象が現れて放電が不安定とならず、ターゲット10a,10b表面近傍に形成されるプラズマが長時間安定放電することができる。尚、マグネトロン方式の複合並行型カソードも同様に、投入電流値を大きくしても、長時間安定放電することができる。
また、補助磁場発生手段30a,30bは、ターゲット10a,10b周縁部の磁場強度が該ターゲット中央部から離れるに従って強くなるように配設(設定)されていることから、ターゲット10a,10bの各周縁部の磁場強度がT−T線から離れるに従って強くなるような磁場分布を得ることができる。そのため、ターゲット間空間K内へのプラズマ及び荷電粒子の閉じ込め効果が大きくなり、低温・低ダメージ成膜が可能となる。
さらに、補助磁場発生手段30a,30bは、厚みの大きい底壁33,33が一対のターゲット10a,10bにおける互いに対向する面同士の距離が大きくなる側(基板B側)となるよう、配置されていることから、補助磁場発生手段30a,30b近傍における磁場強度は、一対のターゲット10a,10bにおける互いに対向する面同士の距離が大きくなるに従って強くなる。
これは、一対のターゲット10a,10bの周縁に沿って配置されている補助磁場発生手段30a,30b近傍における磁場強度が全て同じ磁場強度であれば、一対のターゲット10a,10bの互いに対向する面(スパッタ面)10a’,10b’が前記基板Bの成膜面B’に向くように傾斜させてそれぞれ配置されていることから、一方のターゲット10aから他方のターゲット10bまでの中間点の磁場強度は、対向する面同士の距離が大きくなるに従って弱くなる。そのため、この磁場強度が弱くなった部分(基板B側)からプラズマがはみ出し、また、二次電子等が飛び出してしまう。
しかし、上記構成によれば、前記対向する面同士の距離が大きくなるに従って補助磁場発生手段30a,30b近傍における磁場強度が強くなるように設定されていることから、前記中間点における磁場強度は、常に一定の磁場強度を得ることができる。
従って、V型対向配置のターゲット10a,10bであっても、対向面10a’,10b’の距離が大きくなったところからのプラズマのはみ出しや二次電子等の荷電粒子が飛び出すことを抑制でき、ターゲット間のプラズマ及び二次電子等の閉じ込め効果が良好となり、低温・低ダメージ成膜が可能となる。
尚、補助磁場発生手段30a,30bは、アース電位、マイナス電位、プラス電位、フローティング(電気的に絶縁状態)の何れかに設定されていてもよく、或いは、アース電位とマイナス電位、又はアース電位とプラス電位を時間的に交互に切り替えるように設定されていてもよい。
補助磁場発生手段30a,30bの電位を上記の何れかに設定することで、補助磁場発生手段30a,30bを備えていないV型対向配置のマグネトロンスパッタ装置(従来のマグネトロンスパッタ装置)よりも放電電圧の低電圧化が実現できる。
以上より、ターゲット間空間に沿うような位置に補助磁場(外磁場)空間を発生させる補助磁場発生手段が、一対のターゲットの周辺に配置されることで、ターゲット間隔を狭くすることなく、ターゲット間空間において、T−T線に沿った中央部よりも周辺側(T−Tを軸芯として径方向外側)に向かって磁場強度が大きくなる磁場分布を得ることができる。その結果、一対のターゲット間へのプラズマの閉じ込め効果、及び二次電子等の荷電粒子の閉じ込め効果がより良好となり、一対のターゲットの中心間距離を短くすることなく、低温・低ダメージ成膜が可能となる。
さらに、マグネトロン方式の複合V型カソードを使用していることから、該カソードへ投入する電流値を大きく、即ち、カソードへの投入電力を大きくしても、ターゲット表面近傍に形成されるプラズマが不安定とならず安定放電することができる。このように、カソードへの投入電力を大きくすることで、成膜速度の向上を図ることができる。
尚、本発明の複合型スパッタ装置及び複合型スパッタ方法は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
本実施形態においては、ターゲット周縁部の磁場強度がT−T線から離れるに従って強くなるような磁場分布を得るための補助磁場発生手段として、図3に示すように、天壁31が一番薄く、次いで側壁32,32が薄く、底壁33が最も厚くなるような角筒状に形成され、先端側の磁極が湾曲磁場発生手段20a,20bの枠状磁石21a,21bと同じとなるよう、ターゲットホルダー11a,11bの先端側外周に外嵌するように配置されている。しかし、補助磁場発生手段の配置は、前記配置に限定される必要はなく、例えば、図4に示すように、角筒状の補助磁場発生手段30a’,30b’は、ターゲットホルダー11a,11b内部の湾曲間磁場発生手段20a,20b外側に、最も厚い底壁33’が基板B側となるよう、外嵌させてもよい。また、図5に示すように、角筒状の補助磁場発生手段30a’’,30b’’は、ターゲットホルダー11a,11bの外周に沿う必要はなく、基板Bの被成膜面B’と平行となるよう、設置してもよい。尚、この場合、補助磁場発生手段30a’’,30b’’間の基板B側の距離M’−M’は、ターゲット10a,10bの中心間距離dと同一若しくは、狭くてもよい。狭い場合には、基板Bの成膜面積が小さくなるため、基板ホルダー4は、基板Bが被成膜面B’に沿って(矢印α又はα’方向)搬送されつつスパッタリングされる構成が好ましい。
また、補助磁場発生手段は、角筒状に限定される必要もなく、図6に示すような、最も薄い天壁31’と、次に薄い側壁32’,32’と、最も厚い底壁33’とが正面視中央に形成される矩形の開口Hの外周に沿って配置され、それぞれ角部が互いに連接された形状であってもよい。このような形状であっても、V型に傾斜させたターゲットホルダー11a,11bに、底壁33’が基板B側となるように外嵌することで、基板Bと反対側のターゲット間の距離と基板B側のターゲット間の距離とが異なっていても、T−T線の中間で直交する仮想面上の磁場強度が同じになる。
また、補助磁場発生手段は、角筒状に限定される必要もなく、ターゲットの形状に合わせて、円筒状や多角形の筒状等であってもよい。また、ターゲットの形状に沿った筒状である必要もなく、ターゲットを囲むように補助磁場が形成されるように配設できればターゲットの輪郭形状と異なる形状であってもよい。
また、本実施形態においては、ターゲット10a,10bが傾斜配置(V型に配置)された複合V型カソードであるが、これに限定される必要はなく、対向する一対のターゲットが、その対向面が平行となるように配置された複合平行型カソードであってもよい。このように、対向するターゲットが平行であっても、前記補助磁場発生手段を備えることでターゲット間空間を包むように補助磁場空間が形成され、前記同様、一対のターゲット間へのプラズマの閉じ込め効果、及び二次電子等の荷電粒子の閉じ込め効果がより良好となり、一対のターゲットの中心間距離を短くすることなく、低温・低ダメージ成膜が可能となる。また、マグネトロンカソードを使用していることから、カソードへの投入電力を大きくすることができ、成膜速度の向上を図ることができる。
また、本実施形態においては、ターゲット(カソード)10a,10bに印加される電力はDCの定電流であるが、これに限定される必要はなく、図7に示すように、AC電源、具体的には、記一対のターゲットにそれぞれ180°位相がずれた交流電場を印加可能なAC(交流)電源のみでもよい。
これは、酸化物、窒化物等の誘電体薄膜を作製する場合(例えば、有機EL素子の保護膜、封止膜等の用途として)、反応性ガス(O2、N2等)をターゲット10a,10b間或いは基板4に向かって導入して、ターゲット10a,10bから飛来するスパッタ粒子と反応性ガスを反応させて酸化物・窒化物等の化合物薄膜を基板Bに堆積させる方法を利用するが、該反応性スパッタリングの場合、ターゲット10a,10bの表面10a’,10b’が酸化され、また、防着板、アースシールド及びターゲット10a,10bの非エロージョン領域に酸化物、窒化物の反応生成物が付着して、異常アーク放電の発生が頻繁に起こり、安定放電ができなくなる。また、基板Bに堆積した膜質の劣化を引き起こす。さらに、透明導電膜としてITOターゲットによるITO膜作製の場合にも、高品質のITO膜を作製するために、少量のO2ガスを導入してスパッタするが、この場合にも、長時間成膜していると、上記と同じ現象が現れる。
このような、異常アーク放電の発生の原因としては、ターゲット表面の酸化物、窒化物によるチャージアップとターゲット(カソード)に対するアノードとして作用するアースシールド、チャンバー壁、防着板等が酸化物、窒化物に覆われることにより、アノードの面積が小さくなる、若しくは均一でなくなることが考えられる。
そこで、これら問題を解消すべく、上記構成とすることで、一方のターゲット(カソード)10aに負の電位が印加された時に、他方のターゲット(カソード)10bに正の電位又はアース電位が印加されることで該他方のターゲット(カソード)10bがアノードの役割を果たし、これによって、負の電位が印加された一方のターゲット(カソード)10aがスパッタされる。また、他方のターゲット10bに負の電位が印加された時に、一方のターゲット10aに正の電位又はアース電位が印加されることで該一方のターゲット10aがアノードの役割を果たし、他方のターゲット10bがスパッタされる。このようにターゲット(カソード)印加電位を交互に切り替えることにより、ターゲット表面の酸化物、窒化物のチャージアップがなくなり、長時間、安定放電が可能になる。
例えば、ITOターゲットによる透明伝導膜を作製する場合に、低抵抗(基板加熱なしで比抵抗で6×10-4Ω・cm以下)で透過率の高い(550nm波長で85%以上)高品質な膜を作製する際に、Ar50sccmに対してO2ガスを2〜5sccm導入する。この場合、長時間放電させても、AC電源により一対のターゲットに印加した電位を交互に切り替えることにより、ターゲット表面の酸化によるチャージアップがなくなると共に、各ターゲットがカソードとアノードの役割を相互に果たすことで安定放電を行うことができる。
また、他の例として、有機EL素子用の保護膜、封止膜として、Siターゲットを使用し、反応性ガスO2を導入して反応性スパッタリングを行い、SiOX膜を作製する。この場合、通常のDC電源によるDC反応性スパッタリングでは、ITO膜作製の場合より異常アーク放電が発生する回数が多いが、AC電源を接続することにより、上記ITO膜の場合と同様に、ターゲット表面の酸化によるチャージアップがなくなり長時間安定放電ができるようになる。
また、DCにRFを重畳してもよく、さらに、DC電源に換えてRF電源、或いはMF電源を使用してもよい。また、各カソード毎に対応するDC電源、RF電源又はMF電源をそれぞれ接続してもよい。
また、図8に示すように、ターゲット間空間Kを挟んで基板Bと対向する位置に、さらにターゲットホルダー11cにバッキングプレート12cを介して取り付けられたターゲット10cを配置してもよい。このようにすることで、スパッタリングされるターゲットのスパッタ面の面積が増え、より成膜速度の向上を図ることができる。
また、本実施形態においては、基板Bは、固定されているがこれに限定される必要はない。即ち、基板Bの被成膜面B’の成膜面積がスパッタ装置の成膜可能な面積範囲より大きい場合や成膜された膜の膜厚分布を均一化するため、図9(イ)に示すように、被成膜面B’がT−T選に沿って移動(矢印β)するように配置されてもよく、また、図9(ロ)に示すように、被成膜面B’がT−T線中央と直交する中央線C上の所定位置に設定された公転中心cを中心にし、且つ被成膜面B’がT−T線に向って平行となった際、被成膜面B’の中心とT−T線の中間との距離が最短距離eとなるような公転軌道に沿って移動(矢印γ)するように配置されてもよい。また、前記被成膜面B’の移動方向(矢印β及びγ)は、一方向に移動してもよく、往復動(若しくは揺動)してもよい。
本実施形態に係る複合型スパッタ装置の概略構成図を示す。 同実施形態に係る複合型スパッタ装置における湾曲磁場発生手段の(イ)はバッキングプレートを介してターゲットを備えた状態の横断面図を示し、(ロ)は正面図を示し、(ハ)はA−A断面図を示す。 同実施形態に係る複合型スパッタ装置における補助磁場発生手段の(イ)は正面図を示し、(ロ)はA−A断面図を示し、(ハ)はB−B断面図を示し、(ニ)は取り付け状態の部分拡大断面図を示す ターゲットホルダー内に補助磁場発生手段を備えた他実施形態に係る複合型スパッタ装置の概略構成図を示す。 基板の被成膜面に沿った方向に配置される補助磁場発生手段を備えた他実施形態に係る複合型スパッタ装置の概略構成図を示す。 他実施形態に係る複合型スパッタ装置における補助磁場発生手段の正面図を示す。 AC電源を用いた複合型スパッタ装置の概略構成図を示す。 第3のターゲットをさらに備えた複合型スパッタ装置の概略構成図を示す。 (イ)は、被成膜面がT−T線に沿って移動する複合型スパッタ装置の概略構成図を示し、(ロ)は、被成膜面が公転軌道に沿って移動する複合型スパッタ装置の概略構成図を示す。 (イ)はターゲットと基板の被成膜面とが対向する従来のマグネトロンスパッタ装置の概略構成図を示し、(ロ)はターゲットと基板の被成膜面とが直交する従来のマグネトロンスパッタ装置の概略構成図を示す。 従来の平行平板型マグネトロンスパッタ装置の概略構成図を示す。 従来のV型対向ターゲット式スパッタ装置及び平行平板型対向ターゲット式スパッタ装置における、ITOラングミュアプルーブV−I特性を示す図である。 従来のV型対向ターゲット式スパッタ装置、補助磁場発生手段を備えたV型対向ターゲット式スパッタ装置及び平行平板型マグネトロンスパッタ装置における、ITO放電特性を示す図である。
符号の説明
1…複合型スパッタ装置(スパッタ装置)、2…真空容器(チャンバー)、3…スパッタ電力供給用電源、4…基板ホルダー、5…排気装置、6…ガス供給装置、6’…不活性ガス導入パイプ、10a,10b,10c…ターゲット(カソード)、10a’,10b’…スパッタ面(対向面)、11a,11b,11c…ターゲットホルダー、12a,12b,12c…バッキングプレート、20a,20b…湾曲磁場発生手段、21a,21b…枠状磁石(永久磁石)、22a,22b…中心磁石(永久磁石)、23a,23b…ヨーク、30a,30b…補助磁場発生手段(永久磁石)、B…基板、B’…被成膜面、d…ターゲットの中心間距離、K…ターゲット間空間(空間)、Ta,Tb…ターゲットの中心

Claims (7)

  1. 間隔をおいて互いに対向するように配置される一対のターゲットと、該ターゲット表面に磁力線が弧状となるような湾曲磁場空間を発生させるために設けられる湾曲磁場発生手段と、一対のターゲット間の側方位置に配置される成膜対象となる基板とを備え、一方の湾曲磁場発生手段は、磁力線がターゲット表面の外周部から中心部に向かうように極性が設定され、他方の湾曲磁場発生手段は、磁力線がターゲット表面の中心部から外周部に向かうように極性が設定されているマグネトロンスパッタ装置であって、
    前記対向するターゲット間空間に沿うような位置に補助磁場空間を発生させる補助磁場発生手段をさらに備え、該補助磁場発生手段は、補助磁場空間における磁力線が前記一方のターゲットから他方のターゲットに向かうように極性が設定されると共に、少なくとも前記ターゲット間空間と前記基板との間を遮るような位置に前記補助磁場空間を発生させるように前記一対のターゲットの周辺に配置されることを特徴とする複合型スパッタ装置。
  2. 前記補助磁場発生手段は、前記一対のターゲットを囲むようにその周縁に沿って配置されることを特徴とする請求項1に記載の複合型スパッタ装置。
  3. 前記補助磁場発生手段は、前記補助磁場空間の磁場強度がターゲットの中心部から離れるに従って強くなるように設定されることを特徴とする請求項1又は2に記載の複合型スパッタ装置。
  4. 前記一対のターゲットは、互いに対向する面が前記基板の被成膜面に向くように傾斜させてそれぞれ配置されることを特徴とする請求項1乃至3の何れか一項に記載の複合型スパッタ装置。
  5. 前記一対のターゲットは、それぞれ180°位相がずれた交流電場を印加可能な交流電源が接続されることを特徴とする請求項1乃至4の何れか一項に記載の複合型スパッタ装置。
  6. 間隔をおいて互いに対向する一対のターゲットの表面において、一方のターゲット表面には外周部から中心部に向かい、他方のターゲットの表面には中心部から外周部へ向かうよう、磁力線が弧状となるような湾曲磁場空間を発生させてスパッタリングし、該スパッタリングされたスパッタ粒子で前記一対のターゲット間の側方位置に配置される基板上の成膜面に成膜するマグネトロンスパッタ方法であって、
    前記ターゲット間に形成される空間に沿って、且つ少なくとも前記ターゲット間に形成される空間と前記基板との間を遮るような位置に、一方のターゲットから他方のターゲットに磁力線が向かうような補助磁場空間を発生させてスパッタリングすることを特徴とする複合型スパッタ方法。
  7. 前記補助磁場空間は、前記ターゲット間に形成される空間の周囲を囲むよう、筒状に形成されることを特徴とする請求項5に記載の複合型スパッタ方法。
JP2006310531A 2006-11-16 2006-11-16 複合型スパッタ装置及び複合型スパッタ方法 Expired - Fee Related JP4614936B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006310531A JP4614936B2 (ja) 2006-11-16 2006-11-16 複合型スパッタ装置及び複合型スパッタ方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006310531A JP4614936B2 (ja) 2006-11-16 2006-11-16 複合型スパッタ装置及び複合型スパッタ方法

Publications (2)

Publication Number Publication Date
JP2008127582A true JP2008127582A (ja) 2008-06-05
JP4614936B2 JP4614936B2 (ja) 2011-01-19

Family

ID=39553729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006310531A Expired - Fee Related JP4614936B2 (ja) 2006-11-16 2006-11-16 複合型スパッタ装置及び複合型スパッタ方法

Country Status (1)

Country Link
JP (1) JP4614936B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156018A (ja) * 2008-12-26 2010-07-15 Masahiko Naoe スパッタ装置
WO2011148488A1 (ja) * 2010-05-27 2011-12-01 株式会社ナチュラテクノロジー ナチュラトロンスパッタ装置
JP7150364B1 (ja) * 2021-09-27 2022-10-11 株式会社アドバンスト・スパッタテック スパッタリング成膜源および成膜装置
WO2022230857A1 (ja) 2021-04-30 2022-11-03 株式会社イー・エム・ディー スパッタ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129860A (ja) * 1997-07-14 1999-02-02 Bridgestone Corp スパッタ膜の作製方法及び対向ターゲット式スパッタリング装置
JPH1129861A (ja) * 1997-07-14 1999-02-02 Bridgestone Corp スパッタ膜の作製方法及び対向ターゲット式スパッタリング装置
JP2001335924A (ja) * 2000-05-23 2001-12-07 Canon Inc スパッタリング装置
JP2005179716A (ja) * 2003-12-17 2005-07-07 Sony Corp スパッタリング装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129860A (ja) * 1997-07-14 1999-02-02 Bridgestone Corp スパッタ膜の作製方法及び対向ターゲット式スパッタリング装置
JPH1129861A (ja) * 1997-07-14 1999-02-02 Bridgestone Corp スパッタ膜の作製方法及び対向ターゲット式スパッタリング装置
JP2001335924A (ja) * 2000-05-23 2001-12-07 Canon Inc スパッタリング装置
JP2005179716A (ja) * 2003-12-17 2005-07-07 Sony Corp スパッタリング装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156018A (ja) * 2008-12-26 2010-07-15 Masahiko Naoe スパッタ装置
WO2011148488A1 (ja) * 2010-05-27 2011-12-01 株式会社ナチュラテクノロジー ナチュラトロンスパッタ装置
WO2022230857A1 (ja) 2021-04-30 2022-11-03 株式会社イー・エム・ディー スパッタ装置
KR20240004297A (ko) 2021-04-30 2024-01-11 가부시키가이샤 이엠디 스퍼터 장치
JP7150364B1 (ja) * 2021-09-27 2022-10-11 株式会社アドバンスト・スパッタテック スパッタリング成膜源および成膜装置
WO2023047995A1 (ja) * 2021-09-27 2023-03-30 株式会社アドバンスト・スパッタテック スパッタリング成膜源および成膜装置

Also Published As

Publication number Publication date
JP4614936B2 (ja) 2011-01-19

Similar Documents

Publication Publication Date Title
JP5059430B2 (ja) スパッタ方法及びスパッタ装置
JP5059429B2 (ja) スパッタ方法及びスパッタ装置
US8382966B2 (en) Sputtering system
US20100078309A1 (en) Sputtering method and sputtering apparatus
TWI414621B (zh) Sputtering target and sputtering method using the target
JP4922581B2 (ja) スパッタリング装置及びスパッタリング方法
JP5527894B2 (ja) スパッタ装置
JP4473852B2 (ja) スパッタ装置及びスパッタ方法
JP4614936B2 (ja) 複合型スパッタ装置及び複合型スパッタ方法
US9028659B2 (en) Magnetron design for extended target life in radio frequency (RF) plasmas
JP2009293089A (ja) スパッタリング装置
KR20130046360A (ko) 마그네트론 스퍼터 장치
US8172993B2 (en) Magnetron sputtering electrode, and sputtering apparatus provided with magnetron sputtering electrode
WO2018068833A1 (en) Magnet arrangement for a sputter deposition source and magnetron sputter deposition source
JP2009191340A (ja) 成膜装置及び成膜方法
JP4999602B2 (ja) 成膜装置
KR101669497B1 (ko) 유전성 rf 스퍼터 타깃 상의 부식 프로파일 제어
JP2010024532A (ja) マグネトロンスパッタ装置、成膜方法、及び光学部品の製造方法
JP4713853B2 (ja) マグネトロンカソード電極及びマグネトロンカソード電極を用いたスパッタリング方法
WO2020004619A1 (ja) スパッタ成膜装置
JP2007231401A (ja) 対向ターゲット式スパッタリング装置
JP5145020B2 (ja) 成膜装置及び成膜方法
KR100963413B1 (ko) 마그네트론 스퍼터링 장치
KR100793356B1 (ko) 스퍼터링 장치
JPH1192927A (ja) マグネトロンスパッタ装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101019

R150 Certificate of patent or registration of utility model

Ref document number: 4614936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees