JP2008121908A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2008121908A
JP2008121908A JP2006302793A JP2006302793A JP2008121908A JP 2008121908 A JP2008121908 A JP 2008121908A JP 2006302793 A JP2006302793 A JP 2006302793A JP 2006302793 A JP2006302793 A JP 2006302793A JP 2008121908 A JP2008121908 A JP 2008121908A
Authority
JP
Japan
Prior art keywords
contact
tube
heat exchanger
inner tube
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006302793A
Other languages
Japanese (ja)
Inventor
Naoe Sasaki
直栄 佐々木
Shigenao Maruyama
重直 圓山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Light Metal Industries Ltd
Original Assignee
Tohoku University NUC
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Light Metal Industries Ltd filed Critical Tohoku University NUC
Priority to JP2006302793A priority Critical patent/JP2008121908A/en
Publication of JP2008121908A publication Critical patent/JP2008121908A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively manufacture a heat exchanger improved in uniform heating effect of fluid to be heat exchanged by improving heat exchanging performance from a heat exchange medium of high temperature to the fluid to be heat exchanged with comparatively simple and compact structure. <P>SOLUTION: A part of an outer peripheral face of a first inner tube 4 in which the heat exchange medium of high temperature is circulated, is kept into contact with a part of an outer peripheral face of a second inner tube 6 in which the fluid to be heat exchanged is circulated, to be thermally kept into contact with each other, further the first inner tube 4 is kept into contact with an inner peripheral face of an outer tube 8 at its part not kept into contact with the outer peripheral face of the second inner tube 6, to be thermally kept into contact with each other, and further the second inner tube 6 is kept into contact with a part not kept into contact with the outer peripheral face of the first inner tube 4, of the inner peripheral face of the outer tube 8, at its part not kept into contact with the outer peripheral face of the first inner tube 4, to be thermally kept into contact with each other. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高温の熱交換媒体と熱交換されるべき流体との間で熱交換を行う熱交換器に係り、中でも、炭酸ガスを主成分とする冷媒と水とを熱交換するための給湯機用水熱交換器として好適に用いられ得る熱交換器に関するものである。   The present invention relates to a heat exchanger that performs heat exchange between a high-temperature heat exchange medium and a fluid to be heat exchanged, and in particular, hot water supply for exchanging heat between a refrigerant mainly composed of carbon dioxide and water. The present invention relates to a heat exchanger that can be suitably used as a mechanical water heat exchanger.

従来から、高温の熱交換媒体(冷媒)と水等の所定の流体とを熱交換する熱交換器として、かかる熱交換媒体を流通させる流路(以下、冷媒流路と略称する)と、水等の熱交換されるべき流体を流通させる流路(以下、水流路と略称する)とを、二つの伝熱管を組み合わせて構成し、それら冷媒と水等との間で熱交換を行うようにした熱交換器が、各種用いられて来ている。また、そのような熱交換器において用いられる熱交換媒体(冷媒)としては、従来のフロン系冷媒に代えて、オゾン層の保護や地球環境の温暖化防止等の観点から、温暖化係数の低い自然冷媒が注目されて来ており、近年においては、この自然冷媒を利用した熱交換器の開発が、行われている。そして、そのような自然冷媒の中でも、炭酸ガスを用いた場合には、高温高圧のガス条件が得られるところから、特に注目を受けているのである。   Conventionally, as a heat exchanger for exchanging heat between a high-temperature heat exchange medium (refrigerant) and a predetermined fluid such as water, a flow path for circulating the heat exchange medium (hereinafter abbreviated as a refrigerant flow path), water, A flow path (hereinafter abbreviated as a water flow path) through which a fluid to be heat-exchanged is configured by combining two heat transfer tubes so that heat is exchanged between the refrigerant and water. Various heat exchangers have been used. Moreover, as a heat exchange medium (refrigerant) used in such a heat exchanger, instead of the conventional chlorofluorocarbon refrigerant, it has a low global warming coefficient from the viewpoint of protecting the ozone layer and preventing global warming. Natural refrigerants have attracted attention, and in recent years, heat exchangers using such natural refrigerants have been developed. Among such natural refrigerants, when carbon dioxide is used, it is particularly attracting attention because high temperature and high pressure gas conditions can be obtained.

ところで、そのような炭酸ガスを主成分とする冷媒と水との間で熱交換を行う方式の熱交換器としては、従来より、以下に例示するように、内部に冷媒を流通させる伝熱管と、内部に水を流通させる伝熱管とを組み合わせて、一つの熱交換器を構成したものが、各種提案されている。   By the way, as a heat exchanger of a system for performing heat exchange between the refrigerant mainly composed of carbon dioxide gas and water, conventionally, as exemplified below, a heat transfer tube for circulating the refrigerant inside, and Various proposals have been made in which one heat exchanger is configured by combining with a heat transfer tube through which water flows.

例えば、特開2006−170571号公報(特許文献1)においては、スパイラル状に撚られ又は捻られた二本の内管内に、それぞれ冷媒を流通せしめる一方、それら二本の内管を収容した外管の管内には、水が流通せしめられるようにした構造の二重多管式熱交換器が、明らかにされている。そして、そこでは、高温側である冷媒流路管(内管)が低温側となる水流路管(外管)の中に完全に封じ込められた形態とされているところから、冷媒の熱が外気へと放出されてしまうことが、低く抑えられるという利点を有しているのであるが、水側への伝熱面積を増加させることが難しいという欠点を内在している。このため、特許文献1では、冷媒流路管をスパイラル状に捻ることにより流路長を長くして、水側への伝熱面積を増加させているのであるが、それでも、伝熱面積の増加の効果は充分ではなく、熱交換器の小型化が難しくなるものであった。   For example, in Japanese Patent Laid-Open No. 2006-170571 (Patent Document 1), a refrigerant is circulated in two inner pipes twisted or twisted in a spiral shape, while the two inner pipes are accommodated. A double-tubular heat exchanger having a structure in which water is allowed to flow in the pipe is disclosed. In this case, the refrigerant flow pipe (inner pipe) on the high temperature side is completely enclosed in the water flow pipe (outer pipe) on the low temperature side. Although it has the advantage that it is kept low, it has the disadvantage that it is difficult to increase the heat transfer area to the water side. For this reason, in patent document 1, although the flow path length is lengthened by twisting the refrigerant flow pipe in a spiral shape and the heat transfer area to the water side is increased, the increase in the heat transfer area is still achieved. This effect was not sufficient, and it was difficult to reduce the size of the heat exchanger.

また、この特許文献1に提案の二重多管式熱交換器にあっては、冷媒流路管の損傷等により、冷媒が、その外側を流通する水中へ漏洩する危険性があり、特に、給湯機用水熱交換器に適用する場合において、飲料用にも使用される水の中へ冷媒が混入することを避ける必要があるところから、特許文献1においては、その図3に示されるような漏洩検知管が、冷媒流路管(内管)として採用されているのであるが、そのために、構造が複雑となると共に、コストアップの要因ともなっているのである。   Further, in the double multi-tubular heat exchanger proposed in Patent Document 1, there is a risk that the refrigerant leaks into the water flowing outside due to damage of the refrigerant flow pipe, etc. In the case of applying to a water heat exchanger for a water heater, it is necessary to avoid the refrigerant from being mixed into the water used also for beverages. In Patent Document 1, as shown in FIG. The leak detection pipe is employed as a refrigerant flow pipe (inner pipe). However, this complicates the structure and increases the cost.

また、特開2002−228370号公報(特許文献2)や特開2006−90697号公報(特許文献3)においては、水流路管の外側に冷媒流路管を配置してなる構造の、冷媒流路管巻き付けタイプの熱交換器が明らかにされているが、その中で、特許文献2に提案されている構造のものにあっては、水流路管と冷媒流路管との接触面積が充分ではないために、冷媒から水への伝熱性能が低く、充分な熱交換性能を発揮することが困難であるという問題を内在している。このため、そのような形態の熱交換器の伝熱性能を向上させるべく、特許文献3においては、水流路管の外周に、複数条の山谷底部を連続して螺旋状に設け、その山谷底部に沿って、冷媒流路管を巻き付けるようにしているのであるが、これとても、接触面積の増加は充分ではなく、加えて、冷媒からの熱が外気に放出される欠点もあり、熱交換性能面において良好な熱交換器であるとは言い難いものであった。   In Japanese Patent Application Laid-Open No. 2002-228370 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2006-90697 (Patent Document 3), a refrigerant flow having a structure in which a refrigerant channel tube is disposed outside a water channel tube. Although a heat exchanger of a path pipe winding type has been clarified, in the structure proposed in Patent Document 2, the contact area between the water flow path pipe and the refrigerant flow path pipe is sufficient. Therefore, there is a problem that heat transfer performance from the refrigerant to water is low and it is difficult to exhibit sufficient heat exchange performance. For this reason, in Patent Document 3, in order to improve the heat transfer performance of such a heat exchanger, a plurality of mountain valley bottom portions are continuously provided in a spiral shape on the outer periphery of the water flow channel pipe, and the mountain valley bottom portion is provided. However, the contact area is not increased sufficiently, and in addition, the heat from the refrigerant is released to the outside air, resulting in heat exchange performance. It was hard to say that it was a good heat exchanger.

さらに、特開2003−14383号公報(特許文献4)は、水流路管に冷媒流路管を押し込むように配置してなる構造の熱交換器を開示しており、そこでは、水流路管の外面を窪ませ、その窪みに冷媒流路管を嵌め込んでなる構成とされているところから、上記特許文献2の如きタイプに比べて、冷媒流路管と水流路管の接触面積が増大され、伝熱性能の向上が図られ得ることとなったのであるが、それでも、充分であるとは言い難いものであった。なお、特許文献4の図5に示されている形態は、冷媒流路管が上下に二本配置されるものであるが、接触面積を増大させるには、そのような冷媒流路管の本数を、3本、4本、或いはそれ以上と増やすことも考えられるものの、その場合において、冷媒流路管から冷媒の熱が外気に放出される欠点は逃れられず、熱交換性能面において、良好な熱交換性能を有しているとは言うことが出来ない。   Furthermore, Japanese Patent Application Laid-Open No. 2003-14383 (Patent Document 4) discloses a heat exchanger having a structure in which a refrigerant channel tube is pushed into a water channel tube. Since the outer surface is recessed and the refrigerant channel tube is fitted in the recess, the contact area between the refrigerant channel tube and the water channel tube is increased as compared with the type described in Patent Document 2. Although the heat transfer performance could be improved, it was still difficult to say that it was sufficient. In addition, although the form shown by FIG. 5 of patent document 4 arranges two refrigerant | coolant flow path pipes up and down, in order to increase a contact area, the number of such a refrigerant | coolant flow path pipe | tube is used. However, in that case, the disadvantage that the heat of the refrigerant is released from the refrigerant flow pipe to the outside air is not escaped, and the heat exchange performance is good. It cannot be said that it has a good heat exchange performance.

ここで、図6には、かかる特許文献4に開示のタイプにおいて構成された熱交換器30の断面図が示されており、そこでは、3本の冷媒流路管32が、それぞれ、水流路管34の外面に設けられた三つの窪み36内に密着配置されてなる構造において、構成されている。また、そのような熱交換器30における1本の冷媒流路管32からの熱の流れが、図7に示されている。そこにおいて、冷媒流路管32内を流れる冷媒からの熱は、冷媒流路管32と水流路管34との接触部38を介して、その内側の領域40を流れる水を加熱し、その熱が、更に他の領域42,44を流れる水にも伝達されることとなる一方、冷媒からの熱は、外気46へも放散されることとなるのである。そして、このような熱伝達において、接触部38に近い領域40の水の温度は高くなる一方、接触部38の両側に位置して、水流路管34の内周面に近い領域42の水は、外気46の影響を受けて、充分に加熱され得ず、低い温度の水となるのであり、このために、水流路(34)内での水温度の差が大きく、均熱状態とはなり難いのである。   Here, FIG. 6 shows a cross-sectional view of a heat exchanger 30 configured in the type disclosed in Patent Document 4, in which three refrigerant flow pipes 32 are respectively provided as water flow paths. It is configured in a structure in which it is arranged in close contact with three recesses 36 provided on the outer surface of the tube 34. Moreover, the heat flow from one refrigerant flow pipe 32 in such a heat exchanger 30 is shown in FIG. There, the heat from the refrigerant flowing in the refrigerant channel pipe 32 heats the water flowing through the inner region 40 via the contact portion 38 between the refrigerant channel pipe 32 and the water channel pipe 34, and the heat However, while it is also transmitted to the water flowing through the other regions 42 and 44, the heat from the refrigerant is also dissipated to the outside air 46. In such heat transfer, the temperature of the water in the region 40 close to the contact portion 38 is high, while the water in the region 42 located on both sides of the contact portion 38 and close to the inner peripheral surface of the water flow channel pipe 34 is Because of the influence of the outside air 46, the water cannot be heated sufficiently and becomes low temperature water. For this reason, there is a large difference in water temperature in the water flow path (34), and a soaking state is obtained. It is difficult.

一方、水道水等の水に含まれるカルシウム等の成分は、高温(およそ85℃以上)に加熱された領域において析出し易く、このために、上記した内側領域40においては、そのような成分の析出によるスケール形成が惹起され易い問題を内在しているのである。そして、熱交換器30を長期間に亘って使用することにより、その形成されたスケールが、流路壁に付着し、そしてその付着量(厚さ)が経時的に増大することによって、流路断面積を減少させ、最終的には流路を閉塞させてしまうという問題を内在しているのであり、更にこのような問題は、特許文献4のタイプに限られることなく、特許文献2、3のようなタイプにおいても起こり得る問題となっているのである。   On the other hand, components such as calcium contained in water such as tap water are likely to precipitate in a region heated to a high temperature (approximately 85 ° C. or higher). For this reason, in the inner region 40 described above, The problem is that scale formation due to precipitation is likely to occur. Then, by using the heat exchanger 30 for a long period of time, the formed scale adheres to the flow path wall, and the adhesion amount (thickness) increases with time, so that the flow path The problem of reducing the cross-sectional area and eventually closing the flow path is inherent, and such a problem is not limited to the type of Patent Document 4, and Patent Documents 2, 3 It is a problem that can occur even in such types.

そして、かくの如きスケールの形成を効果的に抑制するには、水流路(34)内での均熱を図ることが重要であり、このため、熱交換性能やコスト面での有利さに加えて、熱交換されるべき水が出来るだけ均一に加熱されるようにすることによって、スケール形成を効果的に抑制する機能を兼ね備えた熱交換器の実現が、望まれているのである。   In order to effectively suppress the formation of such scales, it is important to achieve soaking in the water flow path (34). For this reason, in addition to heat exchange performance and cost advantages. Thus, it is desired to realize a heat exchanger having a function of effectively suppressing scale formation by making water to be heat-exchanged as uniform as possible.

特開2006−170571号公報JP 2006-170571 A 特開2002−228370号公報JP 2002-228370 A 特開2006−90697号公報JP 2006-90697 A 特開2003−14383号公報JP 2003-14383 A

ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決課題とするところは、高温の熱交換媒体から熱交換されるべき流体への熱交換性能を高めて、かかる熱交換されるべき流体の均一加熱効果を向上せしめた熱交換器を、比較的単純で且つコンパクトな構造において、製造コストも安価に、実現することにある。   Here, the present invention was made in the background of such circumstances, the place to solve the problem is to enhance the heat exchange performance from the high-temperature heat exchange medium to the fluid to be heat exchanged, An object of the present invention is to realize a heat exchanger that improves the uniform heating effect of the fluid to be heat-exchanged in a relatively simple and compact structure at a low manufacturing cost.

そして、本発明にあっては、かくの如き課題の解決のために、管内に高温の熱交換媒体が流通せしめられる第一の内管と、該高温の熱交換媒体との間で熱交換されるべき流体が管内に流通せしめられる第二の内管と、それら第一及び第二の内管を管内に収容、保持する外管とから構成される熱交換器にして、該第一の内管が、その外周面の一部において、前記第二の内管の外周面の一部に対して当接せしめられて熱的接触させられていると共に、更に、該第二の内管の外周面と接触していない部分において、前記外管の内周面に当接せしめられて熱的接触させられている一方、該第二の内管が、その外周面のうち前記第一の内管の外周面と接触していない部分において、前記外管の内周面の前記第一の内管の外周面と接触していない部分に対して当接せしめられて、熱的接触させられていることを特徴とする熱交換器を、その要旨とするものである。   In the present invention, in order to solve such problems, heat exchange is performed between the first inner pipe through which the high-temperature heat exchange medium is circulated in the pipe and the high-temperature heat exchange medium. A heat exchanger composed of a second inner pipe through which a fluid to be circulated flows and an outer pipe that houses and holds the first and second inner pipes in the pipe. The pipe is brought into contact with a part of the outer peripheral surface of the second inner pipe and brought into thermal contact with a part of the outer peripheral face of the second inner pipe. The portion that is not in contact with the surface is brought into thermal contact with the inner peripheral surface of the outer tube, while the second inner tube is the first inner tube of the outer peripheral surface. In a portion that is not in contact with the outer peripheral surface of the outer tube, a portion of the inner peripheral surface of the outer tube that is not in contact with the outer peripheral surface of the first inner tube Is brought into contact Te, the heat exchanger, characterized in that it brought into thermal contact, it is an gist thereof.

なお、このような本発明に従う熱交換器の望ましい態様の一つによれば、前記第二の内管の外周面に、管軸方向に延びる溝部が、凹陥して形成され、該溝部内に前記第一の内管が密接、収容されている一方、それら第一及び第二の内管に密接するように、前記外管が外嵌めされている構成が、有利に採用されることとなる。   According to one of desirable aspects of the heat exchanger according to the present invention, a groove portion extending in the tube axis direction is formed in the outer peripheral surface of the second inner tube so as to be recessed. While the first inner pipe is closely accommodated, the configuration in which the outer pipe is externally fitted so as to be in close contact with the first and second inner pipes is advantageously employed. .

また、本発明の望ましい態様の他の一つによれば、前記第一の内管と前記第二の内管との当接、前記第一の内管と前記外管との当接及び前記第二の内管と前記外管との当接が、それぞれ機械的な圧着によって実現されて、熱的接触が形成されている。   According to another preferred embodiment of the present invention, the first inner tube and the second inner tube are in contact with each other, the first inner tube and the outer tube are in contact with each other, and The contact between the second inner tube and the outer tube is realized by mechanical pressure bonding to form a thermal contact.

さらに、本発明に従う熱交換器にあっては、望ましくは、前記高温の熱交換媒体が炭酸ガスを主体とする冷媒とされ、また前記熱交換されるべき流体が水とされて、給湯機用水熱交換器として、有利に用いられ得るのであり、更にまた、前記外管は、好ましくは、銅又は銅合金を材質として構成されていることが望ましいのである。   Furthermore, in the heat exchanger according to the present invention, preferably, the high-temperature heat exchange medium is a refrigerant mainly composed of carbon dioxide gas, and the fluid to be heat-exchanged is water, It can be advantageously used as a heat exchanger. Furthermore, it is desirable that the outer tube is preferably made of copper or a copper alloy.

このように、本発明に従う熱交換器にあっては、第一の内管と第二の内管の熱的接触部位を介して、第一の内管内を流通する高温の熱交換媒体からの熱が、第二の内管内を流通する流体に伝達されることとなると共に、第一の内管が、外管に対して熱的に接触せしめられていることにより、高温の熱交換媒体からの熱が、外管へも伝熱、拡散し、外気への熱放出が効果的に抑制され得るようになっているのであり、更に、外管と第二の内管との熱的接触部位を介しての伝熱作用も発揮され得ることとなることによって、かかる第二の内管内を流通する流体が、1本の第一の内管から、その周りに位置する第二の内管の複数部位において、伝熱されることとなり、そして、これによって、第二の内管内における流体のより一層有効な均熱化を図り得ることとなったのである。   Thus, in the heat exchanger according to the present invention, from the high-temperature heat exchange medium that circulates in the first inner pipe through the thermal contact portion between the first inner pipe and the second inner pipe. Heat is transferred to the fluid flowing through the second inner pipe, and the first inner pipe is brought into thermal contact with the outer pipe, so that a high-temperature heat exchange medium can be used. Heat is transferred and diffused to the outer tube, so that the heat release to the outside air can be effectively suppressed, and further, the thermal contact portion between the outer tube and the second inner tube. As a result, the fluid flowing through the second inner pipe can be transferred from one first inner pipe to the second inner pipe around the first inner pipe. Heat is transferred at a plurality of locations, and this enables more effective heat equalization of the fluid in the second inner pipe. Than it has become possible to obtain.

そして、このように、第二の内管内を流れる流体の均熱化の向上によって、かかる流体の局所加熱領域の形成が効果的に抑制されることとなるのであり、これによって、水等の加熱されるべき流体中に含まれるカルシウム等の成分の析出が有利に抑制され、その結果、スケールの形成が、効果的に抑制され得るのである。   As described above, the improvement in the soaking of the fluid flowing in the second inner pipe effectively suppresses the formation of the local heating region of the fluid, thereby heating the water or the like. Precipitation of components such as calcium contained in the fluid to be performed is advantageously suppressed, and as a result, scale formation can be effectively suppressed.

また、かかる本発明に従う熱交換器にあっては、第一の内管と第二の内管とそれらを収容する外管とが、相互に接触せる形態において組み付けられていることによって、目的とする熱交換器が形成されており、そこでは、高温の熱交換媒体が流通せしめられる第一の内管が、外管内に完全に封じ込まれた形態となるところから、第一の内管に損傷等が発生した場合において、熱交換媒体は、外管と第一及び第二の内管との間の間隙に漏洩することとなるために、その間隙部が漏洩検知管の機能を果たすこととなり、従来の如き特別な構造の漏洩検知管を用いる必要がないところから、比較的単純な構造において、しかも、コンパクトな構造において、熱交換器を構成することが出来、そのために、製造コストも安価と為し得るのである。   In the heat exchanger according to the present invention, the first inner pipe, the second inner pipe, and the outer pipe that accommodates them are assembled in a form in which they are in contact with each other. A heat exchanger is formed, in which the first inner pipe through which the high-temperature heat exchange medium is circulated is completely enclosed in the outer pipe, so that the first inner pipe is connected to the first inner pipe. When damage or the like occurs, the heat exchange medium leaks into the gap between the outer pipe and the first and second inner pipes, so that the gap functions as a leak detection pipe. Therefore, since it is not necessary to use a leak detection tube having a special structure as in the prior art, a heat exchanger can be configured in a relatively simple structure and in a compact structure. It can be done inexpensively.

以下、本発明を更に具体的に明らかにするために、本発明の実施の形態について、図面を参照しつつ、詳細に説明することとする。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.

先ず、図1及び図2には、本発明に従う熱交換器の一実施形態が示されている。そこにおいて、図1は、かかる熱交換器の長手方向(管軸方向)における内管及び外管の配設形態を示す一端側断面斜視説明図であり、また図2は、図1に示される熱交換器の横断面である、管軸に垂直な方向の断面を拡大して示す説明図である。そして、それらの図から明らかなように、熱交換器2は、管内に高温の熱交換媒体が流通せしめられる、細径の第一の内管4の3本と、かかる高温の熱交換媒体との間で熱交換されるべき流体が管内に流通せしめられる、太径の第二の内管6と、それら第一及び二の内管4,6を管内に収容、保持する、太径の外管8とが、相互に密接されて、構成されている。   First, FIG.1 and FIG.2 shows one Embodiment of the heat exchanger according to this invention. FIG. 1 is a perspective view of one end side cross section showing the arrangement of inner and outer tubes in the longitudinal direction (tube axis direction) of the heat exchanger, and FIG. 2 is shown in FIG. It is explanatory drawing which expands and shows the cross section of the direction perpendicular | vertical to a pipe axis which is a cross section of a heat exchanger. As is apparent from these figures, the heat exchanger 2 includes three of the first inner pipes 4 having a small diameter through which a high-temperature heat exchange medium is circulated, and such a high-temperature heat exchange medium. A large-diameter second inner pipe 6 in which a fluid to be heat-exchanged between the pipes is circulated in the pipe, and the first and second inner pipes 4 and 6 are accommodated and held in the pipe. A tube 8 is constructed in close contact with each other.

より具体的には、第一の内管4は、一般に、外径:3〜7mm、肉厚:0.4〜1.2mm程度の細径の、断面が円形の管体にて構成され、ここでは、その3本が、周方向に約120°の位相差をもって配置せしめられている。また、第二の内管6は、外管8の内面に接するように、太径の管体にて構成されていると共に、その外周面には、前記第一の内管4を収容し得る深さを有する半円形乃至は円弧状断面の凹溝10が、管軸に平行な方向に延びるように設けられており、更にその凹溝10は、周方向に約120°の位相差をもって3条配設されている。そして、この第二の内管6の3条の凹溝10内に、その円弧状の内面に密接するようにして、第一の内管4が、それぞれ収容、保持せしめられてなる構造とされているのである。   More specifically, the first inner tube 4 is generally composed of a tubular body having a small outer diameter: about 3 to 7 mm and a wall thickness: about 0.4 to 1.2 mm, and a circular section. Here, the three are arranged with a phase difference of about 120 ° in the circumferential direction. The second inner tube 6 is configured by a large-diameter tube so as to be in contact with the inner surface of the outer tube 8, and the first inner tube 4 can be accommodated on the outer peripheral surface thereof. A groove 10 having a semicircular or arcuate cross section having a depth is provided so as to extend in a direction parallel to the tube axis, and the groove 10 has a phase difference of about 120 ° in the circumferential direction. It is arranged. The first inner pipe 4 is accommodated and held in the three concave grooves 10 of the second inner pipe 6 so as to be in close contact with the arc-shaped inner surface. -ing

また、外管8は、一般に、外径:12.7〜25.4mm、肉厚:0.4〜0.8mm程度の太径の、断面が円形の管体にて構成されている。そして、この外管8に内接するように、第一及び第二の内管4,6が収容されているのである。即ち、第二の内管6とその凹溝10内に収容位置せしめた第一の内管4とが、第二の内管6の最大径に位置する外周面部分において、外管8の内周面に接触せしめられるようになっている。従って、そこでは、第一の内管4が、その外周面の一部において、第二の内管6の外周面の一部に対して当接せしめられて、熱的接触させられていると共に、更に、第二の内管6の外周面と接触していない部分において、外管8の内周面に当接せしめられて、熱的に接触せしめられている一方、第二の内管6が、その外周面のうち、第一の内管4の外周面と接触していない部分において、外管8の内周面の第一の内管4の外周面と接触していない部分に対して当接せしめられて、熱的に接触させられてなる構造となっているのである。   In addition, the outer tube 8 is generally constituted by a tube having a large diameter of about 12.7 to 25.4 mm and a wall thickness of about 0.4 to 0.8 mm and a circular section. The first and second inner tubes 4 and 6 are accommodated so as to be inscribed in the outer tube 8. In other words, the second inner tube 6 and the first inner tube 4 accommodated in the recessed groove 10 are disposed in the outer tube 8 at the outer peripheral surface portion located at the maximum diameter of the second inner tube 6. It can come into contact with the peripheral surface. Therefore, there, the first inner tube 4 is brought into contact with a part of the outer peripheral surface of the second inner tube 6 at a part of the outer peripheral surface thereof and is brought into thermal contact therewith. Furthermore, the second inner tube 6 is in contact with the inner peripheral surface of the outer tube 8 and in thermal contact with a portion not in contact with the outer peripheral surface of the second inner tube 6. However, in the portion of the outer peripheral surface that is not in contact with the outer peripheral surface of the first inner tube 4, the inner peripheral surface of the outer tube 8 is not in contact with the outer peripheral surface of the first inner tube 4. It is a structure which is made to contact and is made to contact thermally.

従って、このような構造の熱交換器2にあっては、その熱の流れが、図3に示されている如く、第一の内管4内を流れる高温の熱交換媒体からの熱は、第一の内管4と第二の内管6(具体的には、凹溝10の内面)との接触部12を介して、その内側の領域14を流れる流体を加熱し、更にその熱が、他の領域16,18を流れる流体に伝達されるようになると同時に、高温の熱交換媒体からの熱は、第一の内管4と外管8との接触部20を介して、外管8に伝熱され、更に外管8を拡散する熱が、外管8と第二の内管6との接触部22を介して、凹溝10の周方向両側に位置する領域16を流れる流体に伝達されるようになるのである。その結果、第二の内管6の凹溝10の周方向両側に位置する領域16を流れる流体の温度が、効果的に高められ得ることとなり、以て、第二の内管6内を流通する流体の温度の均一性が、効果的に向上せしめられ得ることとなるのである。   Therefore, in the heat exchanger 2 having such a structure, as shown in FIG. 3, the heat from the high-temperature heat exchange medium flowing in the first inner pipe 4 is as follows. The fluid flowing through the inner region 14 is heated via the contact portion 12 between the first inner tube 4 and the second inner tube 6 (specifically, the inner surface of the concave groove 10), and the heat At the same time, the heat from the high-temperature heat exchange medium is transferred to the fluid flowing in the other regions 16 and 18 through the contact portion 20 between the first inner tube 4 and the outer tube 8. The heat that is transferred to 8 and further diffuses through the outer tube 8 flows through the contact portions 22 between the outer tube 8 and the second inner tube 6 and flows in the regions 16 located on both sides in the circumferential direction of the groove 10. It will be transmitted to. As a result, the temperature of the fluid flowing through the regions 16 located on both sides in the circumferential direction of the concave groove 10 of the second inner pipe 6 can be effectively increased, so that the second inner pipe 6 flows through the second inner pipe 6. Therefore, the uniformity of the temperature of the fluid to be performed can be effectively improved.

そして、このように、第二の内管6内を流通せしめられる流体の温度の均一性が向上せしめられて、そのような流体の局所加熱領域の形成が抑制されることによって、第二の内管6内を流れる流体の加熱温度が効果的に高められ得、以て、そのような流体を加熱するための第一の内管4内を流れる熱交換媒体の温度を低下せしめ得るところから、領域14における流体温度の上昇を有利に回避し得て、かかる流体中のカルシウム等の成分析出が効果的に抑制され得ることとなるのであり、その結果、スケールの形成が有利に抑制され得ることにより、熱交換器2を長期間に亘って使用しても、そのようなスケールの流路壁に対する付着により、流路断面積が減少したり、甚だしい場合にあっては、流路を閉塞させるという問題の発生も、何等顧慮する必要もなくなったのである。   In this way, the uniformity of the temperature of the fluid circulated through the second inner pipe 6 is improved, and the formation of such a locally heated region of the fluid is suppressed, whereby the second inner tube 6 Since the heating temperature of the fluid flowing in the pipe 6 can be effectively increased, and thus the temperature of the heat exchange medium flowing in the first inner pipe 4 for heating such fluid can be lowered, An increase in fluid temperature in the region 14 can be advantageously avoided, and the precipitation of components such as calcium in the fluid can be effectively suppressed, and as a result, the formation of scale can be advantageously suppressed. Thus, even if the heat exchanger 2 is used for a long period of time, if the cross-sectional area of the flow path decreases or is severe due to adhesion of such scale to the flow path wall, the flow path is blocked. The problem of causing Is the need also no longer be taken into.

しかも、かかる熱交換器2にあっては、第二の内管6の凹溝10の開口部位に、第一の内管4と第二の内管6と外管8とによって囲まれた空間26が管軸方向に形成されることとなるところから、高温の熱交換媒体が流通せしめられる第一の内管4に損傷等が発生した場合において、高温の熱交換媒体は、そのような空間26内に漏洩し、管軸方向に導かれることとなるのであり、このため、そのような空間26内における熱交換媒体の存在の有無を検知することによって、漏洩検知管としての機能も発揮させることが出来るところから、従来の如き複雑な構造の漏洩検知管を用いる必要が全くなく、そのために、比較的単純な構造において、且つコンパクトな構造として、熱交換器を構成することが出来るのであり、以て、製造コストも安価なものと為し得るのである。   Moreover, in the heat exchanger 2, the space surrounded by the first inner tube 4, the second inner tube 6, and the outer tube 8 at the opening portion of the concave groove 10 of the second inner tube 6. When the first inner pipe 4 through which the high-temperature heat exchange medium is circulated is damaged, the high-temperature heat exchange medium is in such a space. 26 leaks into the pipe 26 and is guided in the direction of the pipe axis. Therefore, by detecting the presence or absence of the heat exchange medium in the space 26, the function as a leak detection pipe is also exhibited. Therefore, it is not necessary to use a leak detection tube having a complicated structure as in the prior art. Therefore, a heat exchanger can be configured in a relatively simple structure and as a compact structure. Therefore, the manufacturing cost is also low. Than it may be made, such as the.

なお、かかる熱交換器2において、第一及び第二の内管4,6や外管8としては、従来から熱交換器に用いられている各種金属材質の管体が利用され得るものであるが、特に、外管8を熱伝導率の高い銅又は銅合金からなる材質にて形成することにより、更に、熱交換器2の熱交換性能を向上させることが出来る特徴があり、また第一の内管4及び第二の内管6も、外管8と同様に、銅又は銅合金からなる材質にて形成することが望ましく、そうすることによって、熱交換性能の更なる向上が期待され得ることに加えて、熱交換器2をスクラップ処理する場合においても、その取扱いが容易となる利点がある。   In this heat exchanger 2, as the first and second inner pipes 4, 6 and the outer pipe 8, pipes made of various metal materials conventionally used in heat exchangers can be used. However, in particular, the outer tube 8 is formed of a material made of copper or a copper alloy having a high thermal conductivity, so that the heat exchange performance of the heat exchanger 2 can be further improved. Similarly to the outer tube 8, the inner tube 4 and the second inner tube 6 are preferably formed of a material made of copper or a copper alloy. By doing so, further improvement in heat exchange performance is expected. In addition to obtaining, there is an advantage that the heat exchanger 2 can be handled easily even when the heat exchanger 2 is scrapped.

また、このような構造の熱交換器2を製作する場合において、第一の内管4と第二の内管6との接触部12や第一の内管4と外管8との接触部20、更には、第二の内管6と外管8との接触部22は、何れも、ロウ付け等によって接合されていても差し支えないが、本発明では、それら3本の管体を、合わせ抽伸加工等によって、相互に機械的に圧着せしめる手法が、好適に採用されるのである。因みに、ロウ付けによる場合にあっては、ロウ付け不良による接触面積の不足を招き易く、また性能のバラツキを生じ易く、更にロウ付け不良等による歩留り低下等の問題も懸念されるのであるが、第一の内管4を第二の内管6の凹溝10内に組み付けた状態において、外管8内に収容して、抽伸加工する、合わせ抽伸加工等によって、それら3本の管体(4,6,8)を相互に機械的圧着させる場合には、そのような問題はなく、比較的簡単な加工操作にて、目的とする熱交換器2を有利に製作することが可能となる。   Further, when manufacturing the heat exchanger 2 having such a structure, the contact portion 12 between the first inner tube 4 and the second inner tube 6 or the contact portion between the first inner tube 4 and the outer tube 8. 20, and the contact portion 22 between the second inner tube 6 and the outer tube 8 may be joined by brazing or the like. In the present invention, these three tubes are A technique of mechanically press-bonding each other by a combination drawing process or the like is preferably employed. Incidentally, in the case of brazing, it is likely to cause shortage of the contact area due to brazing failure, and also tends to cause performance variation, and there are concerns about problems such as yield reduction due to brazing failure, In a state in which the first inner pipe 4 is assembled in the concave groove 10 of the second inner pipe 6, the three pipe bodies ( 4, 6, 8) are mechanically pressure-bonded to each other, there is no such problem, and the target heat exchanger 2 can be advantageously manufactured by a relatively simple processing operation. .

ところで、本発明に従う熱交換器は、例示の実施形態に係る具体的な記述によって、何等限定的に解釈されるものでは決してなく、本発明が、当業者の知識に基づいて、種々なる変更、修正、改良等を加えた態様において実施され得るものであり、またそのような実施の態様が、本発明の趣旨を逸脱しない限りにおいて、何れも、本発明の範疇に属するものであることが、理解されるべきである。   By the way, the heat exchanger according to the present invention is not construed as being limited in any way by the specific description according to the exemplary embodiment, and the present invention is not limited to various modifications based on the knowledge of those skilled in the art. It can be implemented in a mode with modifications, improvements, etc., and all such modes are within the scope of the present invention without departing from the spirit of the present invention. Should be understood.

例えば、第一の内管4は、図1に示される如く、管軸に平行な方向に配置せしめられる他、図4に示される如く、管軸方向においてらせん状に、適数本の第一の内管4を配置せしめるようにすることも可能であり、その場合において、そのようならせん状配置となるように、第二の内管6の外周面に設けられる凹溝10も、管軸方向にらせん状に形成せしめられることとなる。   For example, the first inner tube 4 is arranged in a direction parallel to the tube axis as shown in FIG. 1, and an appropriate number of first tubes are spirally formed in the tube axis direction as shown in FIG. It is also possible to dispose the inner tube 4 of the second inner tube 6, and in this case, the concave groove 10 provided on the outer peripheral surface of the second inner tube 6 also has a tube axis. It will be spirally formed in the direction.

また、第一の内管4の配設本数にあっても、目的に応じて、適宜の本数が選定され、例えば、4本の第一の内管4を配設する場合にあっては、図5に示される如く、周方向に約90°の位相差をもって配設してなる構造が、有利に採用されることとなる。   Further, even when the number of the first inner pipes 4 is arranged, an appropriate number is selected according to the purpose. For example, when four first inner pipes 4 are arranged, As shown in FIG. 5, a structure having a phase difference of about 90 ° in the circumferential direction is advantageously employed.

以下に、本発明の代表的な実施例の一つを示し、本発明の特徴を更に明確にすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。   In the following, one of the representative embodiments of the present invention will be shown to clarify the features of the present invention. However, the present invention is not restricted by the description of such embodiments. It goes without saying that it is not a thing.

先ず、図1〜図3に示される構造の、本発明に従う熱交換器を得るべく、外管(8)として、外径:17.2mm、内径:15.8mm、肉厚:0.7mmの、断面が単純な円形の太径の平滑管を準備した。また、第一の内管(4)としては、外径:5.0mm、内径:4mm、肉厚:0.5mmの、断面が単純な円形の細径の平滑管の3本を準備した。更に、第二の内管(6)としては、外径:約22.2mm、肉厚:0.7mmの、断面が単純な円形の太径の平滑管を準備した。なお、それら三種の平滑管の材質は、何れも、りん脱酸銅(JIS−H−330−C1220)とした。   First, in order to obtain the heat exchanger according to the present invention having the structure shown in FIGS. 1 to 3, the outer tube (8) has an outer diameter of 17.2 mm, an inner diameter of 15.8 mm, and a wall thickness of 0.7 mm. A circular thick smooth tube having a simple cross section was prepared. As the first inner tube (4), three smooth circular tubes having an outer diameter of 5.0 mm, an inner diameter of 4 mm, and a thickness of 0.5 mm and having a simple cross section were prepared. Furthermore, as the second inner pipe (6), a circular large-diameter smooth pipe having a simple cross section with an outer diameter of about 22.2 mm and a wall thickness of 0.7 mm was prepared. The three types of smooth tubes were made of phosphorous deoxidized copper (JIS-H-330-C1220).

そして、目的とする熱交換器を得るべく、第二の内管(6)を与える太径の平滑管に対して、予め最終形状に近い形に異形加工を施し、その形成された円弧状の凹溝(10)内に、第一の内管(4)を与える細径の平滑管を挿入して組み付け、更にその組付け管を、外管(8)を与える太径の平滑管内に挿入した後、常法に従って、抽伸縮径加工を施すことにより、目的とする熱交換器(2)を製作した。   And in order to obtain the target heat exchanger, the large-diameter smooth tube that gives the second inner tube (6) is preliminarily processed into a shape close to the final shape, and the formed arc-shaped A small-diameter smooth tube that gives the first inner tube (4) is inserted into the recessed groove (10) and assembled, and the assembled tube is inserted into a large-diameter smooth tube that gives the outer tube (8). After that, the desired heat exchanger (2) was manufactured by subjecting the drawing expansion and contraction diameter processing according to a conventional method.

また、比較のために、外管(8)の存在しない、図6〜図7に示される如き形態の熱交換器(30)を、上記した第一及び第二の内管(4,6)を与える二種類の平滑管を用いて、作製した。   For comparison, the heat exchanger (30) shown in FIGS. 6 to 7 without the outer pipe (8) is replaced with the first and second inner pipes (4, 6) described above. It was produced using two types of smooth tubes that gave

かくして得られた二種の熱交換器(2,30)を用いて、その第二の内管(6,34)内を流通する流体である水の均熱性を評価した。なお、流量等の条件は、以下の通りとした。
熱交換されるべき流体:水
流量 :1L/min、2L/min、
出口温度:65℃
熱交換媒体(冷媒) :炭酸ガス冷媒
流量 :管1本当り2L/min、総流量:6L/min
入口温度:80℃
入口圧力:10MPa
The two heat exchangers (2, 30) thus obtained were used to evaluate the thermal uniformity of water, which is a fluid flowing through the second inner pipe (6, 34). The conditions such as the flow rate were as follows.
Fluid to be heat exchanged: water
Flow rate: 1L / min, 2L / min,
Outlet temperature: 65 ° C
Heat exchange medium (refrigerant): Carbon dioxide refrigerant
Flow rate: 2 L / min per pipe, total flow rate: 6 L / min
Inlet temperature: 80 ° C
Inlet pressure: 10 MPa

そして、それら二つの熱交換器(2,30)の均熱性を評価するために、熱交換器の水出口(冷媒入口)付近の流路内面に、熱電対を貼り付けて、表面温度を測定した。その結果、本発明に従う熱交換器(2)においては、加熱された水の最大温度差が1℃以内となり、効果的に均熱し得ることが確認された。これに対して、外管(8)の設けられていない、従来の熱交換器(30)にあっては、最大温度差が2℃となり、その均熱化が充分でないことが、明らかとなった。   Then, in order to evaluate the thermal uniformity of these two heat exchangers (2, 30), a thermocouple is attached to the inner surface of the flow path near the water outlet (refrigerant inlet) of the heat exchanger, and the surface temperature is measured. did. As a result, in the heat exchanger (2) according to the present invention, it was confirmed that the maximum temperature difference of the heated water was within 1 ° C., and it was possible to effectively soak the heat. On the other hand, in the conventional heat exchanger (30) in which the outer pipe (8) is not provided, it becomes clear that the maximum temperature difference is 2 ° C. and the temperature equalization is not sufficient. It was.

本発明に従う熱交換器の一例を示す一端側断面斜視説明図である。It is an end side cross-section perspective explanatory drawing which shows an example of the heat exchanger according to this invention. 図1に示される熱交換器の横断面を拡大して示す説明図である。It is explanatory drawing which expands and shows the cross section of the heat exchanger shown by FIG. 熱の流れを示す図2の一部拡大部分図である。FIG. 3 is a partially enlarged partial view of FIG. 2 showing a heat flow. 本発明に従う熱交換器の他の一例を示す図1に対応する説明図である。It is explanatory drawing corresponding to FIG. 1 which shows another example of the heat exchanger according to this invention. 本発明に従う熱交換器の更に他の例を示す図2に対応する横断面拡大説明図である。It is a cross-sectional enlarged explanatory view corresponding to FIG. 2 which shows the further another example of the heat exchanger according to this invention. 従来の熱交換器の一例を示す横断面説明図である。It is a cross-sectional explanatory drawing which shows an example of the conventional heat exchanger. 図6に示される熱交換器の熱の流れを示す部分拡大説明図である。It is a partial expansion explanatory view which shows the heat flow of the heat exchanger shown by FIG.

符号の説明Explanation of symbols

2,30 熱交換器 4 第一の内管
6,34 第二の内管 8 外管
10 凹溝 12,20,22 接触部
14,16,18 領域 26 空間
2,30 Heat exchanger 4 First inner pipe 6, 34 Second inner pipe 8 Outer pipe 10 Concave groove 12, 20, 22 Contact portion 14, 16, 18 Area 26 Space

Claims (5)

管内に高温の熱交換媒体が流通せしめられる第一の内管と、該高温の熱交換媒体との間で熱交換されるべき流体が管内に流通せしめられる第二の内管と、それら第一及び第二の内管を管内に収容、保持する外管とから構成される熱交換器にして、
該第一の内管が、その外周面の一部において、前記第二の内管の外周面の一部に対して当接せしめられて熱的接触させられていると共に、更に、該第二の内管の外周面と接触していない部分において、前記外管の内周面に当接せしめられて熱的接触させられている一方、該第二の内管が、その外周面のうち前記第一の内管の外周面と接触していない部分において、前記外管の内周面の前記第一の内管の外周面と接触していない部分に対して当接せしめられて、熱的接触させられていることを特徴とする熱交換器。
A first inner pipe in which a high-temperature heat exchange medium is circulated in the pipe, a second inner pipe in which a fluid to be exchanged with the high-temperature heat exchange medium is circulated in the pipe, and the first And a heat exchanger composed of an outer tube that houses and holds the second inner tube in the tube,
The first inner pipe is brought into contact with a part of the outer peripheral surface of the second inner pipe and brought into thermal contact with a part of the outer peripheral surface of the first inner pipe. In the portion not in contact with the outer peripheral surface of the inner tube, the second inner tube is in contact with the inner peripheral surface of the outer tube and brought into thermal contact, while the second inner tube is in contact with the outer peripheral surface of the outer tube. In the portion that is not in contact with the outer peripheral surface of the first inner tube, the inner peripheral surface of the outer tube is brought into contact with the portion that is not in contact with the outer peripheral surface of the first inner tube, and thermal A heat exchanger characterized by being in contact with each other.
前記第二の内管の外周面に、管軸方向に延びる溝部が、凹陥して形成され、該溝部内に前記第一の内管が密接、収容されている一方、それら第一及び第二の内管に密接するように、前記外管が外嵌めされていることを特徴とする請求項1に記載の熱交換器。   A groove portion extending in the tube axis direction is formed in the outer peripheral surface of the second inner tube so as to be recessed, and the first inner tube is closely accommodated in the groove portion. The heat exchanger according to claim 1, wherein the outer tube is externally fitted so as to be in close contact with the inner tube. 前記第一の内管と前記第二の内管との当接、前記第一の内管と前記外管との当接及び前記第二の内管と前記外管との当接が、それぞれ機械的な圧着によって実現されて、熱的接触が形成されていることを特徴とする請求項1又は請求項2に記載の熱交換器。   The contact between the first inner tube and the second inner tube, the contact between the first inner tube and the outer tube, and the contact between the second inner tube and the outer tube are respectively The heat exchanger according to claim 1 or 2, wherein the heat contact is realized by mechanical crimping. 前記高温の熱交換媒体が炭酸ガスを主体とする冷媒であり、前記熱交換されるべき流体が水であって、且つ給湯機用水熱交換器として用いられることを特徴とする請求項1乃至請求項3の何れか一つに記載の熱交換器。   The high-temperature heat exchange medium is a refrigerant mainly composed of carbon dioxide gas, the fluid to be heat exchanged is water, and is used as a water heat exchanger for a hot water heater. Item 4. The heat exchanger according to any one of Items 3. 前記外管が、銅又は銅合金を材質として構成されていることを特徴とする請求項1乃至請求項4の何れか一つに記載の熱交換器。
The heat exchanger according to any one of claims 1 to 4, wherein the outer tube is made of copper or a copper alloy.
JP2006302793A 2006-11-08 2006-11-08 Heat exchanger Pending JP2008121908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302793A JP2008121908A (en) 2006-11-08 2006-11-08 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006302793A JP2008121908A (en) 2006-11-08 2006-11-08 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2008121908A true JP2008121908A (en) 2008-05-29

Family

ID=39506858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302793A Pending JP2008121908A (en) 2006-11-08 2006-11-08 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2008121908A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180452A (en) * 2008-01-31 2009-08-13 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater
JP2010261614A (en) * 2009-04-30 2010-11-18 Panasonic Corp Heat exchanger and heat pump water heater using the same
KR20110001357A (en) * 2009-06-30 2011-01-06 웅진코웨이주식회사 System for supplying hot water and water purifier having the same
WO2011115883A2 (en) * 2010-03-15 2011-09-22 The Trustees Of Dartmouth College Geometry of heat exchanger with high efficiency
CZ303570B6 (en) * 2011-10-06 2012-12-12 Ehrlich@Jindrich Contact-type heat exchange apparatus
GB2516440A (en) * 2013-07-22 2015-01-28 Richard Keirnan Waste water heat recovery unit
CN106017186A (en) * 2016-07-11 2016-10-12 广东环境保护工程职业学院 Heat exchange tube structure
US11346611B2 (en) 2016-08-16 2022-05-31 Hamilton Sundstrand Corporation Heat exchangers with multiple flow channels

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144430A (en) * 2002-10-25 2004-05-20 Denso Corp Heat exchange pipe and heat exchanger
JP2004218946A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump water heater using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144430A (en) * 2002-10-25 2004-05-20 Denso Corp Heat exchange pipe and heat exchanger
JP2004218946A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump water heater using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180452A (en) * 2008-01-31 2009-08-13 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater
JP2010261614A (en) * 2009-04-30 2010-11-18 Panasonic Corp Heat exchanger and heat pump water heater using the same
KR20110001357A (en) * 2009-06-30 2011-01-06 웅진코웨이주식회사 System for supplying hot water and water purifier having the same
KR101586326B1 (en) * 2009-06-30 2016-01-18 코웨이 주식회사 System for supplying hot water and water purifier having the same
WO2011115883A2 (en) * 2010-03-15 2011-09-22 The Trustees Of Dartmouth College Geometry of heat exchanger with high efficiency
WO2011115883A3 (en) * 2010-03-15 2012-01-12 The Trustees Of Dartmouth College Geometry of heat exchanger with high efficiency
US9134072B2 (en) 2010-03-15 2015-09-15 The Trustees Of Dartmouth College Geometry of heat exchanger with high efficiency
CZ303570B6 (en) * 2011-10-06 2012-12-12 Ehrlich@Jindrich Contact-type heat exchange apparatus
GB2516440A (en) * 2013-07-22 2015-01-28 Richard Keirnan Waste water heat recovery unit
CN106017186A (en) * 2016-07-11 2016-10-12 广东环境保护工程职业学院 Heat exchange tube structure
US11346611B2 (en) 2016-08-16 2022-05-31 Hamilton Sundstrand Corporation Heat exchangers with multiple flow channels

Similar Documents

Publication Publication Date Title
JP2008121908A (en) Heat exchanger
JP4958150B2 (en) Water heat exchanger for water heater
JP2009041880A (en) Water heat exchanger for water heater
JP2002228370A (en) Heat exchanger
JP2006170571A (en) Double multitubular heat exchanger
JP2005133999A (en) Heat pump type hot-water supplier
JP2009180452A (en) Water heat exchanger for water heater
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
JP2008045868A (en) Heat exchanger for water heater, and its manufacturing method
JP2009210232A (en) Heat exchanger
JP2008116112A (en) Heat exchanger
JP2008107013A (en) Heat transfer tube having leakage detecting mechanism and heat exchanger using the same
JP2005201625A (en) Heat exchanger and its manufacturing method
JP2007298266A (en) Water heat exchanger for water heater
JP2004085166A (en) Heat exchanger, its manufacturing method, and bath water heating system and floor heating system using the heat exchanger
JP4713562B2 (en) Heat exchanger and heat pump water heater using the same
JP2008014624A (en) Water heat exchanger for water heater, and manufacturing method therefor
KR100666871B1 (en) A heat exchanger
JP2004340455A (en) Heat exchanger
JP2007271194A (en) Heat exchanger
JP2009024969A (en) Heat exchanger
WO2009125699A1 (en) Heat exchanger and hot-water supply apparatus employing the same
JP2022051011A (en) Heat exchanger and hot water supply machine including the same
JP5533328B2 (en) Heat exchanger
JP2008082600A (en) Water-refrigerant heat exchanger and heat pump hot water supply device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090918

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110622

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110628

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110808

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20111108

Free format text: JAPANESE INTERMEDIATE CODE: A02