JP2008126122A - High-pressure reaction vessel for treating organic material and high-pressure reaction system - Google Patents

High-pressure reaction vessel for treating organic material and high-pressure reaction system Download PDF

Info

Publication number
JP2008126122A
JP2008126122A JP2006312479A JP2006312479A JP2008126122A JP 2008126122 A JP2008126122 A JP 2008126122A JP 2006312479 A JP2006312479 A JP 2006312479A JP 2006312479 A JP2006312479 A JP 2006312479A JP 2008126122 A JP2008126122 A JP 2008126122A
Authority
JP
Japan
Prior art keywords
pressure
reaction vessel
vessel
reaction
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006312479A
Other languages
Japanese (ja)
Inventor
Makoto Fujie
誠 藤江
Tsuneo Omura
恒雄 大村
Masahiko Osaki
正彦 大崎
Jun Nishikawa
絢 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006312479A priority Critical patent/JP2008126122A/en
Publication of JP2008126122A publication Critical patent/JP2008126122A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the treating performance of a high-pressure reaction vessel for treating organic materials which is of a double structure which keeps a reaction vessel housed in a pressure vessel. <P>SOLUTION: The high-pressure reaction vessel for treating the organic materials 101 is provided with a reaction vessel 2 connecting to a treating material feed pipe 41 feeding organic waste 4 and to an oxidizing agent feed pipe 51 feeding an oxidizing agent 5, the pressure vessel 1 installed so as to enclose the reaction vessel 2, a treated fluid exit pipe 61 connecting to the reaction vessel 2 and taking out a treated fluid obtained by treating the organic waste 4 in the reaction vessel 2 outside of the pressure vessel 1, equal-pressure-fluid feed pipes 92 connected to the pressure vessel 1 and feeding an equal-pressure-maintaining fluid 9 to a space between the pressure vessel 1 and the reaction vessel 2, and a connection pipe 7 extended from the pressure vessel 1 and connected to the treated fluid exit pipe 61 ouside of the pressure vessel 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機物を高圧で分解処理する有機物処理用の高圧反応容器および高圧反応システムに関する。   The present invention relates to a high-pressure reaction vessel and a high-pressure reaction system for treating organic substances that decompose organic substances at high pressure.

一般に、超臨界水酸化処理の反応容器は、高温高圧の腐食環境に晒される。このため、耐圧容器の内側に耐食性材料製の反応容器を配置した二重容器構造としている。このような反応容器では、反応容器の内外の圧力差により反応容器が破損する恐れがある。このため、反応容器内の圧力と耐圧容器と反応容器の隙間の圧力を制御して差圧を少なくするような手段が取られている。   Generally, a reaction vessel for supercritical water oxidation treatment is exposed to a high-temperature and high-pressure corrosive environment. For this reason, it is set as the double container structure which has arrange | positioned the reaction container made from a corrosion-resistant material inside the pressure-resistant container. In such a reaction vessel, the reaction vessel may be damaged by a pressure difference between the inside and outside of the reaction vessel. For this reason, measures are taken to control the pressure in the reaction vessel and the pressure in the gap between the pressure vessel and the reaction vessel to reduce the differential pressure.

たとえば、耐圧容器と反応容器の隙間と反応容器を連結して、気体または液体を流す方法が提案されている。特許文献1には、反応容器に流す空気を分岐して隙間に流し、反応容器と隙間の流体を別々のラインで減圧して排出する方法が開示されている。一方、特許文献2には、耐圧容器と反応容器の隙間と耐圧容器入口の間に連結管を備えて、隙間に供給した液体は反応容器を介して処理液と一緒に反応容器出口から排出する方法が開示されている。また、特許文献3には、耐圧容器と反応容器の隙間に水を供給して減圧弁で反応容器と同圧になるように制御する方法が開示されている。
特開2005−342553号公報 特開2005−58962号公報 特開2002−186844号公報
For example, a method has been proposed in which a gap between a pressure vessel and a reaction vessel is connected to the reaction vessel to flow gas or liquid. Patent Document 1 discloses a method in which air flowing into a reaction vessel is branched and flows into a gap, and the reaction vessel and the fluid in the gap are decompressed and discharged through separate lines. On the other hand, in Patent Document 2, a connecting pipe is provided between the pressure vessel and the gap between the reaction vessel and the pressure vessel inlet, and the liquid supplied to the gap is discharged from the reaction vessel outlet together with the processing liquid via the reaction vessel. A method is disclosed. Further, Patent Document 3 discloses a method of controlling water so that water is supplied to the gap between the pressure vessel and the reaction vessel so that the pressure is the same as that of the reaction vessel using a pressure reducing valve.
JP 2005-342553 A JP 2005-58962 A JP 2002-186844 A

有機物の超臨界水酸化処理は、高温高圧のプロセスである。このため、昇圧・昇温の起動工程と降温・降圧の停止工程に長い時間が必要である。また、有機物の種類により無機塩が発生して反応容器に堆積する場合には、温度を下げて塩を溶解排出する工程が必要となる。反応容器の温度を変化させるためには長時間を必要とし、実質的な処理時間が著しく短くなり、年間処理量を著しく低下させているという課題がある。   The supercritical water oxidation treatment of organic matter is a high temperature and high pressure process. For this reason, a long time is required for the step of starting up the pressure increase / temperature rise and the step of stopping the temperature drop / step down. In addition, when an inorganic salt is generated depending on the type of organic matter and is deposited in the reaction vessel, a step of dissolving and discharging the salt at a reduced temperature is required. In order to change the temperature of the reaction vessel, it takes a long time, and there is a problem that the substantial processing time is remarkably shortened and the annual throughput is remarkably reduced.

空気を分岐して耐圧容器と反応容器に供給して、それぞれの圧力調整器で減圧しながら、耐圧容器と反応容器の圧力の差圧を測定して耐圧容器へ供給される気体を別の弁で排出し微調整して、同圧を維持することもできる。この場合、反応容器に圧力維持流体を供給しないので、容器はそれほど大型にはならないが、3台で連携した圧力調整が必要であり、機器が増加し、制御が複雑になる。   The air is branched and supplied to the pressure vessel and the reaction vessel, and the pressure difference between the pressure vessel and the reaction vessel is measured while reducing the pressure with the respective pressure regulators. It is possible to maintain the same pressure by discharging and fine-tuning. In this case, since the pressure maintaining fluid is not supplied to the reaction container, the container does not become so large, but pressure adjustment in cooperation with three units is necessary, equipment is increased, and control is complicated.

耐圧容器の上流部と反応容器の入口に連結管を設け、耐圧容器と反応容器の同圧を維持すると、耐圧容器の下流に配置された1台の圧力調整弁で耐圧容器と反応容器の圧力を容易に同圧に維持できる。しかし、反応容器に同圧維持流体が供給されるため、反応容器の容積と耐圧容器の容積が増加する。耐圧容器の容積増加は、容器材料の肉厚と重量を増加させ容器の大型化、コスト増加につながる。   If a connecting pipe is provided at the upstream part of the pressure vessel and the inlet of the reaction vessel, and the same pressure is maintained in the pressure vessel and the reaction vessel, the pressure of the pressure vessel and the reaction vessel is adjusted by a single pressure regulating valve arranged downstream of the pressure vessel. Can be easily maintained at the same pressure. However, since the same pressure maintaining fluid is supplied to the reaction vessel, the volume of the reaction vessel and the volume of the pressure vessel increase. Increasing the volume of the pressure vessel increases the thickness and weight of the container material, leading to an increase in size and cost of the container.

また、耐圧容器に水を供給して反応容器と耐圧容器の圧力が等しくなるように排出量を調整する方法では、2台の圧力調整器が必要で、圧力調整が複雑になる。   Moreover, in the method of supplying water to a pressure vessel and adjusting the discharge amount so that the pressures of the reaction vessel and the pressure vessel become equal, two pressure regulators are required, and the pressure adjustment becomes complicated.

そこで、本発明は、耐圧容器の内部に反応容器が収められた二重容器構造の有機物分解処理用高圧反応容器の処理能力を向上させることを目的とする。   Therefore, an object of the present invention is to improve the processing capacity of a high pressure reaction vessel for organic matter decomposition treatment having a double vessel structure in which a reaction vessel is housed inside a pressure vessel.

上述の目的を達成するため、本発明は、有機物を高圧で分解処理する有機物処理用高圧反応容器において、前記有機物を供給する有機物供給手段と、前記有機物と反応させる反応剤を供給する反応剤供給手段と、前記有機物供給手段および前記反応剤供給手段に接続された反応容器と、前記反応容器を囲むように配設された耐圧容器と、前記反応容器と連結されて前記有機物を前記反応容器で処理した処理流体を前記耐圧容器の外部へ抜き取る処理流体出口管と、前記耐圧容器に接続されて前記耐圧容器と前記反応容器との間の空隙に同圧維持流体を供給する同圧流体供給管と、前記耐圧容器から延びて前記耐圧容器の外部で前記処理流体出口管に連結された連結管と、を有することを特徴とする。   In order to achieve the above-described object, the present invention provides an organic substance supply means for supplying an organic substance and a reactant supply for supplying a reagent to be reacted with the organic substance in a high-pressure reaction vessel for organic substance treatment that decomposes the organic substance at a high pressure. Means, a reaction vessel connected to the organic substance supply means and the reactant supply means, a pressure vessel disposed so as to surround the reaction vessel, and the reaction vessel connected to the organic matter in the reaction vessel. A processing fluid outlet pipe for extracting the processed processing fluid to the outside of the pressure vessel, and a same pressure fluid supply pipe connected to the pressure vessel and supplying the same pressure maintaining fluid to the gap between the pressure vessel and the reaction vessel And a connecting pipe extending from the pressure vessel and connected to the processing fluid outlet pipe outside the pressure vessel.

また、本発明は、有機物を高圧で分解処理する有機物処理用高圧反応システムにおいて、前記有機物を供給する有機物供給手段と、前記有機物と反応させる反応剤を供給する反応剤供給手段と、前記有機物供給手段および前記反応剤供給手段に接続された反応容器と、前記反応容器を囲むように配設された耐圧容器と、前記反応容器と連結されて前記有機物を前記反応容器で処理した処理流体を前記耐圧容器の外部へ抜き取る処理流体出口管と、前記耐圧容器に接続されて前記耐圧容器と前記反応容器との間の空隙に同圧維持流体を供給する同圧流体供給管と、前記耐圧容器から延びて前記耐圧容器の外部で前記処理流体出口管に連結された連結管と、前記処理流体の圧力を減圧する減圧手段と、を有することを特徴とする。   The present invention also provides an organic substance supply means for supplying an organic substance, a reactant supply means for supplying a reagent to be reacted with the organic substance, and the organic substance supply in a high-pressure reaction system for treating an organic substance that decomposes an organic substance at a high pressure. And a reaction vessel connected to the reactant supply means, a pressure vessel disposed so as to surround the reaction vessel, and a processing fluid connected to the reaction vessel and treating the organic matter in the reaction vessel. From the pressure vessel, a processing fluid outlet pipe that is drawn out of the pressure vessel, a same pressure fluid supply pipe that is connected to the pressure vessel and supplies the same pressure maintaining fluid to a gap between the pressure vessel and the reaction vessel, and It has a connecting pipe that extends and is connected to the processing fluid outlet pipe outside the pressure vessel, and a pressure reducing means for reducing the pressure of the processing fluid.

本発明によれば、耐圧容器の内部に反応容器が収められた二重容器構造の有機物分解処理用高圧反応容器の処理能力を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the processing capability of the high-pressure reaction container for organic substance decomposition processing of the double container structure where the reaction container was accommodated in the inside of a pressure vessel can be improved.

本発明に係る高圧反応容器の実施の形態を、図面を参照して説明する。なお、同一または類似の構成には同一の符号を付し、重複する説明は省略する。   Embodiments of a high-pressure reaction vessel according to the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or similar structure, and the overlapping description is abbreviate | omitted.

[第1の実施の形態]
図1は、本発明に係る高圧反応容器の第1の実施の形態における縦断面図である。
[First Embodiment]
FIG. 1 is a longitudinal sectional view of a first embodiment of a high-pressure reaction vessel according to the present invention.

高圧反応容器101は、入口側21から出口側22に延びる筒状の反応容器2を有している。反応容器2の少なくとも内側は、耐食性を有する材料で形成されている。反応容器2は、同じ軸方向に延びる耐圧容器1の内部に収められている。   The high-pressure reaction vessel 101 has a cylindrical reaction vessel 2 that extends from the inlet side 21 to the outlet side 22. At least the inside of the reaction vessel 2 is formed of a material having corrosion resistance. The reaction vessel 2 is accommodated in a pressure vessel 1 extending in the same axial direction.

反応容器2の入口側21には、熱膨張・収縮吸収管31,32を介して、耐圧容器1の外側の処理物供給管41、酸化剤供給管51が接続されている。   A treatment product supply pipe 41 and an oxidant supply pipe 51 outside the pressure vessel 1 are connected to the inlet side 21 of the reaction vessel 2 via thermal expansion / contraction absorption tubes 31 and 32.

また、反応容器2の出口側22には、別の熱膨張・収縮吸収管33を介して、耐圧容器1の外側の処理流体出口管61が接続されている。熱膨張・収縮吸収管31,32,33は、反応容器2の外部であって、耐圧容器1の内部に位置している。   A processing fluid outlet pipe 61 outside the pressure vessel 1 is connected to the outlet side 22 of the reaction vessel 2 via another thermal expansion / contraction absorption tube 33. The thermal expansion / contraction absorption tubes 31, 32, 33 are located outside the reaction vessel 2 and inside the pressure vessel 1.

また、高圧反応容器101は、耐圧容器1と処理流体出口管61を接続する連結管7を有している。処理流体出口管61の連結管7との接続部よりも下流側には、薬液供給管18が接続されている。   Further, the high-pressure reaction vessel 101 has a connecting pipe 7 that connects the pressure-resistant vessel 1 and the processing fluid outlet pipe 61. A chemical solution supply pipe 18 is connected to the downstream side of the connection portion of the processing fluid outlet pipe 61 with the connecting pipe 7.

反応容器2の入口側21および出口側22の近傍であって耐圧容器1の外側には、熱交換器81,82が取り付けられている。熱交換器81,82には冷却材8が供給される。   Heat exchangers 81 and 82 are attached near the inlet side 21 and outlet side 22 of the reaction vessel 2 and outside the pressure vessel 1. The coolant 8 is supplied to the heat exchangers 81 and 82.

反応容器2の入口側21および出口側22の近傍において耐圧容器1には、2本の同圧流体供給管92が接続されている。耐圧容器1と反応容器2の間の空間には、同圧流体供給管92を介して、たとえば水などの同圧維持流体9が供給される。同圧流体供給管92の途中には、流量調整弁19が挿入されている。同圧流体供給菅92は、流量調整弁19の上流で、一本の同圧流体供給管91にまとめられている。   In the vicinity of the inlet side 21 and the outlet side 22 of the reaction vessel 2, two equal pressure fluid supply pipes 92 are connected to the pressure vessel 1. The space between the pressure vessel 1 and the reaction vessel 2 is supplied with the same pressure maintaining fluid 9 such as water through the same pressure fluid supply pipe 92. A flow rate adjustment valve 19 is inserted in the middle of the same pressure fluid supply pipe 92. The same pressure fluid supply rod 92 is grouped into a single same pressure fluid supply pipe 91 upstream of the flow rate adjusting valve 19.

耐圧容器1の外周には、耐圧容器1を加熱する加熱器11が配設されている。   A heater 11 that heats the pressure vessel 1 is disposed on the outer periphery of the pressure vessel 1.

有機廃棄物4は、処理物供給管41から反応容器2に供給される。有機廃棄物4と反応する反応剤である酸化剤5は、酸化剤供給管51から反応容器2に供給される。また、有機廃棄物4の性質によっては、還元剤を使用することも可能である。反応容器2で処理された処理流体6は、処理流体出口管61から抜き出される。   The organic waste 4 is supplied to the reaction vessel 2 from the treated product supply pipe 41. The oxidizing agent 5 that is a reactant that reacts with the organic waste 4 is supplied from the oxidizing agent supply pipe 51 to the reaction vessel 2. Further, depending on the nature of the organic waste 4, it is possible to use a reducing agent. The processing fluid 6 processed in the reaction vessel 2 is extracted from the processing fluid outlet pipe 61.

処理流体6は、酸性あるいはアルカリ性となっている場合もあるが、薬液供給管18を介して供給される薬液14によってペーハーが調整され、処理流体出口管61を介して減圧機構(図示せず)まで送られる。処理流体6は、減圧機構で減圧された後、必要な処理が施された後に排出される。   The processing fluid 6 may be acidic or alkaline, but the pH is adjusted by the chemical solution 14 supplied through the chemical solution supply pipe 18, and a pressure reducing mechanism (not shown) is supplied through the processing fluid outlet pipe 61. Sent to. The processing fluid 6 is discharged after being subjected to necessary processing after being decompressed by the decompression mechanism.

このように、処理流体6を減圧機構に送る前に、酸度あるいはアルカリ度を低下させることにより、腐食性が低下する。これによって、処理流体6の下流側の減圧機構などの寿命を長くすることができ、処理システムの信頼性を向上させることができる。なお、薬液供給管18の接続位置は、連結管7の接続位置の上流側であってもよい。また、処理流体6の減圧の前に、気水分離などの工程を行ってもよい。   In this way, the corrosivity is reduced by reducing the acidity or alkalinity before sending the processing fluid 6 to the pressure reducing mechanism. As a result, the lifetime of the pressure reducing mechanism on the downstream side of the processing fluid 6 can be extended, and the reliability of the processing system can be improved. The connection position of the chemical solution supply pipe 18 may be upstream of the connection position of the connecting pipe 7. In addition, before the processing fluid 6 is depressurized, a process such as air-water separation may be performed.

耐圧容器1は、圧力容器としての高温強度が要求される。一方、反応容器2は、耐食性が要求され、たとえばチタンなどが用いられるが、高温強度は低い。このため、耐圧容器1は、反応容器2とは異なる材料で形成される場合がある。   The pressure vessel 1 is required to have high temperature strength as a pressure vessel. On the other hand, the reaction vessel 2 is required to have corrosion resistance. For example, titanium is used, but the high temperature strength is low. For this reason, the pressure vessel 1 may be formed of a material different from that of the reaction vessel 2.

耐圧容器1と反応容器2とが異なる材料で形成されている場合には、運転開始の際の昇温時に、膨張率が異なるため、配管位置が相対的に変化する可能性がある。このため、耐圧容器1と反応容器2との間を剛体で結合していると、いずれかの容器が変形したり、結合部が破断するおそれがある。   When the pressure vessel 1 and the reaction vessel 2 are formed of different materials, the expansion rate differs at the time of temperature rise at the start of operation, and therefore the piping position may change relatively. For this reason, when the pressure vessel 1 and the reaction vessel 2 are coupled with a rigid body, any one of the vessels may be deformed or the coupling portion may be broken.

そこで、本実施の形態の高圧反応容器では、耐圧容器1と反応容器2との間を熱膨張・収縮吸収管31,32,33によって結合している。熱膨張・収縮吸収管31,32,33は、寸法変化を吸収できるように、ジグザグ型に形成されている。   Therefore, in the high-pressure reaction vessel of the present embodiment, the pressure-resistant vessel 1 and the reaction vessel 2 are connected by thermal expansion / contraction absorption tubes 31, 32, 33. The thermal expansion / contraction absorption tubes 31, 32, and 33 are formed in a zigzag shape so as to absorb dimensional changes.

このような熱膨張・収縮吸収管31,32,33によって、相対的な配管位置の変化は吸収され、容器の破損が抑制される。同様に運転停止時に両容器の収縮に伴う破損も抑制される。   By such thermal expansion / contraction absorbing tubes 31, 32, 33, changes in relative piping positions are absorbed, and damage to the container is suppressed. Similarly, breakage due to contraction of both containers at the time of shutdown is also suppressed.

熱交換器81,82は、耐圧容器1の両端と熱膨張・収縮吸収管31,32,33の近傍を冷却する。これにより、処理物供給管41、酸化剤供給管51、処理流体出口管61および同圧流体供給管92が耐圧容器1に接続されている部分の温度が過度に上昇することを抑制する。   The heat exchangers 81 and 82 cool both ends of the pressure vessel 1 and the vicinity of the thermal expansion / contraction absorption tubes 31, 32 and 33. Thereby, it is suppressed that the temperature of the part to which the processed material supply pipe 41, the oxidizing agent supply pipe 51, the processing fluid outlet pipe 61, and the same pressure fluid supply pipe 92 are connected to the pressure vessel 1 is excessively increased.

同圧維持流体9は、流量調整弁19を介して耐圧容器1内に供給される。また、耐圧容器1の出口部で連結管7から流出し、処理流体出口管61と連結管7の接合部で処理流体と合流する。これにより、耐圧容器1と反応容器2の圧力は同じとなる。   The same pressure maintaining fluid 9 is supplied into the pressure resistant container 1 through the flow rate adjusting valve 19. Further, it flows out of the connecting pipe 7 at the outlet of the pressure vessel 1 and joins the processing fluid at the joint between the processing fluid outlet pipe 61 and the connecting pipe 7. Thereby, the pressure vessel 1 and the reaction vessel 2 have the same pressure.

本実施の形態の高圧反応容器101は、同圧維持流体9を連結管7を介して処理流体出口管61の途中で処理流体6と合流させている。これにより、耐圧容器1の容積を小さくすることができ、装置を小型化することが可能である。また、コスト低減の効果が得られる。また、構造が単純であるため、誤動作の危険は小さく、制御が容易である。   In the high-pressure reaction vessel 101 of the present embodiment, the same pressure maintaining fluid 9 is joined with the processing fluid 6 in the middle of the processing fluid outlet pipe 61 via the connecting pipe 7. Thereby, the capacity | capacitance of the pressure vessel 1 can be made small and an apparatus can be reduced in size. Moreover, the effect of cost reduction is acquired. Moreover, since the structure is simple, the risk of malfunction is small and control is easy.

同圧維持流体9は、反応容器2の入口側21と出口側22の近傍で、耐圧容器1に別々に供給することができ、さらにそれぞれの流量を制御できる。これにより、反応容器2の入口側21および出口側22、並びに、熱膨張・収縮吸収管31,32,33を冷却して低い温度に保つことができる。したがって、熱硬化による耐圧容器1と反応容器2の接続部の破損が抑制される。   The same pressure maintaining fluid 9 can be separately supplied to the pressure-resistant vessel 1 in the vicinity of the inlet side 21 and the outlet side 22 of the reaction vessel 2, and each flow rate can be controlled. As a result, the inlet side 21 and outlet side 22 of the reaction vessel 2 and the thermal expansion / contraction absorption tubes 31, 32, 33 can be cooled and kept at a low temperature. Therefore, damage to the connecting portion between the pressure vessel 1 and the reaction vessel 2 due to thermosetting is suppressed.

有機廃棄物4の酸化反応による発熱で外部の加熱器11からの熱供給が不要になった場合には、反応容器2の入口側21の近傍から同圧維持流体9を供給することによって、速やかに加熱器11からの熱の供給を遮断できる。これにより、反応の暴走を抑えて反応温度の制御が容易となり、安定した分解性能が得られる。さらに、反応容器2の内壁温度を下げることができるので、腐食が抑制される。このため、廉価な材料で反応容器を製作することができる。   When heat supply from the external heater 11 becomes unnecessary due to the heat generated by the oxidation reaction of the organic waste 4, the same pressure maintaining fluid 9 can be quickly supplied from the vicinity of the inlet side 21 of the reaction vessel 2. In addition, the supply of heat from the heater 11 can be cut off. Thereby, the runaway of the reaction is suppressed, the reaction temperature can be easily controlled, and stable decomposition performance can be obtained. Furthermore, since the inner wall temperature of the reaction vessel 2 can be lowered, corrosion is suppressed. For this reason, a reaction container can be manufactured with an inexpensive material.

同圧維持流体9は、反応容器2の入口側21の近傍から供給される。このため、運転停止のために温度を下げる工程では、反応容器2を効率的に除熱することができ、この工程に要する時間を短縮できる。その結果、この高圧反応容器の使用時間のうち、実際に有機物処理に用いることができる時間が増加し、年間処理量が増加する。   The same pressure maintaining fluid 9 is supplied from the vicinity of the inlet side 21 of the reaction vessel 2. For this reason, in the process of lowering the temperature to stop operation, the reaction vessel 2 can be efficiently removed of heat, and the time required for this process can be shortened. As a result, of the usage time of the high-pressure reaction vessel, the time that can actually be used for organic matter treatment increases, and the annual throughput increases.

特に無機塩が反応容器に堆積するプロセスでは、高温の有機廃棄物処理工程と低温の塩排出工程を交互に繰り返す必要がある。本実施の形態の高圧反応容器を用いると、有機物処理工程から塩排出工程に移行する過渡期の時間を短縮することができるので、年間の処理量を大幅に増加させることができる。   In particular, in a process in which inorganic salts are deposited in a reaction vessel, it is necessary to alternately repeat a high-temperature organic waste treatment step and a low-temperature salt discharge step. When the high-pressure reaction vessel of the present embodiment is used, the transition period from the organic matter treatment step to the salt discharge step can be shortened, so that the annual treatment amount can be greatly increased.

なお、同圧流体供給管92の耐圧容器1への接続は、2箇所に限定されるものではない。たとえば、3箇所以上で接続して、同圧流体供給管92を流れる同圧維持流体9のそれぞれの流量を制御すると、反応容器内の温度分布をより細かく制御することができ、処理性能を向上させることもできる。   The connection of the same pressure fluid supply pipe 92 to the pressure vessel 1 is not limited to two places. For example, by connecting at three or more locations and controlling the flow rate of the same pressure maintaining fluid 9 flowing through the same pressure fluid supply pipe 92, the temperature distribution in the reaction vessel can be controlled more finely, and the processing performance is improved. It can also be made.

同圧維持流体9は、水などの液体に限定されず、窒素、空気などの不活性ガスを同圧維持気体として利用することもできる。なお、気体を同圧維持流体9として用いる場合は、液体に比べて熱容量が少ないので、降温速度向上の効果、反応容器内の温度分布制御の効果はあまり大きくないが、1箇所以上で耐圧容器1に供給することで効果が得られる。   The same-pressure maintaining fluid 9 is not limited to a liquid such as water, and an inert gas such as nitrogen or air can be used as the same-pressure maintaining gas. When gas is used as the same pressure maintaining fluid 9, the heat capacity is less than that of the liquid, so the effect of improving the temperature drop rate and the effect of controlling the temperature distribution in the reaction vessel are not so great. The effect is obtained by supplying to 1.

[第2の実施の形態]
図2は、本発明に係る高圧反応容器の第2の実施の形態における熱膨張・収縮吸収管近傍の縦断面図である。
[Second Embodiment]
FIG. 2 is a longitudinal sectional view of the vicinity of the thermal expansion / contraction absorption tube in the second embodiment of the high-pressure reactor according to the present invention.

本実施の形態の高圧反応容器102では、耐圧容器1と反応容器2との間を、らせん型の熱膨張・収縮吸収管33によって結合している。このような熱膨張・収縮吸収管33によって、耐圧容器1と反応容器2との相対的な位置変化は吸収される。   In the high-pressure reaction vessel 102 of the present embodiment, the pressure-resistant vessel 1 and the reaction vessel 2 are connected by a helical thermal expansion / contraction absorption tube 33. By such a thermal expansion / contraction absorption tube 33, a relative positional change between the pressure vessel 1 and the reaction vessel 2 is absorbed.

なお、ここでは、反応容器2と処理流体出口管61をつなぐ熱膨張・収縮吸収管33を、らせん型としているが、反応容器2と処理物供給管41あるいは酸化剤供給管51との接続にもらせん型の熱膨張・収縮吸収管を用いることができる。   Here, the thermal expansion / contraction absorption pipe 33 connecting the reaction vessel 2 and the processing fluid outlet pipe 61 is of a helical type, but the connection between the reaction vessel 2 and the processed product supply pipe 41 or the oxidant supply pipe 51 is used. A helical-type thermal expansion / contraction absorption tube can be used.

[第3の実施の形態]
図3は、本発明に係る高圧反応容器の第3の実施の形態における熱膨張・収縮吸収管近傍の縦断面図である。
[Third Embodiment]
FIG. 3 is a longitudinal sectional view of the vicinity of the thermal expansion / contraction absorption tube in the third embodiment of the high-pressure reactor according to the present invention.

本実施の形態の高圧反応容器103では、耐圧容器1と反応容器2との間を、ベロー型の熱膨張・収縮吸収管33によって結合している。このような熱膨張・収縮吸収管33によって、耐圧容器1と反応容器2との相対的な位置変化は吸収される。   In the high-pressure reaction vessel 103 of the present embodiment, the pressure-resistant vessel 1 and the reaction vessel 2 are coupled by a bellows type thermal expansion / contraction absorption tube 33. By such a thermal expansion / contraction absorption tube 33, a relative positional change between the pressure vessel 1 and the reaction vessel 2 is absorbed.

なお、ここでは、反応容器2と処理流体出口管61をつなぐ熱膨張・収縮吸収管33を、ベロー型としているが、反応容器2と処理物供給管41あるいは酸化剤供給管51との接続にもベロー型の熱膨張・収縮吸収管を用いることができる。   Here, the thermal expansion / contraction absorption pipe 33 connecting the reaction vessel 2 and the processing fluid outlet pipe 61 is a bellows type, but the connection between the reaction vessel 2 and the processed product supply pipe 41 or the oxidant supply pipe 51 is used. Also, a bellows type thermal expansion / contraction absorption tube can be used.

[第4の実施の形態]
図4は、本発明に係る高圧反応容器の第4の実施の形態における連結管近傍の縦断面図である。
[Fourth Embodiment]
FIG. 4 is a longitudinal sectional view of the vicinity of the connecting pipe in the fourth embodiment of the high-pressure reaction container according to the present invention.

本実施の形態の高圧反応容器104では、連結管7は、耐圧容器1の最高部と接続され、連結管7の最高部は耐圧容器1よりも高い位置に配置されている。   In the high-pressure reaction vessel 104 of the present embodiment, the connecting pipe 7 is connected to the highest part of the pressure resistant container 1, and the highest part of the connecting pipe 7 is arranged at a position higher than the pressure resistant container 1.

同圧維持流体9に水などの液体を使用している場合に、同圧維持流体9に気体が混入すると、その気体は耐圧容器1の上部に溜まる。このため、同圧維持流体9に気体が混入したとしても、同圧維持流体9の供給中は耐圧容器1の最高部から連結管7を介して処理流体出口管61に排出される。   When a liquid such as water is used for the same pressure maintaining fluid 9, if a gas is mixed into the same pressure maintaining fluid 9, the gas accumulates in the upper portion of the pressure resistant container 1. For this reason, even if gas is mixed in the same pressure maintaining fluid 9, the gas is discharged from the highest part of the pressure-resistant vessel 1 to the processing fluid outlet pipe 61 through the connecting pipe 7 during the supply of the same pressure maintaining fluid 9.

気体は熱容量が小さいので、耐圧容器1の内部に残留すると加熱器11から反応容器2への熱供給効率が低下する。しかし、本実施の形態のように連結管7を配置することにより、耐圧容器1の内部を液体で満たすことができる。このため、外部からの熱制御に対して応答性の良い高圧反応容器を提供することができる。また、エネルギー効率も向上する。   Since the gas has a small heat capacity, the heat supply efficiency from the heater 11 to the reaction vessel 2 decreases when it remains inside the pressure vessel 1. However, by disposing the connecting pipe 7 as in the present embodiment, the inside of the pressure vessel 1 can be filled with a liquid. For this reason, it is possible to provide a high-pressure reaction vessel having good responsiveness to external heat control. Energy efficiency is also improved.

[第5の実施の形態]
図5は、本発明に係る高圧反応容器の第5の実施の形態における連結管近傍の縦断面図である。
[Fifth Embodiment]
FIG. 5 is a longitudinal sectional view of the vicinity of the connecting pipe in the fifth embodiment of the high-pressure reaction container according to the present invention.

本実施の形態の高圧反応容器105では、連結管71,72は2本あり、第1の連結管71は、第4の実施の形態と同様に、耐圧容器1の最高部と接続され、その連結管71の最高部は耐圧容器1よりも高い位置に配置されている。第2の連結管72は、耐圧容器1の最下部と接続されている。また、それぞれの連結管71,72には、第1および第2の開閉弁16,17がそれぞれ挿入されている。   In the high-pressure reaction vessel 105 of the present embodiment, there are two connection pipes 71 and 72, and the first connection pipe 71 is connected to the highest part of the pressure-resistant vessel 1 as in the fourth embodiment. The highest part of the connecting pipe 71 is arranged at a position higher than the pressure vessel 1. The second connecting pipe 72 is connected to the lowermost part of the pressure vessel 1. The first and second on-off valves 16 and 17 are inserted into the connection pipes 71 and 72, respectively.

同圧維持流体9に液体を使用している時は、第1の開閉弁16は開、第2の開閉弁17は閉とし、混入した気体は第1の連結管71から排出される。一方、同圧維持流体9に気体を用いる場合は、逆に、第1の開閉弁16は閉、第2の開閉弁17は開として、混入した液体を第2の連結管72から排出する。   When a liquid is used as the same pressure maintaining fluid 9, the first on-off valve 16 is opened, the second on-off valve 17 is closed, and the mixed gas is discharged from the first connecting pipe 71. On the other hand, when gas is used for the same pressure maintaining fluid 9, conversely, the first on-off valve 16 is closed and the second on-off valve 17 is opened, and the mixed liquid is discharged from the second connecting pipe 72.

このような高圧反応容器を用いると、同圧維持流体9として液体を用いる工程では、耐圧容器1から反応容器2への熱供給と除熱を効率的に行うことができる。また、同圧維持流体9として気体を用いる工程では、耐圧容器1と反応容器2の熱の漏洩を少なくすることができるので、エネルギー効率の高い高圧反応容器を提供することができる。   When such a high pressure reaction vessel is used, in the step of using a liquid as the same pressure maintaining fluid 9, heat supply from the pressure vessel 1 to the reaction vessel 2 and heat removal can be efficiently performed. Further, in the step of using gas as the same pressure maintaining fluid 9, since leakage of heat between the pressure vessel 1 and the reaction vessel 2 can be reduced, a high-energy reaction high-pressure reaction vessel can be provided.

[第6の実施の形態]
図6は、本発明に係る高圧反応容器の第6の実施の形態における縦断面図である。
[Sixth Embodiment]
FIG. 6 is a longitudinal sectional view of a sixth embodiment of the high-pressure reaction vessel according to the present invention.

本実施の形態の高圧反応容器106では、反応容器2は、入口側21の内径が出口側22の内径と比較して小さくなっている。反応容器2の内部には、処理物供給管41と熱膨張・収縮吸収管31を介して接続された処理物供給ノズル42が、入口側21のほぼ中心から延びている。   In the high-pressure reaction vessel 106 of the present embodiment, the reaction vessel 2 has a smaller inner diameter on the inlet side 21 than an inner diameter on the outlet side 22. Inside the reaction vessel 2, a treatment product supply nozzle 42 connected via a treatment product supply pipe 41 and a thermal expansion / contraction absorption pipe 31 extends from substantially the center of the inlet side 21.

また、反応容器2の内部には、反応容器2に沿って、入口側21から処理物供給ノズル42よりも下流側まで、酸化剤仕切管53が延びている。反応容器2の入口側21には、酸化剤仕切管53で仕切られた内側と外側に、それぞれ酸化剤供給管51,52が、それぞれ熱膨張・収縮吸収管32を介して接続されている。   Further, inside the reaction container 2, an oxidant partition pipe 53 extends along the reaction container 2 from the inlet side 21 to the downstream side of the processing object supply nozzle 42. Oxidant supply pipes 51 and 52 are connected to the inlet side 21 of the reaction vessel 2 on the inner side and the outer side separated by an oxidant partition pipe 53 via thermal expansion / contraction absorption pipes 32, respectively.

反応容器2は加熱器11によって加熱され、また、有機廃棄物4と酸化剤5の反応熱が生じるためその内部には温度の分布が生じている。本実施の形態では、有機廃棄物4は、処理物供給ノズル42によって、反応容器2の軸方向の途中の所定の温度の領域に供給される。また、酸化剤5は、反応容器2の軸方向の異なる2箇所で分割して供給される。   The reaction vessel 2 is heated by the heater 11 and the reaction heat of the organic waste 4 and the oxidant 5 is generated, so that a temperature distribution is generated therein. In the present embodiment, the organic waste 4 is supplied to a predetermined temperature region in the axial direction of the reaction vessel 2 by the processed product supply nozzle 42. Further, the oxidizing agent 5 is divided and supplied at two different locations in the axial direction of the reaction vessel 2.

有機廃棄物4は、酸化剤5と反応容器2の内部の反応に適した温度領域で酸化反応を開始する。このため、反応容器2の入口側21の温度上昇を低く抑えることができる。また、耐圧容器の熱交換器81の除熱量が少なくなるので熱交換器81を小型化することができる。これに伴い耐圧容器1を小型化することができる。   The organic waste 4 starts an oxidation reaction in a temperature range suitable for the reaction between the oxidizing agent 5 and the reaction vessel 2. For this reason, the temperature rise of the inlet side 21 of the reaction container 2 can be suppressed low. Further, since the heat removal amount of the heat exchanger 81 of the pressure vessel is reduced, the heat exchanger 81 can be reduced in size. Accordingly, the pressure vessel 1 can be reduced in size.

一般に、有機廃棄物4に十分な酸化剤5を反応させると、反応による温度上昇で反応速度が増加し、さらなる温度上昇と反応速度の増加を繰り返して反応温度の制御が困難である。本実施の形態のように酸化剤5を分割して供給すると、反応の制御が容易となり、安全性が向上する。   In general, when sufficient oxidizing agent 5 is reacted with organic waste 4, the reaction rate increases due to the temperature increase due to the reaction, and it is difficult to control the reaction temperature by repeating further temperature increase and reaction rate increase. When the oxidizing agent 5 is divided and supplied as in the present embodiment, the reaction is easily controlled and the safety is improved.

また、酸化剤仕切管53の数をさらに増加させて、反応容器2の内部を反応条件により適した温度分布とすることもでき、酸化分解性能向上を図ることも可能である。   Further, the number of the oxidant partition pipes 53 can be further increased so that the inside of the reaction vessel 2 has a temperature distribution more suitable for the reaction conditions, and the oxidative decomposition performance can be improved.

酸化剤5は、同心円状に複数の層で供給されるので、反応容器2の軸の近傍で反応を進め、有機廃棄物4と反応生成物である腐食性物質を中心領域に閉じ込めることもできる。これにより、反応容器2と腐食性物質の接触を抑制することができるので、反応容器2の腐食を抑制することができる。   Since the oxidizing agent 5 is supplied in a plurality of layers concentrically, the reaction can proceed in the vicinity of the axis of the reaction vessel 2 to confine the organic waste 4 and the corrosive substance as a reaction product in the central region. . Thereby, since the contact of the reaction container 2 and a corrosive substance can be suppressed, the corrosion of the reaction container 2 can be suppressed.

有機廃棄物4の酸化反応が始まって外部からの熱供給が不要になった場合には、入口側21に近い同圧流体供給管92の流量調整弁19によって、同圧維持流体9を反応容器2の入口側21から供給して反応容器2を外側から冷却することもできる。これにより、反応容器2の内壁の温度を低く抑えられる。このため、高い腐食抑制効果が得られ、廉価な材料で反応容器2を形成することが可能である。なお、同圧維持流体9の供給には、流量調整弁19に代えて、ポンプを使用してもよい。   When the oxidation reaction of the organic waste 4 starts and no external heat supply is required, the same pressure maintaining fluid 9 is supplied to the reaction vessel by the flow rate adjusting valve 19 of the same pressure fluid supply pipe 92 near the inlet side 21. 2 may be supplied from the inlet side 21 to cool the reaction vessel 2 from the outside. Thereby, the temperature of the inner wall of the reaction vessel 2 can be kept low. For this reason, the high corrosion inhibitory effect is acquired and it is possible to form the reaction container 2 with an inexpensive material. A pump may be used to supply the same pressure maintaining fluid 9 instead of the flow rate adjustment valve 19.

同圧維持流体9としては、液体の代わりに気体を用いることも可能である。   As the same-pressure maintaining fluid 9, a gas can be used instead of a liquid.

このように、酸化剤5を反応容器2の内部の複数の位置に分割して供給することにより、反応の制御が容易となり、分解性能の向上と安全性が向上する。さらに、反応容器2の壁面での腐食性物質の濃度を低く抑えることができるので、反応容器2の腐食が抑制される。   In this way, by supplying the oxidant 5 in a divided manner to a plurality of positions inside the reaction vessel 2, the control of the reaction is facilitated, and the decomposition performance and safety are improved. Furthermore, since the concentration of the corrosive substance on the wall surface of the reaction vessel 2 can be kept low, corrosion of the reaction vessel 2 is suppressed.

[第7の実施の形態]
図7は、本発明に係る高圧反応容器の第7の実施の形態における縦断面図である。
[Seventh Embodiment]
FIG. 7 is a longitudinal sectional view of a seventh embodiment of the high-pressure reaction container according to the present invention.

本実施の形態の高圧反応容器107は、第6の実施の形態の高圧反応容器106に、耐圧容器1と反応容器2の間の空隙の反応容器2の出口側22の近傍に、それぞれ酸化剤供給管51,52に接続された熱交換器83、84が設けられている。これらの熱交換器83、84は、酸化剤5を加熱し、処理流体6を冷却する。酸化剤仕切管53の内側で反応容器2につながる酸化剤供給管51に接続された熱交換器84は、酸化剤仕切管53の外側で反応容器2につながる酸化剤供給管52に接続された熱交換器83よりも、反応容器2の出口側22に近い位置に配置されている。   The high-pressure reaction vessel 107 of the present embodiment is different from the high-pressure reaction vessel 106 of the sixth embodiment in the vicinity of the outlet side 22 of the reaction vessel 2 in the gap between the pressure-resistant vessel 1 and the reaction vessel 2, respectively. Heat exchangers 83 and 84 connected to the supply pipes 51 and 52 are provided. These heat exchangers 83 and 84 heat the oxidant 5 and cool the processing fluid 6. The heat exchanger 84 connected to the oxidant supply pipe 51 connected to the reaction container 2 inside the oxidant partition pipe 53 is connected to the oxidant supply pipe 52 connected to the reaction container 2 outside the oxidant partition pipe 53. The heat exchanger 83 is disposed closer to the outlet side 22 of the reaction vessel 2 than the heat exchanger 83.

酸化剤5は反応容器2の出口側22の近傍に設置された熱交換器83,84で加熱され反応容器2に供給されて有機廃棄物4と反応する。反応容器2の出口側22よりも高温の中央部に近い熱交換器83で加熱された酸化剤5は、酸化剤仕切管53の外側で反応容器2に供給される。このため、酸化剤仕切管53の外側で反応容器2に供給された酸化剤5は、酸化剤仕切管53の外側で反応容器2に供給された酸化剤5よりも温度が高い。したがって、反応容器2の入口側21に近い領域で酸化剤5と反応した有機廃棄物4は、より高温の酸化剤5と反応容器2の中央部付近でさらに反応することとなる。   The oxidant 5 is heated by the heat exchangers 83 and 84 installed in the vicinity of the outlet side 22 of the reaction vessel 2 and supplied to the reaction vessel 2 to react with the organic waste 4. The oxidant 5 heated by the heat exchanger 83 close to the central portion having a higher temperature than the outlet side 22 of the reaction vessel 2 is supplied to the reaction vessel 2 outside the oxidant partition tube 53. For this reason, the oxidant 5 supplied to the reaction vessel 2 outside the oxidant partition tube 53 has a higher temperature than the oxidant 5 supplied to the reaction vessel 2 outside the oxidant partition tube 53. Therefore, the organic waste 4 that has reacted with the oxidant 5 in the region near the inlet side 21 of the reaction vessel 2 further reacts with the higher temperature oxidant 5 near the center of the reaction vessel 2.

また、反応容器2の出口側22の近傍で処理流体6の熱を除去するので、耐圧容器1の外部で反応容器2の出口側22に近い位置に配設された熱交換器82での除熱量が少なくなり、その熱交換器82を小型化することができる。耐圧容器1の内部に配設された熱交換器83,84で処理流体6が十分冷却できれば、耐圧容器1の外部の熱交換器82を省くことも可能である。   Further, since the heat of the processing fluid 6 is removed in the vicinity of the outlet side 22 of the reaction vessel 2, the heat is removed by a heat exchanger 82 disposed outside the pressure vessel 1 and near the outlet side 22 of the reaction vessel 2. The amount of heat is reduced, and the heat exchanger 82 can be downsized. If the processing fluid 6 can be sufficiently cooled by the heat exchangers 83 and 84 disposed inside the pressure vessel 1, the heat exchanger 82 outside the pressure vessel 1 can be omitted.

さらに、処理流体6の熱を酸化剤5の加熱に利用するので、加熱器11のヒータ容量を少なくすることができ、加熱器11を小型化できる。   Furthermore, since the heat of the processing fluid 6 is used for heating the oxidant 5, the heater capacity of the heater 11 can be reduced, and the heater 11 can be downsized.

なお、酸化剤仕切管53の内側で反応容器2に供給される酸化剤5を加熱する熱交換器84を省略してもよい。また、酸化剤仕切管53を複数配設して、酸化剤5を3箇所以上に分割して供給する場合には、それぞれの位置に供給される酸化剤5を加熱する熱交換器をさらに追加してもよい。   The heat exchanger 84 for heating the oxidant 5 supplied to the reaction vessel 2 inside the oxidant partition pipe 53 may be omitted. Further, when a plurality of oxidant partition pipes 53 are provided and the oxidant 5 is divided and supplied in three or more places, a heat exchanger for heating the oxidant 5 supplied to each position is further added. May be.

本実施の形態では、耐圧容器1の内部で熱交換を行うので、高圧反応容器全体の熱効率が向上し、外部から供給する必要がある熱が少なくなる。このため、コンパクト化や省エネルギー化を図ることができる。   In the present embodiment, heat exchange is performed inside the pressure-resistant vessel 1, so that the thermal efficiency of the entire high-pressure reaction vessel is improved and less heat needs to be supplied from the outside. For this reason, size reduction and energy saving can be achieved.

なお、同圧維持流体9として空気、窒素などの不活性気体の利用も可能である。気体を使用した場合には熱容量が小さいので耐圧容器1への熱移動が制限されるので、熱効率の向上には有利である。有機廃棄物4や酸化剤5の反応熱だけで運転できる場合には、気体の利用は有効である。   An inert gas such as air or nitrogen can be used as the same pressure maintaining fluid 9. When gas is used, since the heat capacity is small, heat transfer to the pressure vessel 1 is limited, which is advantageous for improving the thermal efficiency. Use of gas is effective when the operation can be performed only with the reaction heat of the organic waste 4 or the oxidizing agent 5.

また、起動時や停止時に反応容器2と耐圧容器1の間で熱の授受を行う場合には、液体を同圧維持流体9として用いる方が有利である。運転の工程によって水と気体を使い分ける方法は、時間短縮と高圧反応容器の小型化に有効である。なお、同圧維持流体9として液体を用いる場合には、流量調整弁19に代えてポンプの使用も可能である。   Further, when heat is exchanged between the reaction vessel 2 and the pressure vessel 1 at the time of starting or stopping, it is advantageous to use a liquid as the same pressure maintaining fluid 9. The method of selectively using water and gas depending on the operation process is effective for shortening the time and reducing the size of the high-pressure reaction vessel. When a liquid is used as the same pressure maintaining fluid 9, a pump can be used instead of the flow rate adjusting valve 19.

[第8の実施の形態]
図8は、本発明に係る高圧反応容器の第8の実施の形態における縦断面図である。
[Eighth Embodiment]
FIG. 8 is a longitudinal sectional view of an eighth embodiment of the high pressure reaction container according to the present invention.

本実施の形態の高圧反応容器108は、第7の実施の形態の高圧反応容器107に、誘導加熱機構86,87を追加したものである。   The high-pressure reaction vessel 108 of this embodiment is obtained by adding induction heating mechanisms 86 and 87 to the high-pressure reaction vessel 107 of the seventh embodiment.

第1の誘導加熱機構86は、酸化剤仕切管53の外側に配設されている。第2の誘導加熱機構87は、処理物供給ノズル42の外側に配設されている。第2の誘導加熱機構87によって有機廃棄物4は加熱され、第1の誘導加熱機構86によって酸化剤5が加熱される。   The first induction heating mechanism 86 is disposed outside the oxidant partition pipe 53. The second induction heating mechanism 87 is disposed outside the workpiece supply nozzle 42. The organic waste 4 is heated by the second induction heating mechanism 87, and the oxidant 5 is heated by the first induction heating mechanism 86.

誘導加熱機構86,87を用いることにより、処理物供給ノズル42や酸化剤仕切管53の温度を低く抑えたまま、内部のみを加熱して反応を起こさせることができる。このため、材料の腐食を抑制することができる。また、反応容器2の内部の反応媒体を直接加熱するので、温度の応答性が高く、温度分布の制御が容易である。   By using the induction heating mechanisms 86 and 87, it is possible to cause the reaction by heating only the inside while keeping the temperature of the processed material supply nozzle 42 and the oxidizing agent partition pipe 53 low. For this reason, corrosion of the material can be suppressed. In addition, since the reaction medium inside the reaction vessel 2 is directly heated, the temperature responsiveness is high and the temperature distribution can be easily controlled.

反応で無機塩が生成した場合に、反応容器2の壁付近は反応領域よりも低温であり、塩の溶解度が高く、壁への析出が防止されて、有機廃棄物4や酸化剤5の流路の閉塞を抑制することができる。さらに、壁付近で塩の溶解度が高いので、反応領域で析出した塩を溶解して、反応容器2の外部に排出する効果も期待できる。   When an inorganic salt is generated by the reaction, the vicinity of the wall of the reaction vessel 2 is at a lower temperature than the reaction region, the solubility of the salt is high, precipitation on the wall is prevented, and the flow of the organic waste 4 and the oxidizing agent 5 Road blockage can be suppressed. Furthermore, since the solubility of the salt is high near the wall, the effect of dissolving the salt precipitated in the reaction region and discharging it to the outside of the reaction vessel 2 can be expected.

また、耐圧容器1の外部からヒータで加熱する装置に比べて、耐圧容器1の温度を低く抑えることができるので、容器の肉厚を薄くすることができ装置の小型化が期待できる。   Moreover, since the temperature of the pressure-resistant container 1 can be kept low compared with the apparatus heated with the heater from the exterior of the pressure-resistant container 1, the thickness of a container can be made thin and size reduction of an apparatus can be anticipated.

なお、同様に、反応容器2の外側から酸化剤5を加熱してもよい。   Similarly, the oxidizing agent 5 may be heated from the outside of the reaction vessel 2.

なお、以上の説明は単なる例示であり、本発明は上述の各実施形態に限定されず、様々な形態で実施することができる。たとえば、酸化剤は有機物と反応する反応剤の一例であって、他の反応剤でもよい。また、各実施形態の特徴を組み合わせて実施することもできる。   The above description is merely an example, and the present invention is not limited to the above-described embodiments, and can be implemented in various forms. For example, the oxidizing agent is an example of a reactive agent that reacts with an organic substance, and may be another reactive agent. Moreover, it can also implement combining the characteristic of each embodiment.

本発明に係る高圧反応容器の第1の実施の形態における縦断面図である。It is a longitudinal cross-sectional view in 1st Embodiment of the high pressure reaction container which concerns on this invention. 本発明に係る高圧反応容器の第2の実施の形態における熱膨張・収縮吸収管近傍の縦断面図である。It is a longitudinal cross-sectional view of the thermal expansion / contraction absorption tube vicinity in 2nd Embodiment of the high pressure reaction container which concerns on this invention. 本発明に係る高圧反応容器の第3の実施の形態における熱膨張・収縮吸収管近傍の縦断面図である。It is a longitudinal cross-sectional view of the thermal expansion / contraction absorption tube vicinity in 3rd Embodiment of the high pressure reaction container which concerns on this invention. 本発明に係る高圧反応容器の第4の実施の形態における連結管近傍の縦断面図である。It is a longitudinal cross-sectional view of the connection pipe vicinity in 4th Embodiment of the high pressure reaction container which concerns on this invention. 本発明に係る高圧反応容器の第5の実施の形態における連結管近傍の縦断面図である。It is a longitudinal cross-sectional view of the connection pipe vicinity in 5th Embodiment of the high pressure reaction container which concerns on this invention. 本発明に係る高圧反応容器の第6の実施の形態における縦断面図である。It is a longitudinal cross-sectional view in 6th Embodiment of the high pressure reaction container which concerns on this invention. 本発明に係る高圧反応容器の第7の実施の形態における縦断面図である。It is a longitudinal cross-sectional view in 7th Embodiment of the high pressure reaction container which concerns on this invention. 本発明に係る高圧反応容器の第8の実施の形態における縦断面図である。It is a longitudinal cross-sectional view in 8th Embodiment of the high pressure reaction container which concerns on this invention.

符号の説明Explanation of symbols

1…耐圧容器、2…反応容器、4…有機廃棄物、5…酸化剤、6…処理流体、7,71,72…連結管、8…冷却材、9…同圧維持流体、11…加熱器、14…薬液、16,17…開閉弁、18…薬液供給管、19…流量調整弁、21…反応容器の入口側、22…反応容器の出口側、31,32,33…熱膨張・収縮吸収管、41…処理物供給管、42…処理物供給ノズル、51、52…酸化剤供給管、53…酸化剤仕切管、61…処理流体出口管、81,82,83,84…熱交換器、86,87…誘導加熱機構、91,92…同圧流体供給管、101〜108…高圧反応容器。 DESCRIPTION OF SYMBOLS 1 ... Pressure-resistant container, 2 ... Reaction container, 4 ... Organic waste, 5 ... Oxidizing agent, 6 ... Processing fluid, 7, 71, 72 ... Connection pipe, 8 ... Coolant, 9 ... Same pressure maintenance fluid, 11 ... Heating 14 ... chemical solution, 16, 17 ... open / close valve, 18 ... chemical solution supply pipe, 19 ... flow rate adjustment valve, 21 ... reaction vessel inlet side, 22 ... reaction vessel outlet side, 31, 32, 33 ... thermal expansion Shrinkage absorption pipe, 41 ... processed product supply pipe, 42 ... processed product supply nozzle, 51, 52 ... oxidant supply pipe, 53 ... oxidant partition pipe, 61 ... process fluid outlet pipe, 81, 82, 83, 84 ... heat Exchanger, 86, 87 ... induction heating mechanism, 91, 92 ... same pressure fluid supply pipe, 101-108 ... high pressure reaction vessel.

Claims (15)

有機物を高圧で分解処理する有機物処理用高圧反応容器において、
前記有機物を供給する有機物供給手段と、
前記有機物と反応させる反応剤を供給する反応剤供給手段と、
前記有機物供給手段および前記反応剤供給手段に接続された反応容器と、
前記反応容器を囲むように配設された耐圧容器と、
前記反応容器と連結されて前記有機物を前記反応容器で処理した処理流体を前記耐圧容器の外部へ抜き取る処理流体出口管と、
前記耐圧容器に接続されて前記耐圧容器と前記反応容器との間の空隙に同圧維持流体を供給する同圧流体供給管と、
前記耐圧容器から延びて前記耐圧容器の外部で前記処理流体出口管に連結された連結管と、
を有することを特徴とする有機物処理用高圧反応容器。
In a high-pressure reaction vessel for organic matter treatment that decomposes organic matter at high pressure,
An organic substance supply means for supplying the organic substance;
A reactant supply means for supplying a reactant to be reacted with the organic substance;
A reaction vessel connected to the organic substance supply means and the reactant supply means;
A pressure vessel disposed so as to surround the reaction vessel;
A processing fluid outlet pipe connected to the reaction vessel and extracting the processing fluid obtained by processing the organic matter in the reaction vessel to the outside of the pressure vessel;
A same pressure fluid supply pipe connected to the pressure vessel and supplying a same pressure maintaining fluid to a gap between the pressure vessel and the reaction vessel;
A connecting pipe extending from the pressure vessel and connected to the processing fluid outlet pipe outside the pressure vessel;
A high-pressure reaction vessel for treating organic substances.
前記同圧流体供給管は、2箇所以上で前記耐圧容器に接続されていることを特徴とする請求項1に記載の有機物処理用高圧反応容器。   The high-pressure reaction vessel for treating organic substances according to claim 1, wherein the same-pressure fluid supply pipe is connected to the pressure vessel at two or more locations. 前記同圧流体管には、その中を流れる前記同圧維持流体の流量を個別に調節する調節手段が取り付けられていることを特徴とする請求項2に記載の有機物処理用高圧反応容器。   The high-pressure reaction vessel for organic matter treatment according to claim 2, wherein an adjusting means for individually adjusting the flow rate of the same-pressure maintaining fluid flowing therein is attached to the same-pressure fluid pipe. 前記反応容器の内部での前記有機物の流れの方向の異なる位置に配置された、前記反応剤を前記反応容器の内部に供給する少なくとも2つの供給口、を有することを特徴とする請求項1ないし請求項3のいずれか1項に記載の有機物処理用高圧反応容器。   2. The apparatus according to claim 1, further comprising at least two supply ports that supply the reactants to the inside of the reaction vessel, which are arranged at different positions in the direction of the flow of the organic matter inside the reaction vessel. The high-pressure reaction vessel for organic matter treatment according to any one of claims 3 to 4. 少なくとも1つの前記供給口から供給される反応剤を加熱する誘導加熱器を有することを特徴とする請求項4に記載の有機物処理用高圧反応容器。   The high-pressure reaction vessel for treating organic substances according to claim 4, further comprising an induction heater for heating the reactant supplied from at least one of the supply ports. 前記反応容器と前記反応剤供給手段との接続位置に対して、前記反応容器の内部での前記有機物の流れの方向の下流側であって前記反応容器と前記耐圧容器との間の空隙に設けられた前記反応剤供給手段を流れる流体を加熱する熱交換器、を有することを特徴とする請求項1ないし請求項5のいずれか1項に記載の有機物処理用高圧反応容器。   Provided in the gap between the reaction vessel and the pressure vessel, downstream of the connection direction between the reaction vessel and the reactant supply means in the direction of the flow of the organic matter inside the reaction vessel. A high-pressure reaction vessel for treating organic substances according to any one of claims 1 to 5, further comprising a heat exchanger for heating a fluid flowing through the reactant supply means. 前記反応容器および前記耐圧容器の相対的な位置変化に応じて変形可能に形成されて、前記有機物供給手段、前記反応剤供給手段および前記処理流体出口管の少なくとも1つと前記反応容器とを前記耐圧容器の内部で連結する相対位置変化吸収手段、を有することを特徴とする請求項1ないし請求項6のいずれか1項に記載の有機物処理用高圧反応容器。   The reaction vessel and the pressure vessel are formed so as to be deformable in accordance with a relative positional change, and at least one of the organic substance supply unit, the reactant supply unit, and the processing fluid outlet pipe and the reaction vessel are connected to the pressure vessel. The high pressure reaction vessel for treating organic substances according to any one of claims 1 to 6, further comprising a relative position change absorbing means connected inside the vessel. 前記相対位置変化吸収手段は、らせん状に形成された配管、ジグザグ状に形成された配管およびベローズの少なくとも1つを含むことを特徴とする請求項7に記載の有機物処理用高圧反応容器。   The high pressure reaction vessel for organic matter treatment according to claim 7, wherein the relative position change absorbing means includes at least one of a pipe formed in a spiral shape, a pipe formed in a zigzag shape, and a bellows. 前記同圧維持流体は、気体であることを特徴とする請求項1ないし請求項8のいずれか1項に記載の有機物処理用高圧反応容器。   The high-pressure reaction vessel for treating organic matter according to any one of claims 1 to 8, wherein the same-pressure maintaining fluid is a gas. 前記連結管は、前記耐圧容器の鉛直方向最高部近傍から延びていることを特徴とする請求項1ないし請求項8のいずれか1項に記載の有機物処理用高圧反応容器。   The high-pressure reaction vessel for organic matter treatment according to any one of claims 1 to 8, wherein the connecting pipe extends from the vicinity of the highest vertical portion of the pressure vessel. 前記連結管は、前記耐圧容器の鉛直方向最高部近傍から延びている第1の連結管と、前記耐圧容器の鉛直方向最下部近傍から延びている第2の連結管と、前記第1および第2の連結管のそれぞれに挿入された弁を含むことを特徴とする請求項1ないし請求項8のいずれか1項に記載の有機物処理用高圧反応容器。   The connecting pipe includes a first connecting pipe extending from the vicinity of the highest vertical portion of the pressure vessel, a second connecting pipe extending from the vicinity of the lowest vertical portion of the pressure vessel, the first and first The high pressure reaction vessel for treating organic substances according to any one of claims 1 to 8, further comprising a valve inserted into each of the two connecting pipes. 前記処理流体出口管に接続された前記処理流体のペーハーを変化させる物質を供給する薬液供給管を有することを特徴とする請求項1ないし請求項11のいずれか1項に記載の有機物処理用高圧反応容器。   The high pressure for organic substance processing according to any one of claims 1 to 11, further comprising a chemical supply pipe for supplying a substance that changes the pH of the processing fluid connected to the processing fluid outlet pipe. Reaction vessel. 前記反応剤は、酸化剤であることを特徴とする請求項1ないし請求項12のいずれか1項に記載の有機物処理用高圧反応容器。   The high-pressure reaction vessel for treating organic substances according to any one of claims 1 to 12, wherein the reactant is an oxidizing agent. 有機物を高圧で分解処理する有機物処理用高圧反応システムにおいて、
前記有機物を供給する有機物供給手段と、
前記有機物と反応させる反応剤を供給する反応剤供給手段と、
前記有機物供給手段および前記反応剤供給手段に接続された反応容器と、
前記反応容器を囲むように配設された耐圧容器と、
前記反応容器と連結されて前記有機物を前記反応容器で処理した処理流体を前記耐圧容器の外部へ抜き取る処理流体出口管と、
前記耐圧容器に接続されて前記耐圧容器と前記反応容器との間の空隙に同圧維持流体を供給する同圧流体供給管と、
前記耐圧容器から延びて前記耐圧容器の外部で前記処理流体出口管に連結された連結管と、
前記処理流体の圧力を減圧する減圧手段と、
を有することを特徴とする有機物処理用高圧反応システム。
In a high-pressure reaction system for organic matter treatment that decomposes organic matter at high pressure,
An organic substance supply means for supplying the organic substance;
A reactant supply means for supplying a reactant to be reacted with the organic substance;
A reaction vessel connected to the organic substance supply means and the reactant supply means;
A pressure vessel disposed so as to surround the reaction vessel;
A processing fluid outlet pipe connected to the reaction vessel and extracting the processing fluid obtained by processing the organic matter in the reaction vessel to the outside of the pressure vessel;
A same pressure fluid supply pipe connected to the pressure vessel and supplying a same pressure maintaining fluid to a gap between the pressure vessel and the reaction vessel;
A connecting pipe extending from the pressure vessel and connected to the processing fluid outlet pipe outside the pressure vessel;
Pressure reducing means for reducing the pressure of the processing fluid;
A high-pressure reaction system for treating organic matter.
前記処理流体出口管に接続された前記処理流体のペーハーを変化させる物質を供給する薬液供給管を有することを特徴とする請求項14に記載の有機物処理用高圧反応システム。   The high-pressure reaction system for organic substance processing according to claim 14, further comprising a chemical supply pipe that supplies a substance that changes the pH of the processing fluid connected to the processing fluid outlet pipe.
JP2006312479A 2006-11-20 2006-11-20 High-pressure reaction vessel for treating organic material and high-pressure reaction system Withdrawn JP2008126122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006312479A JP2008126122A (en) 2006-11-20 2006-11-20 High-pressure reaction vessel for treating organic material and high-pressure reaction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006312479A JP2008126122A (en) 2006-11-20 2006-11-20 High-pressure reaction vessel for treating organic material and high-pressure reaction system

Publications (1)

Publication Number Publication Date
JP2008126122A true JP2008126122A (en) 2008-06-05

Family

ID=39552499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006312479A Withdrawn JP2008126122A (en) 2006-11-20 2006-11-20 High-pressure reaction vessel for treating organic material and high-pressure reaction system

Country Status (1)

Country Link
JP (1) JP2008126122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075914A (en) * 2008-08-25 2010-04-08 National Institute Of Advanced Industrial Science & Technology High temperature-high pressure micro mixing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075914A (en) * 2008-08-25 2010-04-08 National Institute Of Advanced Industrial Science & Technology High temperature-high pressure micro mixing device

Similar Documents

Publication Publication Date Title
US20170267565A1 (en) Near-zero-release treatment system and method for high concentrated organic wasterwater
CN102249461B (en) Supercritical water oxidation treatment system for high-salt high-chlorine organic wastewater
US9662623B2 (en) System and method for hydrothermal reaction
CN101977677B (en) Reactor for carrying out high pressure reactions, method for starting and method for carrying out a reaction
EP2622297B1 (en) Waste heat boiler
KR101294349B1 (en) Reactor and method for anoxia treatment of a substance in a fluid reaction medium
CN108911108B (en) Tubular supercritical water oxidation reactor and application thereof
US10301207B2 (en) Non-scaling wet air oxidation process
JP2008126122A (en) High-pressure reaction vessel for treating organic material and high-pressure reaction system
JP2000126798A (en) Waste treatment apparatus by supercritical hydroxylation method
CN114890532B (en) Spiral sleeve pipe reactor and micro-channel wet oxidation system
WO2003080230A1 (en) Reaction apparatus with a heat-exchanger
JP4334162B2 (en) Reaction vessel
CN114804424A (en) Supercritical water reaction device integrating enhanced oxidation, online desalting and discharging and waste heat recovery
EP2424652B1 (en) Catalyst reaction apparatus and process
JP3910842B2 (en) Double tube heat exchanger
CN212778751U (en) Energy recovery device
MX2008010084A (en) Supercritical oxidation process for the treatment of corrosive materials.
US10618032B2 (en) Low temperature wet air oxidation
CN103159312B (en) The device and method of controlled oxidization conversion zone
CN218654386U (en) Reaction temperature control device suitable for chemical industry pilot scale
JP2004025028A (en) Reaction treatment apparatus under atmosphere of high temperature and high pressure water
CN109741912B (en) Transformer internal insulation medium purifying device
WO2023286722A1 (en) Reaction vessel, gas production device, gas production system, and gas production method
JP5782213B2 (en) Corrosion prevention method for multi-tube reactors

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202