JP2008119677A - Water treatment system - Google Patents

Water treatment system Download PDF

Info

Publication number
JP2008119677A
JP2008119677A JP2007078962A JP2007078962A JP2008119677A JP 2008119677 A JP2008119677 A JP 2008119677A JP 2007078962 A JP2007078962 A JP 2007078962A JP 2007078962 A JP2007078962 A JP 2007078962A JP 2008119677 A JP2008119677 A JP 2008119677A
Authority
JP
Japan
Prior art keywords
gas
liquid
tank
pump
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007078962A
Other languages
Japanese (ja)
Other versions
JP4018130B1 (en
Inventor
Tetsushi Kikuchi
哲志 菊池
Kazutoshi Mitake
一利 三武
Sukenori Koshino
祐規 古志野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOFLO CORP KK
Toflo Corp
Original Assignee
TOFLO CORP KK
Toflo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOFLO CORP KK, Toflo Corp filed Critical TOFLO CORP KK
Priority to JP2007078962A priority Critical patent/JP4018130B1/en
Application granted granted Critical
Publication of JP4018130B1 publication Critical patent/JP4018130B1/en
Publication of JP2008119677A publication Critical patent/JP2008119677A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment system which can efficiently mix a liquid other than fresh water, such as slurry liquid, a natural hydrosphere, and a liquid of waste water, in the whole system to increase the dissolved oxygen concentration in a tank and a target water area. <P>SOLUTION: In the water treatment system S1, a gas is mixed into liquid in a tank through an ejector device 7 at the upstream of the suction side 8A of a pump 8 sucking, pressurizing and discharging the liquid. The gas and liquid are agitated by a mixer device 9, and then sent to a gas-liquid mixer 10A. In a gas-liquid mixer 10C, the tip end of a fluid introduction pipe 25 is opened in the vicinity of the inner bottom of a closed container 24 as a fluid introduction port 28. Thereby the gas and liquid introduced into the closed container through the fluid introduction port are diffused in the form of a fan-like thin layer in the right and left direction to form a high-speed vortex flow. The high-speed vortex flow efficiently mixes the gas and liquid to increase the dissolved oxygen concentration in the liquid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気等の気体と液体を混合し、槽内の溶存酸素濃度を高める水処理システムに関し、特に、スラリー液や自然水界、廃水の液体等、清水以外の液体でも、システム全体で効率よく気液を混合し、槽内の溶存酸素濃度を高めることができるようにしたものである。   The present invention relates to a water treatment system that mixes a gas such as air and a liquid to increase the dissolved oxygen concentration in the tank, and in particular, a liquid other than fresh water, such as slurry liquid, natural water, waste water liquid, etc. The gas-liquid can be mixed efficiently and the dissolved oxygen concentration in the tank can be increased.

従来、この種の水処理システムとしては、例えば、渦流ポンプ内に気体と液体を吸引して気液を混合する方式が知られている(例えば、特許文献1、2参照)。しかしながら、この方式によると、回転する羽根車とこれを収容する容器との隙間を極力狭めて気液中の気体を破断し撹拌するため、少なくとも羽根車とその回転支持機構が必要となり、機器構成が複雑であり、また、羽根車を回転させるための動力も必要である。さらに、この方式では、上記のような極狭い隙間に液中の混在物が挟まれ、羽根車がロックし回転できなくなったり、混在物による羽根車やその回転支持機構の磨耗等が生じたりするため、気液混合の処理対象となる液体は主に混在物の無い清水に限られ、スラリー液や自然水界、廃水等の液体を処理する水処理システムとして採用することはできない。   Conventionally, as this type of water treatment system, for example, a system in which gas and liquid are mixed by sucking gas and liquid into an eddy current pump is known (for example, see Patent Documents 1 and 2). However, according to this method, at least the impeller and its rotation support mechanism are required to break and stir the gas in the gas and liquid by narrowing the gap between the rotating impeller and the container that accommodates it as much as possible. Is complicated, and power for rotating the impeller is also necessary. Furthermore, in this method, the mixture in the liquid is sandwiched in the extremely narrow gap as described above, and the impeller is locked and cannot rotate, or the impeller and its rotation support mechanism are worn by the mixture. For this reason, the liquid to be treated for gas-liquid mixing is mainly limited to fresh water without inclusions, and cannot be employed as a water treatment system for treating liquids such as slurry liquids, natural water bodies, and wastewater.

また、特許文献1では、この種の水処理システムとして、渦流ポンプの吸込み側に気体を直接送り込む方式を開示している。しかしながら、その渦流ポンプに代えて、例えば現在最も一般的に多く使用されている非容積式タイプの遠心ポンプ(渦巻ポンプ)を用いると、遠心ポンプ内に多量の気体が吸込まれることによる遠心ポンプ特有の問題、すなわちポンプの空転や吐出量の減少等が生じる。このため、システム全体としての気液の混合効率を低下させるといった問題が生じる。   Patent Document 1 discloses a method for directly feeding gas to the suction side of a vortex pump as this type of water treatment system. However, instead of the vortex pump, for example, when a non-volumetric type centrifugal pump (vortex pump) that is most commonly used at present is used, a centrifugal pump in which a large amount of gas is sucked into the centrifugal pump A specific problem occurs, that is, idling of the pump, reduction of the discharge amount, and the like. For this reason, the problem that the mixing efficiency of the gas-liquid as the whole system falls arises.

特許文献3には、この種の水処理システムとして、長楕円球体状の器体(21)の周囲壁に気液導入孔(22a)を形成し、気液導入孔(22a)から器体(21)内に向けて混気水を導入することにより、器体(21)内で混気水を旋回させて気液を混合する方式が記載されている(同文献3の段落0017参照)。しかしながら、この方式によると、器体(21)内に導入された混気水の乱流渦の形成は本発明のような薄層拡散による高速流の形成とは異なる。   In Patent Document 3, as this type of water treatment system, a gas-liquid introduction hole (22a) is formed in the peripheral wall of an elliptical spherical body (21), and the container (from the gas-liquid introduction hole (22a) ( 21) A method is described in which air / water is mixed in the container (21) by introducing the air / fuel mixture into the body (21) (see paragraph 0017 of the document 3). However, according to this method, the formation of the turbulent vortex of the mixed water introduced into the vessel (21) is different from the formation of the high-speed flow by thin layer diffusion as in the present invention.

その他、この種の水処理システムとしては、圧力流体を小孔から開放し急激に減圧して噴射する方式、ノズルから壁に向って圧力流体を噴射し壁に衝突させる方式、対向するノズルから流体を噴射して流体どうしを対向衝突させる方式も知られている。しかし、これらの方式でスラリー液や自然水界、廃水等の液体を処理すると、その液中の混在物が小孔やノズルに詰まってしまうため、この方式もまた処理できる液体は主に清水に限られ、スラリー液や自然水界、廃水等の液体を処理する水処理システムとして採用することはできない。   In addition, this type of water treatment system includes a method in which pressure fluid is released from a small hole and rapidly decompressed and ejected, a method in which pressure fluid is ejected from a nozzle toward a wall and collided with the wall, and a fluid from an opposing nozzle There is also known a method in which fluids are caused to collide with each other by jetting the fluid. However, when liquids such as slurry liquid, natural water, and wastewater are processed by these methods, the mixed substances in the liquid are clogged in small holes and nozzles. It is limited and cannot be employed as a water treatment system for treating liquids such as slurry liquids, natural water bodies and wastewater.

特開2000−161278号公報JP 2000-161278 A

特開2002−273183号公報JP 2002-273183 A

特開2003−102324号公報JP 2003-102324 A

本発明は、上記問題点を解決するためになされたもので、その目的とするところは、主にスラリー液や自然水界(陸水、海水、汽水)、人工水界(ダム等の貯水池、水産動物の飼育・養殖水域、風呂等)、家庭雑排水、工場廃水の液体等、清水以外の液体でも、システム全体で効率よく気液を混合し、槽および対象水域の溶存酸素濃度を高めることを可能とした水処理システムを提供することにある。   The present invention has been made to solve the above-described problems, and the object of the present invention is mainly slurry liquid, natural water (land water, sea water, brackish water), artificial water (reservoirs such as dams, Aquatic animals breeding / aquaculture areas, baths, etc.), household miscellaneous wastewater, liquids other than fresh water, such as liquids from factory wastewater, to efficiently mix gas-liquid throughout the system and increase the dissolved oxygen concentration in the tank and the target water area It is to provide a water treatment system that makes it possible.

上記目的を達成するために、第1の本発明に係る水処理システムは、槽内の液体を吸込み加圧して吐出するポンプと、上記ポンプの吸込み側前段で上記液体中に気体を混入するエジェクタ装置と、上記ポンプから吐出された気液を撹拌するミキサ装置と、上記槽内に配置されるとともに、上記ミキサ装置で撹拌された気液を渦流により混合し減圧して前記槽内へ吐出する気液混合装置とを備えた水処理システムであって、上記気液混合装置は、円筒形の密閉容器と、上記密閉容器内に気液を導入する流体導入管と、上記密閉容器内から気液を吐出させる流体吐出口とを具備し、上記流体導入管は、上記密閉容器の内外周壁を貫通して該密閉容器内に入り込み、この入り込んだ流体導入管の先端部が、流体導入口として、上記密閉容器の内底面に近接して開口するように設けられていることを特徴とするものである。   In order to achieve the above object, a water treatment system according to a first aspect of the present invention includes a pump that sucks and pressurizes liquid in a tank, and an ejector that mixes gas in the liquid at a stage upstream of the suction side of the pump. An apparatus, a mixer device for stirring the gas and liquid discharged from the pump, and the gas and liquid stirred by the mixer device are mixed by vortex and decompressed and discharged into the tank. A water treatment system comprising a gas-liquid mixing device, wherein the gas-liquid mixing device includes a cylindrical sealed container, a fluid introduction pipe for introducing gas-liquid into the sealed container, and a gas from the sealed container. A fluid discharge port for discharging liquid, and the fluid introduction pipe penetrates the inner and outer peripheral walls of the sealed container and enters the sealed container, and a tip portion of the entered fluid introduction pipe serves as a fluid introduction port. , The inner bottom surface of the sealed container Close to is characterized in that is provided so as to open.

上記第1の本発明に係る水処理システムでは、ポンプ、ミキサ装置、気液混合装置の3段で気液の加圧、撹拌、混合がなされる。また、この水処理システムで採用した上記気液混合装置は、流体導入口を介して密閉容器内に導入された気液が、密閉容器の内面に沿って左右へ扇状に薄層拡散し、密閉容器内に高速渦流を形成し、この高速渦流によって効率よく気液を混合する。   In the water treatment system according to the first aspect of the present invention, gas-liquid pressurization, stirring, and mixing are performed in three stages of a pump, a mixer device, and a gas-liquid mixing device. In addition, the gas-liquid mixing device employed in this water treatment system is such that the gas-liquid introduced into the sealed container through the fluid inlet port is diffused into a fan-like layer from side to side along the inner surface of the sealed container. A high-speed vortex is formed in the container, and gas and liquid are efficiently mixed by this high-speed vortex.

上記第1の本発明に係る水処理システムにおいて、上記流体吐出口は、その中央に設けた吸込孔と、この吸込孔の周囲に設けた複数の噴出孔とを有するノズル構造からなるものとしてよい。   In the water treatment system according to the first aspect of the present invention, the fluid discharge port may have a nozzle structure having a suction hole provided in the center thereof and a plurality of ejection holes provided around the suction hole. .

上記ノズル構造によると、中央の吸込孔を通じて密閉容器内から外部に延びる気体柱を伴った引き込み渦が形成され、この気体柱を通じて密閉容器外の気体が密閉容器内へ入り易くなり、その結果、周囲の噴出孔から密閉容器内の気液が排出し易くなり、気液の排出効率が向上する。また、吸込孔と噴出孔とを介して行われる気液の吐出と吸込みの動作により、それらの孔の近くにおいて複雑な乱流が生じ、このような乱流によって気液の混合がより一層促進され、液中の溶存酸素量を増加させることができるという作用効果も得られる。   According to the nozzle structure, a drawing vortex with a gas column extending from the inside of the sealed container through the central suction hole is formed, and the gas outside the sealed container can easily enter the sealed container through the gas column. Gas-liquid in the sealed container can be easily discharged from the surrounding ejection holes, and the gas-liquid discharge efficiency is improved. In addition, the gas-liquid discharge and suction operations performed through the suction holes and the jet holes cause complex turbulent flow near these holes, and this turbulence further promotes the mixing of gas and liquid. In addition, an effect that the amount of dissolved oxygen in the liquid can be increased is also obtained.

上記ノズル構造において、吸込孔と噴出孔の口径は比較的大きく、それらの孔に液中の混在物が詰まることはない。但し、自然水界、廃水等の液中に存在する水以外の混在物のうち、落ち葉やその他の廃水に混入した大きな異物の類は少なくとも本気液混合装置への導入前に市販の金網などで除去しておくことが望ましい。市販の金網などを通過する砂粒は例えば長径5mm以下程度のものであれば容易に吸込孔や噴出孔を通過でき、比較的大口径の吸込孔と噴出孔を用いて前述のように効率的に気液の排出が行われるようにするとよい。   In the nozzle structure described above, the diameters of the suction holes and the ejection holes are relatively large, and the mixed substances in the liquid are not clogged in these holes. However, among the mixed substances other than water existing in the liquid such as natural waters and wastewater, large foreign matters mixed in fallen leaves and other wastewater should be at least put on a commercially available wire net before introduction into the gas-liquid mixing device. It is desirable to remove it. For example, sand grains passing through a commercially available wire mesh can easily pass through suction holes and ejection holes as long as the diameter is about 5 mm or less, and can be efficiently used as described above by using suction holes and ejection holes having relatively large diameters. It is advisable to discharge gas and liquid.

上記ノズル構造において、中央の吸込孔の口径は、その周囲に開けた噴出孔の口径より大きく設けるとよい。このように構成すれば、噴出孔から排出された気液の一部を吸込孔が吸い込む際に、噴出孔から排出された混在物を吸い込んだとしても、吸込孔の目詰まりは生じない。   In the nozzle structure described above, the diameter of the central suction hole may be larger than the diameter of the ejection hole formed in the periphery thereof. If comprised in this way, even if it sucks in the mixture discharged | emitted from the ejection hole when a suction hole inhales a part of gas-liquid discharged | emitted from the ejection hole, clogging of a suction hole will not arise.

また、上記ノズル構造を採用した構成においては、更に、上記流体吐出口の流体吐出側に吐出筒が取り付けられる構成を採用してもよい。   Moreover, in the structure which employ | adopted the said nozzle structure, you may employ | adopt the structure by which a discharge cylinder is attached to the fluid discharge side of the said fluid discharge port further.

上記のような吐出筒を取り付けた構成によると、吸込孔から吸込まれるのは噴出孔から排出された気液で、吐出筒の出口付近は噴出孔から排出された気液で占有されることから、吸込孔の目詰まりが生じなくなるという作用効果が得られる。もし仮に、この吐出筒を排除すると、噴出孔から排出された気液以外の液体も吸込孔が吸い込んでしまうおそれがあり、大型の液中混在物が吸込孔に詰まる可能性があるため、上記のように流体吐出口の流体吐出側には吐出筒を取り付けるのが好ましい。   According to the configuration with the discharge cylinder as described above, the gas and liquid discharged from the ejection holes are sucked from the suction holes, and the vicinity of the outlet of the discharge cylinder is occupied by the gas and liquid discharged from the ejection holes. Therefore, the effect that the suction holes are not clogged is obtained. If this discharge cylinder is excluded, there is a possibility that liquid other than gas and liquid discharged from the ejection hole may be sucked into the suction hole, and there is a possibility that a large liquid mixture may clog the suction hole. Thus, it is preferable to attach a discharge cylinder to the fluid discharge side of the fluid discharge port.

さらに、上記吐出筒を採用した構成においては、更に、上記吐出筒の外側から上記流体吐出口の流体吐出側陰圧部に連通する気体導入管を備える構成を採用してもよい。   Furthermore, in the structure which employ | adopted the said discharge cylinder, you may employ | adopt the structure further provided with the gas introduction pipe | tube connected from the outer side of the said discharge cylinder to the fluid discharge side negative pressure part of the said fluid discharge port.

上記のような気体導入管を備える構成によると、流体吐出口の出入口付近では、吸込孔と噴出孔とを介して行われる気液の吐出と吸込み動作に、さらに気体導入管を介する気体の吸込み動作が加わって、より一層複雑な乱流が発生し、気液の混合が更に促進され、流体中の溶存酸素量の更なる増加を図れる。   According to the configuration including the gas introduction pipe as described above, in the vicinity of the inlet / outlet of the fluid discharge port, the gas suction and the suction operation performed through the suction hole and the ejection hole are further performed, and the gas suction through the gas introduction pipe is performed. When the operation is added, a more complicated turbulent flow is generated, gas-liquid mixing is further promoted, and the amount of dissolved oxygen in the fluid can be further increased.

上記目的を達成するために、第2の本発明に係る水処理システムは、槽内の液体を吸込み加圧して吐出するポンプと、上記ポンプの吐出側分流部又は吸込み口前段で上記液体中に気体を混入するエジェクタ装置と、上記ポンプから吐出された気液を撹拌するミキサ装置と、上記槽内に配置されるとともに、上記ミキサ装置で撹拌された気液を渦流により混合し減圧して前記槽内へ吐出する気液混合装置とを備えた水処理システムであって、上記気液混合装置は、直列に接続された2段の回転流形成部と、上記前段の回転流形成部へ気液を導入する流体導入路とを備え、上記前段の回転流形成部は、底面に円錐状突起を有する円環状の気液混合室と、上記流体導入路の下流端に一端を開口し、他端を上記円錐状突起の底部周囲に開口した左右のノズル流路とを有し、左右のノズル流路を介して上記円錐状突起の左右両側に気液を噴射することにより、上記円錐状突起を中心として上記気液混合室内で気液を回転させ、その回転流によって気液を混合し、上記後段の回転流形成部は、気液の流れ方向に沿って流路径が徐々に拡がる形状のテーパ流路からなり、上記気液混合室で回転させられた気液を上記テーパ流路へ導くことにより、テーパ流路内で当該気液を更に回転させ、その回転流によって気液を混合することを特徴とする。   In order to achieve the above object, a water treatment system according to a second aspect of the present invention includes a pump that sucks and pressurizes a liquid in a tank and discharges the liquid in the liquid at a discharge side diverting part or a front stage of the suction port An ejector device that mixes gas, a mixer device that stirs the gas-liquid discharged from the pump, and the gas-liquid agitated by the mixer device are mixed by vortex and reduced in pressure while being mixed in the tank. A water treatment system comprising a gas-liquid mixing device that discharges into a tank, wherein the gas-liquid mixing device supplies gas to the two-stage rotating flow forming section connected in series and the preceding rotating-flow forming section. A fluid introduction path for introducing a liquid, and the former rotary flow forming section has an annular gas-liquid mixing chamber having a conical protrusion on the bottom surface, and one end opened at the downstream end of the fluid introduction path, The left and right ends are open around the bottom of the conical protrusion The gas-liquid is rotated in the gas-liquid mixing chamber around the conical protrusion by injecting the gas-liquid to the left and right sides of the conical protrusion through the left and right nozzle flow paths. The gas-liquid is mixed by the rotary flow, and the rotary flow forming portion at the latter stage is a tapered flow channel whose shape gradually increases along the gas-liquid flow direction and is rotated in the gas-liquid mixing chamber. The gas / liquid is guided to the taper flow path to further rotate the gas / liquid in the taper flow path, and the gas / liquid is mixed by the rotation flow.

上記第2の本発明に係る水処理システムでは、ポンプと、2段の回転流形成部を有する気液混合装置との計3段で気液の加圧、混合がなされる。また、この水処理システムで採用した上記気液混合装置は、前段の円環状の気液混合室内で気液が回転し、この回転する気液が更に後段のテーパ流路内で回転し、この2段階の気液の回転による渦流で気液を効率よく混合する。   In the water treatment system according to the second aspect of the present invention, gas-liquid pressurization and mixing are performed in a total of three stages, that is, a pump and a gas-liquid mixing apparatus having a two-stage rotary flow forming section. Further, in the gas-liquid mixing device employed in this water treatment system, the gas-liquid rotates in the preceding annular gas-liquid mixing chamber, and this rotating gas-liquid further rotates in the subsequent tapered flow path. The gas and liquid are mixed efficiently by the vortex generated by the two-stage gas-liquid rotation.

上記第2の本発明に係る水処理システムにおいては、上記テーパ流路の下流端に、気液の流れ方向に沿って流路径が徐々に拡くなる形状の別のテーパ流路が接続される構成や、更にその別のテーパ流路の下流端に、微細気泡を形成するためのオリフィス流路が接続される構成を採用することができる。   In the water treatment system according to the second aspect of the present invention, another tapered channel having a shape in which the channel diameter gradually increases along the gas-liquid flow direction is connected to the downstream end of the tapered channel. A configuration or a configuration in which an orifice channel for forming fine bubbles is connected to the downstream end of another tapered channel can be employed.

上記第1及び第2の本発明に係る水処理システムにおいては、上記ポンプの吐出側から吐出された液体を同ポンプの吸込み側へ返送する戻り流路を設けるとともに、この流路の途中に上記エジェクタ装置を組み込んだ構成を採用してよい。   In the water treatment system according to the first and second aspects of the present invention, a return flow path for returning the liquid discharged from the discharge side of the pump to the suction side of the pump is provided, and the flow path is provided in the middle of the flow path. You may employ | adopt the structure incorporating an ejector apparatus.

上記目的を達成するために、第3の本発明に係る水処理システムは、槽内の液体を吸込み加圧して吐出するポンプと、上記ポンプの吸込み側前段で上記液体中に気体を混入するエジェクタ装置と、上記ポンプから吐出された気液を撹拌するミキサ装置と、上記槽内に配置されるとともに、上記ミキサ装置で撹拌された気液を渦流により混合し減圧して前記槽内へ吐出する気液混合装置とを備えた水処理システムであって、上記ポンプの吐出側から吐出された液体を同ポンプの吸込み側へ返送する戻り流路を設けるとともに、この流路の途中に上記エジェクタ装置を組み込んだことを特徴とする。   In order to achieve the above object, a water treatment system according to a third aspect of the present invention includes a pump that sucks and pressurizes liquid in a tank, and an ejector that mixes gas in the liquid at a stage upstream of the suction side of the pump. An apparatus, a mixer device for stirring the gas and liquid discharged from the pump, and the gas and liquid stirred by the mixer device are mixed by vortex and decompressed and discharged into the tank. A water treatment system comprising a gas-liquid mixing device, wherein a return flow path for returning the liquid discharged from the discharge side of the pump to the suction side of the pump is provided, and the ejector device is provided in the middle of the flow path It is characterized by incorporating.

以上説明した第1から第3の本発明に係る水処理システムは、曝気槽の上流に設けられる調整槽の液体を処理する調整槽水処理システムとして構成してよい。このように構成すると、調整槽内で溶存酸素量が高められるから、調整槽内で有用微生物の繁殖と育成の促進を図ることができ、調整槽内で微生物の消化活動が開始されるとともに、その溶存酸素濃度の高い液体を調整槽から曝気槽内の低溶存酸素濃度水域へ供給することで、有用微生物に好適な曝気槽内の活性水域を拡大することができ、水処理施設における浄化能力を向上させることができる。   The water treatment system according to the first to third aspects of the present invention described above may be configured as an adjustment tank water treatment system that processes the liquid in the adjustment tank provided upstream of the aeration tank. If constituted in this way, since the amount of dissolved oxygen is increased in the adjustment tank, the propagation and growth of useful microorganisms can be promoted in the adjustment tank, and the digestion activity of microorganisms is started in the adjustment tank, By supplying the liquid with high dissolved oxygen concentration from the adjustment tank to the low dissolved oxygen concentration water area in the aeration tank, the active water area in the aeration tank suitable for useful microorganisms can be expanded, and the purification capacity in the water treatment facility Can be improved.

つまり、上記のような調整槽水処理システムは、微生物が消化活動を行う曝気槽の前段に設けられている廃水原水流量調整槽のような調整槽に、高濃度の溶存酸素処理を施すことによって、有用微生物がこれから食べようとする栄養物を含んだ調整槽内の水等の液体に、大量の有用微生物が呼吸し消費する酸素を十分に供給するものである。従来の水処理施設における有用微生物による消化活性の場である曝気槽と曝気槽への流量を調整する調整槽とは各々役割が分担されていた。しかし、本発明は従来の調整槽をも曝気槽として同様の働きを与えるものであり、その基本的な技術思想を異にする。   In other words, the adjustment tank water treatment system as described above is obtained by performing high-concentration dissolved oxygen treatment on the adjustment tank such as the wastewater raw water flow rate adjustment tank provided in the front stage of the aeration tank in which microorganisms perform digestion activities. In addition, oxygen that is respired and consumed by a large amount of useful microorganisms is sufficiently supplied to a liquid such as water in a conditioned tank containing nutrients that the useful microorganisms will eat. The roles of the aeration tank, which is a place of digestive activity by useful microorganisms in the conventional water treatment facility, and the adjustment tank for adjusting the flow rate to the aeration tank were shared. However, in the present invention, the conventional adjustment tank is also used as an aeration tank, and the basic technical idea is different.

第4の本発明に係る水処理システムは、ポンプを介して曝気槽へ汚泥を返送する汚泥返送ルートを有し、この汚泥返送ルートを介して曝気槽へ返送汚泥を吐出する吐出口に、気液混合装置を設けたことを特徴とするものである。   The water treatment system according to the fourth aspect of the present invention has a sludge return route for returning sludge to the aeration tank via the pump, and the discharge port for discharging the returned sludge to the aeration tank via the sludge return route A liquid mixing device is provided.

以上説明した第1から第4の発明に係る水処理システムでは、ポンプの加圧により流路内で0.3〜1.0MPa程度の加圧を施すため、油分を多く含む廃水や難分解性物質を含有する廃水であっても、それらの物質は加圧・減圧により微粒化し、乳化・分散する。このため、本水処理システムは、調整槽内への高濃度溶存酸素水体の提供のみならず、これに加えて更に、油分や難分解物質などを特異的に分解する微生物群の消化効率を同時に促進させることもできる。   In the water treatment system according to the first to fourth inventions described above, since the pressurization of the pump applies a pressure of about 0.3 to 1.0 MPa in the flow path, the waste water containing a large amount of oil and a hardly decomposable substance are contained. Even in wastewater, the substances are atomized by pressurization / decompression, and emulsified / dispersed. For this reason, this water treatment system not only provides a high-concentration dissolved oxygen water body in the adjustment tank, but also, in addition to this, the digestion efficiency of the microorganism group that specifically decomposes oils and persistent substances, etc. It can also be promoted.

また、以上説明した第1から第3の発明に係る水処理システムにおいて、上記槽は曝気槽の上流側に設けられる調整槽であり、上記水処理システムは、上記調整槽に特定微生物を注入するための注入手段を備える構成を採用することができる。   Moreover, in the water treatment system according to the first to third inventions described above, the tank is an adjustment tank provided on the upstream side of the aeration tank, and the water treatment system injects a specific microorganism into the adjustment tank. It is possible to employ a configuration including an injection means for the purpose.

上記注入手段としては、特定微生物を培養するための微生物培養槽を備え、この微生物培養槽で培養、増殖した特定微生物を調整槽へ注入するように構成してもよい。また、その微生物培養槽の特定微生物は、定量ポンプなどからなる微生物注入装置によって調整槽へ注入される構成を採用することができる。この場合、注入手段は、上記微生物培養槽と微生物注入装置によって構成されるものとなる。   The injection means may include a microorganism culture tank for culturing specific microorganisms, and the specific microorganisms cultured and propagated in the microorganism culture tank may be injected into the adjustment tank. Moreover, the structure in which the specific microorganism of the microorganism culture tank is inject | poured into a control tank by the microorganisms injection apparatus which consists of a metering pump etc. can be employ | adopted. In this case, the injection means is constituted by the microorganism culture tank and the microorganism injection device.

また、上記のような微生物培養槽への特定微生物製剤の投入→微生物培養槽での特定微生物の培養→微生物注入装置による調整槽への特定微生物の注入という一連の工程は、自動化システムとすることもできる。   In addition, a series of steps, such as the introduction of a specific microorganism preparation into a microorganism culture tank as described above → the cultivation of a specific microorganism in a microorganism culture tank → the injection of a specific microorganism into a regulating tank by a microorganism injection device, shall be an automated system. You can also.

さらに、上記注入手段としては、上述のように微生物培養槽を使用する方式の他、そのような微生物培養槽を用いない方式として、例えば、定期的に作業者が直接特定微生物製剤、すなわち発芽していない特定微生物を調整槽へ投入する方式(第1の方式)や、既に発芽・培養した特定微生物を定量ポンプなどからなる微生物注入装置によって調整槽へ定量滴下させる方式(第2の方式)も含まれるものとする。   Furthermore, as the injection means, in addition to the method using a microorganism culture tank as described above, as a method not using such a microorganism culture tank, for example, an operator periodically directs a specific microorganism preparation, that is, germinates. A method (first method) in which unspecified specific microorganisms are introduced into the adjustment tank, and a method (second method) in which specific microorganisms that have already germinated and cultured are quantitatively dropped into the adjustment tank by a microorganism injection device such as a metering pump. Shall be included.

ところで、調整槽の滞留時間は調整槽の容積などによって異なる。特に、上記第1の方式は、調整槽内で特定微生物を発芽・培養させるものであるから、特定微生物の発芽までの時間(大凡一日以上)に比べて、調整槽の滞留時間が十分長い場合に採用することが望ましい。この一方、上記第2の方式は、既に発芽・培養済みの特定微生物を調整槽に投入するものであるから、特定微生物の発芽までの時間に比べて、調整槽の滞留時間が十分長い場合のみならず、短い場合でも採用することができる。   By the way, the residence time of the adjustment tank varies depending on the volume of the adjustment tank. In particular, since the first method germinates and cultures the specific microorganism in the adjustment tank, the residence time of the adjustment tank is sufficiently longer than the time until germination of the specific microorganism (approximately one day or more). It is desirable to adopt in some cases. On the other hand, in the second method, since the specific microorganisms already germinated and cultured are put into the adjustment tank, only when the residence time of the adjustment tank is sufficiently long compared to the time until germination of the specific microorganisms. However, it can be adopted even in a short case.

上記「特定微生物」は、難分解性物質を特異的に消化処理する能力を持った微生物を意味するものであり、例えば、ノボザイムズバイオロジカルズジャパン株式会社の製品名BI−CHEM DC1002CG、DC1003FG、DC1004TX、DC1005PP、DC1006KT、DC1008CB、DC1738CW、BI−CHEM等が挙げられる。   The “specific microorganism” means a microorganism having the ability to specifically digest a hardly degradable substance. For example, product names BI-CHEM DC1002CG and DC1003FG of Novozymes Biologicals Japan Co., Ltd. DC1004TX, DC1005PP, DC1006KT, DC1008CB, DC1738CW, BI-CHEM, and the like.

第1から第3の本発明に係る水処理システムにあっては、いずれも、槽内の液体を吸込み加圧して吐出するポンプと、ポンプの吸込み側前段で液体中に気体を混入するエジェクタ装置と、ポンプから吐出された気液を撹拌するミキサ装置と、ミキサ装置で撹拌された気液を渦流により混合する気液混合装置とを具備し、ポンプの吸込み側前段でエジェクタ装置を介して液体中に気体を混入させ、その気液をポンプで加圧しミキサ装置を介して気液混合装置へ供給する構成を採用したものである。このため、ポンプ、ミキサ装置、気液混合装置の3段で気液の加圧、撹拌、混合がなされることから、システム全体で効率よく気液を混合することができ、槽内の溶存酸素濃度を高める。   In each of the water treatment systems according to the first to third aspects of the present invention, a pump that sucks and pressurizes and discharges the liquid in the tank, and an ejector device that mixes gas in the liquid at the upstream side of the suction side of the pump And a mixer device that stirs the gas-liquid discharged from the pump and a gas-liquid mixing device that mixes the gas-liquid stirred in the mixer device by vortex, and the liquid is passed through the ejector device at the upstream side of the suction side of the pump. A configuration is adopted in which gas is mixed therein, the gas-liquid is pressurized with a pump, and supplied to the gas-liquid mixing device via a mixer device. For this reason, gas-liquid pressurization, agitation, and mixing are performed in three stages of a pump, a mixer device, and a gas-liquid mixing device, so that gas-liquid can be mixed efficiently throughout the system, and dissolved oxygen in the tank Increase concentration.

特に、第1の本発明に係る水処理システムによると、そのシステムを構成する気液混合装置の具体的な構成として、羽根車やノズル、小孔を利用せず、密閉容器内での気液の薄層拡散による高速渦流を利用して気液を効率よく混合する方式の気液混合装置を採用したため、スラリー液や自然水界、廃水の液体等、清水以外の液体も処理対象とした水処理システムを提供しうる。また、そのような気液混合装置での効率のよい気液の混合により、システム全体としての気液の混合効率が高まり、槽内の溶存酸素濃度をより一層高めることができる。更に、この気液混合装置は導入された気液によって形成される高速渦流で気液を混合するものであり、気体導入に関し、コンプレッサ等の強制給気は必要とせず、動力を要しないから、システム全体としての省エネルギー化も図れる等の作用効果を奏する。   In particular, according to the water treatment system according to the first aspect of the present invention, as a specific configuration of the gas-liquid mixing device constituting the system, the gas-liquid in the sealed container is not used without using the impeller, the nozzle, and the small hole. Since a gas-liquid mixing device that efficiently mixes gas and liquid using high-speed eddy current due to thin layer diffusion of water is used, water other than fresh water, such as slurry, natural water, and wastewater, is also treated. A processing system may be provided. Moreover, the gas-liquid mixing efficiency in such a gas-liquid mixing apparatus increases the gas-liquid mixing efficiency of the entire system, and the dissolved oxygen concentration in the tank can be further increased. Furthermore, this gas-liquid mixing device mixes gas and liquid with a high-speed vortex formed by the introduced gas and liquid, and for gas introduction, forced air supply such as a compressor is not required, and no power is required. There are effects such as energy saving as a whole system.

また、第2の本発明に係る水処理システムによると、そのシステムを構成する気液混合装置の具体的な構成として、羽根車やノズル、小孔を利用せず、2段階の気液の回転による渦流で気液を効率よく混合する構成を採用したため、スラリー液や自然水界、廃水の液体等、清水以外の液体も処理対象とした水処理システムを提供しうる。また、そのような気液混合装置での効率のよい気液の混合により、システム全体としての気液の混合効率が高まり、槽内の溶存酸素濃度をより一層高めることができる。更に、この気液混合装置は導入された気液の2段階の回転で気液を混合するものであり、気液を圧送する以外の動力を要しないから、システム全体としての省エネルギー化も図れる等の作用効果を奏する。   In addition, according to the water treatment system according to the second aspect of the present invention, as a specific configuration of the gas-liquid mixing device constituting the system, two-stage gas-liquid rotation is performed without using an impeller, a nozzle, or a small hole. Since the configuration in which gas and liquid are efficiently mixed by the eddy current generated by the above-described method can be provided, it is possible to provide a water treatment system for treating liquids other than fresh water, such as slurry liquid, natural water, and wastewater liquid. Moreover, the gas-liquid mixing efficiency in such a gas-liquid mixing apparatus increases the gas-liquid mixing efficiency of the entire system, and the dissolved oxygen concentration in the tank can be further increased. Furthermore, this gas-liquid mixing device mixes the gas and liquid by the two-stage rotation of the introduced gas and liquid, and does not require any power other than pumping the gas and liquid, so that the system as a whole can save energy. Has the effect of.

さらに、第3の本発明に係る水処理システムによると、ポンプの吐出側から吐出された液体を同ポンプの吸込み側へ返送する戻り流路を設けるとともに、この流路の途中にエジェクタ装置を組み込む構成を採用した。このため、ポンプの吸込み側に気体を直接送り込む従来の方式と異なり、気体と液体の混合体をポンプの吸込み側へ送り込むから、例えば前記ポンプの具体例として、現在最も一般的に多く使用されている非容積式タイプの遠心ポンプ(渦巻ポンプ)を採用しても、ポンプの空転や、ポンプから気液混合装置への気液の供給不足による気液混合の効率低下を効果的に防止することができる。   Furthermore, according to the water treatment system of the third aspect of the present invention, a return flow path for returning the liquid discharged from the discharge side of the pump to the suction side of the pump is provided, and an ejector device is incorporated in the flow path. Adopted the configuration. For this reason, unlike the conventional method in which gas is directly sent to the suction side of the pump, a mixture of gas and liquid is sent to the suction side of the pump. Even if a non-displacement type centrifugal pump (spiral pump) is used, the efficiency of gas-liquid mixing can be effectively prevented due to the idling of the pump and insufficient supply of gas-liquid from the pump to the gas-liquid mixing device. Can do.

第4の本発明に係る水処理システムによると、ポンプを介して曝気槽へ汚泥を返送する汚泥返送ルートを有し、この汚泥返送ルートを介して曝気槽へ返送汚泥を吐出する吐出口に、気液混合装置を設けたため、気液混合装置から曝気槽へ溶存酸素濃度を高めて活性化した返送汚泥が吐出供給されるから、低溶存酸素濃度の返送汚泥が曝気槽に返送されることによる低溶存酸素濃度水域の発生を効果的に防止することができ、曝気槽全体が均一で高濃度の溶存酸素水域となり、水処理施設における浄化能力の向上を図れるという作用効果が得られる。   According to the water treatment system according to the fourth aspect of the present invention, the sludge return route for returning the sludge to the aeration tank via the pump, and the discharge port for discharging the return sludge to the aeration tank via the sludge return route, Since the gas-liquid mixing device is provided, the return sludge activated by increasing the dissolved oxygen concentration from the gas-liquid mixing device to the aeration tank is discharged and supplied, so that the return sludge having a low dissolved oxygen concentration is returned to the aeration tank. The generation of a low dissolved oxygen concentration water area can be effectively prevented, and the entire aeration tank becomes a uniform and high concentration dissolved oxygen water area, so that the effect of improving the purification capacity in the water treatment facility can be obtained.

第1から第3の本発明に係る水処理システムによると、そのシステムを構成する気液混合装置における効率のよい気液の混合およびシステム全体としての気液の混合効率が高まり、槽内の溶存酸素濃度をより一層高めることができる。これによって、槽液中の溶存酸素濃度に余裕を与えることから、廃水原水に含まれる油分などの標準活性汚泥処理法では不得意とする難分解性物質の混入および混入量の程度により、これらを特異的に分解する微生物製剤の投入による新たな微生物の繁殖・活性化の向上効果で、さらに増加する酸素要求にも十分な酸素供給が可能となる。したがって、既存の水処理施設へ本システムと合わせて微生物製剤の投入を同時に導入することによって、廃水中の難分解性物質が通常よりも多量に混入した場合などに生じる不具合、すなわち、廃水処理施設の浄化処理能力を超えた高負荷流入によって、しばしば生じていた施設処理放流水に対する排水基準の超過などの事態が発生してしまう頻度を低下させる、あるいは防止することができる。   According to the water treatment system according to the first to third aspects of the present invention, efficient gas-liquid mixing in the gas-liquid mixing device constituting the system and the gas-liquid mixing efficiency of the entire system are increased, and dissolution in the tank is performed. The oxygen concentration can be further increased. This gives a margin to the dissolved oxygen concentration in the tank liquid, so depending on the degree of contamination and the amount of difficult-to-decompose substances that are not good with standard activated sludge treatment methods such as oil contained in raw wastewater. With the effect of improving the propagation and activation of new microorganisms by the introduction of a microbial preparation that specifically decomposes, sufficient oxygen supply can be made even for the increasing oxygen demand. Therefore, by introducing the microbial preparation into the existing water treatment facility together with this system, there is a problem that occurs when the amount of persistent degradable substances in the wastewater is mixed more than usual, that is, the wastewater treatment facility. It is possible to reduce or prevent the frequency of occurrence of situations such as exceeding drainage standards for facility treatment effluent water, which often occurred due to high load inflow exceeding the purification treatment capacity.

以下、本発明を実施するための最良の形態について、添付した図面を参照しながら詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings.

尚、本明細書では、工場から廃水し、廃水処理設備で浄化処理された水をその設備近傍の河川又は下水道へ排水するという観点から、以下の実験の説明を除き、廃水処理設備の上流側が「廃水」、同設備の下流側が「排水」というように用語を使い分けた。   In this specification, from the viewpoint of draining wastewater from the factory and purifying water purified by the wastewater treatment facility to a river or sewer near the facility, the upstream side of the wastewater treatment facility is excluding the explanation of the following experiment. The terminology is used differently, such as “waste water” and “drainage” on the downstream side of the facility.

図1は、本発明の水処理システムを適用した廃水処理設備の概略構成図であり、廃水処理設備Sは上流に調整槽1、その下流に曝気槽2、更にその下流に沈殿槽3を備える構成になっている。   FIG. 1 is a schematic configuration diagram of a wastewater treatment facility to which the water treatment system of the present invention is applied. The wastewater treatment facility S includes a conditioning tank 1 upstream, an aeration tank 2 downstream thereof, and a precipitation tank 3 further downstream thereof. It is configured.

調整槽1は、その下流に位置する曝気槽2の水位を調整するための水位調整手段として機能するだけでなく、後述する気液混合装置10Aを含む調整槽1の水処理システムS1又はS2(図2、図7参照)若しくは気液混合装置10Bを含む調整槽1の水処理システムS3(図9参照)によって調整槽1内に微細気泡を生成し、調整槽1内の溶存酸素量を増加させる機能も有する。   The adjustment tank 1 not only functions as a water level adjusting means for adjusting the water level of the aeration tank 2 positioned downstream thereof, but also includes a water treatment system S1 or S2 ( 2) or the water treatment system S3 of the adjustment tank 1 including the gas-liquid mixing device 10B (see FIG. 9) generates fine bubbles in the adjustment tank 1 and increases the amount of dissolved oxygen in the adjustment tank 1. It also has a function to make it.

曝気槽2は、調整槽1内で溶存酸素量を高めた気液がポンプ4を介して供給されるとともに、後述する気液混合装置10Cを含む水処理システムS4又はS5(図10、図12参照)のいずれか一方又は双方を介して沈殿槽3から活性汚泥(酸素の存在下で微生物を含んだ泥)が供給され、有用微生物による汚れ物質の消化活動が行われる。   The aeration tank 2 is supplied with a gas-liquid whose dissolved oxygen amount is increased in the adjustment tank 1 via the pump 4, and a water treatment system S4 or S5 including a gas-liquid mixing apparatus 10C described later (FIGS. 10 and 12). Activated sludge (mud containing microorganisms in the presence of oxygen) is supplied from the sedimentation tank 3 via either one or both of them, and the digesting activity of the soil substances by the useful microorganisms is performed.

沈殿槽3は、曝気槽2から供給された汚泥混合液を活性汚泥と上澄み液に分離し、分離された活性汚泥は、上記水処理システムS4又はS5のいずれか一方又は双方を介して曝気槽2へ返送され、あるいは余剰汚泥として抜き取られる。上澄み液は、処理流体として自然水界、下水道等へ放流される、あるいは中水として再利用される。   The settling tank 3 separates the sludge mixed solution supplied from the aeration tank 2 into activated sludge and supernatant liquid, and the separated activated sludge is supplied to the aeration tank via one or both of the water treatment systems S4 and S5. 2 or returned as excess sludge. The supernatant liquid is discharged as a treatment fluid to natural water, sewers, or reused as intermediate water.

図2は、調整槽1の水処理システム(以下「調整槽水処理システムS1」という)のシステム構成図である。この調整槽水処理システムS1は、調整槽1内の液体を吸込み加圧して吐出するポンプとして、第1と第2のポンプ6、8を備えるとともに、エジェクタ装置7、ミキサ装置9、気液混合装置10Aを備えて構成される。   FIG. 2 is a system configuration diagram of the water treatment system of the adjustment tank 1 (hereinafter referred to as “adjustment tank water treatment system S1”). The adjustment tank water treatment system S1 includes first and second pumps 6 and 8 as pumps for sucking, pressurizing, and discharging the liquid in the adjustment tank 1, as well as an ejector device 7, a mixer device 9, and a gas-liquid mixture. A device 10A is provided.

第1のポンプ6は、図示しない駆動モータにより駆動され、調整槽1内の液体を吸い込み、取水管路11を介してエジェクタ装置7へ圧送する。   The first pump 6 is driven by a drive motor (not shown), sucks the liquid in the adjustment tank 1, and pumps the liquid to the ejector device 7 through the intake pipe 11.

エジェクタ装置7は第2のポンプ8の吸込側8A前段で自然吸気によって酸素を含む空気等の気体(本実施形態では空気)を液体に混入させる手段である。この種のエジェクタ装置7の構成例として、本水処理システムS1においては図3に示す構造のエジェクタ装置7を採用した。吸気機能を満たせば本エジェクタ装置7に限らない。   The ejector device 7 is a means for mixing a gas such as air containing oxygen (air in the present embodiment) into the liquid by natural intake air before the suction side 8A of the second pump 8. As an example of the configuration of this type of ejector device 7, the present water treatment system S1 employs the ejector device 7 having the structure shown in FIG. The ejector device 7 is not limited as long as the intake function is satisfied.

同図のエジェクタ装置7は、管継ぎ手12A、12Bを介して取水管路11の途中(本実施形態では第2のポンプ8の吸込側8Aの直前)に組み込まれる管体13と、管体13の内部に設けた絞り部14と、管体13の外周面から上記絞り部14の下流に一端を開口し、かつ他端を大気側に開口した気体導入管15とを備えて構成される。尚、気体導入管15の他端を高濃度酸素の供給源に接続することで、このエジェクタ装置7を介して液体に高濃度酸素を混入させるように構成してもよい。   The ejector device 7 shown in FIG. 1 includes a pipe body 13 incorporated in the middle of the water intake pipe line 11 (in the present embodiment, immediately before the suction side 8A of the second pump 8) via pipe joints 12A and 12B. And a gas introduction pipe 15 having one end opened downstream from the outer peripheral surface of the tube body 13 and the other end opened to the atmosphere side. In addition, you may comprise so that high concentration oxygen may be mixed in a liquid via this ejector apparatus 7 by connecting the other end of the gas introduction pipe | tube 15 to the supply source of high concentration oxygen.

上記構造のエジェクタ装置7は、取水管路11から管体13内に液体を導き絞り部14で絞ることにより、絞り部14下流に高速の流れを形成し、この高速流によって気体導入管15から空気を自然吸気し液体中に混入させる(自然吸気式)。従って、コンプレッサ等を用いた強制給気方式のような動力系は不要である。   The ejector device 7 having the structure described above introduces a liquid from the intake pipe 11 into the pipe body 13 and squeezes it with the throttle part 14, thereby forming a high-speed flow downstream of the throttle part 14. Air is naturally aspirated and mixed into the liquid (natural aspiration type). Therefore, a power system such as a forced air supply system using a compressor or the like is not necessary.

第2のポンプ8は、第1のポンプ6とは別のモータ16により駆動され、エジェクタ装置7から供給される気液を吸い込み、給水管路17を介してミキサ装置9へ当該気液を圧送する。   The second pump 8 is driven by a motor 16 different from the first pump 6, sucks the gas / liquid supplied from the ejector device 7, and pumps the gas / liquid to the mixer device 9 through the water supply pipe 17. To do.

ミキサ装置9は第2のポンプ8から供給された気液を攪拌する。このミキサ装置9の構成例として、本水処理システムS1では図4に示す構造のミキサ装置9を採用した。ミキサ装置9は本構造のものでなくともよい。   The mixer device 9 agitates the gas and liquid supplied from the second pump 8. As an example of the configuration of the mixer apparatus 9, the water treatment system S1 employs the mixer apparatus 9 having the structure shown in FIG. The mixer device 9 does not have to have this structure.

同図のミキサ装置9は、給水管路17の下流端に管継ぎ手18Aを介して連結された管体19と、管体19の内側に設けた攪拌手段20とから構成されており、攪拌手段20は、図4(c)〜(g)のように液体を通過させる貫通孔21の開いた攪拌板22と、環状のスペーサ23とを、気液の流れ方向に沿って交互に複数設置し、その固定された複数の攪拌板22で気液を撹拌させることにより、管体19内に乱流を生じさせて、気液を混合する。   The mixer device 9 shown in FIG. 1 includes a pipe body 19 connected to the downstream end of the water supply pipe line 17 via a pipe joint 18A, and a stirring means 20 provided inside the pipe body 19. As shown in FIGS. 4C to 4G, a plurality of stirring plates 22 having through holes 21 through which liquid passes and annular spacers 23 are alternately installed along the gas-liquid flow direction. The gas and liquid are agitated by the fixed plurality of agitation plates 22 to generate turbulent flow in the tube body 19 and mix the gas and liquid.

気液混合装置10Aは、図2のように調整槽1内部に設置されるとともに、図5(a)(b)(c)に示したように(1)円筒形の密閉容器24と、(2)ミキサ装置9の下流端(具体的には管体19の下流端)に管継ぎ手18Bを介して連結され、ミキサ装置9で攪拌された気液を密閉容器24内に導入する流体導入管25と、(3)密閉容器24内から気液を吐出させる流体吐出口26と、(4)流体吐出口26に取り付けた吐出筒27とを備えて構成され、ミキサ装置9で撹拌された気液を混合する。   The gas-liquid mixing apparatus 10A is installed inside the adjustment tank 1 as shown in FIG. 2, and as shown in FIGS. 5 (a), 5 (b), and 5 (c), (1) a cylindrical sealed container 24 and ( 2) A fluid introduction pipe that is connected to the downstream end of the mixer device 9 (specifically, the downstream end of the tube body 19) via a pipe joint 18B and introduces the gas-liquid stirred by the mixer device 9 into the sealed container 24. 25, (3) a fluid discharge port 26 for discharging gas and liquid from the sealed container 24, and (4) a discharge cylinder 27 attached to the fluid discharge port 26. Mix the liquid.

流体導入管25は、図5(c)のように密閉容器24の内外周壁を貫通して該密閉容器24内に入り込み、この入り込んだ流体導入管25の先端部が、流体導入口28として密閉容器24の内底面に近接して開口するように構成した。このため、流体導入口28から密閉容器24内へ導入された気液は、密閉容器24の内側円弧面に沿って左右方向(密閉容器24の左右内端面方向)へ扇状に薄層拡散し、密閉容器24内で高速の渦流を形成する。また、その高速渦流は密閉容器24の内端面方向(図5(a)参照)へ向かうので、上記流体吐出口26は密閉容器24の端面に開口した。   As shown in FIG. 5C, the fluid introduction tube 25 penetrates the inner and outer peripheral walls of the sealed container 24 and enters the sealed container 24, and the leading end of the entered fluid introduction tube 25 is sealed as the fluid introduction port 28. The container 24 is configured to open close to the inner bottom surface. For this reason, the gas-liquid introduced into the sealed container 24 from the fluid inlet 28 is thinly diffused in a fan shape in the left-right direction (the left-right inner end face direction of the sealed container 24) along the inner arc surface of the sealed container 24, A high-speed vortex is formed in the sealed container 24. Further, since the high-speed vortex flows in the direction of the inner end face of the sealed container 24 (see FIG. 5A), the fluid discharge port 26 opens at the end face of the sealed container 24.

上記流体吐出口26には図6(a)(b)に示すノズル構造30が採用されている。このノズル構造30は、流体吐出口26の中心部に、オリフィスからなる吸込み用の孔(以下「吸込孔31」という)を1つ設けるとともに、この吸込孔31の周囲に、微細気泡を形成するための少なくとも2以上の噴出し用の孔(以下「噴出孔32」という)を設けたものである。このような孔構成からなるノズル構造30によると、中央の吸込孔31を通じて密閉容器24内から外部に延びる気体柱を伴った引き込み渦が作られ、この気体柱を通じて密閉容器24外の気体が密閉容器24内へ入り易くなり、その結果、噴出孔32から効率よく密閉容器24内の気液を排出させることが可能となる。   The fluid discharge port 26 employs a nozzle structure 30 shown in FIGS. This nozzle structure 30 is provided with one suction hole (hereinafter referred to as “suction hole 31”) formed of an orifice at the center of the fluid discharge port 26, and forms fine bubbles around the suction hole 31. For this purpose, at least two or more ejection holes (hereinafter referred to as “ejection holes 32”) are provided. According to the nozzle structure 30 having such a hole configuration, a drawing vortex accompanied by a gas column extending from the inside of the sealed container 24 to the outside through the central suction hole 31 is created, and the gas outside the sealed container 24 is sealed through this gas column. It becomes easy to enter the container 24, and as a result, the gas-liquid in the sealed container 24 can be efficiently discharged from the ejection hole 32.

上記吐出筒27は、その一端が流体吐出口26の流体吐出側陰圧部に開口し、他端が調整槽1内に開口している。このような吐出筒27が流体吐出口26に設けられていない場合は、噴出孔32から排出された気液以外の液体も吸込孔31が吸い込んでしまい、大型の液中混在物が吸込孔31に詰まる可能性がある。一方、吐出筒27を流体吐出口26に設けた場合は、吸込孔31から吸込まれるのは噴出孔32から排出された流体中の気体のみとなり、吐出筒27内は噴出孔32から排出された気液で占有されるから、大型の液中混在物の吸込みによる吸込孔31の目詰まりは生じない。   One end of the discharge cylinder 27 opens to the fluid discharge side negative pressure portion of the fluid discharge port 26, and the other end opens into the adjustment tank 1. When such a discharge cylinder 27 is not provided in the fluid discharge port 26, liquid other than gas and liquid discharged from the discharge hole 32 is also sucked into the suction hole 31, and a large liquid mixture is sucked into the suction hole 31. There is a possibility of clogging. On the other hand, when the discharge cylinder 27 is provided in the fluid discharge port 26, only the gas in the fluid discharged from the ejection hole 32 is sucked from the suction hole 31, and the inside of the discharge cylinder 27 is discharged from the ejection hole 32. Therefore, the suction hole 31 is not clogged due to the suction of a large liquid mixture.

以上の構成からなる調整槽水処理システムS1において、第2のポンプ8は、システム起動時から停止時までの全範囲で継続的に使用されるが、第1のポンプ6は、システム起動時等のように取水管路11内が空であって第2のポンプ8だけで調整槽1内の液体を吸い上げることが困難な時にのみ使用される。このような第1および第2のポンプ6、8の動作制御は、調整槽水処理システムS1の起動や停止等の動作を統括的に制御する制御盤100(図2参照)により行われる。   In the adjusted tank water treatment system S1 having the above-described configuration, the second pump 8 is continuously used in the entire range from the system startup to the stop, but the first pump 6 is used when the system is started up. Thus, it is used only when the inside of the intake pipe 11 is empty and it is difficult to suck up the liquid in the adjustment tank 1 only by the second pump 8. Such operation control of the 1st and 2nd pumps 6 and 8 is performed by the control panel 100 (refer FIG. 2) which controls operation | movement, such as starting and a stop of adjustment tank water treatment system S1.

また、本実施形態では、図2のように気体導入管15の途中にセンサ付き流量計101を組み込み、流量計101のセンサ(図示省略)で気体導入管15による気体の吸込み量を検出して制御盤100へ送出することにより、液体中に混入させる空気量を制御盤100や流量計101で監視できるようにしている。   Further, in the present embodiment, as shown in FIG. 2, a flow meter 101 with a sensor is incorporated in the middle of the gas introduction tube 15, and the amount of gas sucked by the gas introduction tube 15 is detected by a sensor (not shown) of the flow meter 101. By sending it to the control panel 100, the control panel 100 and the flow meter 101 can monitor the amount of air mixed into the liquid.

上記の如く構成された調整槽水処理システムS1全体の処理動作、作用について図2と図5を基に説明する。   The processing operation and action of the entire adjustment tank water treatment system S1 configured as described above will be described with reference to FIGS.

本調整槽水処理システムS1によると、調整槽1内の液体は、エジェクタ装置7を通過して第2のポンプ8の吸込側8Aに吸い込まれる。吸い込まれる液体中にはエジェクタ装置7を通過するときに自然吸気によって取り込まれた空気が含まれており、この空気を含んだ液体(気液)が、第2のポンプ8内で加圧され、同ポンプ8の吐出側8Bからミキサ装置9へ圧送され、更に同ミキサ装置9内で撹拌された後、気液混合装置10Aへ供給される。   According to this adjustment tank water treatment system S1, the liquid in the adjustment tank 1 passes through the ejector device 7 and is sucked into the suction side 8A of the second pump 8. The liquid sucked in includes air taken in by natural suction when passing through the ejector device 7, and the liquid (gas-liquid) containing this air is pressurized in the second pump 8, After being pumped from the discharge side 8B of the pump 8 to the mixer device 9 and further stirred in the mixer device 9, it is supplied to the gas-liquid mixing device 10A.

以上のようにミキサ装置9から気液混合装置10Aへ供給される気液は、図5のように流体導入管25を介して密閉容器24内に導入され、密閉容器24の内側円弧面に沿って左右方向へ扇状に薄層拡散し、高速の渦流となって流体吐出口26の噴出孔32から吐出筒27を介して調整槽1内へ吐出する。この際、その高速の渦流によって密閉容器24内で気液が効率よく混合される。また、流体吐出口26付近では、吸込孔31と噴出孔32とを介する気液の吐出と吸込みの動作により、複雑な乱流が生じ、この乱流によって気液の混合がより一層促進される。このように効率よく十分に混合された気液が噴出孔32から高速流となって吐出されることにより多量の微細気泡を形成する。このため、調整槽1内の溶存酸素量が増大し、有用微生物の繁殖、育成などに好適な環境が調整槽1内に作られる。   As described above, the gas-liquid supplied from the mixer device 9 to the gas-liquid mixing device 10A is introduced into the sealed container 24 through the fluid introduction pipe 25 as shown in FIG. Then, it diffuses into a fan-like thin layer in the left-right direction, and is discharged into the adjusting tank 1 from the ejection hole 32 of the fluid ejection port 26 through the ejection cylinder 27 as a high-speed vortex. At this time, the gas and liquid are efficiently mixed in the sealed container 24 by the high-speed vortex. Further, in the vicinity of the fluid discharge port 26, complicated turbulent flow is generated by the operation of gas-liquid discharge and suction through the suction hole 31 and the ejection hole 32, and the mixing of the gas-liquid is further promoted by this turbulent flow. . The gas-liquid mixed efficiently and sufficiently in this way is discharged as a high-speed flow from the ejection holes 32 to form a large amount of fine bubbles. For this reason, the amount of dissolved oxygen in the adjustment tank 1 is increased, and an environment suitable for propagation and growth of useful microorganisms is created in the adjustment tank 1.

以上説明したように、本調整槽水処理システムS1は、調整槽1内の液体を吸込み加圧して吐出するポンプ8と、ポンプ8の吸込み側前段で液体中に気体を混入するエジェクタ装置7と、ポンプ8から吐出された気液を撹拌するミキサ装置9と、ミキサ装置9で撹拌された気液を渦流により混合する気液混合装置10Aとを具備し、ポンプ8の吸込み側前段でエジェクタ装置7を介して液体中に気体を混入させ、その気液をポンプ8で加圧しミキサ装置9を介して気液混合装置10Aへ供給する構成を採用したものである。このためポンプ8、ミキサ装置9、気液混合装置10Aの3段で気液の加圧、撹拌、混合がなされることから、システム全体で効率よく気液を混合することができ、調整槽1内の溶存酸素濃度を高める。   As described above, the adjustment tank water treatment system S1 includes the pump 8 that sucks and pressurizes the liquid in the adjustment tank 1 and discharges it, and the ejector device 7 that mixes gas into the liquid at the upstream side of the suction side of the pump 8. , A mixer device 9 for stirring the gas-liquid discharged from the pump 8 and a gas-liquid mixing device 10A for mixing the gas-liquid stirred by the mixer device 9 by vortex, and an ejector device at the upstream side of the suction side of the pump 8 In this configuration, a gas is mixed into the liquid via 7, the gas / liquid is pressurized by the pump 8, and supplied to the gas / liquid mixing device 10 </ b> A via the mixer device 9. For this reason, since gas-liquid pressurization, stirring, and mixing are performed in three stages of the pump 8, the mixer device 9, and the gas-liquid mixing device 10A, the gas-liquid can be efficiently mixed in the entire system, and the adjustment tank 1 Increase the dissolved oxygen concentration inside.

図7は、別の調整槽水処理システムS2のシステム構成図である。同図の調整槽水処理システムS2は、給水管路17から取水管路11に戻る戻り管路33を設けることで、ポンプ8の吐出側8Bに分流部を形成し、第2のポンプ8の吐出側8Bから吐出した気液の一部を同ポンプ8の吸込側8Aへ返送する戻り流路を形成するとともに、更に、その分流部、具体的には戻り管路33の途中に前述した自然吸気方式のエジェクタ装置7を組み込むことにより、エジェクタ装置7での自然吸気により空気を混入させた液体(気液)が第2のポンプ8内に吸い込まれ同ポンプ8内で加圧された後、ミキサ装置9を介して気液混合装置10A側へ供給されるように構成したものである。これ以外の構成については図2の調整槽水処理システムS1と同様であるため、同一部材には同一符号を付し、その詳細説明は省略する。なお、エジェクタ装置7による気体供給量の上限は、ポンプの空運転等の支障が生じない量とする。   FIG. 7 is a system configuration diagram of another adjustment tank water treatment system S2. The adjustment tank water treatment system S2 in the figure is provided with a return pipe 33 that returns from the water supply pipe 17 to the water intake pipe 11, thereby forming a diversion part on the discharge side 8B of the pump 8, and A return flow path for returning a part of the gas and liquid discharged from the discharge side 8B to the suction side 8A of the pump 8 is formed, and further, the natural flow described above is provided in the flow dividing section, specifically in the middle of the return pipe 33. By incorporating the intake-type ejector device 7, the liquid (gas-liquid) mixed with air by natural intake in the ejector device 7 is sucked into the second pump 8 and pressurized in the pump 8. It is configured to be supplied to the gas-liquid mixing device 10A side through the mixer device 9. Since it is the same as that of adjustment tank water treatment system S1 of FIG. 2 about another structure, the same code | symbol is attached | subjected to the same member and the detailed description is abbreviate | omitted. In addition, the upper limit of the gas supply amount by the ejector device 7 is set to an amount that does not cause trouble such as idling of the pump.

特に、上記のような構成からなる図7の調整槽水処理システムS2によると、第2のポンプ8の吸込側8Aへ気体を直接送り込むのではなく、気体と液体の混合体を第2のポンプ8の吸込側8Aへ送り込むから、第2のポンプ8の具体例として、例えば現在最も一般的に多く使用されている非容積式タイプの遠心ポンプ(渦巻ポンプ)を採用した場合でも、遠心ポンプの空転や、遠心ポンプから気液混合装置10Aへの気液の供給不足による気液混合の効率低下を効果的に防止することができ、気液混合装置10Aで効率よく気液の混合を行える。更に、第2のポンプ8内でも気液の撹拌が行われることから、より一層気液の混合度合いが増す等の利点がある。   In particular, according to the adjustment tank water treatment system S2 of FIG. 7 having the above-described configuration, the gas and the liquid mixture are not directly fed to the suction side 8A of the second pump 8, but the second pump. As a specific example of the second pump 8, for example, even when a non-volumetric centrifugal pump (spiral pump) that is most commonly used at present is adopted, It is possible to effectively prevent a reduction in efficiency of gas-liquid mixing due to idling or insufficient supply of gas-liquid from the centrifugal pump to the gas-liquid mixing apparatus 10A, and the gas-liquid mixing can be performed efficiently by the gas-liquid mixing apparatus 10A. Further, since the gas-liquid stirring is performed in the second pump 8, there is an advantage that the degree of gas-liquid mixing is further increased.

図8は、別の気液混合装置10Bの断面図であり、図9は図8の気液混合装置10Bを含む調整槽水処理システムS3のシステム構成図である。尚、図9の調整槽水処理システムS3において、気液混合装置10B以外の他のシステム構成要素については図7のものと同様であるため、同一部材には同一符号を付し、その詳細説明は省略し、構成の異なる図8の気液混合装置10Bについて詳細に説明する。   FIG. 8 is a cross-sectional view of another gas-liquid mixing apparatus 10B, and FIG. 9 is a system configuration diagram of a regulating tank water treatment system S3 including the gas-liquid mixing apparatus 10B of FIG. In addition, in adjustment tank water treatment system S3 of FIG. 9, since it is the same as that of the thing of FIG. 7 about system components other than the gas-liquid mixing apparatus 10B, the same code | symbol is attached | subjected to the same member and the detailed description The gas-liquid mixing apparatus 10B of FIG. 8 having a different configuration will be described in detail.

この図8の気液混合装置10Bは、直列に接続された2段の回転流形成部41A、41Bと、2段の回転流形成部41A、41Bのうち前段の回転流形成部41Aへ気液を導入するための流体導入路42とを有し、上記2段の回転流形成部41A、41Bで連続的に気液を回転させ、このような2段階の気液の回転による渦流で気液を混合する。   The gas-liquid mixing device 10B of FIG. 8 is configured to gas-liquid transfer to the rotary flow forming unit 41A in the preceding stage of the two stages of rotary flow forming units 41A and 41B and the two stages of rotary flow forming units 41A and 41B. And the gas-liquid is continuously rotated by the two-stage rotary flow forming portions 41A and 41B, and the gas-liquid is vortexed by the two-stage gas-liquid rotation. Mix.

流体導入路42は、その上端が管継ぎ手43Aを介して給水管路17に連結される。   The upper end of the fluid introduction path 42 is connected to the water supply pipe line 17 through a pipe joint 43A.

前段の回転流形成部41Aは、底面中央部に円錐状突起44を有する円環状の気液混合室45と、流体導入路42の下流端に一端を開口し、他端を上記円錐状突起44の底部周囲に開口した左右のノズル流路46とを有し、左右のノズル流路46を介して上記円錐状突起44の左右両側に気液を噴射することにより、円錐状突起44を中心として気液混合室45内で気液を回転させ混合する。   The front rotational flow forming portion 41A has an annular gas-liquid mixing chamber 45 having a conical protrusion 44 at the center of the bottom surface, one end opened at the downstream end of the fluid introduction path 42, and the other end at the conical protrusion 44. Left and right nozzle flow paths 46 opened around the bottom of the bottom, and by injecting gas and liquid to the left and right sides of the conical protrusion 44 through the left and right nozzle flow paths 46, the conical protrusion 44 is centered. The gas and liquid are rotated and mixed in the gas and liquid mixing chamber 45.

上記のように気液混合室45内で回転する気液は、円錐状突起44の先端部とこれと同様に傾斜したテーパ孔47とで形成される円環状の隙間傾斜流路48、並びに、その隙間傾斜流路48に連通する回転流通過流路49を通じて、更に後段の回転流形成部41Bへ供給される。   The gas-liquid rotating in the gas-liquid mixing chamber 45 as described above has an annular gap inclined flow path 48 formed by the tip end portion of the conical protrusion 44 and the tapered hole 47 inclined similarly to this, and Through the rotary flow passage channel 49 communicating with the gap inclined channel 48, the gas is further supplied to the subsequent rotary flow forming part 41B.

後段の回転流形成部41Bは、気液の流れ方向に沿って流路径が徐々に拡がる形状の第1のテーパ流路50からなり、上記円環状の隙間傾斜流路48と回転流通過流路49を介して供給された気液、すなわち気液混合室45で回転し混合した気液を回転流通過流路49で更に回転混合させ、第1のテーパ流路50へ導入する。   The downstream rotational flow forming portion 41B includes a first tapered flow channel 50 having a shape in which the flow channel diameter gradually increases along the gas-liquid flow direction, and the annular gap inclined flow channel 48 and the rotational flow passage flow channel. The gas-liquid supplied through 49, that is, the gas-liquid rotated and mixed in the gas-liquid mixing chamber 45 is further rotated and mixed in the rotary flow passage channel 49 and introduced into the first taper channel 50.

上記第1のテーパ流路50の下流端には第2のテーパ流路51が接続されており、更に第2のテーパ流路51の下流端には微細気泡を形成するためのオリフィス流路52が接続されている。第2のテーパ流路51は気液の流れ方向に沿って流路径が徐々に狭くなる形状になっているため、第2のテーパ流路51を通過する気液は、加速し高速の渦流となってオリフィス流路52に導入され、オリフィス流路52から吐出することにより、多量の微細気泡を形成する。   A second taper channel 51 is connected to the downstream end of the first taper channel 50, and an orifice channel 52 for forming fine bubbles at the downstream end of the second taper channel 51. Is connected. Since the second taper channel 51 has a shape in which the channel diameter gradually decreases along the gas-liquid flow direction, the gas-liquid passing through the second taper channel 51 is accelerated to generate a high-speed vortex flow. Then, it is introduced into the orifice channel 52 and discharged from the orifice channel 52 to form a large amount of fine bubbles.

上記気液混合装置10Bはその流体通路の形状と構成に特徴がある。その具体的な部品構成は一つの実施例であり各種考えられる。本実施形態では、その部品構成として、気液混合装置10Bを複数のパーツ部品に分けて組み立てる方式を採用した。この方式は、具体的には、図8のように、連結筒53で直列に連結された上段、中段および下段ブロック54、55、56と、オリフィス板57と、下段ブロック56に装着されるキャップ58とを用意し、上記流体導入路42と上記左右のノズル流路46については上段ブロック54に形成した。   The gas-liquid mixing apparatus 10B is characterized by the shape and configuration of its fluid passage. The specific component configuration is one example and various types are conceivable. In this embodiment, the system which divides | segments and assembles the gas-liquid mixing apparatus 10B into several parts components as the component structure was employ | adopted. Specifically, as shown in FIG. 8, this system includes upper, middle and lower blocks 54, 55, 56, an orifice plate 57, and a cap attached to the lower block 56 connected in series by a connecting cylinder 53. 58, and the fluid introduction passage 42 and the left and right nozzle passages 46 are formed in the upper block 54.

また、上記円環状の気液混合室45については、中段ブロック55が接合される上段ブロック54の接合面に凹部59を形成するとともに、この凹部59の底面中央部に上記円錐状突起44を形成することで、上段ブロック54と中段ブロック55との接合部に上記円環状の気液混合室45が形成される構成を採用した。   For the annular gas-liquid mixing chamber 45, a recess 59 is formed on the joint surface of the upper block 54 to which the middle block 55 is joined, and the conical protrusion 44 is formed at the center of the bottom of the recess 59. Thus, a configuration in which the annular gas-liquid mixing chamber 45 is formed at the joint between the upper block 54 and the middle block 55 is adopted.

さらに、上記回転流通過流路49と第1のテーパ流路50については中段ブロック55に形成し、第2のテーパ流路51は下段ブロック56に形成した。また、上記オリフィス流路52については、下段ブロック56とキャップ58との間に上記オリフィス板57を配置し、オリフィス板57に形成されているオリフィス流路52の上流端が上記第2のテーパ流路51の下流端に連通するように構成した。また、オリフィス流路52の下流端から本装置10B外部へ気液と微細気泡を吐出させるため、キャップ58にはオリフィス流路52の下流端と外部とに連通する吐出孔60を形成した。本流通路構造が構成できれば、上記部品構成でなくても構わない。   Further, the rotary flow passage channel 49 and the first taper channel 50 are formed in the middle block 55, and the second taper channel 51 is formed in the lower block 56. For the orifice channel 52, the orifice plate 57 is disposed between the lower block 56 and the cap 58, and the upstream end of the orifice channel 52 formed in the orifice plate 57 has the second tapered flow. It was configured to communicate with the downstream end of the channel 51. Further, in order to discharge gas liquid and fine bubbles from the downstream end of the orifice channel 52 to the outside of the apparatus 10B, the cap 58 is formed with a discharge hole 60 communicating with the downstream end of the orifice channel 52 and the outside. As long as the main flow path structure can be configured, the above-described component configuration is not necessarily required.

以上説明した図8の気液混合装置10Bによると、前段の気液混合室45内で気液を回転させ、これを更に後段の第1のテーパ流路50内で回転させることにより、連続する2段の回転による渦流で気液を混合するため、効率よく気液を混合、溶解、更に微細気泡を発生することができ、液体中の溶存酸素濃度を高めることができる。   According to the gas-liquid mixing apparatus 10B of FIG. 8 described above, the gas-liquid is rotated in the front-stage gas-liquid mixing chamber 45, and is further rotated in the first-stage taper channel 50 in the subsequent stage. Since the gas and liquid are mixed by the vortex generated by the two-stage rotation, the gas and liquid can be mixed and dissolved efficiently, and fine bubbles can be generated, and the dissolved oxygen concentration in the liquid can be increased.

図10は、沈殿槽3から曝気槽2へ返送する汚泥を活性化させる水処理システム(以下「返送汚泥活性化水処理システム」という)のシステム構成図であり、本返送汚泥活性化水処理システムS4は第1のポンプ6、第2のポンプ8、気液混合装置10Cを備えて構成される。   FIG. 10 is a system configuration diagram of a water treatment system (hereinafter referred to as “returned sludge activated water treatment system”) that activates sludge that is returned from the settling tank 3 to the aeration tank 2, and this returned sludge activated water treatment system. S4 includes a first pump 6, a second pump 8, and a gas-liquid mixing device 10C.

本返送汚泥活性化水処理システムS4において、第1のポンプ6と第2のポンプ8は別々のモータ16で駆動され、取水管路11を介して沈殿槽3内の汚泥を吸い込み、気液混合装置10Cへ圧送する。なお、ポンプ6のモータはポンプに内蔵されているため図示は省略されている。   In this return sludge activated water treatment system S4, the first pump 6 and the second pump 8 are driven by separate motors 16 to suck the sludge in the sedimentation tank 3 through the intake pipe 11 and mix the gas and liquid. Pump to device 10C. In addition, since the motor of the pump 6 is built in the pump, illustration is abbreviate | omitted.

本返送汚泥活性化水処理システムS4においても、第2のポンプ8は、システム起動時から停止時までの全範囲で継続的に使用されるが、第1のポンプ6は、システム起動時などのように取水管路11内が空であって第2のポンプ8だけでは沈殿槽3内の気液を吸い上げることが困難な時にのみ使用される。   Even in the present return sludge activated water treatment system S4, the second pump 8 is continuously used in the entire range from the system startup to the stop, but the first pump 6 is used at the time of system startup, etc. Thus, it is used only when the intake pipe 11 is empty and it is difficult to suck up the gas-liquid in the sedimentation tank 3 only by the second pump 8.

気液混合装置10Cは、図10のように曝気槽2の水面の上部に設置されるとともに、図11に示したように、(1)円筒形の密閉容器24と、(2)第2のポンプ8の吐出側8Bに管継ぎ手18Bを介して連結され、第2のポンプ8の吐出側8Bから吐出した液体を密閉容器24内に導入する流体導入管25と、(3)密閉容器24内から外部へ気液を吐出させる流体吐出口26と、(4)流体吐出口26に取り付けられた吐出筒27と、(5)吐出筒27に取り付けられた気体導入管15とを備えて構成される。   The gas-liquid mixing device 10C is installed on the upper surface of the aeration tank 2 as shown in FIG. 10, and as shown in FIG. 11, (1) a cylindrical sealed container 24, and (2) a second A fluid introduction pipe 25 connected to the discharge side 8B of the pump 8 via a pipe joint 18B and introducing the liquid discharged from the discharge side 8B of the second pump 8 into the sealed container 24; (3) in the sealed container 24; A fluid discharge port 26 that discharges gas and liquid from the outside, (4) a discharge cylinder 27 attached to the fluid discharge port 26, and (5) a gas introduction pipe 15 attached to the discharge cylinder 27. The

本気液混合装置10Cにおいても、流体導入管25は、密閉容器24の内外周壁を貫通して該密閉容器24内に入り込み、この入り込んだ流体導入管25の先端部が、流体導入口28として密閉容器24の内底面に近接して開口するように構成した。このため、流体導入口28から密閉容器24内へ導入された液体は、密閉容器24の内側円弧面に沿って左右方向(密閉容器24の左右内端面方向)へ扇状に薄層拡散し、密閉容器24内で高速の渦流を形成する。また、その高速渦流は密閉容器24の内端面方向へ向うため、上記流体吐出口26は密閉容器24の端面に開口した。   Also in the gas-liquid mixing apparatus 10 </ b> C, the fluid introduction pipe 25 penetrates the inner and outer peripheral walls of the sealed container 24 and enters the sealed container 24, and the leading end of the entered fluid introduction pipe 25 is sealed as the fluid introduction port 28. The container 24 is configured to open close to the inner bottom surface. For this reason, the liquid introduced into the sealed container 24 from the fluid inlet 28 is diffused into a fan-like thin layer in the left-right direction (in the direction of the left and right inner end surfaces of the sealed container 24) along the inner circular arc surface of the sealed container 24. A high-speed vortex is formed in the container 24. Further, since the high-speed vortex flows toward the inner end face of the sealed container 24, the fluid discharge port 26 opens at the end face of the sealed container 24.

また、本気液混合装置10Cにおいても、気液の排出効率を高めることと、気液の混合程度をより一層向上させる観点より、上記流体吐出口26には前述した図6に示すノズル構造30を採用した。ノズル構造30の具体的な構成は前述の通り、その詳細説明は省略する。   Also in the gas-liquid mixing apparatus 10C, the above-described nozzle structure 30 shown in FIG. 6 is provided in the fluid discharge port 26 from the viewpoint of improving the gas-liquid discharge efficiency and further improving the degree of gas-liquid mixing. Adopted. The detailed configuration of the nozzle structure 30 is omitted as described above.

以上の構成からなる気液混合装置10Cでは、ノズル構造30の噴出孔32から気液が噴出し、流体吐出口26の下流、具体的には噴出孔32の流体吐出側付近が陰圧となる。この陰圧を利用して気体導入管15から自然に空気を吸い込ませるようにするため、気体導入管15の一端は流体吐出口26の流体吐出側陰圧部に開口し、同気体導入管15の他端は大気側に開口した。本気液混合装置10Cも自然吸気式であるから、コンプレッサ等を用いた強制給気式のような動力系は不要である。   In the gas-liquid mixing apparatus 10C configured as described above, gas-liquid is ejected from the ejection holes 32 of the nozzle structure 30, and the downstream side of the fluid ejection port 26, specifically, the vicinity of the fluid ejection side of the ejection holes 32 becomes negative pressure. . In order to allow air to be naturally sucked from the gas introduction tube 15 using this negative pressure, one end of the gas introduction tube 15 opens to the fluid discharge side negative pressure portion of the fluid discharge port 26, and the gas introduction tube 15. The other end of was opened to the atmosphere side. Since the gas-liquid mixing apparatus 10C is also a natural intake type, a power system such as a forced supply type using a compressor or the like is not necessary.

また、本気液混合装置10Cの流体吐出口26付近では、吸込孔31と噴出孔32とを介して行われる流体の吐出と吸込み動作に、気体導入管15を介する気体の吸込み動作が加わり、吐出筒27内で複雑な乱流が発生し、気液の混合が促進され、流体中の溶存酸素量の増加を図れる。   Further, in the vicinity of the fluid discharge port 26 of the gas-liquid mixing apparatus 10C, a gas suction operation through the gas introduction pipe 15 is added to the fluid discharge and suction operations performed through the suction hole 31 and the ejection hole 32, and the discharge is performed. A complicated turbulent flow is generated in the cylinder 27, the gas-liquid mixing is promoted, and the amount of dissolved oxygen in the fluid can be increased.

図10の本返送汚泥活性化水処理システムS4は、ポンプ8、6、取水管路11および給水管路17により、沈殿槽3から曝気槽2へ汚泥を返送するルート(汚泥返送ルート70)を形成するとともに、その曝気槽2への返送汚泥の吐出口17Aに気液混合装置10Cを接続し、この気液混合装置10Cから曝気槽2へ溶存酸素濃度を高めて活性化した返送汚泥が吐出供給されるように構成したものである。   This return sludge activated water treatment system S4 in FIG. 10 has a route (sludge return route 70) for returning sludge from the settling tank 3 to the aeration tank 2 by the pumps 8 and 6, the intake pipe 11 and the water supply pipe 17. A gas-liquid mixing device 10C is connected to the return port 17A for returning sludge to the aeration tank 2, and the activated return sludge is discharged from the gas-liquid mixing device 10C to the aeration tank 2 by increasing the dissolved oxygen concentration. It is configured to be supplied.

上記のような構成の本返送汚泥活性化水処理システムS4によると、気液混合装置10Cから曝気槽2へ溶存酸素濃度を高めて活性化した返送汚泥が吐出供給されるので、低溶存酸素濃度の返送汚泥が曝気槽2に返送されることによる低溶存酸素濃度水域の発生を効果的に防止することができ、曝気槽2全体が微生物活性の高い高濃度の溶存酸素水域となり、水処理施設における浄化能力の向上を図れる。   According to the present return sludge activated water treatment system S4 having the above-described configuration, since the return sludge activated by increasing the dissolved oxygen concentration is discharged and supplied from the gas-liquid mixing device 10C to the aeration tank 2, the low dissolved oxygen concentration Can effectively prevent the generation of low dissolved oxygen concentration water area due to the return of sludge to the aeration tank 2, and the entire aeration tank 2 becomes a high concentration dissolved oxygen water area with high microbial activity. The purification capacity can be improved.

図12は、別の返送汚泥活性化水処理システムS5のシステム構成図である。本返送汚泥活性化水処理システムS5は、既設の返送汚泥・返送用のポンプ71により沈殿槽3から汚泥返送管路72を通じて曝気槽2へ汚泥を返送するルート(汚泥返送ルート73)を有するとともに、その曝気槽2への返送汚泥の吐出口72Aに前述した図11の気液混合装置10Cを接続したものである。この接続構造は、気液混合装置10Cの流体導入管25が返送汚泥の吐出口72Aに接続されるものとする。   FIG. 12 is a system configuration diagram of another return sludge activated water treatment system S5. The return sludge activated water treatment system S5 has a route (sludge return route 73) for returning the sludge from the settling tank 3 to the aeration tank 2 through the sludge return pipe 72 by the existing return sludge / return pump 71. 11 is connected to the discharge port 72A for returning sludge to the aeration tank 2. In this connection structure, the fluid introduction pipe 25 of the gas-liquid mixing apparatus 10C is connected to the return sludge discharge port 72A.

以上の構成からなる図12の返送汚泥活性化水処理システムS5もまた、図10のシステムS4と同様に、気液混合装置10Cから曝気槽2へ溶存酸素濃度を高めて活性化した返送汚泥を吐出供給する。この際、返送汚泥の吐出口72Aは図12のように曝気槽2前段の水面上部に設けられるため、その吐出口72Aに接続された図11の気液混合装置10Cは、曝気槽2前段に溶存酸素濃度を高めて活性化した返送汚泥を吐出供給する。従って、図12の本返送汚泥活性化水処理システムS5によると、従来より曝気槽2の処理能力低下の要因となっていた曝気槽2前段の低溶存酸素濃度水域を高溶存酸素濃度水域に改善することができ、曝気槽2全体が微生物活性の高い高濃度の溶存酸素水域となり、水処理施設における浄化能力の向上を図れる。   The return sludge activated water treatment system S5 of FIG. 12 configured as described above is also configured to return the activated sludge activated by increasing the dissolved oxygen concentration from the gas-liquid mixing device 10C to the aeration tank 2, similarly to the system S4 of FIG. Discharge supply. At this time, the return sludge discharge port 72A is provided in the upper part of the water surface upstream of the aeration tank 2 as shown in FIG. 12, so that the gas-liquid mixing apparatus 10C of FIG. Discharge and supply return sludge activated by increasing the dissolved oxygen concentration. Therefore, according to this return sludge activated water treatment system S5 of FIG. 12, the low dissolved oxygen concentration water area in the previous stage of the aeration tank 2 which has been a factor of lowering the treatment capacity of the aeration tank 2 is improved to the high dissolved oxygen concentration water area. Therefore, the entire aeration tank 2 becomes a high-concentration dissolved oxygen water region with high microbial activity, and the purification capacity in the water treatment facility can be improved.

特に、この図12の返送汚泥活性化水処理システムS5は、返送汚泥・返送用のポンプ71が0.2〜0.6MPaの圧力を常時吐出する能力を有する場合には、曝気槽2への返送汚泥の吐出口72Aに図11の気液混合装置10Cを接続するだけで構成することができ、既設の返送汚泥・返送用のポンプ71を制御する制御系以外に、他に特別な制御系を必要とせず、シンプルな機器構成で水処理施設における浄化能力の向上を図れるという利点もある。   In particular, the return sludge activated water treatment system S5 of FIG. 12 is provided to the aeration tank 2 when the return sludge / return pump 71 has the ability to constantly discharge a pressure of 0.2 to 0.6 MPa. 11 can be configured by simply connecting the gas-liquid mixing device 10C of FIG. 11 to the return sludge discharge port 72A. In addition to the control system for controlling the existing return sludge / return pump 71, there is a special control system. There is also an advantage that the purification capability in the water treatment facility can be improved with a simple equipment configuration.

<実験サンプルの説明>
図13は図6に示す本ノズル構造30の効果実験を行ったときの実験サンプルの説明図であり、(a)は本ノズル構造30、(b)は本ノズル構造30との比較に用いたノズル構造(以下「比較ノズル構造90」という)を示したものである。比較ノズル構造90は本ノズル構造30のような吸込孔31や噴出孔32の区別がなく、そのノズル構造中央部に1つの孔91を設けたものとした。
<Explanation of experimental sample>
FIG. 13 is an explanatory diagram of an experimental sample when the effect experiment of the nozzle structure 30 shown in FIG. 6 is performed. (A) is the nozzle structure 30, and (b) is used for comparison with the nozzle structure 30. A nozzle structure (hereinafter referred to as “comparative nozzle structure 90”) is shown. The comparison nozzle structure 90 has no distinction between the suction hole 31 and the ejection hole 32 as in the present nozzle structure 30, and has a single hole 91 provided at the center of the nozzle structure.

本ノズル構造30および比較ノズル構造90とも、そのノズルの厚さ(それぞれの孔31、32、91の長さ)は3mmとし、これら2種のノズル構造以外は全て同じ装置条件で実験を行った。すなわち、本ノズル構造30を採用した図5の装置10Aについて実験を行うとともに、その装置10Aから本ノズル構造30を取り外して代わりに比較ノズル構造90を取り付けて実験を行った。尚、本ノズル構造30と比較ノズル構造90の各孔31、32、91の面積は以下の通りである。
(i) 本ノズル構造
吸込孔の面積:19.165mm
噴出孔の面積:28.26mm(7.065mm(1孔)×4の合計面積)
(ii) 比較ノズル構造
1つの孔の面積:45.3416mm
In both the nozzle structure 30 and the comparative nozzle structure 90, the thickness of each nozzle (the length of each hole 31, 32, 91) was 3 mm, and the experiment was performed under the same apparatus conditions except for these two nozzle structures. . That is, the experiment was performed on the apparatus 10A of FIG. 5 employing the nozzle structure 30, and the experiment was performed by removing the nozzle structure 30 from the apparatus 10A and attaching the comparative nozzle structure 90 instead. In addition, the area of each hole 31, 32, 91 of this nozzle structure 30 and the comparison nozzle structure 90 is as follows.
(i) This nozzle structure
Area of suction hole: 19.165mm 2
Area of the ejection hole: 28.26mm 2 (7.065mm 2 (1 hole) × 4 total area)
(ii) Comparison nozzle structure
Area of one hole: 45.3416mm 2

<実験(1)の条件>
本実験(1)においては、本ノズル構造30と比較ノズル構造90から噴出させる流体については水道水とし、水道水を水槽に溜め、圧力ポンプを介して0.1MPa〜0.6MPaの範囲で0.1MPa刻みで段階的に装置10Aの流体導入管25(図5参照)に水道水を導入した。排水量はポリバケツに排水した水の重量を計量し、比重1.0として容量を算出した。
<Conditions for Experiment (1)>
In this experiment (1), the fluid ejected from the nozzle structure 30 and the comparative nozzle structure 90 is tap water, the tap water is stored in a water tank, and the pressure is pumped in a range of 0.1 MPa to 0.6 MPa in increments of 0.1 MPa. Then, tap water was gradually introduced into the fluid introduction pipe 25 (see FIG. 5) of the apparatus 10A. The amount of drainage was calculated by measuring the weight of water drained into a polybucket and calculating the capacity with a specific gravity of 1.0.

<実験(1)における本ノズル構造の排出状況の観察結果>
0.1MPaの水道水を導入した場合には、4つの噴出孔32全てから水道水が排出されたが、ノズル構造中央の吸込孔31からも僅かに水道水が排出されていることを確認した。導入する水道水の圧力が0.2MPa以上になると、4個の噴出孔32のみから水道水が排出され、吸込孔31からの排水はまったくなかった。この状況は、4個の噴出孔32のうち1つの噴出孔を指で塞ぎ、側面から観察し、吸込孔31からの噴出しの有無を確認するものとした。
<Observation result of discharge status of this nozzle structure in Experiment (1)>
When tap water of 0.1 MPa was introduced, it was confirmed that tap water was discharged from all four ejection holes 32, but that tap water was also slightly discharged from the suction hole 31 at the center of the nozzle structure. When the pressure of tap water to be introduced was 0.2 MPa or more, tap water was discharged only from the four ejection holes 32, and there was no drainage from the suction holes 31. In this situation, one of the four ejection holes 32 was closed with a finger, observed from the side, and the presence or absence of ejection from the suction hole 31 was confirmed.

<実験(1)における排出量の比較>
図14の表1に示したように、各圧力時の排水量の計量は6回繰り返し、平均排水量と標準偏差を算出した。0.1MPa〜0.6MPaまで、各圧力時における本ノズル構造30と比較ノズル構造90の排水量は、比較ノズル構造と比べて本ノズル構造の方が、平均排水量で1.5割から2.5割の増量となった。この差を比較すると、図15の表2から、スチューデントt検定により、各圧力時のすべてにおいて有意な差が認められた(α<0.05;両側検定)。この試験では、前述の如く、本ノズル構造30と比較ノズル構造90とにおける各噴出し用の孔(本ノズル構造30では4つの噴出孔32のみ、比較ノズル構造90では1つの孔91である)の単純な面積の比較では、比較ノズル構造90の方が本ノズル構造30よりも、約1.6倍の面積を有するが、排水量は逆転し、本ノズル構造30の方が排水量が多くなっている。厳密に考えると、本ノズル構造中央の1つの吸込孔31で生じている筈の吸込みと排出の量を計測できればよいが、この計測は不可能である。従って、噴出孔32の面積比から確実に広い面積の孔を有するノズル構造でも単一孔であれば排出の効率が抑制されることが分る。
<Comparison of emissions in Experiment (1)>
As shown in Table 1 of FIG. 14, the measurement of the drainage amount at each pressure was repeated six times, and the average drainage amount and the standard deviation were calculated. From 0.1 MPa to 0.6 MPa, the drainage amount of the nozzle structure 30 and the comparative nozzle structure 90 at each pressure increased from 1.5% to 2.5% in the average drainage amount of the nozzle structure compared to the comparative nozzle structure. . When this difference was compared, from Table 2 in FIG. 15, a significant difference was observed at all pressures by Student's t test (α <0.05; two-sided test). In this test, as described above, the ejection holes in the nozzle structure 30 and the comparative nozzle structure 90 (only the four ejection holes 32 in the present nozzle structure 30 and one hole 91 in the comparative nozzle structure 90). In comparison of the simple areas, the comparative nozzle structure 90 has an area about 1.6 times that of the present nozzle structure 30, but the amount of drainage is reversed, and the amount of drainage is greater in the present nozzle structure 30. Strictly speaking, it is only necessary to measure the amount of soot suction and discharge generated in one suction hole 31 in the center of the nozzle structure, but this measurement is impossible. Therefore, it can be seen from the area ratio of the ejection holes 32 that even if the nozzle structure has a hole having a large area reliably, the discharge efficiency can be suppressed if it is a single hole.

<実験(2)の条件>
本実験(2)では、2t容量の大型水槽を用い、1tの水道水を溜め、圧力ポンプを介して0.3〜0.4MPaの圧力で、本ノズル構造30を採用した装置10A(図5参照)と、比較ノズル構造90を採用した装置10Aから、それぞれ同じ水槽内へ水道水を排出させるものとした。これと同時に100g(乾燥重量)の砂(粒径;0.2〜1.7mm)を圧力ポンプの取水口から1分間吸わせた。時間の経過に伴う溶存酸素濃度の上昇を溶存酸素測定器で計測した。
<Conditions for Experiment (2)>
In this experiment (2), an apparatus 10A (see FIG. 5) that employs the nozzle structure 30 with a large tank of 2t capacity, 1t of tap water, and a pressure of 0.3 to 0.4 MPa via a pressure pump. The tap water was discharged from the apparatus 10A employing the comparative nozzle structure 90 into the same water tank. At the same time, 100 g (dry weight) of sand (particle size: 0.2 to 1.7 mm) was sucked from the intake port of the pressure pump for 1 minute. The increase in dissolved oxygen concentration over time was measured with a dissolved oxygen meter.

<実験(2)の結果>
本ノズル構造を採用した気液混合装置10A(以下「本装置」という)では、圧力ポンプの取水口から吸わせた砂100g(乾燥重量)のうち、17g(乾燥重量)の砂が排出された。本装置10Aを分解したところ、密閉容器24の内部から28g(乾燥重量)の砂を回収したが、吸込孔31や噴出孔32等に砂の詰まりは生じていなかった。砂は、密閉容器24内で発生する渦による遠心分離が作用し、密閉容器24内に残存していたものと考えられる。残りの55gの砂は、おそらく圧力ポンプと配管内に存在していると推測する。
<Result of Experiment (2)>
In the gas-liquid mixing apparatus 10A (hereinafter referred to as “this apparatus”) adopting this nozzle structure, 17 g (dry weight) of sand out of 100 g (dry weight) sucked from the intake port of the pressure pump was discharged. . When this apparatus 10A was disassembled, 28 g (dry weight) of sand was recovered from the inside of the sealed container 24, but no sand clogging occurred in the suction holes 31, the ejection holes 32, and the like. It is considered that the sand remained in the sealed container 24 due to centrifugal separation caused by vortices generated in the sealed container 24. The remaining 55 g of sand is probably present in the pressure pump and piping.

本装置の排水量は約30〜40L/minであったが、1tの水に対して約5分で本装置から排出され、水槽内に微細気泡が充満した。時間の経過に伴う溶存酸素濃度の変化は図16の表3に示した通りである。表3から、本装置によると、水槽内に溜められた水道水の全部を本装置内で処理しないうちに、水槽内の溶存酸素濃度が上昇していることから、本装置からの排水吐出力による水の流動が水槽内で作用し、本装置稼動初期から溶存酸素濃度が上がったものと考えられる。また、本実験時の水温は25.7℃で、このときの溶存酸素飽和量は8.02mg/Lであるから、本装置によると、本装置稼動開始直後から水槽内の溶存酸素が飽和状態となり、最高で約120%の飽和量を示し、十分な気液混合が行われたことが示された。   The amount of drainage of this device was about 30-40 L / min, but it was discharged from this device in about 5 minutes for 1 t of water, and the water tank was filled with fine bubbles. The change in dissolved oxygen concentration over time is as shown in Table 3 of FIG. From Table 3, according to this device, since the concentration of dissolved oxygen in the water tank has increased before all the tap water stored in the water tank has been processed in this device, the drainage discharge force from this device. It is thought that the dissolved oxygen concentration increased from the beginning of the operation of the device due to the water flow caused by In addition, the water temperature at the time of this experiment is 25.7 ° C, and the dissolved oxygen saturation at this time is 8.02 mg / L. Therefore, according to this device, the dissolved oxygen in the water tank becomes saturated immediately after the start of operation of this device. Showed a saturation amount of about 120%, indicating that sufficient gas-liquid mixing was performed.

図17〜図22は、図9の調整槽水処理システムと特許文献1の水処理システムとについて、比較実験を行ったときの実験データである。図17〜図22から分るように、図9の調整槽水処理システムの方が、第2のポンプの加圧力(供給圧力)が高まるほど、平均気泡径のピークが最小気泡径の方向へ移行し、より多くの微細気泡が形成されるという結果が得られた。   17 to 22 are experimental data when a comparative experiment is performed on the adjusted tank water treatment system of FIG. 9 and the water treatment system of Patent Document 1. FIG. As can be seen from FIGS. 17 to 22, in the adjusted tank water treatment system of FIG. 9, the peak of the average bubble diameter increases toward the minimum bubble diameter as the pressurizing force (supply pressure) of the second pump increases. As a result, it was observed that more fine bubbles were formed.

ところで、一般に工場廃水の構成物や流量および濃度は年間を通して一定であることは少ない。工場生産品の種類や量、各品目の需要の消長によって工場廃水の質・量は常に変化している。例えば、生産品の変更によって工場廃水の内容が大幅に変わってしまった場合、図1に示す廃水処理設備Sの曝気槽2内では、浄化処理に働く微生物相の種類・構成も変化せざるをえない。   By the way, in general, the composition, flow rate, and concentration of factory wastewater are rarely constant throughout the year. The quality and quantity of factory wastewater is constantly changing according to the type and quantity of factory products and the fluctuations in demand for each item. For example, when the contents of factory wastewater have changed significantly due to changes in the product, the type and composition of the microflora that acts on the purification treatment must be changed in the aeration tank 2 of the wastewater treatment facility S shown in FIG. No.

しかしながら、曝気槽2内の微生物相は、廃水の変化に伴い即応して適切な微生物相に入れ替わるのではなく、相応の時間のずれ(タイムラグ)を経た後に入れ替わりが成立するか、もしくは、工場廃水の変化に微生物相の対応が追いつかず曝気槽2の浄化機能が崩壊してしまう場合もあり得る。特に、後者の場合、廃水中に含まれる油分などのように標準活性汚泥処理にとって難分解性物質の増加は、廃水処理設備Sからの処理放流水に直接的な悪化をもたらし、近傍河川などの水質環境に基準値以上の負荷を与える。   However, the microflora in the aeration tank 2 is not immediately replaced with an appropriate microflora as the wastewater changes, but is replaced after an appropriate time lag, or the factory wastewater. There is a case where the microbiota does not catch up with the change of the aeration tank and the purification function of the aeration tank 2 is destroyed. In particular, in the latter case, an increase in degradable substances for standard activated sludge treatment, such as oil contained in wastewater, causes direct deterioration in the treated effluent from the wastewater treatment facility S. Give the water quality environment a load higher than the standard value.

このような事態を回避するためには、曝気槽2内の微生物相に一定の浄化能力を保持させる蓄えが必要で、曝気槽2内の微生物相にも、常に予想される程度の難分解性物質を特異的に消化処理する能力を持った微生物、すなわち前述の特定微生物を準備しておく必要がある。   In order to avoid such a situation, it is necessary to store the microflora in the aeration tank 2 so as to maintain a certain purification capacity. It is necessary to prepare a microorganism having the ability to specifically digest a substance, that is, the specific microorganism described above.

そこで、図23の廃水処理設備S´では、特定微生物の準備のため、前述した図1の廃水処理設備Sの調整槽水処理システムS1、S2又はS3(図1参照)に特定微生物を注入するための注入手段92を組み込み、注入手段92によっていつでも機動的に調整槽1内へ特定微生物を注入できるように構成した。なお、本廃水処理設備S´の基本的な構成については図1の廃水処理設備Sと同様であるため、同一部材には同一符号を付し、その詳細説明は省略する。   Therefore, in the wastewater treatment facility S ′ of FIG. 23, the specific microorganism is injected into the adjustment tank water treatment system S1, S2 or S3 (see FIG. 1) of the wastewater treatment facility S of FIG. Injecting means 92 is incorporated so that specific microorganisms can be injected into adjusting tank 1 at any time by means of injecting means 92. Since the basic configuration of the wastewater treatment facility S ′ is the same as that of the wastewater treatment facility S in FIG. 1, the same reference numerals are given to the same members, and detailed descriptions thereof are omitted.

要するに、図23の本廃水処理設備S´においては、図1の廃水処理設備Sと同様、調整槽1内での微細気泡の生成によって、その調整槽1内の溶存酸素量(濃度)は高められており、調整槽1は微生物の生育環境を常に余裕のある状態で保持することが可能となっている。このため、本廃水処理設備S´は、上記の如く注入手段92によって特定微生物を含む微生物製剤を調整槽1へ投入できるように構成し、工場廃水の変化に応じて注入手段92を作動させるだけで、難分解性物質等を含む工場廃水のようなイレギュラーな工場廃水の変化にも即応できるようにしたものである。   In short, in the present wastewater treatment facility S ′ of FIG. 23, the amount of dissolved oxygen (concentration) in the adjustment tank 1 is increased by the generation of fine bubbles in the adjustment tank 1 as in the wastewater treatment facility S of FIG. Therefore, the adjustment tank 1 can always maintain the growth environment of microorganisms in a state with a margin. For this reason, this wastewater treatment facility S ′ is configured so that the microorganism preparation containing the specific microorganism can be introduced into the adjustment tank 1 by the injection means 92 as described above, and only the injection means 92 is operated according to the change of the factory wastewater. This makes it possible to respond immediately to irregular changes in factory wastewater such as factory wastewater containing persistent substances.

図23に示した注入手段92は、ブロワー92Cによってエアーが供給される微生物培養槽92Aと、定量ポンプ等からなる微生物注入装置92Bとを含んで構成されるとともに、微生物培養槽92Aに特定微生物製剤を投入し、同槽92A内で発芽、培養、増殖した特定微生物が微生物注入装置92によって調整槽1へ注入される。特定微生物の発芽、培養、増殖に必要な酸素はブロワー92Cによって供給される。   The injection means 92 shown in FIG. 23 includes a microorganism culture tank 92A to which air is supplied by a blower 92C and a microorganism injection apparatus 92B composed of a metering pump or the like, and the microorganism culture tank 92A has a specific microorganism preparation. The specific microorganisms germinated, cultured and proliferated in the tank 92A are injected into the adjustment tank 1 by the microorganism injection device 92. Oxygen necessary for germination, culture and growth of a specific microorganism is supplied by the blower 92C.

微生物培養層92Aの容量については、常に少量の活性特定微生物を調整槽1へ注入投与する注入形態(いわゆる免疫保持機能)と、イレギュラーな廃水時のみに特定微生物の注入投与量を増加する注入形態(いわゆる頓服処方)との両方に対応できるよう、大きめに設定しておくことが好ましい。   Regarding the capacity of the microorganism culture layer 92A, an injection mode (so-called immune retention function) in which a small amount of active specific microorganisms is always injected into the adjustment tank 1 and an injection that increases the injection dose of specific microorganisms only during irregular wastewater. It is preferable to set a large size so as to be compatible with both the form (so-called prescription).

また、休眠処理を施した特定微生物等を固着保持するために用いられている担体が調整槽1へ混入することを回避するために、調整槽1へ特定微生物を含む処理水を供給する微生物培養槽92Aの出口側には目開き1mm〜2mm程度の網をフィルタ(図示省略)として設けることが望ましい。このフィルタは容易に洗浄ができるよう取り外し可能な構造とする。   Moreover, in order to avoid the carrier used for adhering and holding the specific microorganisms subjected to the dormancy treatment from being mixed into the adjustment tank 1, the microorganism culture that supplies the adjustment tank 1 with treated water containing the specific microorganisms It is desirable to provide a net having an opening of about 1 mm to 2 mm as a filter (not shown) on the outlet side of the tank 92A. This filter has a removable structure so that it can be easily cleaned.

図24は、上記注入手段92を図2の調整槽水処理システムS1に組み込んだ構成例の説明図、図25は、上記注入手段92を図7の調整槽水処理システムS2に組み込んだ構成例の説明図である。これらの組み込み例はいずれも、注入手段92の具体的な構成として、微生物培養槽92Aで特定微生物を発芽、培養し、増殖した特定微生物を調整槽1へ注入する方式を採用したものであるが、その微生物培養槽92Aを使用しない方式を採用することもできる。この種の方式としては、例えば、定期的に作業者が直接特定微生物製剤、すなわち発芽していない特定微生物を調整槽1へ投入する方式(第1の方式)や、既に発芽・培養した特定微生物を微生物注入装置92Bによって調整槽1へ定量滴下させる方式(第2の方式)などが考えられ、いずれの方式を採用してもよい。   FIG. 24 is an explanatory diagram of a configuration example in which the injection means 92 is incorporated in the adjustment tank water treatment system S1 of FIG. 2, and FIG. 25 is a configuration example in which the injection means 92 is incorporated in the adjustment tank water treatment system S2 of FIG. It is explanatory drawing of. In any of these examples, the injection means 92 has a specific configuration in which a specific microorganism is germinated and cultured in the microorganism culture tank 92A, and the propagated specific microorganism is injected into the adjustment tank 1. A method that does not use the microorganism culture tank 92A can also be adopted. As this type of method, for example, a method in which an operator periodically inputs a specific microorganism preparation, that is, a specific microorganism that has not germinated, into the adjustment tank 1 (first method), or a specific microorganism that has already germinated and cultured. A method (second method) in which a constant amount is dropped onto the adjustment tank 1 by the microorganism injection device 92B is conceivable, and any method may be adopted.

ところで、上記第1の方式の場合、特定微生物製剤を調整槽1内に投入した直後から特定微生物が直ちに消化活動を開始できればよいが、多くの微生物製剤には休眠処理が施されている。本実施形態で使用する特定微生物製剤も同様である。特定微生物が休眠から目覚める(発芽)まで大凡一日以上要するから、上記第1の方式は、特定微生物の発芽までの時間に比べて、調整槽1の滞留時間が十分長い場合に採用することが望ましい。この一方、上記第2の方式は、既に発芽・培養済みの特定微生物を調整槽1に投入するものであるから、特定微生物の発芽までの時間に比べて、調整槽1の滞留時間が十分長い場合のみならず、短い場合でも採用することができる。   By the way, in the case of the first method, it is only necessary that the specific microorganism can immediately start digestion activity immediately after the specific microorganism preparation is put into the adjustment tank 1, but many microorganism preparations are subjected to a dormancy treatment. The same applies to the specific microorganism preparation used in the present embodiment. Since it takes approximately one day or more until the specific microorganism wakes up from dormancy (germination), the first method may be adopted when the residence time of the adjustment tank 1 is sufficiently longer than the time until germination of the specific microorganism. desirable. On the other hand, in the second method, since the specific microorganisms already germinated and cultured are put into the adjustment tank 1, the residence time of the adjustment tank 1 is sufficiently longer than the time until germination of the specific microorganisms. Not only the case but also a short case can be adopted.

本発明に係る水処理システムを適用した廃水処理設備の概略構成図。The schematic block diagram of the wastewater treatment facility to which the water treatment system which concerns on this invention is applied. 調整槽水処理システムのシステム構成図。The system block diagram of an adjustment tank water treatment system. エジェクタ装置の断面図。Sectional drawing of an ejector apparatus. ミキサ装置の断面図。Sectional drawing of a mixer apparatus. 図5は本発明に係る水処理システムを構成する気液混合装置の一実施形態の説明図であり、(a)は気液混合装置の断面図、(b)はB矢視図、(c)はc−c線断面図である。FIG. 5 is an explanatory view of an embodiment of a gas-liquid mixing device constituting the water treatment system according to the present invention, wherein (a) is a cross-sectional view of the gas-liquid mixing device, (b) is a view as viewed from arrow B, (c) ) Is a cross-sectional view taken along the line cc. ノズル構造の説明図であり、(a)はノズル構造の正面図、(b)はノズル構造の断面図である。It is explanatory drawing of a nozzle structure, (a) is a front view of a nozzle structure, (b) is sectional drawing of a nozzle structure. 別の調整槽水処理システムのシステム構成図。The system block diagram of another adjustment tank water treatment system. 気液混合装置の他の実施形態の断面図である。It is sectional drawing of other embodiment of a gas-liquid mixing apparatus. 図8の気液混合装置を含む調整槽水処理システムのシステム構成図。The system block diagram of the adjustment tank water treatment system containing the gas-liquid mixing apparatus of FIG. 返送汚泥活性化水処理システムのシステム構成図。The system block diagram of a return sludge activated water treatment system. 図10の返送汚泥活性化水処理システムを構成する気液混合装置の説明図。Explanatory drawing of the gas-liquid mixing apparatus which comprises the return sludge activated water processing system of FIG. 別の返送汚泥活性化水処理システムのシステム構成図。The system block diagram of another return sludge activated water treatment system. 図13は図6に示す本ノズル構造の効果実験を行ったときの実験サンプルの説明図であり、(a)は本ノズル構造の正面図とその側面図、(b)は比較ノズル構造の正面図とその側面図である。FIG. 13 is an explanatory diagram of an experimental sample when the effect experiment of the present nozzle structure shown in FIG. 6 is performed, (a) is a front view and a side view of the nozzle structure, and (b) is a front view of the comparative nozzle structure. It is a figure and its side view. 本ノズル構造と比較ノズル構造の排出量(実験データ)の比較図。The comparison figure of discharge amount (experiment data) of this nozzle structure and a comparison nozzle structure. スチューデントt検定による本ノズル構造と比較ノズル構造の排出量の比較図。FIG. 3 is a comparison diagram of discharge amounts of the present nozzle structure and a comparative nozzle structure by student t test. 本ノズル構造を採用した気液混合装置を使用した場合における、装置稼動開始からの時間経過に伴う溶存酸素濃度の変化を示した実験データの説明図。Explanatory drawing of the experimental data which showed the change of the dissolved oxygen concentration with the time passage from an apparatus operation start at the time of using the gas-liquid mixing apparatus which employ | adopted this nozzle structure. 図17は図9の調整槽水処理システムと特許文献1の水処理システムとについて、比較実験を行ったときの実験データであり、気泡の発生分布を示したグラフ図(スライドグラス採取による圧力条件0.3MPa時のもの)である。FIG. 17 is experimental data when a comparative experiment is performed on the adjustment tank water treatment system of FIG. 9 and the water treatment system of Patent Document 1, and is a graph showing the generation distribution of bubbles (pressure condition by collecting slide glass) At 0.3 MPa). 図18は図9の調整槽水処理システムと特許文献1の水処理システムとについて、比較実験を行ったときの実験データであり、気泡の発生分布を示したグラフ図(スライドグラス採取による圧力条件0.35MPa時のもの)である。FIG. 18 is experimental data when a comparative experiment is performed on the adjustment tank water treatment system of FIG. 9 and the water treatment system of Patent Document 1, and is a graph showing the generation distribution of bubbles (pressure condition by collecting slide glass) At 0.35 MPa). 図19は図9の調整槽水処理システムと特許文献1の水処理システムとについて、比較実験を行ったときの実験データであり、気泡の発生分布を示したグラフ図(スライドグラス採取による圧力条件0.4MPa時のもの)である。FIG. 19 is experimental data when a comparative experiment is performed on the adjustment tank water treatment system of FIG. 9 and the water treatment system of Patent Document 1, and is a graph showing the bubble generation distribution (pressure condition by collecting slide glass). At 0.4 MPa). 図9の調整槽水処理システムと特許文献1の水処理システムとについて、比較実験を行ったときの気泡の発生分布を示したグラフ図(スライドグラス採取による圧力条件0.45MPa時のもの)である。FIG. 10 is a graph showing the generation distribution of bubbles when a comparative experiment is performed for the adjustment tank water treatment system of FIG. 9 and the water treatment system of Patent Document 1 (when the pressure condition by taking a slide glass is 0.45 MPa). . 図21は、図9の調整槽水処理システムと特許文献1の水処理システムとについて、比較実験を行ったときの実験データであり、ポンプの加圧力(供給圧力)の変化に伴う1ml中における微細気泡の発生量の比較図である。FIG. 21 is experimental data when a comparative experiment is performed on the adjustment tank water treatment system of FIG. 9 and the water treatment system of Patent Document 1, and in 1 ml accompanying a change in the pressure (supply pressure) of the pump. It is a comparison figure of the generation amount of a fine bubble. 図22は、図9の調整槽水処理システムと特許文献1の水処理システムとについて、比較実験を行ったときの実験データであり、ポンプの加圧力(供給圧力)の変化に伴う平均気泡径の比較図である。FIG. 22 is experimental data when a comparative experiment is performed on the adjusted tank water treatment system of FIG. 9 and the water treatment system of Patent Document 1, and the average bubble diameter associated with the change in pump pressure (supply pressure) FIG. 本発明に係る水処理システム(注入手段を含むもの)を適用した他の廃水処理設備の概略構成図。The schematic block diagram of the other wastewater treatment facility to which the water treatment system (including the injection means) according to the present invention is applied. 図2の調整槽水処理システムに注入手段を組み込んだ構成例の説明図。Explanatory drawing of the structural example which integrated the injection | pouring means in the adjustment tank water treatment system of FIG. 図7の調整槽水処理システムに注入手段を組み込んだ構成例の説明図。Explanatory drawing of the structural example which integrated the injection | pouring means in the adjustment tank water treatment system of FIG.

符号の説明Explanation of symbols

S 廃水処理設備
S1、S2、S3、S4、S5 水処理システム
1 調整槽
2 曝気槽
3 沈殿槽
4 ポンプ
6 第1のポンプ
6A ポンプ吸込口
6B ポンプ吐出口
7 エジェクタ装置
8 第2のポンプ
8A ポンプ吸込口
8B ポンプ吐出口
9 ミキサ装置
10A、10B、10C 気液混合装置
11 取水管路
12A、12B 継ぎ手
13 管体
14 絞り部
15 気体導入管
16 モータ
17 給水管路
17A 返送汚泥の吐出口
18A 管継ぎ手
18B 管継ぎ手
19 管体
20 攪拌手段
21 貫通孔
22 攪拌板
23 スペーサ
24 密閉容器
25 流体導入管
26 流体吐出口
27 吐出筒
28 流体導入口
30 流体吐出口のノズル構造
31 吸込み用の孔(吸込孔)
32 噴出し用の孔(噴出孔)
33 戻り管路
41A、41B 回転流形成部
42 流体導入路
43A 管継ぎ手
44 円錐状突起
45 気液混合室
46 ノズル流路
47 テーパ孔
48 隙間傾斜流路
49 回転流通過流路
50 第1のテーパ流路
51 第2のテーパ流路
52 オリフィス流路
53 連結筒
54 上段ブロック
55 中段ブロック
56 下段ブロック
57 オリフィス板
58 キャップ
59 凹部
60 吐出孔
70 汚泥返送ルート
71 返送汚泥・返送用のポンプ
72 汚泥返送管路
72A 返送汚泥の吐出口
73 汚泥返送ルート
100 制御盤
101 流量計
90 比較ノズル構造
91 孔
92 注入手段
92A 微生物培養槽
92B 微生物注入装置
92C ブロワー
S Wastewater treatment facilities S1, S2, S3, S4, S5 Water treatment system 1 Adjustment tank 2 Aeration tank 3 Precipitation tank 4 Pump 6 First pump 6A Pump suction port 6B Pump discharge port 7 Ejector device 8 Second pump 8A Pump Suction port 8B Pump discharge port 9 Mixer device 10A, 10B, 10C Gas-liquid mixing device 11 Intake pipe 12A, 12B Joint 13 Tubing body 14 Throttle section 15 Gas introduction pipe 16 Motor 17 Water supply pipe line 17A Return sludge discharge port 18A Pipe Joint 18B Pipe joint 19 Tube body 20 Stirring means 21 Through hole 22 Stirring plate 23 Spacer 24 Sealed container 25 Fluid introduction pipe 26 Fluid discharge port 27 Discharge cylinder 28 Fluid introduction port 30 Nozzle structure 31 of fluid discharge port Suction hole (suction) Hole)
32 Hole for ejection (ejection hole)
33 Return pipes 41A and 41B Rotating flow forming part 42 Fluid introducing path 43A Pipe joint 44 Conical protrusion 45 Gas-liquid mixing chamber 46 Nozzle channel 47 Tapered hole 48 Gap inclined channel 49 Rotating flow channel 50 First taper Flow path 51 Second taper flow path 52 Orifice flow path 53 Connecting cylinder 54 Upper block 55 Middle block 56 Lower block 57 Orifice plate 58 Cap 59 Recess 60 Discharge hole 70 Sludge return route 71 Return sludge and return pump 72 Sludge return Pipe line 72A Return sludge outlet 73 Sludge return route 100 Control panel 101 Flow meter 90 Comparison nozzle structure 91 Hole 92 Injection means 92A Microorganism culture tank 92B Microorganism injection apparatus 92C Blower

以上説明した第1及び第2の本発明に係る水処理システムは、曝気槽の上流に設けられる調整槽の液体を処理する調整槽水処理システムとして構成してよい。このように構成すると、調整槽内で溶存酸素量が高められるから、調整槽内で有用微生物の繁殖と育成の促進を図ることができ、調整槽内で微生物の消化活動が開始されるとともに、その溶存酸素濃度の高い液体を調整槽から曝気槽内の低溶存酸素濃度水域へ供給することで、有用微生物に好適な曝気槽内の活性水域を拡大することができ、水処理施設における浄化能力を向上させることができる。
The water treatment system according to the first and second aspects of the present invention described above may be configured as an adjustment tank water treatment system that processes the liquid in the adjustment tank provided upstream of the aeration tank. If constituted in this way, since the amount of dissolved oxygen is increased in the adjustment tank, it is possible to promote the propagation and growth of useful microorganisms in the adjustment tank, and the digestion activity of microorganisms is started in the adjustment tank, By supplying the liquid with high dissolved oxygen concentration from the adjustment tank to the low dissolved oxygen concentration water area in the aeration tank, the active water area in the aeration tank suitable for useful microorganisms can be expanded, and the purification capacity in the water treatment facility Can be improved.

以上説明した第1及び第2の発明に係る水処理システムでは、ポンプの加圧により流路内で0.3〜1.0MPa程度の加圧を施すため、油分を多く含む廃水や難分解性物質を含有する廃水であっても、それらの物質は加圧・減圧により微粒化し、乳化・分散する。このため、本水処理システムは、調整槽内への高濃度溶存酸素水体の提供のみならず、これに加えて更に、油分や難分解物質などを特異的に分解する微生物群の消化効率を同時に促進させることもできる。
In the water treatment system according to the first and second inventions described above, since the pressurization of the pump applies a pressure of about 0.3 to 1.0 MPa in the flow path, the waste water containing a large amount of oil and a hardly decomposable substance are contained. Even in wastewater, these substances are atomized by pressurization and decompression, and emulsified and dispersed. For this reason, this water treatment system not only provides a high-concentration dissolved oxygen water body in the adjustment tank, but also, in addition to this, the digestion efficiency of the microorganism group that specifically decomposes oils and persistent substances, etc. It can also be promoted.

また、以上説明した第1及び第2の発明に係る水処理システムにおいて、上記槽は曝気槽の上流側に設けられる調整槽であり、上記水処理システムは、上記調整槽に特定微生物を注入するための注入手段を備える構成を採用することができる。
Moreover, in the water treatment system according to the first and second inventions described above, the tank is a regulation tank provided on the upstream side of the aeration tank, and the water treatment system injects a specific microorganism into the regulation tank. It is possible to employ a configuration including an injection means for the purpose.

第1及び第2の本発明に係る水処理システムにあっては、いずれも、槽内の液体を吸込み加圧して吐出するポンプと、ポンプの吸込み側前段で液体中に気体を混入するエジェクタ装置と、ポンプから吐出された気液を撹拌するミキサ装置と、ミキサ装置で撹拌された気液を渦流により混合する気液混合装置とを具備し、ポンプの吸込み側前段でエジェクタ装置を介して液体中に気体を混入させ、その気液をポンプで加圧しミキサ装置を介して気液混合装置へ供給する構成を採用したものである。このため、ポンプ、ミキサ装置、気液混合装置の3段で気液の加圧、撹拌、混合がなされることから、システム全体で効率よく気液を混合することができ、槽内の溶存酸素濃度を高める。
In each of the water treatment systems according to the first and second aspects of the present invention, both a pump that sucks and pressurizes the liquid in the tank and discharges the liquid, and an ejector device that mixes gas into the liquid at the upstream side of the suction side of the pump And a mixer device that stirs the gas-liquid discharged from the pump and a gas-liquid mixing device that mixes the gas-liquid stirred in the mixer device by vortex, and the liquid is passed through the ejector device at the upstream side of the suction side of the pump. A configuration is adopted in which gas is mixed therein, the gas-liquid is pressurized with a pump, and supplied to the gas-liquid mixing device via a mixer device. For this reason, gas-liquid pressurization, agitation, and mixing are performed in three stages of a pump, a mixer device, and a gas-liquid mixing device, so that gas-liquid can be mixed efficiently throughout the system, and dissolved oxygen in the tank Increase concentration.

さらに、前記第1及び第2の本発明において、ポンプの吐出側から吐出された液体を同ポンプの吸込み側へ返送する戻り流路を設けるとともに、この流路の途中にエジェクタ装置を組み込む構成を採用したものは、ポンプの吸込み側に気体を直接送り込む従来の方式と異なり、気体と液体の混合体をポンプの吸込み側へ送り込むから、例えば前記ポンプの具体例として、現在最も一般的に多く使用されている非容積式タイプの遠心ポンプ(渦巻ポンプ)を採用しても、ポンプの空転や、ポンプから気液混合装置への気液の供給不足による気液混合の効率低下を効果的に防止することができる。
Further, in the first and second aspects of the present invention, a configuration is provided in which a return flow path for returning the liquid discharged from the discharge side of the pump to the suction side of the pump is provided, and an ejector device is incorporated in the flow path. Unlike the conventional method in which gas is sent directly to the suction side of the pump, the one used is because the mixture of gas and liquid is sent to the suction side of the pump. Even if a non-displacement type centrifugal pump (vortex pump) is used, it is possible to effectively prevent the efficiency of gas / liquid mixing from being reduced due to the idling of the pump or insufficient supply of gas / liquid from the pump to the gas / liquid mixing device. can do.

第1及び第2の本発明に係る水処理システムによると、そのシステムを構成する気液混合装置における効率のよい気液の混合およびシステム全体としての気液の混合効率が高まり、槽内の溶存酸素濃度をより一層高めることができる。これによって、槽液中の溶存酸素濃度に余裕を与えることから、廃水原水に含まれる油分などの標準活性汚泥処理法では不得意とする難分解性物質の混入および混入量の程度により、これらを特異的に分解する微生物製剤の投入による新たな微生物の繁殖・活性化の向上効果で、さらに増加する酸素要求にも十分な酸素供給が可能となる。したがって、既存の水処理施設へ本システムと合わせて微生物製剤の投入を同時に導入することによって、廃水中の難分解性物質が通常よりも多量に混入した場合などに生じる不具合、すなわち、廃水処理施設の浄化処理能力を超えた高負荷流入によって、しばしば生じていた施設処理放流水に対する排水基準の超過などの事態が発生してしまう頻度を低下させる、あるいは防止することができる。
According to the water treatment system according to the first and second aspects of the present invention, efficient gas-liquid mixing in the gas-liquid mixing apparatus constituting the system and the gas-liquid mixing efficiency of the entire system are increased, and dissolution in the tank is performed. The oxygen concentration can be further increased. This gives a margin to the dissolved oxygen concentration in the tank liquid, so depending on the degree of contamination and the amount of difficult-to-decompose substances that are not good with standard activated sludge treatment methods such as oil contained in raw wastewater. With the effect of improving the propagation and activation of new microorganisms by the introduction of a microbial preparation that specifically decomposes, sufficient oxygen supply can be made even for the increasing oxygen demand. Therefore, by introducing the microbial preparation into the existing water treatment facility together with this system, there is a problem that occurs when the amount of persistent degradable substances in the wastewater is mixed more than usual, that is, the wastewater treatment facility. It is possible to reduce or prevent the frequency of occurrence of situations such as exceeding drainage standards for facility treatment effluent water, which often occurred due to high load inflow exceeding the purification treatment capacity.

<実験(1)における排出量の比較>
図14に示したように、各圧力時の排水量の計量は6回繰り返し、平均排水量と標準偏差を算出した。0.1MPa〜0.6MPaまで、各圧力時における本ノズル構造30と比較ノズル構造90の排水量は、比較ノズル構造と比べて本ノズル構造の方が、平均排水量で1.5割から2.5割の増量となった。この差を比較すると、図15から、スチューデントt検定により、各圧力時のすべてにおいて有意な差が認められた(α<0.05;両側検定)。この試験では、前述の如く、本ノズル構造30と比較ノズル構造90とにおける各噴出し用の孔(本ノズル構造30では4つの噴出孔32のみ、比較ノズル構造90では1つの孔91である)の単純な面積の比較では、比較ノズル構造90の方が本ノズル構造30よりも、約1.6倍の面積を有するが、排水量は逆転し、本ノズル構造30の方が排水量が多くなっている。厳密に考えると、本ノズル構造中央の1つの吸込孔31で生じている筈の吸込みと排出の量を計測できればよいが、この計測は不可能である。従って、噴出孔32の面積比から確実に広い面積の孔を有するノズル構造でも単一孔であれば排出の効率が抑制されることが分る。
<Comparison of emissions in Experiment (1)>
As shown in FIG. 14, the measurement of the drainage amount at each pressure was repeated six times, and the average drainage amount and the standard deviation were calculated. From 0.1 MPa to 0.6 MPa, the drainage amount of the nozzle structure 30 and the comparative nozzle structure 90 at each pressure increased from 1.5% to 2.5% in the average drainage amount of the nozzle structure compared to the comparative nozzle structure. . When this difference was compared, from FIG. 15 , a significant difference was observed at all pressures by Student's t test (α <0.05; two-sided test). In this test, as described above, the ejection holes in the nozzle structure 30 and the comparative nozzle structure 90 (only the four ejection holes 32 in the present nozzle structure 30 and one hole 91 in the comparative nozzle structure 90). In comparison of the simple areas, the comparative nozzle structure 90 has an area about 1.6 times that of the present nozzle structure 30, but the amount of drainage is reversed, and the amount of drainage is greater in the present nozzle structure 30. Strictly speaking, it is only necessary to measure the amount of soot suction and discharge generated in one suction hole 31 in the center of the nozzle structure, but this measurement is impossible. Therefore, it can be seen from the area ratio of the ejection holes 32 that even if the nozzle structure has a hole having a large area reliably, the discharge efficiency can be suppressed if it is a single hole.

本装置の排水量は約30〜40L/minであったが、1tの水に対して約5分で本装置から排出され、水槽内に微細気泡が充満した。時間の経過に伴う溶存酸素濃度の変化は図16に示した通りである。図16から、本装置によると、水槽内に溜められた水道水の全部を本装置内で処理しないうちに、水槽内の溶存酸素濃度が上昇していることから、本装置からの排水吐出力による水の流動が水槽内で作用し、本装置稼動初期から溶存酸素濃度が上がったものと考えられる。また、本実験時の水温は25.7℃で、このときの溶存酸素飽和量は8.02mg/Lであるから、本装置によると、本装置稼動開始直後から水槽内の溶存酸素が飽和状態となり、最高で約120%の飽和量を示し、十分な気液混合が行われたことが示された。 The amount of drainage of this device was about 30-40 L / min, but it was discharged from this device in about 5 minutes for 1 t of water, and the water tank was filled with fine bubbles. The change in dissolved oxygen concentration over time is as shown in FIG. From FIG. 16 , according to this apparatus, since the dissolved oxygen concentration in a water tank has risen before all the tap water stored in the water tank is processed in this apparatus, the drainage discharge force from this apparatus. It is considered that the dissolved oxygen concentration increased from the beginning of the operation of the device due to the water flow caused by In addition, the water temperature at the time of this experiment is 25.7 ° C, and the dissolved oxygen saturation at this time is 8.02 mg / L. Therefore, according to this device, the dissolved oxygen in the water tank becomes saturated immediately after the start of operation of this device. Showed a saturation amount of about 120%, indicating that sufficient gas-liquid mixing was performed.

上記目的を達成するために、第1の本発明に係る水処理システムは、槽内の液体を吸込み加圧して吐出するポンプと、上記ポンプの吸込み側前段で上記液体中に気体を混入するエジェクタ装置と、上記ポンプから吐出された気液を撹拌するミキサ装置と、上記槽内に配置されるとともに、上記ミキサ装置で撹拌された気液を渦流により混合し減圧して前記槽内へ吐出する気液混合装置とを備えた水処理システムであって、上記気液混合装置は、円筒形の密閉容器と、上記密閉容器内に気液を導入する流体導入管と、上記密閉容器内から気液を吐出させる流体吐出口とを具備し、上記円筒形の密閉容器を横向きに置いた状態において、上記流体導入管は、上記円筒形の密閉容器における側面を貫通して該密閉容器内に入り込み、この入り込んだ流体導入管の先端部が、流体導入口として、上記円筒形の密閉容器における内底面に近接して開口するように設けられていることを特徴とする。 In order to achieve the above object, a water treatment system according to a first aspect of the present invention includes a pump that sucks and pressurizes liquid in a tank, and an ejector that mixes gas in the liquid at a stage upstream of the suction side of the pump. An apparatus, a mixer device for stirring the gas and liquid discharged from the pump, and the gas and liquid stirred by the mixer device are mixed by vortex and decompressed and discharged into the tank. A water treatment system comprising a gas-liquid mixing device, wherein the gas-liquid mixing device includes a cylindrical sealed container, a fluid introduction pipe for introducing gas-liquid into the sealed container, and a gas from the sealed container. A fluid discharge port for discharging liquid, and in a state in which the cylindrical sealed container is placed sideways, the fluid introduction pipe penetrates the side surface of the cylindrical sealed container and enters the sealed container. This got in Tip body inlet tube, a fluid inlet, and being provided so as to open and close to the inner bottom surface of the hermetic container of the cylindrical shape.

Claims (11)

槽内の液体を吸込み加圧して吐出するポンプと、
上記ポンプの吸込み側前段で上記液体中に気体を混入するエジェクタ装置と、
上記ポンプから吐出された気液を撹拌するミキサ装置と、
上記槽内に配置されるとともに、上記ミキサ装置で撹拌された気液を渦流により混合し減圧して前記槽内へ吐出する気液混合装置とを備えた水処理システムであって、
上記気液混合装置は、
円筒形の密閉容器と、
上記密閉容器内に気液を導入する流体導入管と、
上記密閉容器内から気液を吐出させる流体吐出口とを具備し、
上記流体導入管は、上記密閉容器の内外周壁を貫通して該密閉容器内に入り込み、この入り込んだ流体導入管の先端部が、流体導入口として、上記密閉容器の内底面に近接して開口するように設けられていること
を特徴とする水処理システム。
A pump that sucks, pressurizes and discharges the liquid in the tank;
An ejector device that mixes gas into the liquid at the upstream side of the suction side of the pump;
A mixer device for stirring the gas-liquid discharged from the pump;
A water treatment system comprising: a gas-liquid mixing device that is disposed in the tank and mixes the gas-liquid stirred by the mixer device by a vortex and depressurizes and discharges the gas-liquid mixture into the tank,
The gas-liquid mixing device is
A cylindrical sealed container;
A fluid introduction pipe for introducing gas-liquid into the sealed container;
A fluid discharge port for discharging gas and liquid from the inside of the sealed container,
The fluid introduction pipe penetrates through the inner and outer peripheral walls of the sealed container and enters the sealed container, and a tip portion of the entered fluid introduction pipe opens as a fluid inlet near the inner bottom surface of the sealed container. The water treatment system is characterized by being provided.
上記流体吐出口は、その中央に設けた吸込孔と、この吸込孔の周囲に設けた複数の噴出孔とを有するノズル構造からなること
を特徴とする請求項1に記載の水処理システム。
The water treatment system according to claim 1, wherein the fluid discharge port has a nozzle structure having a suction hole provided at a center thereof and a plurality of ejection holes provided around the suction hole.
上記吸込孔の口径は上記噴出孔の口径より大きく設けたことを特徴とする請求項2に記載の水処理システム。   The water treatment system according to claim 2, wherein a diameter of the suction hole is larger than a diameter of the ejection hole. 上記流体吐出口の流体吐出側に吐出筒が取り付けられていることを特徴とする請求項2又は3のいずれかに記載の気液混合装置。   4. The gas-liquid mixing device according to claim 2, wherein a discharge cylinder is attached to the fluid discharge side of the fluid discharge port. 槽内の液体を吸込み加圧して吐出するポンプと、
上記ポンプの吐出側分流部又は吸込み口前段で上記液体中に気体を混入するエジェクタ装置と、
上記ポンプから吐出された気液を撹拌するミキサ装置と、
上記槽内に配置されるとともに、上記ミキサ装置で撹拌された気液を渦流により混合し減圧して前記槽内へ吐出する気液混合装置とを備えた水処理システムであって、
上記気液混合装置は、
直列に接続された2段の回転流形成部と、
上記前段の回転流形成部へ気液を導入する流体導入路とを備え、
上記前段の回転流形成部は、
底面に円錐状突起を有する円環状の気液混合室と、上記流体導入路の下流端に一端を開口し、他端を上記円錐状突起の底部周囲に開口した左右のノズル流路とを有し、左右のノズル流路を介して上記円錐状突起の左右両側に気液を噴射することにより、上記円錐状突起を中心として上記気液混合室内で気液を回転させ、その回転流によって気液を混合し、
上記後段の回転流形成部は、
気液の流れ方向に沿って流路径が徐々に拡がる形状のテーパ流路からなり、上記気液混合室で回転させられた気液を上記テーパ流路へ導くことにより、テーパ流路内で当該気液を更に回転させ、その回転流によって気液を混合すること
を特徴とする水処理システム。
A pump that sucks, pressurizes and discharges the liquid in the tank;
An ejector device that mixes gas into the liquid at the discharge side diverting part or the suction port upstream of the pump;
A mixer device for stirring the gas-liquid discharged from the pump;
A water treatment system comprising: a gas-liquid mixing device that is disposed in the tank and mixes the gas-liquid stirred by the mixer device by a vortex and depressurizes and discharges the gas-liquid mixture into the tank,
The gas-liquid mixing device is
A two-stage rotating flow forming section connected in series;
A fluid introduction path for introducing gas and liquid into the preceding rotary flow forming section,
The former rotary flow forming part is
An annular gas-liquid mixing chamber having a conical protrusion on the bottom surface and left and right nozzle channels having one end opened at the downstream end of the fluid introduction path and the other end opened around the bottom of the conical protrusion. Then, by injecting gas and liquid to the left and right sides of the conical protrusion through the left and right nozzle channels, the gas and liquid are rotated around the conical protrusion in the gas-liquid mixing chamber, and the gas flows by the rotational flow. Mix the liquid,
The latter rotational flow forming part is
The taper channel has a shape in which the channel diameter gradually increases along the gas-liquid flow direction, and the gas-liquid rotated in the gas-liquid mixing chamber is guided to the taper channel in the taper channel. A water treatment system characterized by further rotating the gas and liquid and mixing the gas and liquid by the rotating flow.
上記ポンプの吐出側から吐出された液体を同ポンプの吸込み側へ返送する戻り流路を設けるとともに、この流路の途中に上記エジェクタ装置を組み込んだこと
を特徴とする請求項1又は5のいずれかに記載の水処理システム。
6. A return flow path for returning the liquid discharged from the discharge side of the pump to the suction side of the pump is provided, and the ejector device is incorporated in the middle of the flow path. The water treatment system according to crab.
槽内の液体を吸込み加圧して吐出するポンプと、
上記ポンプの吸込み側前段で上記液体中に気体を混入するエジェクタ装置と、
上記ポンプから吐出された気液を撹拌するミキサ装置と、
上記槽内に配置されるとともに、上記ミキサ装置で撹拌された気液を渦流により混合し減圧して前記槽内へ吐出する気液混合装置とを備えた水処理システムであって、
上記ポンプの吐出側から吐出された液体を同ポンプの吸込み側へ返送する戻り流路を設けるとともに、この流路の途中に上記エジェクタ装置を組み込んだこと
を特徴とする水処理システム。
A pump that sucks, pressurizes and discharges the liquid in the tank;
An ejector device that mixes gas into the liquid at the upstream side of the suction side of the pump;
A mixer device for stirring the gas-liquid discharged from the pump;
A water treatment system comprising: a gas-liquid mixing device that is disposed in the tank and mixes the gas-liquid stirred by the mixer device by a vortex and depressurizes and discharges the gas-liquid mixture into the tank,
A water treatment system characterized in that a return flow path for returning the liquid discharged from the discharge side of the pump to the suction side of the pump is provided, and the ejector device is incorporated in the middle of the flow path.
上記槽は曝気槽の上流側に設けられる調整槽であり、それぞれの上記水処理システムは調整槽の液体を処理する調整槽水処理システムとして構成されること
を特徴とする請求項1、5又は7のいずれかに記載の水処理システム。
The said tank is an adjustment tank provided in the upstream of an aeration tank, and each said water treatment system is comprised as an adjustment tank water treatment system which processes the liquid of an adjustment tank. The water treatment system according to any one of 7.
上記槽は曝気槽の上流側に設けられる調整槽であり、
上記水処理システムは、上記調整槽に特定微生物を注入するための注入手段を備えること
を特徴とする請求項1、5又は7のいずれかに記載の水処理システム。
The tank is an adjustment tank provided on the upstream side of the aeration tank,
The water treatment system according to any one of claims 1, 5 and 7, wherein the water treatment system includes an injection unit for injecting a specific microorganism into the adjustment tank.
上記注入手段は、特定微生物を培養するための微生物培養槽を備え、この微生物培養槽で培養、増殖した特定微生物を調整槽へ注入するように構成されること
を特徴とする請求項9に記載の水処理システム。
The said injection | pouring means is equipped with the microorganism culture tank for culture | cultivating a specific microorganism, It is comprised so that the specific microorganism culture | cultivated and propagated in this microorganism culture tank may be inject | poured into an adjustment tank. Water treatment system.
ポンプを介して曝気槽へ汚泥を返送する汚泥返送ルートを有し、この汚泥返送ルートを介して曝気槽へ返送汚泥を吐出する吐出口に、気液混合装置を設けたこと
を特徴とする水処理システム。
Water that has a sludge return route that returns sludge to the aeration tank via a pump, and a gas-liquid mixing device is installed at the discharge port that discharges the returned sludge to the aeration tank via this sludge return route. Processing system.
JP2007078962A 2006-10-17 2007-03-26 Water treatment system Active JP4018130B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078962A JP4018130B1 (en) 2006-10-17 2007-03-26 Water treatment system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006282820 2006-10-17
JP2006282820 2006-10-17
JP2007078962A JP4018130B1 (en) 2006-10-17 2007-03-26 Water treatment system

Publications (2)

Publication Number Publication Date
JP4018130B1 JP4018130B1 (en) 2007-12-05
JP2008119677A true JP2008119677A (en) 2008-05-29

Family

ID=38857805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078962A Active JP4018130B1 (en) 2006-10-17 2007-03-26 Water treatment system

Country Status (1)

Country Link
JP (1) JP4018130B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125425A (en) * 2008-11-28 2010-06-10 Deguchi Tetsuro Emulsion production method and emulsion-producing apparatus
JP4523671B1 (en) * 2008-12-02 2010-08-11 昭三 片倉 Sewage treatment system and fine bubble generator
JP2011098324A (en) * 2009-11-09 2011-05-19 Sankei C & C:Kk Static mixer, method for producing the mixer, and water treatment apparatus using the mixer
JP2011240322A (en) * 2010-04-19 2011-12-01 Anlet Co Ltd Carbon dioxide gas recovery device
KR101094862B1 (en) 2008-07-11 2011-12-20 오진순 Minute aeration apparatus
JP2012152711A (en) * 2011-01-27 2012-08-16 Panasonic Corp Organic wastewater treatment apparatus and organic wastewater treatment method
JP2012200695A (en) * 2011-03-28 2012-10-22 Asahi Organic Chemicals Industry Co Ltd Method of treating organic wastewater
KR101334939B1 (en) * 2012-12-03 2013-11-29 한국기계연구원 Multiphase flow generating device
KR101349352B1 (en) 2011-12-06 2014-01-10 성기철 enviromentalmicrobial culture medium
WO2018131714A1 (en) * 2017-01-16 2018-07-19 オオノ開發株式会社 Fluid mixing device, and method for producing mixed fluid using this mixing device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101094862B1 (en) 2008-07-11 2011-12-20 오진순 Minute aeration apparatus
JP2010125425A (en) * 2008-11-28 2010-06-10 Deguchi Tetsuro Emulsion production method and emulsion-producing apparatus
JP4523671B1 (en) * 2008-12-02 2010-08-11 昭三 片倉 Sewage treatment system and fine bubble generator
JP2011072982A (en) * 2008-12-02 2011-04-14 Shozo Katakura Sewage treatment system and fine air bubble generator
JP2011098324A (en) * 2009-11-09 2011-05-19 Sankei C & C:Kk Static mixer, method for producing the mixer, and water treatment apparatus using the mixer
JP2011240322A (en) * 2010-04-19 2011-12-01 Anlet Co Ltd Carbon dioxide gas recovery device
JP2012152711A (en) * 2011-01-27 2012-08-16 Panasonic Corp Organic wastewater treatment apparatus and organic wastewater treatment method
JP2012200695A (en) * 2011-03-28 2012-10-22 Asahi Organic Chemicals Industry Co Ltd Method of treating organic wastewater
KR101349352B1 (en) 2011-12-06 2014-01-10 성기철 enviromentalmicrobial culture medium
KR101334939B1 (en) * 2012-12-03 2013-11-29 한국기계연구원 Multiphase flow generating device
WO2018131714A1 (en) * 2017-01-16 2018-07-19 オオノ開發株式会社 Fluid mixing device, and method for producing mixed fluid using this mixing device
JPWO2018131714A1 (en) * 2017-01-16 2019-11-07 オオノ開發株式会社 Fluid mixing apparatus and method for producing mixed fluid using such mixing apparatus

Also Published As

Publication number Publication date
JP4018130B1 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
JP4018130B1 (en) Water treatment system
EP1112773B1 (en) System and method for generating gas micro-bubbles in a liquid
EP0958038B1 (en) Apparatus and process for mixing or dissolving
JP4345823B2 (en) Gas dissolving apparatus and method for producing gas dissolving liquid
US7156377B2 (en) Water aeration device and method
US20160193573A1 (en) Method and system for enhancing mass transfer in aeration/oxygenation systems
JP3443728B2 (en) Wastewater purification equipment
JP4145000B2 (en) Fine bubble feeder
JP2002052330A (en) Gas and liquid supply device
US20040217491A1 (en) Water aerator and method of using same
JP2008100225A (en) Air/liquid mixer
CN101842322A (en) Method and apparatus for aeration
JP4124956B2 (en) Fine bubble supply method and fine bubble supply device
JP3733377B2 (en) Nozzle for mixing
CN107500424A (en) A kind of multiphase flow diffuses air-dissolving apparatus
CN208577495U (en) A kind of aeration in sewage treatment reaction tank center aerator
JP4099200B2 (en) Gas-liquid mixing device
JP4358058B2 (en) Wastewater treatment equipment containing organic matter
JPH08290192A (en) Aeration device
JP2001205278A (en) Sewage cleaning treatment apparatus
CN201770530U (en) Device for promoting dissolution of gas in liquid and sewage treatment system using the device
JP3916247B1 (en) Surplus sludge volume reduction device and excess sludge volume reduction system
CN207175607U (en) A kind of multiphase flow diffuses air-dissolving apparatus
JP6977533B2 (en) Mixer
CN218969035U (en) Novel oily wastewater treatment system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5