JP2008121046A - High hardness and high density cubic crystal boron nitride based sintered compact, and its production method - Google Patents

High hardness and high density cubic crystal boron nitride based sintered compact, and its production method Download PDF

Info

Publication number
JP2008121046A
JP2008121046A JP2006304553A JP2006304553A JP2008121046A JP 2008121046 A JP2008121046 A JP 2008121046A JP 2006304553 A JP2006304553 A JP 2006304553A JP 2006304553 A JP2006304553 A JP 2006304553A JP 2008121046 A JP2008121046 A JP 2008121046A
Authority
JP
Japan
Prior art keywords
boron nitride
powder
based sintered
sintered body
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006304553A
Other languages
Japanese (ja)
Other versions
JP5245081B2 (en
Inventor
Takashi Goto
孝 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Mitsubishi Materials Corp
Original Assignee
Tohoku University NUC
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Mitsubishi Materials Corp filed Critical Tohoku University NUC
Priority to JP2006304553A priority Critical patent/JP5245081B2/en
Publication of JP2008121046A publication Critical patent/JP2008121046A/en
Application granted granted Critical
Publication of JP5245081B2 publication Critical patent/JP5245081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high hardness and high density cubic crystal boron nitride based sintered compact utilized for a cutting tool, a heat sink or the like. <P>SOLUTION: Cubic crystal boron nitride powder with the average particle diameter of 0.5 to 6 μm in 10 to 50 vol.% and β-sialon powder with the average particle diameter of 0.1 to 1 μm in 50 to 90 vol.% are mixed. The mixture is pressurized under the pressure of 80 to 120 MPa. Simultaneously, it is applied with a direct pulse current in a vacuum atmosphere, is heated to the heating temperature range of 1,500 to 1,700°C at a temperature rising rate of 80 to 130°C/min, and is subjected to discharge plasma sintering so as to be heated and held in the above heating temperature range for 1 to 10 min, thus the high hardness and high density cubic crystal boron nitride based sintered compact is obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、切削工具、ヒートシンク等に利用されている立方晶窒化ホウ素系焼結体とその製造方法に関し、特に、簡易な工程で高硬度かつ高密度の立方晶窒化ホウ素系焼結体を得る技術に関する。   The present invention relates to a cubic boron nitride-based sintered body used for a cutting tool, a heat sink, and the like, and a method for manufacturing the same. Regarding technology.

従来、立方晶窒化ホウ素系焼結体は、ダイヤモンドに次ぐ硬度を有し、また、ダイヤモンド同様、非導電性かつ熱伝導性が高いこと等から、その特性を生かし、切削工具あるいはヒートシンク等の分野に利用されてきている。
そして、立方晶窒化ホウ素系焼結体の一般的な製造方法としては、所定粒径の立方晶窒化ホウ素粉末に、窒化チタン(TiN)粉末、TiとAlの金属間化合物粉末、窒化アルミニウム(AlN)粉末、酸化アルミニウム(Al)粉末等を配合し、これを湿式混合した後プレス成形し、超高圧焼結装置により、この成形体に4〜6GPaの圧力を加えた状態で約1500℃の温度に1時間保持し、立方晶窒化ホウ素系焼結体を得ることが知られている。
Conventionally, cubic boron nitride based sintered bodies have hardness next to diamond, and, like diamond, are non-conductive and have high thermal conductivity. Has been used.
As a general method for manufacturing a cubic boron nitride-based sintered body, a titanium nitride (TiN) powder, an intermetallic compound powder of Ti and Al, an aluminum nitride (AlN) is used. ) Powder, aluminum oxide (Al 2 O 3 ) powder, etc. are blended, wet-mixed and then press molded, and about 1500 in a state where a pressure of 4 to 6 GPa is applied to the molded body by an ultrahigh pressure sintering apparatus. It is known that a cubic boron nitride-based sintered body is obtained by holding at a temperature of 1 ° C. for 1 hour.

また、超硬合金、セラミックス等の焼結体を、より低温度かつ短時間の焼結で製造するための技術として、粉体を加圧しつつ高真空中でパルス電流を付加することによって、圧粉体粒子間にパルス状電気エネルギーを直接投入し、放電により発生するプラズマのエネルギーを利用して焼結を行わせる放電プラズマ焼結(Spark Plasma Sintering(略称:SPS))技術も知られている。   In addition, as a technique for manufacturing sintered bodies such as cemented carbide and ceramics at a lower temperature and in a shorter time, a pulse current is applied in a high vacuum while applying pressure to the powder. Also known is a spark plasma sintering (abbreviation: SPS) technique in which pulsed electric energy is directly applied between powder particles, and sintering is performed using the energy of plasma generated by discharge. .

特開平8−40781号公報JP-A-8-40781 特開平11−268956号公報JP-A-11-268756 特開2005−220405号公報JP 2005-220405 A

従来、立方晶窒化ホウ素系焼結体を製造するにあたっては、超高圧焼結装置を用いた高温超高圧条件下で長時間の焼結操作を行う必要があり、大型で高価な超高圧設備が必要となり設備コストが大となるばかりか、焼結体の完成までに長時間を要し生産効率も低いという問題があった。
そこで、本発明は、切削工具、ヒートシンク等に利用される、均質でかつ高硬度・高密度の立方晶窒化ホウ素系焼結体を簡易な製造工程で得ることを目的とするものである。
Conventionally, when producing a cubic boron nitride-based sintered body, it is necessary to perform a sintering operation for a long time under a high temperature and ultra high pressure condition using an ultra high pressure sintering apparatus. Not only is this necessary and the equipment cost is high, but there is also a problem that it takes a long time to complete the sintered body and the production efficiency is low.
Accordingly, an object of the present invention is to obtain a uniform, high hardness, high density cubic boron nitride-based sintered body used for a cutting tool, a heat sink and the like by a simple manufacturing process.

本発明者らは、かかる課題を解決すべく、立方晶窒化ホウ素(以下、「cBN」で示す)系焼結体を製造する際に用いる原料粉末および焼結方法に着目して鋭意研究を行なったところ、
(a)cBN系焼結体を製造する際の結合材成分として、平均粒径0.1〜1μmのβ−サイアロン(例えば、一般式Si6−ZAl8−Zで表されるサイアロンのうちの、Z=3の場合のSiAl。以下、「β−SiAlON」で示す)粉末を用い、平均粒径0.5〜6μmのcBN粉末10〜50体積%に対して上記結合材成分を50〜90体積%配合した原料粉末を用い、放電プラズマ焼結によって焼結することにより、焼結時のcBNの六方晶窒化ホウ素(hBN)への変態、分解・酸化を生じることもなく、高硬度かつ高密度の立方晶窒化ホウ素系焼結体を得られること、
(b)即ち、上記放電プラズマ焼結において、その焼結条件を、
圧力 ;80〜120MPa
雰囲気 ;真空(10Pa以下)
印加電流 ;直流パルス電流
昇温速度 ;80〜130℃/min
加熱温度範囲;1500〜1700℃
加熱保持時間;1〜10分
と定め、上記諸条件に従って放電プラズマ焼結を行った場合、焼結体の温度が約1200〜1400℃に達した時点から急速に焼結体の緻密化が進行すること、
(c)焼結体の温度が加熱温度範囲(1500〜1700℃)に達した時点では、cBN粉末の配合割合が少ない(10〜30体積%)焼結体の場合には、その緻密化は大方完了しており、非常に高密度の焼結体が得られるが、cBN粉末の配合割合が多い(50体積%)焼結体の場合には、1〜10分の加熱保持により、僅かではあるがさらに緻密化が進行した後に高密度の焼結体が得られること、
(d)緻密化の進行が急速に開始する温度(約1200〜1400℃)から、加熱温度範囲の下限近傍の温度(約1500℃)までの間における緻密化の進行速度および得られるcBN系焼結体の密度も、原料粉末におけるcBN粉末と結合材成分粉末(β−SiAlON粉末)の配合割合に依存し、cBN粉末の配合割合が少ない焼結体では、高密度化の進行速度が速く、また、高密度(理論密度の約99%)の焼結体が得られること、
という上記(a)〜(d)の知見を得た。
In order to solve such a problem, the present inventors have conducted intensive research focusing on raw material powder and a sintering method used when manufacturing a cubic boron nitride (hereinafter referred to as “cBN”)-based sintered body. Where
(A) β-sialon having an average particle size of 0.1 to 1 μm (for example, represented by the general formula Si 6-Z Al Z O Z N 8 -Z) as a binder component when producing a cBN-based sintered body that of the sialon, Si 3 Al 3 O 3 N 5 in the case of Z = 3. hereinafter, represented by "beta-siAlON") using powder, cBN powder 10-50 volume average particle diameter 0.5~6μm The raw material powder containing 50 to 90% by volume of the above binder component with respect to% is sintered by spark plasma sintering to transform and decompose cBN into hexagonal boron nitride (hBN) during sintering. -A high hardness and high density cubic boron nitride sintered body can be obtained without oxidation.
(B) That is, in the discharge plasma sintering, the sintering conditions are as follows:
Pressure; 80-120 MPa
Atmosphere: Vacuum (10 Pa or less)
Applied current; DC pulse current heating rate; 80 to 130 ° C./min
Heating temperature range: 1500-1700 ° C
Heat holding time: 1 to 10 minutes, and when discharge plasma sintering is performed according to the above conditions, densification of the sintered body proceeds rapidly from the time when the temperature of the sintered body reaches about 1200 to 1400 ° C. To do,
(C) At the time when the temperature of the sintered body reaches the heating temperature range (1500 to 1700 ° C.), in the case of a sintered body with a small mixing ratio of cBN powder (10 to 30% by volume), the densification is In most cases, a very high-density sintered body is obtained, but in the case of a sintered body with a high blending ratio of cBN powder (50% by volume), it is slightly There is a high-density sintered body after further densification,
(D) Densification progress rate from the temperature at which the progress of densification starts rapidly (about 1200 to 1400 ° C.) to the temperature near the lower limit of the heating temperature range (about 1500 ° C.) and the obtained cBN-based firing The density of the aggregate also depends on the blending ratio of the cBN powder and the binder component powder (β-SiAlON powder) in the raw material powder, and in the sintered body with a small blending ratio of the cBN powder, the progress of densification is fast, In addition, a sintered body having a high density (about 99% of the theoretical density) can be obtained,
The above findings (a) to (d) were obtained.

この発明は、上記知見に基づいてなされたものであって、
「(1)平均粒径0.5〜6μmの立方晶窒化ホウ素(cBN)粉末10〜50体積%と、平均粒径0.1〜1μmのβ−サイアロン(β−SiAlON)粉末50〜90体積%とを混合し、放電プラズマ焼結によって焼結したことを特徴とする高硬度高密度立方晶窒化ホウ素(cBN)系焼結体。
(2)平均粒径0.5〜6μmの立方晶窒化ホウ素粉末10〜50体積%と、平均粒径0.1〜1μmのβ−サイアロン粉末50〜90体積%とを混合して原料粉末を調製し、該原料粉末を焼結型に充填後、該原料粉末を加圧し、真空雰囲気中で1500〜1700℃の加熱温度範囲に加熱することを特徴とする放電プラズマ焼結による高硬度高密度立方晶窒化ホウ素系焼結体の製造方法。
(3)加圧圧力が80〜120MPaであり、1500〜1700℃の加熱温度範囲に加熱する昇温速度が80〜130℃/minであり、1500〜1700℃の加熱温度範囲での加熱保持時間が1〜10分であることを特徴とする前記(2)記載の放電プラズマ焼結による高硬度高密度立方晶窒化ホウ素系焼結体の製造方法。
(4)原料粉末に直流パルス電流を印加して加熱することを特徴とする前記(2)または(3)のいずれかに記載の放電プラズマ焼結による高硬度高密度立方晶窒化ホウ素系焼結体の製造方法。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) Cubic boron nitride (cBN) powder having an average particle size of 0.5 to 6 μm and 10 to 50 vol%, and β-sialon (β-SiAlON) powder having an average particle size of 0.1 to 1 μm and 50 to 90 vol. %, A high hardness high density cubic boron nitride (cBN) -based sintered body characterized by being sintered by spark plasma sintering.
(2) A raw material powder obtained by mixing 10 to 50% by volume of cubic boron nitride powder having an average particle size of 0.5 to 6 μm and 50 to 90% by volume of β-sialon powder having an average particle size of 0.1 to 1 μm. High hardness and high density by discharge plasma sintering, characterized in that after preparing and filling the raw material powder into a sintering mold, pressurizing the raw material powder and heating in a vacuum atmosphere to a heating temperature range of 1500-1700 ° C. A method for producing a cubic boron nitride sintered body.
(3) Pressurization pressure is 80 to 120 MPa, heating rate in the heating temperature range of 1500 to 1700 ° C. is 80 to 130 ° C./min, and heating and holding time in the heating temperature range of 1500 to 1700 ° C. The method for producing a high-hardness high-density cubic boron nitride-based sintered body by discharge plasma sintering according to the above (2), wherein is 1 to 10 minutes.
(4) High hardness high density cubic boron nitride based sintering by discharge plasma sintering according to any one of (2) and (3), wherein the raw material powder is heated by applying a direct current pulse current Body manufacturing method. "
It has the characteristics.

以下に、本発明を、より具体的かつ詳細に説明する。   Hereinafter, the present invention will be described more specifically and in detail.

(1)原料粉末の配合割合
本発明では、均質でかつ高硬度・高密度のcBN系焼結体を得るために、原料粉末中のcBN粉末の配合割合を10〜50体積%と定め、残部(即ち、90〜50体積%)を、焼結体の結合材成分であるβ−SiAlON粉末とした。これは、cBN粉末の配合割合が10体積%未満では、短時間の放電プラズマ焼結で高密度の焼結体は得られるが、得られた焼結体自体の硬度が大幅に低下するため本来のcBN系焼結体の特性を生かすことができず、一方、cBN粉末の配合割合が50体積%を超えると、短時間の放電プラズマ焼結では焼結体の緻密化を図ることができず、高硬度・高密度のcBN系焼結体を得ることができなくなるため、cBN粉末の配合割合を10〜50体積%と定めた。
また、結合材成分であるβ−SiAlON粉末は、高温下での焼結時における緻密化を促進し、また、cBNからhBNへの変態を抑制する作用を有するが、結合材成分の配合割合が90体積%を超えると焼結体の硬度が大きく低下すること、また、結合材成分の配合割合が50体積%未満になると、短時間の放電プラズマ焼結による高密度化が図れなくなることから、上記結合材成分の配合割合を50〜90体積%と定めた。
(1) Mixing ratio of raw material powder In the present invention, in order to obtain a homogeneous, high hardness and high density cBN sintered body, the mixing ratio of the cBN powder in the raw material powder is set to 10 to 50% by volume, and the balance (That is, 90 to 50% by volume) was β-SiAlON powder which is a binder component of the sintered body. This is because if the blending ratio of the cBN powder is less than 10% by volume, a high-density sintered body can be obtained by short-time spark plasma sintering, but the hardness of the obtained sintered body itself is greatly reduced. On the other hand, if the mixing ratio of cBN powder exceeds 50% by volume, the sintered body cannot be densified by short-time discharge plasma sintering. Since it becomes impossible to obtain a cBN-based sintered body with high hardness and high density, the blending ratio of the cBN powder was determined to be 10 to 50% by volume.
In addition, the β-SiAlON powder, which is a binder component, promotes densification during sintering at a high temperature and has an effect of suppressing transformation from cBN to hBN. If it exceeds 90% by volume, the hardness of the sintered body will be greatly reduced, and if the blending ratio of the binder component is less than 50% by volume, it will not be possible to achieve high density by short-time discharge plasma sintering, The blending ratio of the binder component was determined to be 50 to 90% by volume.

(2)粉末粒径
cBN粉末の平均粒径が0.5μm未満では、分散性が悪化し不均一組織になり、また、平均粒径が6μmを超えると、焼結性が著しく低下し高密度化が図れなくなるので、cBN粉末の平均粒径を0.5〜6μmと定めた。
また、結合材成分としてのβ−SiAlON粉末の平均粒径が0.1μm未満である場合、あるいは、平均粒径が1μmを超える場合には、焼結体の緻密化促進効果およびcBNからhBNへの変態抑制作用が低下するので、β−SiAlON粉末の平均粒径を0.1〜1μmと定めた。
(2) Powder particle size When the average particle size of the cBN powder is less than 0.5 μm, the dispersibility is deteriorated and a non-uniform structure is formed. When the average particle size exceeds 6 μm, the sinterability is remarkably lowered and the density is high. Therefore, the average particle size of the cBN powder was determined to be 0.5 to 6 μm.
Further, when the average particle size of the β-SiAlON powder as the binder component is less than 0.1 μm, or when the average particle size exceeds 1 μm, the densification promoting effect of the sintered body and cBN to hBN. Therefore, the average particle size of the β-SiAlON powder was determined to be 0.1 to 1 μm.

(3)放電プラズマ焼結条件
放電プラズマ焼結の諸条件を、
加圧圧力 ;80〜120MPa
雰囲気 ;真空(10Pa以下)
印加電流 ;直流パルス電流
昇温速度 ;80〜130℃/min
加熱温度範囲;1500〜1700℃
加熱保持時間;1〜10分
と定めた技術的な理由は次のとおりである。
i)加圧圧力が80MPa未満では十分な緻密化が図れないが、その効果は120MPa以下で十分であり、それを超えると装置コストが高くなるので、加圧圧力は80〜120MPaであることが望ましい。
ii)雰囲気の真空度は、大気との反応、酸化防止のために10Pa以下とすることが望ましい。
iii)原料粉末を加熱する印加電流を直流パルス電流としたのは、ON―OFFで繰返し電圧・電流を印加することで放電点と局所的高温発生点が移動し、均一に繰り返されることで焼結性がより一層向上するためである。
i v)昇温速度は、80℃/min未満では、cBNからhBNへの変態が生じ始め、また、130℃/minを超えると緻密化が均一に進まず、密度ムラや組成のズレ、クラック等が発生しやすくなるので、昇温速度を80〜130℃/minとすることが望ましい。
v)加熱温度範囲が1500℃未満では焼結体の緻密化が進まず、一方、1700℃を超えるとcBNからhBNへの変態が生じるので、加熱温度範囲は1500〜1700℃と定めた。
vi)加熱保持時間が1分未満では、確実かつ十分な焼結体の緻密化が図れず、また、10分を超えるとcBNからhBNへの変態が生じるので、加熱保持時間は1〜10分とすることが望ましい。
(3) Spark plasma sintering conditions
Pressurized pressure: 80-120 MPa
Atmosphere: Vacuum (10 Pa or less)
Applied current; DC pulse current heating rate; 80 to 130 ° C./min
Heating temperature range: 1500-1700 ° C
The technical reason for setting the heat holding time as 1 to 10 minutes is as follows.
i) Although sufficient densification cannot be achieved if the pressure is less than 80 MPa, the effect is sufficient if it is 120 MPa or less, and if it exceeds that, the device cost increases, so the pressure may be 80 to 120 MPa. desirable.
ii) The degree of vacuum of the atmosphere is desirably 10 Pa or less in order to react with the atmosphere and prevent oxidation.
iii) The applied current for heating the raw material powder was a direct current pulse current because the discharge point and the local high temperature generation point moved by repeatedly applying voltage and current ON-OFF, and the firing was repeated uniformly. This is because the crystallinity is further improved.
iv) When the rate of temperature rise is less than 80 ° C./min, transformation from cBN to hBN begins to occur, and when it exceeds 130 ° C./min, densification does not progress uniformly and density unevenness, compositional deviation, cracks, etc. Is more likely to occur, so it is desirable that the rate of temperature rise be 80 to 130 ° C./min.
v) When the heating temperature range is less than 1500 ° C, densification of the sintered body does not proceed. On the other hand, when the heating temperature range exceeds 1700 ° C, transformation from cBN to hBN occurs, so the heating temperature range was set to 1500-1700 ° C.
vi) If the heating and holding time is less than 1 minute, the sintered body cannot be surely and sufficiently densified, and if it exceeds 10 minutes, transformation from cBN to hBN occurs, so the heating and holding time is 1 to 10 minutes. Is desirable.

この発明の高硬度高密度立方晶窒化ホウ素(cBN)系焼結体の製造方法によれば、平均粒径0.5〜6μmのcBN粉末10〜50体積%に対して、平均粒径0.1〜1μmのβ−SiAlON粉末からなる結合材成分を50〜90体積%配合した原料粉末を、短時間の放電プラズマ焼結によって焼結することにより、六方晶窒化ホウ素(hBN)の生成、分解・酸化を生じることがなく均質な、かつ、高硬度・高密度の立方晶窒化ホウ素(cBN)系焼結体を得ることができるので、高品質のcBN系焼結体を簡易な工程で製造できることに加え、設備コストの低減、生産性の向上も図られ、実用上の効果は非常に大きい。   According to the method for producing a high-hardness high-density cubic boron nitride (cBN) -based sintered body of the present invention, an average particle size of 0.1 to 10% by volume of cBN powder having an average particle size of 0.5 to 6 μm. Production and decomposition of hexagonal boron nitride (hBN) by sintering raw material powder containing 50 to 90% by volume of binder component composed of 1-1 μm β-SiAlON powder by short-time discharge plasma sintering・ Uniform, high hardness and high density cubic boron nitride (cBN) -based sintered bodies can be obtained without oxidation, and high-quality cBN-based sintered bodies can be manufactured in a simple process. In addition to being able to do so, the equipment cost can be reduced and the productivity can be improved.

表1に、本発明の実施例で使用した各種のcBN粉末、β−SiAlON粉末の平均粒径を示す。
なお、本実施例では、β−SiAlON粉末として、SiAl粉末を使用した。
Table 1 shows average particle sizes of various cBN powders and β-SiAlON powders used in the examples of the present invention.
In this example, Si 3 Al 3 O 3 N 5 powder was used as the β-SiAlON powder.

表1に示される各種のcBN粉末およびβ−SiAlON粉末を、表2に示される組み合わせおよび配合割合で配合し、ボールミルによる湿式混合を行い、その後乾燥して、原料粉末を調製した。
原料粉末を放電プラズマ焼結装置のグラファイト製焼結型に充填し、表3に示される、加圧、真空加熱条件で放電プラズマ焼結を行い、直径20(mm)×厚さ2(mm)のサイズの本発明cBN系焼結体1〜9を製造した。
本発明cBN系焼結体1〜9のいずれについても、焼結に要した時間(昇温開始時から加熱保持終了時までの時間)は、30分以下であった。
得られた本発明cBN系焼結体1〜9の硬度、密度(理論密度に対する%で表示)を表4に示し、また、各焼結体について、X線回折および焼結体研磨面のSEM像から、hBNの存在および気孔の有無を調査し、その結果を同じく表4に示す。
さらに、放電プラズマ焼結時の焼結温度と焼結体の厚み方向の収縮量との関連を調査したので、本発明cBN系焼結体4、5、6についての結果を、図1に示す。また、1650℃で1〜10分間保持した場合の、焼結体の厚み方向の収縮量の変化についても図1に示す。
なお、cBN粉末を全く配合していない100%β−SiAlON粉末の焼結温度、保持時間と収縮挙動との関係についても、参考のため図1に併記した。
Various cBN powders and β-SiAlON powders shown in Table 1 were blended in the combinations and blending ratios shown in Table 2, wet-mixed by a ball mill, and then dried to prepare raw material powders.
The raw material powder is filled in a graphite sintering mold of a discharge plasma sintering apparatus, and discharge plasma sintering is performed under the pressure and vacuum heating conditions shown in Table 3, and the diameter is 20 (mm) × thickness is 2 (mm). The present invention cBN-based sintered bodies 1 to 9 having a size of 1 to 9 were produced.
For any of the cBN-based sintered bodies 1 to 9 of the present invention, the time required for sintering (the time from the start of temperature increase to the end of heating and holding) was 30 minutes or less.
The hardness and density (expressed in% relative to the theoretical density) of the obtained cBN-based sintered bodies 1 to 9 of the present invention are shown in Table 4, and for each sintered body, X-ray diffraction and SEM of the sintered body polished surface are shown. From the image, the presence of hBN and the presence or absence of pores were investigated, and the results are also shown in Table 4.
Furthermore, since the relationship between the sintering temperature at the time of spark plasma sintering and the shrinkage amount in the thickness direction of the sintered body was investigated, the results for the cBN-based sintered bodies 4, 5, and 6 of the present invention are shown in FIG. . Further, FIG. 1 also shows changes in the amount of shrinkage in the thickness direction of the sintered body when held at 1650 ° C. for 1 to 10 minutes.
The relationship between the sintering temperature, holding time and shrinkage behavior of 100% β-SiAlON powder containing no cBN powder is also shown in FIG. 1 for reference.

比較例Comparative example

比較のために、平均粒径3μmのcBN粉末50体積%に対して、平均粒径0.5〜2μmのTiN粉末、TiAl粉末、Al粉末を結合材成分として50体積%を配合し、これをボールミルによる湿式混合を行い、その後乾燥して、従来の超高圧焼結装置に装入し、4.5GPaの圧力を加えた状態で昇温速度40℃/minで1400℃の温度に加熱し、この温度に10分保持することにより、従来法による比較cBN系焼結体を製造した。
従来法における昇温開始時から加熱保持終了時までの時間は、45分を必要とし、上記本発明実施例に比べて、ほぼ2倍の時間を要したことになる。
比較cBN系焼結体1の硬度、密度、hBNの存在および気孔の有無についての調査結果を表4に示す。
For comparison, 50% by volume of cBN powder having an average particle size of 3 μm is combined with 50% by volume of TiN powder, TiAl 3 powder, and Al 2 O 3 powder having an average particle size of 0.5 to 2 μm as a binder component. Then, this was wet-mixed by a ball mill, then dried, charged into a conventional ultra-high pressure sintering apparatus, and a temperature of 1400 ° C. at a heating rate of 40 ° C./min with a pressure of 4.5 GPa applied. And kept at this temperature for 10 minutes to produce a comparative cBN-based sintered body by a conventional method.
The time from the start of temperature increase to the end of heating and holding in the conventional method requires 45 minutes, which is approximately twice as long as that of the above-described embodiment of the present invention.
Table 4 shows the results of investigations on the hardness, density, presence of hBN, and presence or absence of pores of the comparative cBN-based sintered body 1.

Figure 2008121046
Figure 2008121046

Figure 2008121046
Figure 2008121046

Figure 2008121046
Figure 2008121046

Figure 2008121046
Figure 2008121046

表4に示される焼結体の特性等から明らかなように、本発明cBN系焼結体1〜9は、硬度および密度ともに高く、機械的な特性にすぐれ、また、焼結体組織中にhBN(六方晶窒化ホウ素)及び気孔は存在しておらず、均質かつ健全な組織を有しているのに対して、比較cBN系焼結体では、その硬度、密度ともに低く、気孔も多数存在しており、本発明cBN系焼結体1〜9が、比較cBN系焼結体に較べて、高硬度高密度の高品質なcBN系焼結体であることは明らかである。
さらに、本発明の製造方法によれば、放電プラズマ焼結という簡易な方法により短時間で高品質のcBN系焼結体を得ることができるので、設備コストの低減、生産性の向上も図られ、実用上の効果はきわめて大きいものである。
As is apparent from the characteristics of the sintered body shown in Table 4, the cBN-based sintered bodies 1 to 9 of the present invention are high in both hardness and density, excellent in mechanical characteristics, and in the structure of the sintered body. HBN (hexagonal boron nitride) and pores do not exist, and it has a homogeneous and healthy structure, whereas the comparative cBN-based sintered body has low hardness and density, and there are many pores. Therefore, it is clear that the cBN-based sintered bodies 1 to 9 of the present invention are high-quality cBN-based sintered bodies having high hardness and high density as compared with the comparative cBN-based sintered bodies.
Furthermore, according to the manufacturing method of the present invention, a high-quality cBN-based sintered body can be obtained in a short time by a simple method called discharge plasma sintering, so that equipment costs can be reduced and productivity can be improved. The practical effect is extremely large.

本発明cBN系焼結体4、5、6についての、焼結温度、加熱保持時間と、焼結体の厚み方向の収縮量との関連を示す。The relation between the sintering temperature and the heating and holding time and the amount of shrinkage in the thickness direction of the sintered body is shown for the cBN-based sintered bodies 4, 5 and 6 of the present invention.

Claims (4)

平均粒径0.5〜6μmの立方晶窒化ホウ素粉末10〜50体積%と、平均粒径0.1〜1μmのβ−サイアロン粉末50〜90体積%とを混合し、放電プラズマ焼結によって焼結したことを特徴とする高硬度高密度立方晶窒化ホウ素系焼結体。   10 to 50% by volume of cubic boron nitride powder having an average particle size of 0.5 to 6 μm and 50 to 90% by volume of β-sialon powder having an average particle size of 0.1 to 1 μm are mixed and sintered by spark plasma sintering. A high-hardness high-density cubic boron nitride-based sintered body characterized by being bonded. 平均粒径0.5〜6μmの立方晶窒化ホウ素粉末10〜50体積%と、平均粒径0.1〜1μmのβ−サイアロン粉末50〜90体積%とを混合して原料粉末を調製し、該原料粉末を焼結型に充填後、該原料粉末を加圧し、真空雰囲気中で1500〜1700℃の加熱温度範囲に加熱することを特徴とする放電プラズマ焼結による高硬度高密度立方晶窒化ホウ素系焼結体の製造方法。   A raw material powder is prepared by mixing 10 to 50% by volume of cubic boron nitride powder having an average particle size of 0.5 to 6 μm and 50 to 90% by volume of β-sialon powder having an average particle size of 0.1 to 1 μm, After filling the raw material powder into a sintering mold, pressurize the raw material powder and heat in a vacuum atmosphere to a heating temperature range of 1500 to 1700 ° C. High hardness and high density cubic nitriding by discharge plasma sintering A method for producing a boron-based sintered body. 加圧圧力が80〜120MPaであり、1500〜1700℃の加熱温度範囲に加熱する昇温速度が80〜130℃/minであり、1500〜1700℃の加熱温度範囲での加熱保持時間が1〜10分であることを特徴とする請求項2記載の放電プラズマ焼結による高硬度高密度立方晶窒化ホウ素系焼結体の製造方法。   The pressurizing pressure is 80 to 120 MPa, the heating rate for heating to a heating temperature range of 1500 to 1700 ° C. is 80 to 130 ° C./min, and the heating holding time in the heating temperature range of 1500 to 1700 ° C. is 1 to 1. The method for producing a high-hardness high-density cubic boron nitride-based sintered body by spark plasma sintering according to claim 2, wherein the time is 10 minutes. 原料粉末に直流パルス電流を印加して加熱することを特徴とする請求項2または3のいずれか一項に記載の放電プラズマ焼結による高硬度高密度立方晶窒化ホウ素系焼結体の製造方法。   The method for producing a high-hardness high-density cubic boron nitride-based sintered body by spark plasma sintering according to any one of claims 2 and 3, wherein the raw material powder is heated by applying a direct current pulse current. .
JP2006304553A 2006-11-09 2006-11-09 High hardness high density cubic boron nitride sintered body and method for producing the same Active JP5245081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006304553A JP5245081B2 (en) 2006-11-09 2006-11-09 High hardness high density cubic boron nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006304553A JP5245081B2 (en) 2006-11-09 2006-11-09 High hardness high density cubic boron nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008121046A true JP2008121046A (en) 2008-05-29
JP5245081B2 JP5245081B2 (en) 2013-07-24

Family

ID=39506128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006304553A Active JP5245081B2 (en) 2006-11-09 2006-11-09 High hardness high density cubic boron nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5245081B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10167234B2 (en) 2016-12-06 2019-01-01 King Fahd University Of Petroleum And Minerals Method of making an alumina-silicate oxynitride and cubic boron nitride ceramic composite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177361A (en) * 1989-12-05 1991-08-01 Ube Ind Ltd Production of beta-sialon-boron nitride-based conjugate sintered compact
JPH05301776A (en) * 1992-04-28 1993-11-16 Kyocera Corp Cubic boron nitride-based sintered compact
JP2001348290A (en) * 2000-06-02 2001-12-18 Kyocera Corp Coated composite sintered compact

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177361A (en) * 1989-12-05 1991-08-01 Ube Ind Ltd Production of beta-sialon-boron nitride-based conjugate sintered compact
JPH05301776A (en) * 1992-04-28 1993-11-16 Kyocera Corp Cubic boron nitride-based sintered compact
JP2001348290A (en) * 2000-06-02 2001-12-18 Kyocera Corp Coated composite sintered compact

Also Published As

Publication number Publication date
JP5245081B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP6822362B2 (en) Manufacturing method of silicon nitride substrate and silicon nitride substrate
JP4997431B2 (en) Method for producing high thermal conductivity silicon nitride substrate
JP6344844B2 (en) Boron carbide / titanium boride composite ceramics and method for producing the same
JP5836522B2 (en) Method for manufacturing silicon nitride substrate
JP5444384B2 (en) High thermal conductivity aluminum nitride sintered body
JP2014208567A (en) Dense composite material, production method therefor, joined body, and member for semiconductor-manufacturing equipment
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
CN106904977B (en) Preparation of surface hard and core tough Si by two-step sintering method3N4Method for producing ceramic material
WO2012153645A1 (en) METHOD FOR PRODUCING HIGH-STRENGTH HIGH-TOUGHNESS ZrO2-Al2O3-BASED SOLID SOLUTION CERAMIC
JP7062230B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP5406565B2 (en) Aluminum oxide sintered body, manufacturing method thereof, and semiconductor manufacturing apparatus member
KR102124766B1 (en) Plasma processing apparatus and manufacturing method of the same
JP2012500768A (en) Method for manufacturing ceramic parts
JP4804046B2 (en) Aluminum nitride ceramics, semiconductor manufacturing member, and aluminum nitride ceramic manufacturing method
WO2015019992A1 (en) Boron carbide ceramic, and a production method therefor
JPWO2013008697A1 (en) AlN substrate and manufacturing method thereof
JP2015224158A (en) Diamond composite sintered body and manufacturing method therefor
CN108892528B (en) Porous silicon nitride ceramic material and preparation method thereof
JP5245081B2 (en) High hardness high density cubic boron nitride sintered body and method for producing the same
CN114787105B (en) Plate-like silicon nitride sintered body and method for producing same
JPH07172921A (en) Aluminum nitride sintered material and its production
WO2020202878A1 (en) Zirconium boride/boron carbide composite and method for manufacturing same
JP3998252B2 (en) Method for producing aluminum nitride sintered body
CN112830792A (en) High-hardness hafnium-based ternary solid solution boride ceramic and preparation method and application thereof
JP4301617B2 (en) Method for manufacturing aluminum nitride sintered body for DBC circuit board and method for manufacturing DBC circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130314

R150 Certificate of patent or registration of utility model

Ref document number: 5245081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250