JP2008125355A - Switching power circuit and inverter apparatus - Google Patents

Switching power circuit and inverter apparatus Download PDF

Info

Publication number
JP2008125355A
JP2008125355A JP2008042328A JP2008042328A JP2008125355A JP 2008125355 A JP2008125355 A JP 2008125355A JP 2008042328 A JP2008042328 A JP 2008042328A JP 2008042328 A JP2008042328 A JP 2008042328A JP 2008125355 A JP2008125355 A JP 2008125355A
Authority
JP
Japan
Prior art keywords
voltage
power supply
control circuit
resistor
pwm control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008042328A
Other languages
Japanese (ja)
Inventor
Toru Nakajima
徹 中嶋
Masahiro Hiraga
正宏 平賀
Tetsuya Kimura
鉄也 木村
Satoshi Ibori
敏 井堀
Masayuki Hirota
雅之 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Hitachi KE Systems Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Hitachi KE Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd, Hitachi KE Systems Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2008042328A priority Critical patent/JP2008125355A/en
Publication of JP2008125355A publication Critical patent/JP2008125355A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a switching power circuit in a small size at a low cost, by decreasing voltage applied to a resistor for a starting circuit so as to reduce a power loss, in the starting circuit of the switching power circuit particularly in the case of high power receiving voltage. <P>SOLUTION: In a DC voltage part connecting two or more capacitors in series, and in the switching power circuit receiving supply of DC power from the DC power part to switching-control a primary side of a transformer by PWM control so as to output DC voltage of different voltage specification, the switching power circuit is characterized by connecting the starting resistor of a PWM control circuit to a connection point of the capacitor. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、直流電圧部に少なくとも2個以上直列に接続されたコンデンサを有する装置に係り、特にその直流電圧部から電圧仕様の異なる直流電圧を得るスイッチング電源回路の回路構成に関する。   The present invention relates to a device having at least two capacitors connected in series to a DC voltage section, and more particularly to a circuit configuration of a switching power supply circuit that obtains DC voltages having different voltage specifications from the DC voltage section.

従来、交流電源を受電して直流電圧を得、更にこの直流電圧から電圧仕様の異なる直流電圧を得る電源回路としてスイッチング電源回路がある。例えば特開2000-60118号公報の図6に従来技術として記載されているものがある。このスイッチング電源回路は、直流電圧部から直流電力の供給を受けてトランスの一次側をPWM制御回路によりスイッチング制御し、電圧仕様の異なる直流電圧を出力するスイッチング電源回路であるが、入力される交流電源が200V,400V受電などその電圧が高圧になるほど直流電圧部の電圧が高くなり、スイッチング電源回路の起動回路に使用する抵抗器8,9で発生する電力損失が受電電圧のほぼ2乗に比例して大きくなるという問題があった。この問題点を解決する方法として、特開2000-60118号公報に開示された発明では、スイッチング電源回路の起動時のみ抵抗器を介して、上記PWM制御回路用としての電源制御ICに電力を供給し、スイッチング電源回路が動作し始めた後はこの抵抗器に流れる電流を遮断するというものである。しかし、電流を遮断制御する回路に直流電圧部の電圧に見合った耐電圧を持つ能動素子が必要となるため、回路が複雑になり、コストが高くなるという問題があった。   2. Description of the Related Art Conventionally, there is a switching power supply circuit as a power supply circuit that receives an AC power supply to obtain a DC voltage and further obtains a DC voltage with a different voltage specification from the DC voltage. For example, there is one described in FIG. 6 of Japanese Patent Laid-Open No. 2000-60118 as the prior art. This switching power supply circuit is a switching power supply circuit that receives supply of DC power from a DC voltage unit and controls switching of the primary side of the transformer by a PWM control circuit and outputs DC voltages having different voltage specifications. The higher the voltage of the power supply, such as 200V or 400V, the higher the voltage of the DC voltage section, and the power loss generated in the resistors 8 and 9 used in the starting circuit of the switching power supply circuit is proportional to the square of the received voltage. Then there was a problem of becoming bigger. As a method for solving this problem, in the invention disclosed in Japanese Patent Laid-Open No. 2000-60118, power is supplied to the power supply control IC for the PWM control circuit via a resistor only when the switching power supply circuit is activated. Then, after the switching power supply circuit starts to operate, the current flowing through the resistor is cut off. However, since an active element having a withstand voltage corresponding to the voltage of the DC voltage section is required for the circuit for controlling the interruption of the current, there is a problem that the circuit becomes complicated and the cost increases.

上記問題点を解決する別の方法として、上記公報の図6に従来技術として記載されているように、起動回路の抵抗器を2個以上直列接続することによって分圧したり、また抵抗器での発生熱を放熱するために抵抗器自体を大形化したり、抵抗器単体の最大許容電圧以下であっても、抵抗器の直列接続数を増やすことによって発熱源を分散させたり、抵抗器の周囲に十分な放熱空間を設けたりすることを行っていた。
特開2000-60118号公報
As another method for solving the above problems, as described in the prior art in FIG. 6 of the above publication, voltage is divided by connecting two or more resistors of the starting circuit in series, To dissipate the generated heat, the resistor itself can be made larger, or even if it is less than the maximum allowable voltage of the resistor itself, increasing the number of resistors connected in series can distribute the heat source, Or providing sufficient heat dissipation space.
Japanese Unexamined Patent Publication No. 2000-60118

上記従来技術によるスイッチング電源回路は、直流電圧部の電圧Viが上昇した場合、起動回路の抵抗器に印加される電圧も上昇するため以下(1)〜(3)に説明するような問題があった。
(1)起動回路の抵抗器に印加する電圧または電力が抵抗器の最大許容値を越える場合、2本以上直列接続する必要があり、電圧が高いほど直列接続する抵抗器の数は増え、信頼性の低下とコスト上昇の要因となっていた。
(2)さらに、抵抗器に印加される電圧が高くなるほど電力損失による抵抗器の発熱も増加し、放熱のために十分な空間が必要であった。これにより、機器の大形化、コスト上昇の要因となっていた。
(3)上記(1)、(2)の問題を改良した特開2000-60118号公報に発明として記載された従来技術は、電流を遮断制御する回路に直流電圧部の電圧に見合った耐電圧を持つ能動素子が必要となるため、特に受電電圧が高くなると高耐圧の能動素子が必要になり、回路が複雑になり、コストが高くなる問題があった。
The switching power supply circuit according to the above prior art has problems as described in (1) to (3) below because the voltage applied to the resistor of the starting circuit increases when the voltage Vi of the DC voltage section increases. It was.
(1) When the voltage or power applied to the resistor of the starting circuit exceeds the maximum allowable value of the resistor, it is necessary to connect two or more in series. The higher the voltage, the more resistors connected in series and the more reliable This was a factor in the decline in sex and cost.
(2) Furthermore, the higher the voltage applied to the resistor, the more heat generated by the resistor due to power loss, and a sufficient space was required for heat dissipation. This has been a factor in increasing the size of equipment and increasing costs.
(3) The prior art described as an invention in Japanese Patent Laid-Open No. 2000-60118 which improved the problems (1) and (2) described above is a withstand voltage suitable for the voltage of the DC voltage section in the circuit for controlling the current interruption. Therefore, there is a problem that a high withstand voltage active element is required particularly when the power receiving voltage is high, the circuit is complicated, and the cost is increased.

本発明は、特に受電電圧が高くなった場合に、簡単な回路構成で起動回路の抵抗器に印加される電圧を低減することによって電力損失を低減し、小形、低コストのスイッチング電源回路を提供することを目的としている。   The present invention provides a small and low-cost switching power supply circuit that reduces power loss by reducing the voltage applied to the resistor of the start-up circuit with a simple circuit configuration, particularly when the power receiving voltage becomes high. The purpose is to do.

上記課題を解決するため、本発明は、特に受電電圧が高くなった場合に直流電圧部の平滑コンデンサを2個以上直列に接続する必要があることを利用し、コンデンサが少なくとも2個直列に接続された直流電源部と、該直流電圧部から直流電力の供給を受けてトランスの一次側をPWM制御回路によりスイッチング制御し、電圧仕様の異なる直流電圧を出力するスイッチング電源回路において、前記直流電圧部の直流電圧を分圧し、該分圧した点に抵抗器を介して前記PWM制御回路の電源を接続し、前記起動回路用抵抗器で発生する電力損失を低減し、小形、低コストを実現したものである。   In order to solve the above problem, the present invention utilizes the fact that it is necessary to connect two or more smoothing capacitors in the DC voltage section in series, particularly when the receiving voltage becomes high, and at least two capacitors are connected in series. A DC power supply unit, and a switching power supply circuit that receives a supply of DC power from the DC voltage unit and performs switching control of a primary side of the transformer by a PWM control circuit, and outputs a DC voltage having a different voltage specification. The power supply of the PWM control circuit is connected to the divided point through a resistor to reduce the power loss generated in the resistor for the starting circuit, thereby realizing a small size and low cost. Is.

本発明によれば、スイッチング電源に電力を供給するための抵抗器に印加される電圧を低減でき、電力損失が低減され、発熱が減少する。したがって、機器の小形化、低コスト化を提供できる。   According to the present invention, the voltage applied to the resistor for supplying power to the switching power supply can be reduced, power loss is reduced, and heat generation is reduced. Therefore, downsizing and cost reduction of the device can be provided.

以下、本発明によるスイッチング電源回路の回路構成について、図示の実施例により詳細に説明する。
図1は、本発明によるスイッチング電源回路を具体化した一実施例である。図1において、DRは交流電源VACを整流して直流電圧を得る整流用ダイオードである。CB1、CB2はコンデンサであり、整流ダイオードDRによって生成された直流電圧を平滑する。RB1、RB2は電圧バランス用の抵抗器であり、コンデンサCB1、CB2に印加される電圧を均等化する。点Aは、コンデンサCB1とCB2、抵抗器RB1とRB2がそれぞれ直列に接続された接続点である。点Bは、コンデンサCB1、CB2によって平滑された直流電圧Viが現れる部分である。CTRLはスイッチング電源回路のトランスの一次側をPWM制御するためのPWM制御回路であり、具体的にはPWM制御信号を出力する電源制御ICで構成され例えば日立製作所製HA16107FPの様な集積回路が使用される。点CはPWM制御回路CTRLに必要な電力を供給する端子である。Mはスイッチング素子である。CS、DS、RSはサージ電圧吸収用のそれぞれスナバ・コンデンサ、スナバ・ダイオード、スナバ・抵抗器である。R1はスイッチング電源回路起動時と、起動した後にPWM制御回路CTRLへ電力を供給するための起動回路の抵抗器である。図1では抵抗器R1は1つであるが、必要に応じて直列にし、その直列にする数量を調整する。D1、D2、C1、C2はそれぞれ整流ダイオードと平滑用コンデンサである。図1において整流ダイオードDRの整流方式は単相交流をブリッジ整流しているが、整流方式は特に問わない。
Hereinafter, the circuit configuration of the switching power supply circuit according to the present invention will be described in detail with reference to the illustrated embodiments.
FIG. 1 shows an embodiment of a switching power supply circuit according to the present invention. In FIG. 1, DR is a rectifying diode that rectifies an AC power supply VAC to obtain a DC voltage. CB1 and CB2 are capacitors, and smooth the DC voltage generated by the rectifier diode DR. RB1 and RB2 are voltage balancing resistors, and equalize the voltages applied to the capacitors CB1 and CB2. Point A is a connection point where capacitors CB1 and CB2 and resistors RB1 and RB2 are connected in series. Point B is a portion where DC voltage Vi smoothed by capacitors CB1 and CB2 appears. CTRL is a PWM control circuit for PWM control of the primary side of the transformer of the switching power supply circuit. Specifically, it consists of a power supply control IC that outputs a PWM control signal. For example, an integrated circuit such as HA16107FP made by Hitachi, Ltd. is used. Is done. Point C is a terminal for supplying necessary power to the PWM control circuit CTRL. M is a switching element. CS, DS, and RS are snubber capacitors, snubber diodes, and snubber resistors for absorbing surge voltage. R1 is a resistor of the starting circuit for supplying electric power to the PWM control circuit CTRL when starting the switching power supply circuit and after starting. In FIG. 1, the number of the resistor R1 is one. However, the resistor R1 is connected in series as necessary, and the number of the resistors R1 is adjusted. D1, D2, C1, and C2 are a rectifier diode and a smoothing capacitor, respectively. In FIG. 1, the rectification method of the rectifier diode DR is bridge rectification of single-phase alternating current, but the rectification method is not particularly limited.

本発明では、抵抗器R1を、点Aに接続する。従来技術では、起動回路の抵抗器R1を、コンデンサCB1、CB2で平滑された後の点Bに接続していたが、本発明では、点Aの電圧VAは、点Bの電圧Viより低いので、抵抗器R1に印加される電圧を下げることができ、抵抗器R1の発生損失を低減できる。また、抵抗器の直列接続数を減らすことができ、放熱のための空間を少なくすることができる。以上により、信頼性を向上させることができ、
図2は、PWM制御回路CTRLにほぼ同一電流が必要なものとして、分圧点Aの電圧VAと抵抗器R1で発生する電力損失の関係を示したもので、分圧点Aの電圧にほぼ比例して抵抗器R1で発生する電力損失を低減することが出来る。即ち、抵抗器R1には分圧点Aの直流電圧VAからPWM制御回路CTRLに印加される電圧V CTRLを差し引いた電圧が印加されるが、一般的にPWM制御回路CTRLに印加される電圧は、ほとんどの場合十数V以下でほぼ一定値である。また、PWM制御回路CTRLに必要な動作電流はほぼ一定である。従って分圧点Aに抵抗器R1を接続しPWM制御回路CTRLに電力を供給した場合、分圧点Aの電圧にほぼ比例して電力損失が低減されるのである。
一例としてコンデンサCB1、CB2に印加される電圧を均等にし、分圧点Aの電圧VAを点Bの電圧Viの2分の1にした場合、抵抗器R1に印加される電圧は従来技術のほぼ2分の1となる。この場合、後述する式(数1)においてVA=Vi/2となる様にRB1、RB2、R1、の値を選べばよい。
In the present invention, resistor R1 is connected to point A. In the prior art, the resistor R1 of the starting circuit is connected to the point B after being smoothed by the capacitors CB1 and CB2. In the present invention, the voltage V A at the point A is lower than the voltage Vi at the point B. Therefore, the voltage applied to the resistor R1 can be lowered, and the generation loss of the resistor R1 can be reduced. Further, the number of resistors connected in series can be reduced, and the space for heat dissipation can be reduced. With the above, reliability can be improved,
FIG. 2 shows the relationship between the voltage V A at the voltage dividing point A and the power loss generated at the resistor R1, assuming that the PWM control circuit CTRL requires substantially the same current. The power loss generated in the resistor R1 can be reduced almost proportionally. That is, a voltage obtained by subtracting the voltage V CTRL applied to the PWM control circuit CTRL from the DC voltage V A at the voltage dividing point A is applied to the resistor R1, but generally the voltage applied to the PWM control circuit CTRL. Is almost constant at 10 V or less in most cases. The operating current required for the PWM control circuit CTRL is almost constant. Therefore, when the resistor R1 is connected to the voltage dividing point A and power is supplied to the PWM control circuit CTRL, the power loss is reduced almost in proportion to the voltage at the voltage dividing point A.
As an example, when the voltages applied to capacitors CB1 and CB2 are equalized and voltage VA at voltage dividing point A is set to one half of voltage Vi at point B, the voltage applied to resistor R1 is the conventional voltage. Almost half. In this case, the values of RB1, RB2, and R1 may be selected so that V A = Vi / 2 in the equation (Equation 1) described later.

この場合、図1の様にコンデンサCB1、CB2を直列に接続した分圧点Aから起動回路へ電流を取り出すと、コンデンサCB1とCB2に並列接続されたバランス抵抗の値に偏りが生じるので、コンデンサCB1とCB2の電圧が崩れる。したがって、電圧のバランスが取れるように合成インピーダンスを考慮する必要がある。   In this case, if current is taken out from the voltage dividing point A where capacitors CB1 and CB2 are connected in series as shown in Fig. 1 to the starting circuit, the balance resistance value connected in parallel to capacitors CB1 and CB2 will be biased. The voltage of CB1 and CB2 collapses. Therefore, it is necessary to consider the combined impedance so that the voltage is balanced.

図3は、図1中のRB1、RB2、R1、CB1、CB2、PWM制御回路CTRLの入力インピーダンスRCTRLを等価的に記載した等価回路である。ここで、VAをコンデンサを直列接続した分圧点Aにおける電圧、Viを直流電圧部Bの電圧とする。RB1に流れる電流I1は、RB2に流れる電流I2とR1に流れる電流IRの合計したものとなる。RB1における電圧降下により分圧点Aの電圧VAが決定され、分圧点Aの電圧VAとRB2、R1、RCTRL の値によりI2とIRの値が決定される。以上の関係から、以下の式 (数1) が導かれる。 Figure 3 is a RB1, RB2, R1, CB1, CB2, PWM control circuit equivalent circuit described equivalently the input impedance R CTRL of CTRL in FIG. Here, V A is a voltage at a voltage dividing point A where capacitors are connected in series, and Vi is a voltage of the DC voltage part B. Current I 1 flowing through the RB1 becomes the sum of the current I R flowing through the current I 2 and R1 flowing in RB2. RB1 voltage V A dividing point A by voltage drop determined at the value of I 2 and I R is determined by the voltage value of V A and RB2, R1, R CTRL dividing point A. From the above relationship, the following equation (Equation 1) is derived.

Figure 2008125355
Figure 2008125355

(数1)を用い、分圧点Aの電圧VAが所望の電圧となる様、抵抗器RB1、RB2、R1を選定すればよい。ただし、RCTRLはCTRLの仕様で別に決まる。また、VC<VA<Viの関係が保たれることが必要である。
以上の様に、抵抗器R1と、コンデンサCB1、CB2に並列に接続された抵抗器RB1とRB2の抵抗値を適切に選定することにより、コンデンサCB1、CB2にかかる電圧を任意の値に安定化させることができるため、コンデンサCB1、CB2の各々に印加される電圧を任意の電圧にバランスさせることができ、且つ、従来技術と比較し、コンデンサCB1とCB2の接続点である分圧点Aから制御回路CTRLに電力を小電力で供給することができる。
(Equation 1) using, as the voltage V A dividing point A becomes a desired voltage, resistors RB1, RB2, R1 may be selected. However, R CTRL is determined separately according to the CTRL specification. In addition, it is necessary to maintain the relationship of V C <V A <Vi.
As described above, the voltage applied to capacitors CB1 and CB2 is stabilized to an arbitrary value by appropriately selecting the resistance values of resistor R1 and resistors RB1 and RB2 connected in parallel to capacitors CB1 and CB2. Therefore, the voltage applied to each of the capacitors CB1 and CB2 can be balanced to an arbitrary voltage, and compared with the prior art, from the voltage dividing point A that is the connection point of the capacitors CB1 and CB2. Electric power can be supplied to the control circuit CTRL with small electric power.

図4は本発明の別の実施例であり、コンデンサが3本直列接続されている例である。図4において、CB1、CB2、CB3はそれぞれコンデンサであり、RB1、RB2、RB3はそれぞれコンデンサに並列接続された抵抗器である。図3ではCB2とCB3の直列接続点にR1を接続している。例として、以下の式(数2)を満たす様にRB1、RB2、RB3、R1の抵抗値を設定すれば、CB1、CB2、CB3に印加される電圧を均等にすることができる。   FIG. 4 shows another embodiment of the present invention, in which three capacitors are connected in series. In FIG. 4, CB1, CB2, and CB3 are capacitors, and RB1, RB2, and RB3 are resistors connected in parallel to the capacitors. In FIG. 3, R1 is connected to the series connection point of CB2 and CB3. As an example, if the resistance values of RB1, RB2, RB3, and R1 are set so as to satisfy the following equation (Equation 2), the voltages applied to CB1, CB2, and CB3 can be equalized.

Figure 2008125355
Figure 2008125355

この場合、RB1をRB2に等しく選定すれば、図4における分圧点Aでの電圧VAは、図4における点Bでの電圧Viの3分の1となる。図4に示す例ではコンデンサは3本であったが、直列接続するコンデンサの数量は特に問わなく、4本以上でも同様に実現することができる。
図1および図4においては回路構成はいわゆるフライバックコンバータとなっているが、そのほか例えばフォワードコンバータやハーフブリッジ、フルブリッジ式など、スイッチング電源回路方式は特に問わない。
図5に本発明の別の実施例を示す。コンデンサCB1、CB2が直列に接続され、その各々に2本ずつ抵抗器RB1、RB2、RB3、RB4が接続されている。図5に示す如く、抵抗器RB3とRB4の直列接続部に抵抗器R1が接続されている。図5に示す様にすることにより、R1に印加される電圧をより低くすることができる。図5ではコンデンサCB1、CB2の各々に並列接続される抵抗器は2本ずつであるが、抵抗器の数量は特に問わなく(例として3本以上)、またコンデンサCB1、CB2に接続される抵抗器の数量は必ずしも同一である必要はない。
また、本発明による電源供給方法を用いたスイッチング電源を、電気機器に組み込んだ一例として、汎用インバータ装置に使用する実施例を図6に示す。図6においてダイオードD1〜D6は三相交流の整流用ダイオードで、交流電源VACから交流を受電し直流電圧に変換する整流器を構成する。Q1〜Q6はインバータ用スイッチング素子で、IGBTあるいはバイポーラトランジスタなどのパワートランジスタが使用される。ダイオードFWD1〜FWD6はインバータ用還流ダイオードであり、直流中間電圧(P−N間直流電圧)を任意の可変電圧可変周波数の三相交流電圧に変換するインバータを構成する。サイリスタThyと抵抗器RDでコンデンサC1、C2への突入電流防止回路を構成する。図6においてコンデンサCB1、CB2は汎用インバータ装置における直流中間電圧部の平滑コンデンサである。図6の場合、コンデンサCB1、CB2を2本直列に接続して使用しており、コンデンサCB1、CB2には並列に電圧バランス用の抵抗器RB1、RGB2が接続されている。図6のPSは、図1に示すPSと同じであり、スイッチング電源回路を構成するPWM制御回路CTRL、スイッチング素子M、トランスT等により構成される。このPSは、この汎用インバータ装置のインバータ制御回路CTLに制御電圧を供給する制御電源として使用される。図6において、コンデンサCB1、CB2の直列接続点Aには図1と同様に抵抗器R1が接続され、また図6における直流電圧の正側の点Pにはトランスの一次巻き線L1に接続され(点PはPSにとって図1の点Bに相当する)、図6における直流電圧の負側の点NはPWM制御回路CTRLやスイッチング素子Mの共通電位部に接続される。
In this case, if RB1 is selected to be equal to RB2, the voltage V A at the voltage dividing point A in FIG. 4 is one third of the voltage Vi at the point B in FIG. In the example shown in FIG. 4, the number of capacitors is three. However, the number of capacitors connected in series is not particularly limited, and four or more capacitors can be similarly realized.
In FIG. 1 and FIG. 4, the circuit configuration is a so-called flyback converter, but other switching power supply circuit systems such as a forward converter, a half bridge, and a full bridge type are not particularly limited.
FIG. 5 shows another embodiment of the present invention. Capacitors CB1 and CB2 are connected in series, and two resistors RB1, RB2, RB3, and RB4 are connected to each of them. As shown in FIG. 5, the resistor R1 is connected to the series connection portion of the resistors RB3 and RB4. By making it as shown in FIG. 5, the voltage applied to R1 can be made lower. In FIG. 5, there are two resistors connected in parallel to each of the capacitors CB1 and CB2, but the number of resistors is not particularly limited (for example, three or more), and the resistors connected to the capacitors CB1 and CB2 The quantity of vessels does not necessarily have to be the same.
FIG. 6 shows an embodiment in which a switching power supply using the power supply method according to the present invention is used in a general-purpose inverter device as an example of being incorporated in an electric device. 6 diodes D1~D6 the rectifying diode of the three-phase AC, it constitutes a rectifier for converting the power receiving direct current voltage AC from the AC power source V AC. Q1 to Q6 are inverter switching elements, and power transistors such as IGBTs or bipolar transistors are used. Diodes FWD1 to FWD6 are inverter free-wheeling diodes and constitute an inverter that converts a DC intermediate voltage (P-N DC voltage) into a three-phase AC voltage having an arbitrary variable voltage and variable frequency. The thyristor Thy and the resistor RD form an inrush current prevention circuit for the capacitors C1 and C2. In FIG. 6, capacitors CB1 and CB2 are smoothing capacitors for the DC intermediate voltage section in the general-purpose inverter device. In the case of FIG. 6, two capacitors CB1 and CB2 are connected in series, and resistors RB1 and RGB2 for voltage balancing are connected in parallel to the capacitors CB1 and CB2. The PS shown in FIG. 6 is the same as the PS shown in FIG. 1, and includes a PWM control circuit CTRL, a switching element M, a transformer T, and the like that constitute a switching power supply circuit. This PS is used as a control power supply for supplying a control voltage to the inverter control circuit CTL of this general-purpose inverter device. In FIG. 6, the resistor R1 is connected to the series connection point A of the capacitors CB1 and CB2 in the same manner as in FIG. 1, and the positive voltage point P in FIG. 6 is connected to the primary winding L1 of the transformer. (Point P corresponds to point B in FIG. 1 for PS), and point N on the negative side of the DC voltage in FIG. 6 is connected to the common potential portion of PWM control circuit CTRL and switching element M.

以上の実施例では、コンデンサCB1、CB2、・・・に均等に電圧が印加されるように、これらコンデンサに並列接続される抵抗値(インピーダンス値)を考慮したが、これはコンデンサCB1、CB2、・・・の定格電圧として通常同じものを使用するので、コンデンサCB1、CB2、・・・の能力を有効に利用する上で効果的である。また、高圧受電の場合にコンデンサに印加される電圧が耐圧を越えるようになるとき、あるいは高圧受電のときコンデンサに印加される電圧に余裕を取るためには、コンデンサは2個以上直列に接続する必要があり、本発明はこれを利用して起動用抵抗の電力損失を低減する。従って起動用に特別なコンデンサなどを用意することなく、簡単な構成で、しかも低コストで本発明を実施できる。   In the above embodiment, the resistance values (impedance values) connected in parallel to the capacitors CB1, CB2,... Are considered so that the voltages are evenly applied to the capacitors CB1, CB2,. Since the same rated voltage is normally used, it is effective in effectively using the capacities of the capacitors CB1, CB2,. In addition, two or more capacitors are connected in series when the voltage applied to the capacitor in the case of high-voltage power reception exceeds the withstand voltage, or in order to make room for the voltage applied to the capacitor during high-voltage power reception. The present invention uses this to reduce the power loss of the starting resistor. Therefore, the present invention can be implemented with a simple configuration and at a low cost without preparing a special capacitor for starting.

本発明の一実施形態によるスイッチング電源装置の回路構成を示す図である。It is a figure which shows the circuit structure of the switching power supply device by one Embodiment of this invention. 本発明の起動回路の電力損失特性を示す図である。It is a figure which shows the power loss characteristic of the starting circuit of this invention. 本発明の一実施形態を説明するための等価回路の図である。It is a figure of the equivalent circuit for demonstrating one Embodiment of this invention. 本発明の一実施形態によるスイッチング電源装置の回路構成を示す図である。It is a figure which shows the circuit structure of the switching power supply device by one Embodiment of this invention. 本発明の一実施形態によるスイッチング電源装置の回路構成を示す図である。It is a figure which shows the circuit structure of the switching power supply device by one Embodiment of this invention. 本発明の一実施形態として、汎用インバータの電源回路の例を示す図である。It is a figure which shows the example of the power supply circuit of a general purpose inverter as one Embodiment of this invention.

符号の説明Explanation of symbols

DR…ダイオードブリッジ、CB1…コンデンサ、CB2…コンデンサ、CB3…コンデンサ、RB1…抵抗器、RB2…抵抗器、RB3…抵抗器、R1…抵抗器、R2…抵抗器、CTRL…PWM制御回路、M…スイッチング素子、CS…スナバ・コンデンサ、DS…スナバ・ダイオード、RS…スナバ・抵抗器、T…トランス、L1…トランスの巻き線、L2…トランスの巻き線、L3…トランスの巻き線、D1…ダイオード、D2…ダイオード、C1…コンデンサ、C2…コンデンサ、A…直流電圧の分圧点、B…コンデンサによって平滑された直流電圧が現れる点、C…PWM制御回路CTRLの給電部の電圧が現れる点、I1…RB1に流れる電流、I2…RB2に流れる電流、IR…R1に流れる電流、 DR ... Diode bridge, CB1 ... Capacitor, CB2 ... Capacitor, CB3 ... Capacitor, RB1 ... Resistor, RB2 ... Resistor, RB3 ... Resistor, R1 ... Resistor, R2 ... Resistor, CTRL ... PWM control circuit, M ... Switching element, CS ... snubber capacitor, DS ... snubber diode, RS ... snubber resistor, T ... transformer, L1 ... transformer winding, L2 ... transformer winding, L3 ... transformer winding, D1 ... diode D2 ... diode, C1 capacitor, C2 capacitor, A ... DC voltage dividing point, B ... DC voltage smoothed by the capacitor appears, C ... PWM control circuit CTRL voltage feed point appears, I 1 ... current flowing in RB1, I 2 ... current flowing in RB2, I R ... current flowing in R1,

Claims (6)

少なくとも2個直列に接続されたコンデンサを有する直流電源部と、該直流電圧部から直流電力の供給を受けてトランスの一次側をPWM制御回路によりスイッチング制御し、電圧仕様の異なる直流電圧を出力するスイッチング電源回路において、前記直流電圧部の直流電圧を分圧し、該分圧した点に抵抗器を介して前記PWM制御回路への電源供給部を接続したことを特徴とするスイッチング電源回路。   A DC power supply unit having at least two capacitors connected in series, and DC power supplied from the DC voltage unit, the primary side of the transformer is switched by a PWM control circuit, and a DC voltage with a different voltage specification is output. In the switching power supply circuit, the DC voltage of the DC voltage unit is divided, and a power supply unit to the PWM control circuit is connected to the divided point via a resistor. 前記直流電圧部の直流電圧を前記直列に接続されたコンデンサで分圧し、前記直流電圧を分圧したコンデンサの接続点に抵抗器を介して前記PWM制御回路を接続したことを特徴とする請求項1記載のスイッチング電源回路。   The DC voltage of the DC voltage unit is divided by the capacitors connected in series, and the PWM control circuit is connected to a connection point of the capacitor obtained by dividing the DC voltage via a resistor. The switching power supply circuit according to 1. 前記コンデンサには電圧バランス用抵抗器が並列接続され、前記電圧バランス用抵抗器で前記直流電圧部の直流電圧が分圧された接続点に抵抗器を介して前記PWM制御回路を接続したことを特徴とする請求項1記載のスイッチング電源回路。   A voltage balancing resistor is connected in parallel to the capacitor, and the PWM control circuit is connected via a resistor to a connection point where the DC voltage of the DC voltage unit is divided by the voltage balancing resistor. The switching power supply circuit according to claim 1. 前記電圧バランス用抵抗器は前記コンデンサ1つに対し少なくとも1つ以上の抵抗器を直列接続した直列体を並列接続し、該直列体の接続点に前記PWM制御回路を接続したことを特徴とする請求項3記載のスイッチング電源回路。 In the voltage balancing resistor, a series body in which at least one resistor is connected in series to one capacitor is connected in parallel, and the PWM control circuit is connected to a connection point of the series body. The switching power supply circuit according to claim 3. 前記PWM制御回路と前記PWM制御回路が並列接続される前記電圧バランス用抵抗器との合成抵抗値は、他の電圧バランス用抵抗器の抵抗値とほぼ同じ値であることを特徴とする請求項3または請求項4記載のスイッチング電源回路。 The combined resistance value of the PWM control circuit and the voltage balancing resistor to which the PWM control circuit is connected in parallel is substantially the same as the resistance value of other voltage balancing resistors. The switching power supply circuit according to claim 3 or 5. 交流を受電し直流に変換する整流器と、該整流器の直流出力を平滑するコンデンサを備えた直流中間部と、該直流中間部の直流電圧を任意の可変電圧可変周波数の交流に変換するインバータと、前記インバータを制御するインバータ制御回路と、前記直流中間部の直流電力の供給を受けてトランスの一次側をPWM制御回路によりスイッチング制御し電圧仕様の異なる直流電圧を前記インバータ制御回路に制御電源として供給するスイッチング電源回路を備えたインバータ装置において、前記コンデンサは複数直列接続され、該コンデンサの直列接続点に前記PWM制御回路の電源供給部を接続し、前記インバータ制御回路に該スイッチング電源回路の直流出力を直流電源として接続したインバータ装置。 A rectifier that receives alternating current and converts it into direct current; a direct current intermediate section that includes a capacitor that smoothes the direct current output of the rectifier; an inverter that converts the direct current voltage of the direct current intermediate section into alternating current of any variable voltage and variable frequency; Inverter control circuit for controlling the inverter and DC power supplied from the DC intermediate section, and switching control of the primary side of the transformer by the PWM control circuit to supply DC voltage with different voltage specifications to the inverter control circuit as a control power source In the inverter device including the switching power supply circuit, a plurality of the capacitors are connected in series, a power supply unit of the PWM control circuit is connected to a series connection point of the capacitors, and a DC output of the switching power supply circuit is connected to the inverter control circuit Inverter device connected as a DC power source.
JP2008042328A 2008-02-25 2008-02-25 Switching power circuit and inverter apparatus Pending JP2008125355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042328A JP2008125355A (en) 2008-02-25 2008-02-25 Switching power circuit and inverter apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042328A JP2008125355A (en) 2008-02-25 2008-02-25 Switching power circuit and inverter apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002147057A Division JP2003339164A (en) 2002-05-22 2002-05-22 Switching power circuit and inverter device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011123068A Division JP2011167068A (en) 2011-06-01 2011-06-01 Switching power supply circuit and inverter apparatus

Publications (1)

Publication Number Publication Date
JP2008125355A true JP2008125355A (en) 2008-05-29

Family

ID=39509527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042328A Pending JP2008125355A (en) 2008-02-25 2008-02-25 Switching power circuit and inverter apparatus

Country Status (1)

Country Link
JP (1) JP2008125355A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126496A (en) * 1984-07-13 1986-02-05 Fuji Electric Co Ltd Inverter operation system at power interruption time
JPH0270268A (en) * 1988-09-01 1990-03-09 Murata Mfg Co Ltd Switching regulator
JPH0564461A (en) * 1991-08-30 1993-03-12 Fuji Electric Co Ltd Half-bridge type power converting circuit
JPH05207734A (en) * 1991-08-01 1993-08-13 Philips Gloeilampenfab:Nv Circuit device with switching-mode power source
JPH0919145A (en) * 1995-06-28 1997-01-17 Nec Home Electron Ltd Switching power supply
WO2002084836A1 (en) * 2001-04-06 2002-10-24 Mitsubishi Denki Kabushiki Kaisha Dc/dc power supply

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126496A (en) * 1984-07-13 1986-02-05 Fuji Electric Co Ltd Inverter operation system at power interruption time
JPH0270268A (en) * 1988-09-01 1990-03-09 Murata Mfg Co Ltd Switching regulator
JPH05207734A (en) * 1991-08-01 1993-08-13 Philips Gloeilampenfab:Nv Circuit device with switching-mode power source
JPH0564461A (en) * 1991-08-30 1993-03-12 Fuji Electric Co Ltd Half-bridge type power converting circuit
JPH0919145A (en) * 1995-06-28 1997-01-17 Nec Home Electron Ltd Switching power supply
WO2002084836A1 (en) * 2001-04-06 2002-10-24 Mitsubishi Denki Kabushiki Kaisha Dc/dc power supply

Similar Documents

Publication Publication Date Title
US7394668B2 (en) Switching power supply circuit and frequency converter
JP6497553B2 (en) AC-DC converter
US7804271B2 (en) Multiphase current supplying circuit, driving apparatus, compressor and air conditioner
JP4706987B2 (en) Power conversion circuit
CN105052245B (en) Led drive circuit
TWI536709B (en) Power systme and method for providing power
JP2009232681A (en) Multilevel inverter
JP5855183B2 (en) High voltage inverter and high voltage converter
CN110719041B (en) Power conversion circuit with inrush current limiting resistor bypass
JP6409515B2 (en) Insulated AC-DC converter
JP6642014B2 (en) Power system
JP2019017231A (en) Electronic apparatus
JP2011167068A (en) Switching power supply circuit and inverter apparatus
US20210153319A1 (en) Passive three-phase light-emitting diode drivers
CN112825427A (en) Device for effective network-independent intermediate circuit conditioning
KR100980406B1 (en) AC-DC converter comprising a multi-feedback control circuit
JP2008125355A (en) Switching power circuit and inverter apparatus
JP2011050137A (en) Power conversion circuit
JP2010283989A (en) Power conversion apparatus
JP4460131B2 (en) Flyback converter
KR20160032857A (en) Inverter with Built-In DC Reactor and Surge Voltage Protection Circuit
KR102356854B1 (en) Voltage converting apparatus and controlling method thereof
JP2020092556A (en) Power conversion device
JP5170024B2 (en) Power converter
JP2000184720A (en) Converter and inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601