JP2008117759A - Method of manufacturing new conductive particulate, and application of new conductive particulate - Google Patents

Method of manufacturing new conductive particulate, and application of new conductive particulate Download PDF

Info

Publication number
JP2008117759A
JP2008117759A JP2007257543A JP2007257543A JP2008117759A JP 2008117759 A JP2008117759 A JP 2008117759A JP 2007257543 A JP2007257543 A JP 2007257543A JP 2007257543 A JP2007257543 A JP 2007257543A JP 2008117759 A JP2008117759 A JP 2008117759A
Authority
JP
Japan
Prior art keywords
fine particles
spherical core
particles
conductive
conductive fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007257543A
Other languages
Japanese (ja)
Other versions
JP4860587B2 (en
Inventor
Kazuhiro Nakayama
和洋 中山
Akira Nakajima
昭 中島
Michio Komatsu
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2007257543A priority Critical patent/JP4860587B2/en
Publication of JP2008117759A publication Critical patent/JP2008117759A/en
Application granted granted Critical
Publication of JP4860587B2 publication Critical patent/JP4860587B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive particulate that can keep the distance between electrodes constant without damaging an electrode layer, has small contact resistance, and can connect the electrodes reliably regardless of some irregularities. <P>SOLUTION: The conductive particulate comprises: a spherical core particle 1; an elastic coating layer 2 formed on the surface of the spherical core particle; and a conductive thin-film layer 3 formed on the surface of the elastic coating layer. In a manufacturing method of the conductive particulate, the elastic coating layer is formed by the following processes, namely a process for giving a hydrophobic functional group to the surface of the spherical core particle (a), a process for preparing a dispersing liquid of a hydrophobic spherical core particle by dispersing the hydrophobic spherical core particle in water and/or an organic solvent (b), a process for adding surfactant to the hydrophobic spherical core particle dispersing liquid (c), and a process for adding an organic silicon compound to the hydrophobic spherical core particle dispersing liquid, further adding alkali, and forming the elastic coating layer made of a hydrolysis-condensation product of an organic silicon compound on the surface of the hydrophobic spherical core particle. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、新規な導電性微粒子の製造方法に関し、また該導電性微粒子が分散してなる異方導電性接着剤および絶縁性熱可塑性樹脂フィルム、さらに前記導電性微粒子を用いた電気回路基板に関する。さらに詳しくは、電気回路形成用に使用されても電極基板等を損傷することがなく、しかも高い導電性を示す導電性微粒子、IC等の微細な電極とそれらが搭載される基板上の電極とを優れた隣接電極間絶縁率および上下導通率によって接続することができる異方導電性接着剤および異方導電性フィルム、信頼性に優れ回路形成が可能な電気回路基板に関する。   The present invention relates to a novel method for producing conductive fine particles, an anisotropic conductive adhesive in which the conductive fine particles are dispersed, an insulating thermoplastic resin film, and an electric circuit board using the conductive fine particles. . More specifically, even when used for forming an electric circuit, the electrode substrate or the like is not damaged, and the conductive fine particles exhibiting high conductivity, fine electrodes such as IC, and the electrodes on the substrate on which they are mounted, The present invention relates to an anisotropic conductive adhesive and an anisotropic conductive film that can be connected with excellent insulation between adjacent electrodes and vertical conductivity, and an electrical circuit board that is excellent in reliability and capable of forming a circuit.

近年、エレクトロニクス実装分野において、小ピッチの接続端子(電極)を電気的に接続することが望まれているようになっている。このような電極の接続方法としては、一般的に半田付けの方法が知られている。しかしながら、この半田付けの方法では、小ピッチの接続端子の接続が難しいという欠点があった。また使用される接続端子には、半田濡れ性が要求されたり、さらには高温接続を行うために耐熱性の絶縁基板であることも要求されていた。   In recent years, in the electronics mounting field, it has been desired to electrically connect connection terminals (electrodes) with a small pitch. As such an electrode connection method, a soldering method is generally known. However, this soldering method has a drawback that it is difficult to connect the connection terminals with a small pitch. In addition, the connection terminals used are required to have solder wettability, and further to be a heat-resistant insulating substrate for high-temperature connection.

また、金線により電極を接続する方法、いわゆるワイヤボンディングも知られていたが、この方法では、微細化した電極の接続には限界があった。そこで、特に微細な電極の接続方法として、ベア・チップLSIの電極とプリント配線基盤の電極を張り合わせて接続する方法、いわゆるフリップチップ実装が知られており、ノートパソコンや携帯型ワープロ、PCMCIAカードなどに採用されている。   In addition, a method of connecting electrodes by a gold wire, so-called wire bonding, is also known, but this method has a limit in connecting miniaturized electrodes. Therefore, as a method for connecting particularly fine electrodes, there is known a method in which a bare chip LSI electrode and a printed wiring board electrode are bonded and connected, so-called flip chip mounting, such as a notebook computer, a portable word processor, a PCMCIA card, etc. Has been adopted.

ところで各種電子機器に対しては小型化の要求が強く、小型化しても機能が低下しないようにする必要があり、またサイズは変わらなくても高機能化させるために、内蔵する回路基板およびLSIチップをさらに小型化するとともに、回路を高密度化することが望まれている。しかしながら、単に回路を高密度化しただけでは接続不良や断線さらには横導通が起こりやすく、製造時の不良率が高くなったり、使用時に故障率が高くなるなどの問題が生じることがあった。   By the way, there is a strong demand for miniaturization of various electronic devices, and it is necessary to prevent the function from being deteriorated even if it is miniaturized. In order to achieve high functionality even if the size does not change, a built-in circuit board and LSI It is desired to further reduce the size of the chip and increase the density of the circuit. However, simply increasing the density of the circuit tends to cause connection failure, disconnection, and lateral conduction, which may cause problems such as a high defect rate during manufacture and a high failure rate during use.

このため、この問題点を解決するために電極間に導電性微粒子を介在させて、信頼性を高めた電気回路基板が知られている。また、このような導電性微粒子は、たとえば液晶表示装置における液晶表示素子またはそのシール部など、上下電極を接続するとともに電極基板間距離を一定に保つ必要がある場合にも用いられていた。   For this reason, in order to solve this problem, an electric circuit board is known in which conductive fine particles are interposed between the electrodes to improve reliability. Such conductive fine particles have also been used when it is necessary to connect the upper and lower electrodes and keep the distance between the electrode substrates constant, such as a liquid crystal display element in a liquid crystal display device or a seal portion thereof.

このように様々な用途に使用が期待されている導電性微粒子としては、従来から金、銀、ニッケルなどの金属粒子が用いられていたが、形状が不均一であったり、バインダー樹脂に比べて比重が大きく導電性ペースト中で沈降したり、さらには均一に分散させることが困難であるため、接続の信頼性に欠けるという欠点があった。   As the conductive fine particles expected to be used in various applications as described above, metal particles such as gold, silver, and nickel have been conventionally used, but the shape is not uniform or compared to the binder resin. Since the specific gravity is large and it is difficult to settle in the conductive paste or to disperse it uniformly, there is a drawback that the connection reliability is lacking.

このため、シリカ微粒子または樹脂微粒子に金属メッキ層を設けた導電性微粒子が開示されている。(特開昭59−28185号および特公平7−95165号公報参照)。また導電性微粒子として、有機質または無機質の芯材に微細な金属微粒子を被覆した導電性粉末も開示されている(特公平6−96771号公報参照)。   For this reason, conductive fine particles in which a metal plating layer is provided on silica fine particles or resin fine particles are disclosed. (See JP-A-59-28185 and JP-B-7-95165). As conductive fine particles, a conductive powder in which fine metal fine particles are coated on an organic or inorganic core material is also disclosed (see Japanese Patent Publication No. 6-96771).

しかしながら、これらの導電性微粒子は芯材が硬すぎて電極を破損したり、圧縮変形しないために接触面積が小さく、接触抵抗を低減させることが困難であったり、熱プレス時
に電極に埋まってしまうことがあった。さらにまた、芯材が有機質の場合、導電性微粒子が柔らかすぎて電極間距離を一定に保つことが困難となったり、接続後圧力解放した際に経時的に反作用で導電性微粒子と電極間に隙間が生じて断線したりすることがあり、さらに粒子表面が金属層であるため、高密度回路の形成時や端子接続時に横導通を生じるなどの問題があった。
However, these conductive fine particles are too hard to damage the electrode, do not compress and deform, have a small contact area, it is difficult to reduce contact resistance, or are buried in the electrode during hot pressing There was a thing. Furthermore, when the core material is organic, it is difficult to keep the distance between the electrodes constant because the conductive fine particles are too soft, or when the pressure is released after the connection, the reaction between the conductive fine particles and the electrodes may occur over time. In some cases, a gap may be generated and the wire may be disconnected. Further, since the particle surface is a metal layer, there is a problem that lateral conduction occurs when a high-density circuit is formed or terminals are connected.

このため、本願出願人は、横導通のない電気回路基板を形成する方法として、導電性微粒子表面に熱可塑性樹脂を被覆した導電性微粒子を熱硬化性樹脂接着成分に分散させた異方導電性接着剤を用いることを提案している(特開平3−46774号)。ところで、このような電気回路基板に用いられる導電性微粒子としては、(1)電極間距離を高精密に制
御できること、(2)電極を損傷しないこと、(3)粒子密度を減少できること、(4)特に大画
面等のソリで断線しないこと(変形による断線)、(5)熱膨張収縮で断線しないこと(熱
による接続部応力吸収)などが要求されている。
Therefore, the applicant of the present application, as a method of forming an electrical circuit board without lateral conduction, is anisotropic conductive in which conductive fine particles coated with a thermoplastic resin on the surface of the conductive fine particles are dispersed in a thermosetting resin adhesive component. It is proposed to use an adhesive (Japanese Patent Laid-Open No. 3-46774). By the way, as the conductive fine particles used for such an electric circuit board, (1) the distance between the electrodes can be controlled with high precision, (2) the electrodes are not damaged, (3) the particle density can be reduced, (4 ) In particular, there is a demand for not disconnecting with a warp such as a large screen (disconnection due to deformation), and (5) not disconnecting due to thermal expansion and contraction (absorption of connection stress due to heat).

しかしながら、導電性微粒子表面を熱可塑性樹脂によって被覆した異方導電材料であっても、加圧条件や加熱条件によっては電気的接続に対する信頼性に欠けるという問題点があった。また、導電性微粒子が金属の球状コア粒子の表面に絶縁性被覆層を設けたものでは、均一な粒子径の粒子が得にくかったり、均一分散性に欠けたり、さらに比重が大きいために遍在することがあり、接続ムラが生じたり、さらには表示性能に劣ったりすることがあった。   However, even the anisotropic conductive material whose surface of the conductive fine particles is coated with a thermoplastic resin has a problem that the reliability of the electrical connection is insufficient depending on the pressurizing condition and the heating condition. In addition, in the case where the conductive fine particles are provided with an insulating coating layer on the surface of a metal spherical core particle, it is difficult to obtain particles having a uniform particle size, lack of uniform dispersibility, and the specific gravity is ubiquitous. In some cases, connection unevenness may occur, and display performance may be inferior.

また、球状コア粒子として無機酸化物粒子、たとえばシリカ粒子を用いこれに導電性薄膜層を形成した導電性微粒子は、球状コア粒子が硬すぎて、しかも柔軟性がないために電極基板を損傷したり、粒子径が不均一な場合は電極と粒子径の小さい導電性微粒子の間にギャップが生じるため接触不良を生じ、表示される画質の低下や表示ムラが問題となることがあった。   In addition, the conductive fine particles in which inorganic oxide particles such as silica particles are used as the spherical core particles, and the conductive thin film layer is formed thereon, damage the electrode substrate because the spherical core particles are too hard and not flexible. When the particle size is not uniform, a gap is formed between the electrode and the conductive fine particles having a small particle size, resulting in poor contact, which may cause a problem of deterioration in displayed image quality and display unevenness.

また、球状コア粒子に有機樹脂粒子を用いた場合は、シリカ粒子と比較して柔らかすぎたり、応力変形に対する回復力が小さいために、電極と導電性微粒子の間にギャップが生じるため接触不良を生じ、表示される画質の低下や表示ムラが問題となることがあった。特に、近年、電子機器の小型化、薄型化の趨勢から、各種部品の高密度化の流れに伴い、多接点電極のファインピッチ化がますます進行しつつあり、このため、本発明は、ファインピッチの多接点電極等の接続に対しても信頼性の高い導電性微粒子の出現が望まれている。   In addition, when organic resin particles are used for the spherical core particles, they are too soft compared to silica particles, and the recovery force against stress deformation is small, resulting in a gap between the electrode and the conductive fine particles, resulting in poor contact. As a result, degradation of displayed image quality and display unevenness may be a problem. In particular, in recent years, with the trend toward downsizing and thinning of electronic devices, the fine pitch of multi-contact electrodes has been increasing along with the trend toward higher density of various components. The appearance of highly reliable conductive fine particles is also desired for the connection of multi-contact electrodes having a pitch.

本発明は、ファインピッチの多接点電極等の接続に対しても信頼性の高い導電性微粒子、異方導電性接着剤、異方導電性フィルムおよび信頼性の高い電気回路基板を提供することを目的としている。具体的には、電極層を損傷することがなく電極間距離を一定に保つことが可能であり、しかも、接触抵抗が小さく、ある程度の凹凸があっても確実に電極を接続可能であり導電性微粒子を提供することを目的としている。   The present invention provides a conductive fine particle, an anisotropic conductive adhesive, an anisotropic conductive film, and a highly reliable electric circuit board, which are highly reliable for the connection of a fine pitch multi-contact electrode. It is aimed. Specifically, it is possible to keep the distance between the electrodes constant without damaging the electrode layer, and the contact resistance is small, and the electrodes can be reliably connected even if there is a certain degree of unevenness. It aims to provide fine particles.

[1]本発明にかかる導電性微粒子の製造方法は、
球状コア粒子と、該球状コア粒子表面に形成された弾性被覆層と、
該弾性被覆層表面に形成された導電性薄膜層とからなり導電性微粒子であり、
前記弾性被覆層が次の工程により形成することを特徴とする。
(a)球状コア粒子表面に疎水性官能基を付与する工程
(b)前記疎水性球状コア粒子を水および/または有機溶媒に分散させて疎水性
球状コア粒子の分散液を調製する工程
(C)前記疎水性球状コア粒子分散液に界面活性剤を添加する工程
(d)界面活性剤が添加された疎水性球状コア粒子分散液に下記(1)式で示される有機ケイ素化合物の1種または2種以上の混合物を添加し、さらにアルカリを添加して前記疎水性球状コア粒子表面に有機ケイ素化合物の加水分解縮重合物からなる弾性被覆層を形成させる工程
R1 nSi(OR2)4-n (1)
(式中nは1〜3の整数であり、R1は置換または非置換の炭化水素基から選ばれる炭素数1〜10の炭化水素であり、R2は水素原子、炭素数1〜5のアルキル基、炭素数2〜5のアシル基の
いずれかを示す)
[2]前記工程(a)において、球状コア粒子表面に予め水酸基を付与したのち疎水性官能基を付与する。
[3]前記(e)工程において、前記疎水性球状コア粒子表面に有機ケイ素化合物の加水分解縮重合物を形成させたのち、20〜95℃の温度で熟成する。
[4]前記導電性薄膜層の表面に、さらに絶縁性熱可塑性樹脂層を形成する。
[5](i)前記球状コア粒子の平均粒子径が0.5〜30μmの範囲にあり、(ii)弾性被覆層
の厚さが0.1〜10μmの範囲にあり、(iii)導電性薄膜層の厚さが0.01〜5μmの
範囲にあり、(iv)導電性微粒子の平均粒子径が1〜35μmの範囲にあり、(v)弾性被覆
層の10%K値は、球状コア粒子の10%K値よりも低く、かつ50〜500kgf/mm2
範囲にある(但し、10%K値は下式(1)で表され、 K=(3/21/2)・F・S-3/2・(D/2)-1/2 …(1)
式中、Fは微粒子の10%圧縮変形時の荷重値(kgf)、Sは微粒子の10%圧縮変形時の
圧縮変位(mm)、Dは粒子直径(mm)を示す)。
[6]前記弾性被覆層が、下記式(2)で表される有機ケイ素化合物の1種または2種以上
からなるポリオルガノシロキサンからなる。
1 nSi(OR2)4-n …(2)
(式中、nは1〜3の整数であり、R1は置換または非置換の炭化水素基から選ばれる炭
素数1〜10の炭化水素基であり、R2は水素原子、炭素数1〜5のアルキル基、炭素数
2〜5のアシル基を示す。)
[7]前記球状コア粒子が金属酸化物または樹脂からなる粒子であり、球状コア粒子の粒子
径変動係数が20%以下であり、10%K値が300〜6000kgf/mm2の範囲にある。
[8]以上の方法で得られた導電性微粒子が絶縁性熱硬化性樹脂の接着成分中に分散されて
なる異方導電性接着剤。
[9]以上の方法で得られた導電性微粒子が、絶縁性熱可塑性樹脂に分散されてなる絶縁性
熱可塑性樹脂フィルム。
[10]以上の方法で得られた導電性微粒子から形成された微粒子層を表面に有する絶縁性熱可塑性樹脂フィルム。
[11]以上の方法で得られた導電性微粒子が対向する電極間に電極接続用導電性微粒子として介在することを特徴とする電気回路基板。
[12]前記異方導電性接着剤を用いて形成された電気回路基板。
[13]前記絶縁性熱可塑性樹脂フィルムを用いて形成された電気回路基板。
[1] A method for producing conductive fine particles according to the present invention includes:
A spherical core particle, and an elastic coating layer formed on the spherical core particle surface;
Conductive fine particles comprising a conductive thin film layer formed on the surface of the elastic coating layer,
The elastic coating layer is formed by the following process.
(a) A step of imparting a hydrophobic functional group to the surface of the spherical core particle
(b) A step of preparing a dispersion of hydrophobic spherical core particles by dispersing the hydrophobic spherical core particles in water and / or an organic solvent.
(C) adding a surfactant to the hydrophobic spherical core particle dispersion
(d) To the hydrophobic spherical core particle dispersion to which the surfactant is added, one or a mixture of two or more organosilicon compounds represented by the following formula (1) is added, and an alkali is further added to the hydrophobic spherical core particle dispersion. Of forming an elastic coating layer composed of a hydrolytic condensation polymer of an organosilicon compound on the surface of a conductive spherical core particle
R 1 n Si (OR 2 ) 4-n (1)
(In the formula, n is an integer of 1 to 3, R 1 is a hydrocarbon having 1 to 10 carbon atoms selected from a substituted or unsubstituted hydrocarbon group, and R 2 is a hydrogen atom, having 1 to 5 carbon atoms. An alkyl group or an acyl group having 2 to 5 carbon atoms)
[2] In the step (a), the surface of the spherical core particles is preliminarily imparted with a hydroxyl group and then imparted with a hydrophobic functional group.
[3] In the step (e), a hydrolytic polycondensation product of an organosilicon compound is formed on the surface of the hydrophobic spherical core particles, and then aged at a temperature of 20 to 95 ° C.
[4] An insulating thermoplastic resin layer is further formed on the surface of the conductive thin film layer.
[5] (i) The average particle diameter of the spherical core particles is in the range of 0.5 to 30 μm, (ii) the thickness of the elastic coating layer is in the range of 0.1 to 10 μm, and (iii) conductivity. The thickness of the thin film layer is in the range of 0.01 to 5 μm, (iv) the average particle diameter of the conductive fine particles is in the range of 1 to 35 μm, and (v) the 10% K value of the elastic coating layer is a spherical core It is lower than the 10% K value of the particles and is in the range of 50 to 500 kgf / mm 2 (however, the 10% K value is represented by the following formula (1): K = (3/2 1/2 ) · F・ S -3/2・ (D / 2) -1/2 (1)
In the formula, F is a load value (kgf) at the time of 10% compression deformation of fine particles, S is a compression displacement (mm) at the time of 10% compression deformation of fine particles, and D is a particle diameter (mm).
[6] The elastic coating layer is composed of a polyorganosiloxane composed of one or more organic silicon compounds represented by the following formula (2).
R 1 n Si (OR 2 ) 4-n (2)
(In the formula, n is an integer of 1 to 3, R 1 is a hydrocarbon group having 1 to 10 carbon atoms selected from a substituted or unsubstituted hydrocarbon group, and R 2 is a hydrogen atom, 1 to 1 carbon atoms. 5 represents an alkyl group and an acyl group having 2 to 5 carbon atoms.)
[7] The spherical core particles are particles made of a metal oxide or resin, the spherical core particles have a particle size variation coefficient of 20% or less, and a 10% K value in the range of 300 to 6000 kgf / mm 2 .
[8] An anisotropic conductive adhesive obtained by dispersing conductive fine particles obtained by the above method in an adhesive component of an insulating thermosetting resin.
[9] An insulating thermoplastic resin film in which conductive fine particles obtained by the above method are dispersed in an insulating thermoplastic resin.
[10] An insulating thermoplastic resin film having on its surface a fine particle layer formed from conductive fine particles obtained by the above method.
[11] An electric circuit board characterized in that the conductive fine particles obtained by the above method are interposed as electrode connecting conductive fine particles between opposing electrodes.
[12] An electric circuit board formed using the anisotropic conductive adhesive.
[13] An electric circuit board formed using the insulating thermoplastic resin film.

本発明の導電性微粒子は、球状コア粒子に弾性被覆層を設けた粒子に導電性薄膜層が形成されているので、電極層を損傷することがなく、また電極と導電性微粒子の接触面積を大きくすることができるので接触抵抗が小さく、電極にある程度の凹凸があっても確実に電極を接続することができる。さらに球状コア粒子の粒子径変動係数が小さく弾性被覆層より高く十分な弾性値を有しているので電極間距離を一定に保つことができる。   In the conductive fine particles of the present invention, since the conductive thin film layer is formed on the spherical core particles provided with the elastic coating layer, the electrode layer is not damaged, and the contact area between the electrode and the conductive fine particles is reduced. Since it can be increased, the contact resistance is small, and the electrode can be reliably connected even if the electrode has some unevenness. Furthermore, since the particle diameter variation coefficient of the spherical core particles is small and higher than the elastic coating layer and has a sufficient elastic value, the distance between the electrodes can be kept constant.

また、本発明の異方導電性接着剤、絶縁性熱可塑性樹脂フィルムは、上記導電性微粒子
を含有しているので接続信頼性が高く、極めて優れた隣接電極間絶縁率および上下導通率をもって電極間を電気的に接続することができ、IC等の微細な電極と、それらが搭載される基板上の電極とを電気的に接続するために有効に用いることができ、特に、ファインピッチの多接点電極の接続に対しても信頼性が高いという効果がある。
Also, the anisotropic conductive adhesive and insulating thermoplastic resin film of the present invention contain the above conductive fine particles, so that the connection reliability is high, and the electrodes have excellent insulation between adjacent electrodes and vertical conductivity. Can be electrically connected to each other, and can be effectively used to electrically connect fine electrodes such as ICs and electrodes on a substrate on which they are mounted. There is also an effect that the reliability of the contact electrode connection is high.

以下に本発明に係る導電性微粒子および該微粒子を使用した異方導電性接着剤、フィルム、電気回路基板について具体的に説明する。
[導電性微粒子]
図1は本発明に係る導電性微粒子を模式的に示す断面図であり、本発明に係る導電性微粒子は、球状コア粒子1と、該球状コア粒子1表面に設けられた弾性被覆層2と、該弾性被覆層2表面に設けられた導電性薄膜層3とからなることを特徴としている。
The conductive fine particles according to the present invention and the anisotropic conductive adhesive, film, and electric circuit board using the fine particles will be specifically described below.
[Conductive fine particles]
FIG. 1 is a cross-sectional view schematically showing conductive fine particles according to the present invention. The conductive fine particles according to the present invention include a spherical core particle 1 and an elastic coating layer 2 provided on the surface of the spherical core particle 1. And the conductive thin film layer 3 provided on the surface of the elastic coating layer 2.

球状コア粒子1
本発明に用いる球状コア粒子としては、無機酸化物粒子、有機無機複合粒子、有機高分子化合物粒子などの金属粒子以外の粒子を使用することができる。無機酸化物粒子としてはシリカ、アルミナ、ジルコニア、チタニア、シリカ・アルミナ、シリカ・ジルコニア等の従来公知の単一の無機酸化物粒子、2種以上複合無機酸化物粒子が挙げられる。有機無機複合粒子としては、金属アルコキシドおよび/または金属アルキルアルコキシドを加水分解して得られる従来公知のポリオルガノシロキサン等の粒子が挙げられる。さらに、有機高分子化合物粒子としては、ジビニルベンゼン重合体、ジビニルベンゼン−スチレン共重合体、ジビニルベンゼン−アクリル酸エステル共重合体等の樹脂粒子、フェノール樹脂粒子等が挙げられる。
Spherical core particle 1
As the spherical core particles used in the present invention, particles other than metal particles such as inorganic oxide particles, organic-inorganic composite particles, and organic polymer compound particles can be used. Examples of the inorganic oxide particles include conventionally known single inorganic oxide particles such as silica, alumina, zirconia, titania, silica / alumina, silica / zirconia, and two or more composite inorganic oxide particles. Examples of the organic / inorganic composite particles include conventionally known polyorganosiloxane particles obtained by hydrolyzing metal alkoxide and / or metal alkyl alkoxide. Furthermore, organic polymer compound particles include resin particles such as divinylbenzene polymer, divinylbenzene-styrene copolymer, divinylbenzene-acrylate copolymer, phenol resin particles, and the like.

球状コア粒子の平均粒子径は0.5〜30μmの範囲にあることが好ましく、さらに好
ましくは0.8〜25μmの範囲である。平均粒子径が0.5μm未満では、弾性特性が弾性被覆層に依存することになり、実質的に弾性被覆層のみからなる粒子となる。このため、球状コア粒子によって電極間距離を一定に保ちながら、弾性被覆層によって応力を吸収し、電極の損傷等がなく信頼性の高い電気回路を形成するという本発明の効果が十分に得られなくなることがある。また、平均粒子径が30μmを越えると、結果的に得られる導電性微粒子の平均粒子径が30μmを越えることとなり、このような大きな粒子は微細な電気回路の形成には不向きである。
The average particle diameter of the spherical core particles is preferably in the range of 0.5 to 30 μm, and more preferably in the range of 0.8 to 25 μm. When the average particle diameter is less than 0.5 μm, the elastic properties depend on the elastic coating layer, and the particles are substantially composed only of the elastic coating layer. For this reason, while maintaining the distance between the electrodes constant by the spherical core particles, the elastic coating layer absorbs the stress, and the effect of the present invention that forms a highly reliable electric circuit without any damage to the electrodes can be sufficiently obtained. It may disappear. On the other hand, if the average particle diameter exceeds 30 μm, the resulting conductive fine particles have an average particle diameter exceeding 30 μm, and such large particles are unsuitable for forming fine electric circuits.

球状コア粒子の粒子径変動係数は20%以下、好ましくは10%以下であることが望ましい。粒子径変動係数が20%を超えると、最終的に得られる導電性微粒子、異方導電性微粒子の粒子径変動係数が大きくなり、粒子ごとに電極との接触面積に違いが生じるために導通不良が生じたり、電極の接続ができない場合があり、また電極間距離を一定にできないことがある。   The particle diameter variation coefficient of the spherical core particles is 20% or less, preferably 10% or less. When the particle size variation coefficient exceeds 20%, the particle size variation coefficient of the conductive fine particles and anisotropic conductive fine particles that are finally obtained becomes large, and the contact area with the electrode differs for each particle. May occur, the electrodes may not be connected, and the distance between the electrodes may not be constant.

球状コア粒子の10%K値は300〜6000kgf/mm2の範囲にあることが好ましく、
さらに好ましい範囲は500〜5000kgf/mm2である。10%K値が300kgf/mm2
満では最終的に得られる粒子の10%K値が小さすぎるため、導電性微粒子が柔らかくなりすぎて、電極間距離を一定にすることができないことがあり、場合によっては電気回路形成時の加圧に対して変形が大きくなりすぎて接続信頼性が低下することがある。また10%K値が6000kgf/mm2を越えると、最終的に得られる粒子の10%K値が大きくなりすぎてしまい、粒子として堅すぎるため、電極を損傷したり、接続不良を起こすことがある。
The 10% K value of the spherical core particles is preferably in the range of 300 to 6000 kgf / mm 2 ,
A more preferable range is 500 to 5000 kgf / mm 2 . If the 10% K value is less than 300 kgf / mm 2, the 10% K value of the finally obtained particles is too small, the conductive fine particles become too soft, and the distance between the electrodes may not be constant. In some cases, the deformation becomes too large with respect to the pressurization at the time of forming the electric circuit, and the connection reliability may be lowered. If the 10% K value exceeds 6000 kgf / mm 2 , the final 10% K value of the particles will be too large, and the particles will be too hard, which may damage the electrodes and cause poor connection. is there.

本発明に用いる球状コア粒子および後で述べる弾性被膜層を形成した粒子の粒径分布は走査型電子顕微鏡(日本電子(株)製:JSM−5300型)により写真を撮影し、この
画像の250個の粒子について画像解析装置(旭化成(株)製:IP−100)を用いて測定される。また、各粒子径の変動係数は250個の粒子の粒子径を用いて下記式から計算によって得られる。
The particle size distribution of the spherical core particles used in the present invention and the particles on which the elastic coating layer described later is formed is photographed with a scanning electron microscope (manufactured by JEOL Ltd .: JSM-5300 type). Each particle is measured using an image analysis apparatus (Asahi Kasei Co., Ltd. product: IP-100). Moreover, the variation coefficient of each particle diameter is obtained by calculation from the following equation using the particle diameter of 250 particles.

粒子径変動係数=(粒子径標準偏差(σ)/平均粒径(Dn))×100 Particle diameter variation coefficient = (particle diameter standard deviation (σ) / average particle diameter (D n )) × 100

Figure 2008117759
Figure 2008117759

i:個々の粒子の粒子径、n=250また、10%K値は以下のようにして評価され
る。測定器として微小圧縮試験機(島津製作所製 MCTM-201)を用い、試料として粒子直
径がDである1個の微粒子を用いて、試料に一定の負荷速度で荷重を負荷し、圧縮変位が粒子径の10%となるまで粒子を変形させ、10%変位時の荷重と圧縮変位(mm)を求める。粒径および求めた圧縮荷重、圧縮変位を次に式(1)に代入して計算によって求められる。本明細書では、10個の粒子について10%K値を測定し、この平均値によって評価する。
D i : particle diameter of individual particles, n = 250, and 10% K value is evaluated as follows. Using a micro-compression tester (MCTM-201 manufactured by Shimadzu Corporation) as a measuring device, using a single fine particle with a particle diameter of D as a sample, applying a load to the sample at a constant load speed, compressive displacement is The particles are deformed until the diameter reaches 10%, and the load and compression displacement (mm) at the time of 10% displacement are obtained. The particle diameter, the determined compression load, and the compression displacement are then calculated by substituting into equation (1). In this specification, 10% K value is measured for 10 particles, and the average value is evaluated.

K=(3/21/2)・F・S-3/2・(D/2)-1/2 …(1)
(式中、Fは微粒子の10%圧縮変形時の荷重値(kgf)、Sは微粒子の10%圧縮変形
時の圧縮変位(mm)、Dは粒子直径(mm)を示す。)
具体的な測定条件としては、圧縮速度定数を1として、粒子径によって(i)負荷速度を
0.029〜0.27gf/secの範囲で変更し、(ii)試験荷重を最大10gfとした。
K = (3/2 1/2 ) · F · S -3 / 2 · (D / 2) -1/2 (1)
(In the formula, F represents a load value (kgf) at the time of 10% compression deformation of fine particles, S represents a compression displacement (mm) at the time of 10% compression deformation of fine particles, and D represents a particle diameter (mm).)
As specific measurement conditions, the compression rate constant was set to 1, (i) the load speed was changed in the range of 0.029 to 0.27 gf / sec depending on the particle diameter, and (ii) the test load was set to 10 gf at the maximum.

弾性被覆層2
本発明の弾性被覆層は下記式(2)で表される有機ケイ素化合物の1種または2種以上からなるポリオルガノシロキサンであることが好ましい。
Elastic coating layer 2
The elastic coating layer of the present invention is preferably a polyorganosiloxane composed of one or more organic silicon compounds represented by the following formula (2).

1 nSi(OR2)4-n (2)
式中、nは1〜3の整数であり、R1は置換または非置換の炭化水素基から選ばれる炭
素数1〜10の炭化水素基であり、R2は水素原子、炭素数1〜5のアルキル基または炭
素数2〜5のアシル基である。
R 1 n Si (OR 2 ) 4-n (2)
In the formula, n is an integer of 1 to 3, R 1 is a hydrocarbon group having 1 to 10 carbon atoms selected from a substituted or unsubstituted hydrocarbon group, R 2 is a hydrogen atom, and 1 to 5 carbon atoms. Or an acyl group having 2 to 5 carbon atoms.

このような一般式(2)で表される有機ケイ素化合物の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリス(メトキシエトキシ)シラン、エチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、メチルトリアセトキシシラン、フェニルトリアセトキシシラン等のオルガノトリアルコキシシラン化合物、オルガノトリアセトキシシラン化合物:ジメトキシジメチルシラン、ジエトキシ-3-グリシドキシプロピルメチルシラン、ジメトキシジフェニルシラン、ジアセトキシジメチルシラン等のジオルガノジアルコキシシラン化合物等:トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルシラノール等のトリオルガノアルコキシシシラン化合物等が挙げられる。   Specific examples of the organosilicon compound represented by the general formula (2) include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltris (methoxyethoxy) silane, ethyltrimethoxysilane, vinyl Organotrialkoxysilane compounds such as trimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, methyltriacetoxysilane, phenyltriacetoxysilane, organo Triacetoxysilane compounds: diorganodialkoxysilanes such as dimethoxydimethylsilane, diethoxy-3-glycidoxypropylmethylsilane, dimethoxydiphenylsilane, diacetoxydimethylsilane Things like: trimethyl methoxy silane, trimethyl ethoxy silane, tri organo alkoxysilane silane compounds such as trimethyl silanol, and the like.

さらに、必要に応じて式(2)においてn=0で表される有機ケイ素化合物を混合して用いることができる。このn=0で表される有機ケイ素化合物を混合して用いることによって弾性被覆層の弾性率を所望の弾性率に制御することが容易にできる。このときの混合比率は全有機ケイ素化合物中のn=0で表される有機ケイ素化合物の割合は50モル%以下であることが好ましく、具体的にはテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン化合物、テトラアセトキシシラン等のテトラアシルオキシシラン等の化合物等を挙げることができる。   Furthermore, an organic silicon compound represented by n = 0 in the formula (2) can be mixed and used as necessary. By mixing and using the organosilicon compound represented by n = 0, the elastic modulus of the elastic coating layer can be easily controlled to a desired elastic modulus. The mixing ratio at this time is preferably such that the ratio of the organosilicon compound represented by n = 0 in the total organosilicon compound is 50 mol% or less. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxy Examples include tetraalkoxysilane compounds such as silane and tetrabutoxysilane, and tetraacyloxysilane compounds such as tetraacetoxysilane.

このような弾性被覆層の10%K値は球状コア粒子より低く、かつ50〜500kgf/mm2の範囲にあることが好ましく、さらに好ましい範囲は80〜300kgf/mm2である。弾性被覆層の10%K値が、50kgf/mm2未満では弾性被覆層が柔らかすぎて実質的に10%K値の高い球状コア粒子のもに場合と差がなくなるため、コア粒子によって電極を損傷することがあり、500kgf/mm2を越えると、弾性被覆層が硬すぎるために電極と導電性微粒子の接触面積の増加が不十分となり接触抵抗が十分低下せず、また粒子径がある程度不均一な場合でも確実に電極を接続することができるという本発明の効果が十分に得られなくなることがあり、さらに応力の吸収が不十分となり、やはり電極の損傷等を起こすことがあるので好ましくない。 10% K value of such an elastic cover layer is preferably in the range of the spherical core particles than low and 50~500kgf / mm 2, more preferred range is 80~300kgf / mm 2. If the 10% K value of the elastic coating layer is less than 50 kgf / mm 2 , the elastic coating layer is too soft and there is no difference between the spherical core particles having a high 10% K value. If it exceeds 500 kgf / mm 2 , the elastic coating layer is too hard and the contact area between the electrode and the conductive fine particles is not increased sufficiently, so that the contact resistance does not decrease sufficiently, and the particle size is somewhat inadequate. The effect of the present invention that the electrodes can be reliably connected even in a uniform case may not be sufficiently obtained, and further, the absorption of stress becomes insufficient, which may cause damage to the electrodes, which is not preferable. .

なお、弾性被覆層の10%K値とは、弾性被覆層を形成する式(2)で表される有機ケイ素化合物のみからなる粒子を形成し、この粒子を上記した方法にて10%K値を測定して得られる値を意味する。このような弾性被覆層の厚さは0.1〜10μmの範囲にあることが好ましく、さらに好ましくは0.5〜5μmの範囲である。   The 10% K value of the elastic coating layer means that particles consisting only of the organosilicon compound represented by the formula (2) for forming the elastic coating layer are formed, and the particles are subjected to 10% K value by the above-described method. Means the value obtained by measuring The thickness of such an elastic coating layer is preferably in the range of 0.1 to 10 μm, more preferably in the range of 0.5 to 5 μm.

弾性被覆層の厚さが0.1μm未満では、弾性被覆層が薄すぎて実質的に10%K値の高い球状コア粒子だけとなるため電極と導電性微粒子の接触面積の増加が不十分となり接触抵抗が十分低下しなくなることがある。また弾性被覆層の厚さが0.1μm未満では、粒子径がある程度不均一な場合でも確実に電極を接続することができるという本発明の効果が十分に得られなくなることがあり、さらには応力の吸収が不十分となり、電極の損傷等を起こすことがある。一方、弾性被覆層の厚さが10μmを越えると実質的に弾性率の低い弾性被覆層のみからなる粒子と同等のものとなり、電極間距離を一定に保つなどの効果が得られないことがある。   If the thickness of the elastic coating layer is less than 0.1 μm, the elastic coating layer is so thin that it becomes substantially only spherical core particles having a high 10% K value, so that the contact area between the electrode and the conductive fine particles is not sufficiently increased. Contact resistance may not be sufficiently reduced. In addition, when the thickness of the elastic coating layer is less than 0.1 μm, the effect of the present invention that the electrodes can be reliably connected even when the particle diameter is somewhat uneven may not be sufficiently obtained, Inadequate absorption may cause electrode damage. On the other hand, when the thickness of the elastic coating layer exceeds 10 μm, it becomes equivalent to particles composed only of an elastic coating layer having a substantially low elastic modulus, and the effect of keeping the distance between the electrodes constant may not be obtained. .

また、このような弾性被覆層が形成された粒子自体の10%K値は、200〜2000kgf/mm2、好ましくは250〜1000kgf/mm2の範囲にあることが望ましい。なお、弾性被覆層が形成された粒子自体の10%K値は、弾性被覆層が形成された粒子を上記した方法にて10%K値を測定することによって得られる。 Further, the 10% K value of the particles themselves on which such an elastic coating layer is formed is desirably 200 to 2000 kgf / mm 2 , preferably 250 to 1000 kgf / mm 2 . The 10% K value of the particles themselves with the elastic coating layer formed can be obtained by measuring the 10% K value of the particles with the elastic coating layer formed by the method described above.

このような弾性被覆層の形成方法は、前記した膜厚および弾性特性(10%K値)の弾性被覆層が得られれば特に制限はないが、たとえば、以下のようにして製造することが好ましい。具体的には、まず(a)前記球状コア粒子を水および/または有機溶媒に分散させ
て球状コア粒子の分散液を調製する。
The method for forming such an elastic coating layer is not particularly limited as long as the elastic coating layer having the above-described film thickness and elastic characteristics (10% K value) can be obtained. For example, the elastic coating layer is preferably manufactured as follows. . Specifically, first, (a) the spherical core particles are dispersed in water and / or an organic solvent to prepare a dispersion of spherical core particles.

球状コア粒子はシランカップリング剤等で処理して、表面に疎水性官能基が付与されていることが好ましい。なお球状コア粒子が表面に水酸基を有していないか、有していても不十分な場合はアルカリ性溶液に接触させることによって水酸基を付与(本発明では、これを球状コア粒子の活性化工程という)した後、同様にシランカップリング剤等で処理して、表面に疎水性官能基を付与してもよい。   The spherical core particles are preferably treated with a silane coupling agent or the like to impart hydrophobic functional groups to the surface. If the spherical core particle does not have a hydroxyl group on the surface or if it does not have sufficient hydroxyl group, it is given a hydroxyl group by contacting with an alkaline solution (in the present invention, this is called an activation step of the spherical core particle). ), The surface may be similarly treated with a silane coupling agent or the like to impart a hydrophobic functional group to the surface.

こうして得られた疎水性球状コア粒子を水、有機溶媒、または水と有機溶媒との混合溶媒に分散させるが、有機溶媒としては、水と相溶性の有機溶媒、たとえば、アルコール類、グリコール類、グリコールエーテル類、ケトン類などから選ばれる1種または2種以上が用いられる。また混合溶媒中の有機溶媒の濃度は30%以下であることが好ましい。   The hydrophobic spherical core particles thus obtained are dispersed in water, an organic solvent, or a mixed solvent of water and an organic solvent. Examples of the organic solvent include organic solvents compatible with water, such as alcohols, glycols, One or more selected from glycol ethers, ketones and the like are used. The concentration of the organic solvent in the mixed solvent is preferably 30% or less.

なお、分散液中の疎水性コア粒子の濃度は粒子径にもよるが1〜10重量%の範囲にあることが好ましい。疎水性コア粒子の濃度が1重量%未満では生産性が低く、10重量%を超えると得られる粒子が凝集する傾向にある。疎水性球状コア粒子の分散液は必要に応じて超音波を照射し、粒子を単分散させてもよい。   The concentration of the hydrophobic core particles in the dispersion is preferably in the range of 1 to 10% by weight although it depends on the particle diameter. When the concentration of the hydrophobic core particles is less than 1% by weight, the productivity is low, and when the concentration exceeds 10% by weight, the resulting particles tend to aggregate. The dispersion of the hydrophobic spherical core particles may be monodispersed by irradiating ultrasonic waves as necessary.

次いで、得られた(b)疎水性球状コア粒子分散液中に、界面活性剤を添加する。使用さ
れる界面活性剤としてはイオン性界面活性剤、非イオン性界面活性剤のいずれをも使用できるが、使用している分散媒がアルカリ性の場合はアニオン性界面活性剤が好ましい。このような界面活性剤としては、水に可溶なものであれば特に制限なく使用することが可能である。具体的には、アルキルアミン塩、第4級アンモニウム塩等の陽イオン界面活性剤、アルキルベタイン、アミンオキサイドなどの両性界面活性剤、脂肪酸塩、アルキル硫酸エステル、アルキルナフタレンスルホン酸塩、アルキルスルホコハク酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルキル隣酸塩、ポリオキシエチレンアルキル硫酸エステル、ポリオキシエチレンアルキルアリル硫酸エステル、ナフタレンスルホン酸ホルマリン縮合物などの陰イオン性界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン誘導体、ソルビタン脂肪酸エステル、ポリオキシエチレソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルアミン、アルキルアルカノールアミドなどの非イオン性界面活性剤などが挙げられる。
Next, a surfactant is added to the obtained (b) hydrophobic spherical core particle dispersion. As the surfactant to be used, either an ionic surfactant or a nonionic surfactant can be used, but an anionic surfactant is preferred when the dispersion medium used is alkaline. Such a surfactant can be used without particular limitation as long as it is soluble in water. Specifically, cationic surfactants such as alkylamine salts and quaternary ammonium salts, amphoteric surfactants such as alkylbetaines and amine oxides, fatty acid salts, alkyl sulfate esters, alkylnaphthalene sulfonates, alkylsulfosuccinic acids Anionic surfactants such as salts, alkyl diphenyl ether disulfonates, alkyl phosphates, polyoxyethylene alkyl sulfates, polyoxyethylene alkyl allyl sulfates, naphthalene sulfonic acid formalin condensates, polyoxyethylene alkyl ethers, poly Oxyethylene alkyl allyl ether, polyoxyethylene derivative, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, glycerin fatty acid ester Le, polyoxyethylene fatty acid esters, polyoxyethylene alkyl amines, such as non-ionic surfactants such as alkyl alkanolamides.

この界面活性剤の添加量は、球状コア粒子に対して0.4〜40重量%の範囲にあるこ
とが好ましい。界面活性剤の量が上記範囲にあると、次に添加する有機ケイ素化合物の加水分解物が疎水性球状コア粒子表面に析出・縮重合して弾性被覆層を形成する割合が高くなり、新たな核が発生したり、ゲル状物が多く残存したりすることがなく、収率が向上し、粒子成長が均一となり、粒子径変動係数の低い粒子を得ることができる。
The amount of the surfactant added is preferably in the range of 0.4 to 40% by weight with respect to the spherical core particles. When the amount of the surfactant is within the above range, the ratio of the hydrolyzate of the organosilicon compound to be added next to precipitate and polycondensate on the surface of the hydrophobic spherical core particles increases to form an elastic coating layer. Nuclei are not generated and a large amount of gel is not left, yield is improved, particle growth is uniform, and particles having a low particle diameter variation coefficient can be obtained.

次に、上記式(2)で示される有機ケイ素化合物の1種または2種以上の混合物を、必要に応じて有機溶媒に溶解した溶液を添加し、さらに加水分解触媒としてアルカリを添加して有機ケイ素化合物を加水分解させ、加水分解物を球状コア粒子表面に析出・縮重合させて弾性被覆層を形成する。加水分解用触媒として添加されるアルカリとしては、アルカリ金属水酸化物水溶液、アミン水溶液、アンモニア水溶液、アンモニアガス等が挙げられるが、特にアンモニア水溶液およびアンモニアガスは加熱処理後、微粒子中にアンモニアが残存しにくく、残存しても容易に除去可能であり、しかも安価であるので好ましい。   Next, a solution prepared by dissolving one or a mixture of two or more of the organosilicon compounds represented by the above formula (2) in an organic solvent as necessary is added, and an alkali is added as a hydrolysis catalyst to form an organic compound. An elastic coating layer is formed by hydrolyzing the silicon compound and precipitating and polycondensing the hydrolyzate on the surface of the spherical core particles. Examples of the alkali added as a catalyst for hydrolysis include alkali metal hydroxide aqueous solution, amine aqueous solution, ammonia aqueous solution, ammonia gas, and the like. Particularly, ammonia aqueous solution and ammonia gas remain in fine particles after heat treatment. This is preferable because it is difficult to remove, can be easily removed even if it remains, and is inexpensive.

アルカリの添加量は、用いる有機ケイ素化合物の種類および量によって異なるが、分散液のpHが好ましくは7〜13、さらに好ましくは8〜12の範囲となるように連続的にまたは断続的に添加することができる。アルカリの添加時間は、特に制限はなく、用いる有機ケイ素化合物の種類および量によって変えることができる。アルカリを添加した後、加水分解時の温度と同温または高温に維持して球状微粒子を熟成する。この熟成工程によって、得られる微粒子の粒子径がさらに均一となる。熟成時の温度および時間は、約20〜95℃、好ましくは50〜90℃の温度で約0.5〜24時間維持することが好ましい。   The amount of alkali added varies depending on the type and amount of the organosilicon compound used, but is added continuously or intermittently so that the pH of the dispersion is preferably in the range of 7 to 13, more preferably 8 to 12. be able to. There is no restriction | limiting in particular in the addition time of an alkali, It can change with the kind and quantity of the organosilicon compound to be used. After adding the alkali, the spherical fine particles are ripened while maintaining the same temperature or a high temperature as that during the hydrolysis. By this aging step, the particle diameters of the obtained fine particles become more uniform. The temperature and time for aging are preferably maintained at a temperature of about 20 to 95 ° C., preferably 50 to 90 ° C. for about 0.5 to 24 hours.

熟成温度が約20℃未満では、用いる有機ケイ素化合物によっては加水分解速度が遅く、加水分解物が十分に析出しないために、溶解したまま残留するシリカ成分が多くなり、また単分散した粒子が得にくく、また熟成温度が95℃以上では粒子同士の凝集が起こり、さらには融着した粒子が生成することがある。このような方法で製造すると、弾性被覆層形成時に式(2)で表される有機ケイ素化合物の使用効率を高くすることができ、このため所望の粒子径、粒子径変動係数、および弾性特性を有する粒子を得ることができる。   When the aging temperature is less than about 20 ° C., the hydrolysis rate is slow depending on the organosilicon compound used, and the hydrolyzate does not sufficiently precipitate, so that the silica component remaining in the solution increases, and monodispersed particles are obtained. In addition, when the aging temperature is 95 ° C. or higher, the particles are aggregated, and further, fused particles may be generated. When produced by such a method, the use efficiency of the organosilicon compound represented by the formula (2) can be increased during the formation of the elastic coating layer. For this reason, the desired particle size, particle size variation coefficient, and elastic characteristics can be reduced. It is possible to obtain particles having the same.

以上のようにして、球状コア粒子表面に弾性被覆層を形成した後、分散液から表面に弾性被覆層が形成された球状コア粒子を分離し、必要に応じてアルコール等の有機溶媒で洗浄し、次いで、100〜1200℃の温度で乾燥および/または加熱処理したのち、導電性薄膜層を形成する。   After forming the elastic coating layer on the surface of the spherical core particles as described above, the spherical core particles with the elastic coating layer formed on the surface are separated from the dispersion and washed with an organic solvent such as alcohol as necessary. Then, after drying and / or heat treatment at a temperature of 100 to 1200 ° C., a conductive thin film layer is formed.

導電性薄膜層3
本発明の導電性微粒子は、前記弾性被覆層の表面に導電性薄膜層を有している。導電性薄膜層の導電性成分としては、電極の接続に使用可能な導電性を有しているものであれば特に制限はなく従来公知の成分を使用することができ、たとえば、ニッケル、コバルト、銅、銀、金、錫、鉄、パラジウム、インジウムなどが挙げられる。さらに導電性の高い合金を用いることもできる。
Conductive thin film layer 3
The conductive fine particles of the present invention have a conductive thin film layer on the surface of the elastic coating layer. The conductive component of the conductive thin film layer is not particularly limited as long as it has conductivity that can be used for connecting electrodes, and conventionally known components can be used. For example, nickel, cobalt, Examples thereof include copper, silver, gold, tin, iron, palladium, and indium. Furthermore, a highly conductive alloy can also be used.

導電性薄膜層の厚さは0.01〜5μmの範囲にあることが好ましく、さらに0.02〜3μmの範囲にあることが好ましい。導電性薄膜層の厚さが0.01μm未満では十分な
導電性が得られないことがあり、電気回路の形成に不向きであり、導電性薄膜層の厚さが5μmを越えると加熱・加圧して回路を形成する際などに内部粒子との剥離を生じたり、粒子比重が大きくなるために樹脂ペースト中での分散性が低下し、均一な回路形成ができないことがある。
The thickness of the conductive thin film layer is preferably in the range of 0.01 to 5 μm, and more preferably in the range of 0.02 to 3 μm. If the thickness of the conductive thin film layer is less than 0.01 μm, sufficient conductivity may not be obtained, which is not suitable for forming an electric circuit. If the thickness of the conductive thin film layer exceeds 5 μm, heating and pressurization are performed. When forming a circuit, separation from internal particles may occur, or the specific gravity of the particle increases, so that dispersibility in the resin paste decreases, and a uniform circuit may not be formed.

このような導電性薄膜層の形成方法としては、上記した導電性薄膜層が形成できれば特に制限はなく、従来公知の方法が採用でき、たとえば、無電解メッキ法(化学的メッキ法)、イオンスパッタリング法、イオンプレーティング法、真空蒸着法等の物理的蒸着方法、導電性成分の微粉末を、基体粒子と機械的に混合してメカノケミカルに付着または融着させたり、バインダーに混合して得られるペーストによりコーティングする方法等が挙げられる。   A method for forming such a conductive thin film layer is not particularly limited as long as the above-described conductive thin film layer can be formed, and a conventionally known method can be adopted, for example, an electroless plating method (chemical plating method), ion sputtering, or the like. Physical vapor deposition methods such as ion deposition, ion plating, vacuum deposition, etc., fine powders of conductive components are mechanically mixed with substrate particles to adhere or fuse to mechanochemicals, or mixed with binders. And a method of coating with a paste to be prepared.

以上のような構成を有する本発明に係る導電性微粒子は、平均粒子径が1〜35μmの範囲にあり、さらに好ましくは1〜30μmの範囲にあることが望ましい。平均粒子径が1μm未満では、電極基板の表面が十分に平滑でない場合、たとえば溝や穴があると、接続不良を起こすことがあり、35μmを越えるとファインピッチの電極の接続が困難になることがある。特に、導電性微粒子の平均粒子径は、通常電極間距離の0.3倍以下とな
るように使用されることが好ましい。
The conductive fine particles according to the present invention having the above-described configuration have an average particle diameter in the range of 1 to 35 μm, and more preferably in the range of 1 to 30 μm. If the average particle diameter is less than 1 μm, the surface of the electrode substrate is not sufficiently smooth. For example, if there are grooves or holes, poor connection may occur, and if it exceeds 35 μm, it is difficult to connect fine pitch electrodes. There is. In particular, the average particle diameter of the conductive fine particles is preferably used so that it is usually not more than 0.3 times the distance between the electrodes.

また、導電性微粒子の粒子径変動係数は20%以下であることが好ましい。粒子径変動係数が20%を越えると、電極との接触面積に違いが生じるために導通不良(ムラ)が生じたり、電極の接続に関与しない粒子が多くなる傾向にあり、また電極間距離を一定にできないことがある。このような導電性微粒子の比重は0.5〜8g/ccの範囲にあることが好ましく、さらに0.7〜5g/ccの範囲にあることが望ましい。0.5〜8g/ccの範囲にない場合は、樹脂ペースト、絶縁性接着性分等に分散させて使用する際に、分散媒との比重差が大きいために均一に分散しなかったり沈降したりすることがある。   The particle diameter variation coefficient of the conductive fine particles is preferably 20% or less. When the particle diameter variation coefficient exceeds 20%, a difference in contact area with the electrode results in poor conduction (unevenness), or there is a tendency for more particles not to be involved in electrode connection, and for the distance between the electrodes. There are times when it cannot be made constant. The specific gravity of such conductive fine particles is preferably in the range of 0.5 to 8 g / cc, and more preferably in the range of 0.7 to 5 g / cc. If it is not in the range of 0.5 to 8 g / cc, it is not uniformly dispersed or settled due to the large difference in specific gravity with the dispersion medium when used in resin paste, insulating adhesive, etc. Sometimes.

絶縁性熱可塑性樹脂層4
また、本発明の導電性微粒子は、図2に示されるように前記導電性薄膜層3の表面にさらに絶縁性熱可塑性樹脂層4が設けられていてもよい。なお、図2は、本発明に係る導電性微粒子の他の態様を示す断面図であり、図2中、符号1は前記した球状コア粒子、符号2は弾性被覆層、符号3は導電性薄膜層を示す。
Insulating thermoplastic resin layer 4
In the conductive fine particles of the present invention, an insulating thermoplastic resin layer 4 may be further provided on the surface of the conductive thin film layer 3 as shown in FIG. 2 is a cross-sectional view showing another embodiment of the conductive fine particles according to the present invention. In FIG. 2, reference numeral 1 denotes the spherical core particle, reference numeral 2 denotes an elastic coating layer, and reference numeral 3 denotes a conductive thin film. Indicates the layer.

このような絶縁性熱可塑性樹脂としては、エチレン−酢酸ビニル共重合体、ポリエチレン、エチレン−プロピレン共重合体、エチレン−アクリル酸エステル共重合体、エチレン
アクリル酸塩共重合体、アクリル酸エステル系ゴム、ポリイソブチレン、アタクチックポリプロピレン、ポリビニルブチラール、アクリロニトリル−ブタジエン共重合体、スチレン−イソプレンブロック共重合体、ポリブタジエン、エチルセルロース、ポリエステル、ポリアミド、ポリウレタン、天然ゴム、シリコン系ゴム、ポリクロロプレンなどの合成ゴム類、ポリビニルエーテルなどを挙げることができる。
Examples of such insulating thermoplastic resins include ethylene-vinyl acetate copolymer, polyethylene, ethylene-propylene copolymer, ethylene-acrylate copolymer, ethylene acrylate copolymer, acrylate rubber. , Synthetic rubbers such as polyisobutylene, atactic polypropylene, polyvinyl butyral, acrylonitrile-butadiene copolymer, styrene-isoprene block copolymer, polybutadiene, ethylcellulose, polyester, polyamide, polyurethane, natural rubber, silicone rubber, polychloroprene And polyvinyl ether.

絶縁性熱可塑性樹脂層の厚さは、導電性微粒子の直径の1%〜10%の範囲にあることが好ましい。絶縁性熱可塑性樹脂層の厚さが導電性微粒子の直径に対して1%より小さい場合は、絶縁層が薄すぎて接続の信頼性が低下することがある。また、導電性微粒子の直径に対して10%より大きい場合は、電気回路を接続する際の加圧によって絶縁性熱可塑性樹脂層が導電性微粒子から剥離し、剥離片が電極間の導通不良を起こしたり、ホットメルトタイプのように瞬時加熱したときに、絶縁性熱可塑性樹脂層の溶融が不十分となり、導通不良を起こすことがある。   The thickness of the insulating thermoplastic resin layer is preferably in the range of 1% to 10% of the diameter of the conductive fine particles. When the thickness of the insulating thermoplastic resin layer is smaller than 1% with respect to the diameter of the conductive fine particles, the insulating layer may be too thin and the connection reliability may be lowered. If the diameter of the conductive fine particles is larger than 10%, the insulating thermoplastic resin layer is peeled off from the conductive fine particles by pressurization when connecting the electric circuit, and the peeled piece causes poor conduction between the electrodes. When it occurs or when it is heated instantaneously as in the hot melt type, the insulating thermoplastic resin layer may be insufficiently melted, resulting in poor conduction.

絶縁性熱可塑性樹脂層の被覆方法としては、たとえば、導電性微粒子と絶縁性熱可塑性樹脂微粉末を容器に入れて混合し、摩擦によって生じる帯電極性の相違により被覆する方法など公知の方法が採用される。このように、導電性薄膜層の表面にさらに絶縁性熱可塑性樹脂層が設けられていると、この導電性微粒子を対向する電極間に介在させて加圧し、該接着剤中の被覆粒子が単層に拡散したのち、加圧状態を維持しつつ加熱すれば、絶縁性熱可塑性樹脂の前記電極接触部分が融解し、極めて優れた隣接電極間絶縁率および上下導通率をもって電極間を電気的に接続することができる。絶縁性熱可塑性樹脂層が設けられていないと、互いに隣接して横に存在する電極間に複数個の導電性微粒子が分散した場合は、隣接電極間が導通、すなわち横導通することがあり、隣接電極間絶縁率が低下することがある。
なお、本明細書では、このように前記導電性薄膜層の表面にさらに絶縁性熱可塑性樹脂層が設けられた導電性微粒子を異方導電性微粒子ということもある。
As a method for coating the insulating thermoplastic resin layer, for example, a known method such as a method in which conductive fine particles and insulating thermoplastic resin fine powder are mixed in a container and coated by a difference in charging polarity caused by friction is adopted. Is done. As described above, when an insulating thermoplastic resin layer is further provided on the surface of the conductive thin film layer, the conductive fine particles are interposed between the opposing electrodes and pressed, and the coated particles in the adhesive are single. If it is heated while maintaining the pressurized state after diffusing into the layer, the electrode contact portion of the insulating thermoplastic resin will melt, and the electrodes will be electrically connected with excellent insulation between adjacent electrodes and vertical conductivity. Can be connected. When the insulating thermoplastic resin layer is not provided, when a plurality of conductive fine particles are dispersed between the electrodes that are adjacent to each other, there may be conduction between adjacent electrodes, that is, horizontal conduction. The insulation rate between adjacent electrodes may decrease.
In the present specification, the conductive fine particles in which the insulating thermoplastic resin layer is further provided on the surface of the conductive thin film layer as described above may be referred to as anisotropic conductive fine particles.

[異方導電性接着剤]
本発明に係る接着剤は、上記した導電性微粒子が絶縁性熱硬化性樹脂の接着成分中に分散されたものである。
[Anisotropic conductive adhesive]
In the adhesive according to the present invention, the above-described conductive fine particles are dispersed in an adhesive component of an insulating thermosetting resin.

絶縁性熱硬化性樹脂の接着成分としては、エポキシ樹脂、アクリル酸エステル樹脂、メラミン樹脂、尿素樹脂、フェノール樹脂などの熱硬化性樹脂、多価アルコールのアクリル酸エステル、ポリエステルアクリレート、多価カルボン酸の不飽和エステル、などの紫外線、電子線などによる電磁波照射硬化性樹脂を挙げることができる。   Adhesive components of insulating thermosetting resins include epoxy resins, acrylic ester resins, melamine resins, urea resins, phenolic resins and other thermosetting resins, polyhydric alcohol acrylic esters, polyester acrylates, polycarboxylic acids And an electromagnetic wave irradiation curable resin by an ultraviolet ray, an electron beam, and the like.

なお、導電性微粒子として、前記導電性薄膜層の表面にさらに絶縁性熱可塑性樹脂層が設けられた異方導電性微粒子を使用する場合、絶縁性熱可塑性樹脂の軟化温度よりも高温で硬化する熱硬化性樹脂を用いることが望ましい。異方導電性接着剤中に含まれる導電性微粒子の量は、接着剤として機能できる量であれば特に制限されるものではなく、絶縁性熱可塑性樹脂100重量部に対して、5〜400重量部、好ましくは10〜100重量部の範囲にあることが望ましい。   In addition, when using anisotropically conductive fine particles in which an insulating thermoplastic resin layer is further provided on the surface of the conductive thin film layer, the conductive fine particles are cured at a temperature higher than the softening temperature of the insulating thermoplastic resin. It is desirable to use a thermosetting resin. The amount of the conductive fine particles contained in the anisotropic conductive adhesive is not particularly limited as long as it is an amount capable of functioning as an adhesive, and is 5 to 400 weights with respect to 100 parts by weight of the insulating thermoplastic resin. Part, preferably 10 to 100 parts by weight.

このような異方導電性接着剤に使用される導電性微粒子は、電極のピッチに応じて小径であって、かつ、均一な粒子直径を有するものが好適である。
[絶縁性熱可塑性樹脂フィルム]また、本発明に係る絶縁性熱可塑性樹脂フィルムは、上記した導電性微粒子が絶縁性熱可塑性樹脂に分散されたものである(この絶縁性熱可塑性樹脂フィルムを第1の絶縁性熱可塑性樹脂フィルムということもある)。
The conductive fine particles used in such an anisotropic conductive adhesive preferably have a small diameter and a uniform particle diameter according to the pitch of the electrodes.
[Insulating thermoplastic resin film] The insulating thermoplastic resin film according to the present invention is one in which the conductive fine particles described above are dispersed in an insulating thermoplastic resin. 1 may be referred to as an insulating thermoplastic resin film 1).

絶縁性熱可塑性樹脂フィルムとしては、導電性微粒子において例示したものと同じ熱可
塑性樹脂からなるフィルムを用いることができる。絶縁性熱可塑性樹脂フィルムの厚さは、5〜100μmの範囲にあることが好ましく、さらに好ましくは10〜50μmの範囲である。このような絶縁性熱可塑性樹脂フィルムは、従来公知の絶縁性熱可塑性樹脂フィルムの製造工程のいずれかの段階において、本発明の導電性微粒子または絶縁性熱可塑性樹脂被覆層を設けた導電性微粒子を添加することによって製造することができる。たとえば、ベント式成形機などの成形機を用いてポリマーへ練り込む方法、ポリマーの重合時に添加する方法等を採用することもできるが、ポリマーの重合時に導電性微粒子を添加すると、絶縁性熱可塑性樹脂中に導電性微粒子を均一に分散させることができる。
As the insulating thermoplastic resin film, a film made of the same thermoplastic resin as exemplified in the conductive fine particles can be used. The thickness of the insulating thermoplastic resin film is preferably in the range of 5 to 100 μm, more preferably in the range of 10 to 50 μm. Such an insulating thermoplastic resin film is a conductive fine particle provided with the conductive fine particle of the present invention or the insulating thermoplastic resin coating layer in any stage of the production process of a conventionally known insulating thermoplastic resin film. It can manufacture by adding. For example, a method of kneading into a polymer using a molding machine such as a vent type molding machine or a method of adding at the time of polymer polymerization can be adopted. However, if conductive fine particles are added at the time of polymer polymerization, insulating thermoplasticity Conductive fine particles can be uniformly dispersed in the resin.

こうして得られた導電性微粒子を含む樹脂組成物を溶融押し出してシート化した後、一軸または二軸延伸を行うと、絶縁性熱可塑性樹脂フィルムを製造することができる。また、絶縁性熱可塑性樹脂フィルムの別の形態は、前記導電性微粒子から形成された微粒子層を表面に有するものである(この絶縁性熱可塑性樹脂フィルムを第2の絶縁性熱可塑性樹脂フィルムということもある)。   An insulating thermoplastic resin film can be produced by performing uniaxial or biaxial stretching after melt-extrusion of the resin composition containing conductive fine particles thus obtained to form a sheet. Another form of the insulating thermoplastic resin film has a fine particle layer formed from the conductive fine particles on the surface (this insulating thermoplastic resin film is referred to as a second insulating thermoplastic resin film). Sometimes).

第2の絶縁性熱可塑性樹脂フィルムは、上記した導電性微粒子を、樹脂を溶解しない溶媒に分散し、表面にシリコン系樹脂層を設けたベースフィルムたとえばポリイミド樹脂フィルム等の上に塗り、沈降させ、乾燥して溶媒を蒸散させて、熱可塑性樹脂フィルム表面に導電性微粒子からなる微粒子層を形成することによって製造される。この第2の絶縁性熱可塑性樹脂フィルムでは、前記導電性微粒子は導電性薄膜層の表面にさらに絶縁性熱可塑性樹脂層が設けられていたものが好ましい。   In the second insulating thermoplastic resin film, the above-mentioned conductive fine particles are dispersed in a solvent that does not dissolve the resin, and coated on a base film having a silicon-based resin layer on the surface, such as a polyimide resin film, and allowed to settle. It is produced by drying and evaporating the solvent to form a fine particle layer made of conductive fine particles on the surface of the thermoplastic resin film. In the second insulating thermoplastic resin film, it is preferable that the conductive fine particles have an insulating thermoplastic resin layer provided on the surface of the conductive thin film layer.

このような絶縁性熱可塑性樹脂フィルムは、ベースフィルムに仮固定されたフィルムを電極に転写し、他方の電極と挟み、荷重をかけ、加熱することによって電極を接続することができる。   Such an insulating thermoplastic resin film can be connected to the electrode by transferring the film temporarily fixed to the base film to the electrode, sandwiching it with the other electrode, applying a load, and heating.

[電気回路基板]
次に、本発明に係る電気回路基板は、上記導電性微粒子が対向する電極間に電極接続用導電性微粒子として介在させたものである。
[Electric circuit board]
Next, the electric circuit board according to the present invention is such that the conductive fine particles are interposed between the electrodes facing each other as conductive fine particles for electrode connection.

本発明の電気回路基板に用いられる基板としては、従来公知の基板を用いることができ、たとえば、ガラス、ICチップ、LSIのベアチップ、樹脂製基板などの上に、ITOなど電極を設けたものが例示される。次に、本発明に係る導電性微粒子を用いて、ICチップの電極と基板の電極を接続する方法について図3を参照しながら説明する。   As a substrate used for the electric circuit substrate of the present invention, a conventionally known substrate can be used. For example, a substrate in which an electrode such as ITO is provided on a glass, an IC chip, an LSI bare chip, a resin substrate, or the like. Illustrated. Next, a method of connecting the electrode of the IC chip and the electrode of the substrate using the conductive fine particles according to the present invention will be described with reference to FIG.

まず、図3に示されるように電極11を有する基板12と電極13を有するICチップ14を対向させ、それぞれの電極間に、本発明に係る導電性微粒子を含む異方導電性接着剤を印刷または塗布等の方法により介在させた後、接着剤中の導電性微粒子15が単層に拡散する程度まで加圧する。なお、符号16は接着成分を示す。次いで、加圧状態を維持しつつ加熱することにより、導電性微粒子が電極と接触した状態、すなわち電極間が導電性微粒子によって電気的に接続された状態で、加熱によって接着成分16が硬化して収縮し、導電性微粒子にストレスがかかるため、ICチップの電極13と基板の電極11とが導通し、かつ、緊密に接着される。   First, as shown in FIG. 3, the substrate 12 having the electrode 11 and the IC chip 14 having the electrode 13 are opposed to each other, and the anisotropic conductive adhesive containing the conductive fine particles according to the present invention is printed between the electrodes. Or after interposing by the method of application | coating etc., it pressurizes to such an extent that the electroconductive fine particles 15 in an adhesive agent diffuse to a single layer. Reference numeral 16 denotes an adhesive component. Next, by heating while maintaining the pressurized state, the adhesive component 16 is cured by heating in a state where the conductive fine particles are in contact with the electrodes, that is, in a state where the electrodes are electrically connected by the conductive fine particles. The shrinkage causes stress on the conductive fine particles, so that the electrode 13 of the IC chip and the electrode 11 of the substrate are electrically connected and closely bonded.

また、表面に熱可塑性樹脂層を有する導電性微粒子を使用した異方導電性接着剤の場合、図4および5に示されるようにして、ICチップの電極と基板の電極とが接続される。まず、上記同様に、電極11を有する基板12と電極13を有するICチップ14を対向させ、それぞれの電極間に、本発明に係る導電性微粒子を含む異方導電性接着剤を印刷または塗布等の方法により介在させた後、接着剤中の導電性微粒子15が単層に拡散する程度まで加圧する(図4参照)。   In the case of an anisotropic conductive adhesive using conductive fine particles having a thermoplastic resin layer on the surface, the electrodes of the IC chip and the electrodes of the substrate are connected as shown in FIGS. First, similarly to the above, the substrate 12 having the electrode 11 and the IC chip 14 having the electrode 13 are opposed to each other, and the anisotropic conductive adhesive containing the conductive fine particles according to the present invention is printed or applied between the respective electrodes. After interposing by this method, pressure is applied to such an extent that the conductive fine particles 15 in the adhesive diffuse into the single layer (see FIG. 4).

次いで、加圧状態を維持しつつ加熱することにより、導電性微粒子表面の熱可塑性樹脂層が溶融(軟化)し、さらに加圧によって導電性微粒子が電極と接触した状態、すなわち電極間が導電性微粒子によって電気的に接続された状態で、接着成分16が硬化して収縮し、導電性微粒子にストレスがかかるため、ICチップの電極13と基板の電極11とが導通し、かつ、緊密に接着される(図5参照)。   Next, by heating while maintaining the pressurized state, the thermoplastic resin layer on the surface of the conductive fine particles melts (softens), and further, the state where the conductive fine particles are in contact with the electrodes by pressurization, that is, between the electrodes is conductive. The adhesive component 16 is cured and contracted while being electrically connected by the fine particles, and stress is applied to the conductive fine particles, so that the electrode 13 of the IC chip and the electrode 11 of the substrate are electrically connected and closely bonded. (See FIG. 5).

このような異方導電性接着剤の用途では、表面に絶縁性熱可塑性樹脂層を有する前記異方導電性微粒子が好適である。このような異方導電性微粒子が含まれている接着剤を使用すると、加熱時に、電極と接触している導電性微粒子の表面の絶縁性熱可塑性樹脂一部融解し、電極−導電性微粒子−電極間が電気的に接続され、さらに加熱により、前記したように接着成分が硬化して収縮し、電極13と基板の電極11とが導通し、かつ、緊密に接着される。なお、接着剤成分の硬化温度は導電性微粒子を被覆した絶縁性熱可塑性樹脂の軟化温度より高いので、電極間の導通不良や、隣接する導電性微粒子間における電気的ショートといった不都合は生じない。   In such an anisotropic conductive adhesive, the anisotropic conductive fine particles having an insulating thermoplastic resin layer on the surface are suitable. When an adhesive containing such anisotropically conductive fine particles is used, a part of the insulating thermoplastic resin on the surface of the conductive fine particles in contact with the electrode is melted during heating, and the electrode-conductive fine particles- The electrodes are electrically connected, and further, by heating, the adhesive component is cured and contracted as described above, and the electrode 13 and the electrode 11 of the substrate are electrically connected and closely bonded. In addition, since the curing temperature of the adhesive component is higher than the softening temperature of the insulating thermoplastic resin coated with the conductive fine particles, there is no inconvenience such as poor conduction between electrodes or electrical short between adjacent conductive fine particles.

また、上記接着剤の代わりに絶縁性熱可塑性樹脂フィルムを使用しても、同様に電極を接続することができる。たとえば絶縁性熱可塑性樹脂フィルムを使用してLSIベアチップの電極と基板の電極を接続する場合について、図6を参照しながら説明する。まず、図6に示されるように電極21を有する基板22と入出力パッド23および該入出力パッド23表面に設けられたバンプ24を有するLSIベアチップ25を対向させ、所定の大きさに加工した絶縁性熱可塑性樹脂フィルム27を、電極21およびバンプ間24に挟持し、さらに封止樹脂26を封入した後、加圧する。なお、バンプ24は金や半田などの導電性材料からなる。   Moreover, even if it uses an insulating thermoplastic resin film instead of the said adhesive agent, an electrode can be connected similarly. For example, a case where an LSI bare chip electrode and a substrate electrode are connected using an insulating thermoplastic resin film will be described with reference to FIG. First, as shown in FIG. 6, the substrate 22 having the electrode 21, the input / output pad 23, and the LSI bare chip 25 having the bump 24 provided on the surface of the input / output pad 23 are opposed to each other and processed to a predetermined size. The thermoplastic resin film 27 is sandwiched between the electrodes 21 and the bumps 24, and the sealing resin 26 is sealed, followed by pressurization. The bump 24 is made of a conductive material such as gold or solder.

次いで、加圧状態を維持しつつ加熱することにより、絶縁性熱可塑性樹脂フィルム中の導電性微粒子が電極およびバンプと接触した状態で、加熱によって封止樹脂26が硬化して、電極と入出力パッドとの間が導電性微粒子によって電気的に接続される。このような導電性微粒子、異方導電性接着剤および絶縁性熱可塑性フィルムは、上記のような電気回路基板以外に、液晶表示セルのシール用にも使用することができる。
[実施例]
Next, by heating while maintaining the pressurized state, the sealing resin 26 is cured by heating in a state where the conductive fine particles in the insulating thermoplastic resin film are in contact with the electrodes and bumps. The pad is electrically connected by conductive fine particles. Such conductive fine particles, anisotropic conductive adhesives and insulating thermoplastic films can be used for sealing liquid crystal display cells in addition to the electric circuit board as described above.
[Example]

以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.

球状コア粒子活性化工程
シリカ粒子(触媒化成工業(株)製:商品名SW、平均粒子径5.0μm、粒子径変動係数1.0%、10%K値4800kgf/mm2)100gを用い、これを2000gの純水に分散
させ、濃度1重量%のNaOH水溶液にて分散液のpHを10に調整した。その後、この分散液を80℃に昇温し60分間加熱撹拌を行った。次いで30℃まで冷却してイオン交換樹脂100gを加え、分散液を撹拌しながらアルカリを十分除去し、シリカ粒子を分離し
て洗浄し、次いで110℃で乾燥して活性化した球状コア粒子(C1)を得た。
Spherical core particle activation process Silica particles (manufactured by Catalyst Kasei Kogyo Co., Ltd .: trade name SW, average particle diameter 5.0 μm, particle diameter variation coefficient 1.0%, 10% K value 4800 kgf / mm 2 ) 100 g were used, This was dispersed in 2000 g of pure water, and the pH of the dispersion was adjusted to 10 with an aqueous NaOH solution having a concentration of 1% by weight. Thereafter, the dispersion was heated to 80 ° C. and stirred for 60 minutes. Next, 100 g of ion exchange resin is added after cooling to 30 ° C., the alkali is sufficiently removed while stirring the dispersion, the silica particles are separated and washed, and then dried at 110 ° C. to activate the activated spherical core particles (C 1 )

疎水性核粒子の調製
得られた球状コア粒子(C1)50gをメチルアルコール333gに分散させ超音波を照
射して球状コア粒子(C1)を単分散させ、分散液を撹拌しながら、これにヘキサメチル
ジシラザン25gとメチルアルコール25gの混合溶液を添加し、12時間撹拌した後、分離し、アルコールにて洗浄し、次いで80℃で2時間乾燥して疎水性核粒子(H1)を得た
Preparation of hydrophobic core particles 50 g of the obtained spherical core particles (C1) are dispersed in 333 g of methyl alcohol, and ultrasonic waves are irradiated to monodisperse the spherical core particles (C1). A mixed solution of 25 g of methyldisilazane and 25 g of methyl alcohol was added, stirred for 12 hours, separated, washed with alcohol, and then dried at 80 ° C. for 2 hours to obtain hydrophobic core particles (H1).

弾性被覆層の形成
疎水性核粒子(H1)10gを濃度5重量%のn-ブタノール水溶液526gに分散させ、こ
の分散液に界面活性剤としてオクチルナフタレンスルフォン酸ナトリウム1.2gを加え、超音波を照射した。次いでメチルトリメトキシシラン60gを添加して、下層が疎水性核
粒子(H1)の分散液層であり、上層がメチルトリメトキシシランの層である、2層に分
離した分散液を調製した。次いで濃度0.28重量%のNH3水溶液12.0gを疎水性核粒子(H1)の分散液層に、上層と下層が完全に混合しない程度に拡販しながら2時間かけて
添加した。NH3水溶液の添加後メチルトリメトキシシランの上層がなくなるまでさらに
約2時間撹拌を行いながらメチルトリメトキシシランの加水分解を行い、核粒子上にポリオルガノシロキサンによる弾性被覆層の形成を行った。反応終了後、残存したゲルを除去した後、80℃で12時間静置した。得られた粒子を取り出しエタノールにて洗浄し、次いで110℃で2時間乾燥して弾性被覆層を形成した粒子(K1)を得た。得られた粒子
(K1)の平均粒子径は7.2μmであり、粒子径変動係数は2.0%であった。
Formation of elastic coating layer Disperse 10 g of hydrophobic core particles (H1) in 526 g of an n-butanol aqueous solution having a concentration of 5% by weight, add 1.2 g of sodium octyl naphthalene sulfonate as a surfactant to this dispersion, and apply ultrasonic waves. Irradiated. Next, 60 g of methyltrimethoxysilane was added to prepare a dispersion liquid separated into two layers, the lower layer being a dispersion layer of hydrophobic core particles (H1) and the upper layer being a layer of methyltrimethoxysilane. Next, 12.0 g of an aqueous NH 3 solution having a concentration of 0.28% by weight was added to the dispersion layer of the hydrophobic core particles (H1) over 2 hours while expanding the sales so that the upper layer and the lower layer were not completely mixed. After the addition of the NH 3 aqueous solution, methyltrimethoxysilane was hydrolyzed while stirring for about 2 hours until the upper layer of methyltrimethoxysilane disappeared, and an elastic coating layer of polyorganosiloxane was formed on the core particles. After completion of the reaction, the remaining gel was removed, and then allowed to stand at 80 ° C. for 12 hours. The obtained particles were taken out, washed with ethanol, and then dried at 110 ° C. for 2 hours to obtain particles (K1) having an elastic coating layer. The obtained particles (K1) had an average particle size of 7.2 μm and a particle size variation coefficient of 2.0%.

弾性被覆層の10%K値測定用粒子の調製
内容積10Lの容器に純水6,581gを入れ、撹拌しながらメチルトリメトキシシラン
750gを静かに加え、メチルトリメトキシシランと純水が上下2層に分離した状態とし
た。次いで、上層のメチルトリメトキシシランを撹拌しながら冷却した。別途、純水139.6gにブチルアルコール3.49gと濃度28重量%のアンモニア水1.35gを加えこれにアニオン性界面活性剤(オクチルナフタレンスルホン酸ナトリウム)7.5gを加えた。この界面活性剤混合溶液を、上下2層に分離した下層(水層)に上層と下層とが完全には混合しない程度に撹拌しながら60分かけて添加し、引き続き2時間撹拌を継続して球状コア粒子(C1)の分散液を調製した。この球状コア粒子(C1)の分散液から、一部を採取し、球状コア粒子を分離し、洗浄乾燥し、次いで110℃で2時間焼成して球状コア粒子粉末を得た。得られた球状コア粒子について10%K値、平均粒子径および粒子径変動係数(CV値)を測定した。
結果を表1に示す。
Preparation of particles for measuring 10% K value of elastic coating layer Put 6,581 g of pure water in a container with an internal volume of 10 L, and gently add 750 g of methyltrimethoxysilane while stirring, so that methyltrimethoxysilane and pure water are 2 The layers were separated. Next, the upper layer of methyltrimethoxysilane was cooled with stirring. Separately, 3.49 g of butyl alcohol and 1.35 g of 28% by weight ammonia water were added to 139.6 g of pure water, and 7.5 g of an anionic surfactant (sodium octylnaphthalenesulfonate) was added thereto. This surfactant mixed solution was added to the lower layer (aqueous layer) separated into upper and lower layers over 60 minutes while stirring so that the upper layer and the lower layer were not completely mixed, and the stirring was continued for 2 hours. A dispersion of spherical core particles (C1) was prepared. A part was collected from the dispersion of the spherical core particles (C1), the spherical core particles were separated, washed and dried, and then fired at 110 ° C. for 2 hours to obtain spherical core particle powder. The obtained spherical core particles were measured for 10% K value, average particle diameter, and particle diameter variation coefficient (CV value).
The results are shown in Table 1.

導電性薄膜層の形成
次いで、得られた弾性被覆層を形成した粒子(K1)10gを純水300gに超音波を照
射して粒子(K1)の分散液を調製した。次いで、濃度29重量%のNH3水溶液23gを
純水800gで希釈した液に硝酸銀14.6gを溶解させた液を撹拌しながらこれに粒子(
K1)の分散液を添加した。この混合液にホルムアルデヒドを濃度30重量%の量で含む
ホルマリン16.4mlを純水90gで希釈した液を添加して粒子(K1)の表面に銀の導
電性薄膜層を形成した。次いで濾過洗浄した後、90℃で乾燥して導電性微粒子(E1)
を得た。導電性微粒子(E1)の比重は2.9であり、導電性薄膜層の厚みは380Åであり、比抵抗は2×10-3Ω・cmであった。
Formation of Conductive Thin Film Layer Next, 10 g of the resulting particles (K1) on which the elastic coating layer was formed was irradiated with ultrasonic waves on 300 g of pure water to prepare a dispersion of particles (K1). Next, a solution obtained by dissolving 14.6 g of silver nitrate in a solution obtained by diluting 23 g of an NH 3 aqueous solution having a concentration of 29% by weight with 800 g of pure water was added to the particles (
A dispersion of K1) was added. A solution obtained by diluting 16.4 ml of formalin containing 30% by weight of formaldehyde with 90 g of pure water was added to this mixed solution to form a silver conductive thin film layer on the surface of the particles (K1). Next, after filtering and washing, the conductive fine particles (E1) are dried at 90 ° C.
Got. The specific gravity of the conductive fine particles (E1) was 2.9, the thickness of the conductive thin film layer was 380 mm, and the specific resistance was 2 × 10 −3 Ω · cm.

比重測定法:
粒子を110℃で3時間乾燥したのち、ゲールサック型比重ビンを使用して測定した。
Specific gravity measurement method:
The particles were dried at 110 ° C. for 3 hours and then measured using a Galesac specific gravity bottle.

各層の厚み測定:
(1)弾性被覆層;弾性被覆層形成粒子の平均粒子径からコア粒子の平均粒子径を引いた
ものを弾性被覆層の厚さとして算出した。
弾性被覆層厚さ=(弾性被膜層形成粒子径−コア粒子径)/2
(2)導電性薄膜層;弾性被膜層上に導電層が形成された粒子に、硝酸を添加して導電性
成分を溶解し、ついでフッ酸を加えて粒子を溶解し、溶解液をICP発光分析で定量し、導
電性成分の量から弾性被覆層形成粒子の上に形成された導電性成分の体積を求め、この量に基づいて導電性薄膜が形成された粒子の平均粒子径を求めた。該導電性薄膜が形成され
た粒子の平均粒子径および弾性被覆層形成粒子(導電性薄膜形成前の粒子)の平均粒子径から、導電性薄膜層の厚さを算出した。
Measuring the thickness of each layer:
(1) Elastic coating layer: The average particle diameter of the elastic coating layer forming particles minus the average particle diameter of the core particles was calculated as the thickness of the elastic coating layer.
Elastic coating layer thickness = (elastic coating layer forming particle diameter−core particle diameter) / 2
(2) Conductive thin film layer: To particles with a conductive layer formed on an elastic coating layer, nitric acid is added to dissolve the conductive component, then hydrofluoric acid is added to dissolve the particles, and the solution is emitted by ICP. Quantified by analysis, the volume of the conductive component formed on the elastic coating layer-forming particles was determined from the amount of the conductive component, and the average particle size of the particles on which the conductive thin film was formed was determined based on this amount. . The thickness of the conductive thin film layer was calculated from the average particle diameter of the particles on which the conductive thin film was formed and the average particle diameter of the elastic coating layer forming particles (particles before forming the conductive thin film).

比抵抗の測定:
粉体抵抗測定装置(横河ヒューレットパッカード社製 ミリオームメーター)にて測定
(圧力:100kg/mm2、充填粉体量:0.6g)した。
Specific resistance measurement:
It was measured (pressure: 100 kg / mm 2 , amount of filled powder: 0.6 g) with a powder resistance measuring device (Yorikawa Hewlett-Packard's Milliometer).

異方導電性接着剤の調製
次に、上記で得た導電性微粒子(E1)20gを、硬化剤としてメチルヘキサヒドロ無水フタル酸(新日鉄理化製、リカシッドMH−700)とペンタジルジメチルアミンを配合したエポキシ樹脂(ダイセル化学工業(株)製、EHPE150)からなる硬化温度150℃の熱硬化性樹脂80gに分散させて異方導電性接着剤(B1)を調製した。
Preparation of anisotropic conductive adhesive Next, 20 g of the conductive fine particles (E1) obtained above are blended with methylhexahydrophthalic anhydride (manufactured by Nippon Steel Rika, Ricacid MH-700) and pentazyldimethylamine as a curing agent. An anisotropic conductive adhesive (B1) was prepared by dispersing it in 80 g of a thermosetting resin made of an epoxy resin (Daicel Chemical Industries, Ltd., EHPE150) having a curing temperature of 150 ° C.

異方導電性フィルムの調製
ポリアリレート樹脂100重量部と導電性粒子(E1)30重量部とからなる混合ペーストを330℃で加熱溶融し、2軸押出機を用いて厚さ50μの異方導電性フィルム(F1)を調製した。
Preparation of anisotropic conductive film A mixed paste consisting of 100 parts by weight of polyarylate resin and 30 parts by weight of conductive particles (E1) is heated and melted at 330 ° C., and an anisotropic conductive film having a thickness of 50 μm using a twin screw extruder. Film (F1) was prepared.

隣接電極間絶縁率の測定(1)
異方導電性接着剤(B1)を電極間距離が25μmのガラス基板上に形成された透明電極上に塗布し、その上に同じ電極間距離の透明電極をセットし、1cm×1cm、厚さ1mmの平板ガラスで挟み2kgの荷重をかけ180℃で5秒間加熱して電気回路基板を形成した後、隣接する電極間の抵抗を10組測定し、107Ω以上の抵抗を示す組の数の割合から隣接電極間絶縁率を求めた。
Measurement of insulation between adjacent electrodes (1)
An anisotropic conductive adhesive (B1) is applied on a transparent electrode formed on a glass substrate with a distance between electrodes of 25 μm. A transparent electrode with the same distance between electrodes is set on the transparent electrode, and the thickness is 1 cm × 1 cm. After forming an electric circuit board by applying a load of 2 kg between 1 mm flat glass and heating at 180 ° C. for 5 seconds, measure 10 resistances between adjacent electrodes, and show the resistance of 10 7 Ω or more From the ratio, the insulation rate between adjacent electrodes was obtained.

隣接電極間絶縁率の測定(2)
異方導電性接着剤(B1)を電極間距離が15μmのガラス基板上に形成された透明電極上に塗布した以外は上記測定(1)と同様にして電極間距離が15μmの場合の隣接電極間絶縁率を求めた。
Measurement of insulation between adjacent electrodes (2)
Adjacent electrode when the distance between the electrodes is 15 μm in the same manner as in the above measurement (1) except that the anisotropic conductive adhesive (B1) is applied on the transparent electrode formed on the glass substrate having the distance between the electrodes of 15 μm. The insulation rate was obtained.

上下導通性の測定(1)
異方導電性接着剤(B1)を電極間距離が25μmのガラス基板上に形成された透明電
極上に塗布し、1cm×1cm、厚さ1mmのITO電極付ガラスで挟み、5.0kの荷重をかけたのち、180℃で5秒間加熱して電気回路基板を形成した。
Measurement of vertical conductivity (1)
An anisotropic conductive adhesive (B1) is applied onto a transparent electrode formed on a glass substrate with a distance between electrodes of 25 μm, and sandwiched between 1 cm × 1 cm and 1 mm thick ITO electrode glass, and a load of 5.0 k And then heated at 180 ° C. for 5 seconds to form an electric circuit board.

10本の電極とITO電極との間の抵抗値を測定し、5Ω以下の抵抗を示す組数の割合を求めて、上下導通性を評価した。同様に、1.0kgおよび0.05kgの荷重をかけて、電気回路基板を作成したものについても上下導通性を評価した。   The resistance value between the 10 electrodes and the ITO electrode was measured, the ratio of the number of pairs showing a resistance of 5Ω or less was determined, and the vertical conductivity was evaluated. Similarly, the vertical continuity was also evaluated for the electrical circuit board produced by applying loads of 1.0 kg and 0.05 kg.

上下導通性の測定(2)
異方導電性フィルム(F1)を、電極間距離が25μの透明電極間と1cm×1cm、厚さ
1mmのITO電極付ガラスで挟み、90℃で5秒間仮圧着し、ついで5.0kgの荷重をかけた後、180℃で5秒間加熱して、電気回路基板を形成した。
Measurement of vertical conductivity (2)
An anisotropic conductive film (F1) is sandwiched between transparent electrodes with a distance between electrodes of 25μ and glass with ITO electrodes of 1cm x 1cm, 1mm thickness, pre-pressed at 90 ° C for 5 seconds, then 5.0kg load And then heated at 180 ° C. for 5 seconds to form an electric circuit board.

10本の電極とITO電極との間の抵抗値を測定し、5Ω以下の抵抗を示す組数の割合を求めて、上下導通性を評価した。結果を表1に示す。同様に1.0kgおよび0.05kgの荷重をかけて電気回路基板を作成したものについても上下導電性を評価した。結果を表1に示す。   The resistance value between the 10 electrodes and the ITO electrode was measured, the ratio of the number of pairs showing a resistance of 5Ω or less was determined, and the vertical conductivity was evaluated. The results are shown in Table 1. Similarly, the vertical conductivity was also evaluated for the electrical circuit boards prepared by applying loads of 1.0 kg and 0.05 kg. The results are shown in Table 1.

球状コア粒子として平均粒子径が6.4μmのプラスチック粒子(C2)(スチレンの架
橋系重合体)を使用した以外は実施例1と同様に疎水化処理を行った後弾性被覆層を形成
した。弾性被覆層を形成した粒子(K2)の平均粒子径は6.8μmであった。次いで粒子(K2)について実施例1と同様に導電性薄膜層を形成した。得られた導電性微粒子(E2)の比重は2.4であり導電性薄膜層の厚みは340Åであり比抵抗は3×10-3Ω・cm
であった。この導電性粒子(E2)を用い、実施例1と同様にして異方導電性接着剤およ
び異方導電性フィルムを調製し、隣接電極間絶縁率、上下導通性を調べた。
結果を表1に示す。
An elastic coating layer was formed after the hydrophobization treatment was carried out in the same manner as in Example 1 except that plastic particles (C2) (styrene cross-linked polymer) having an average particle size of 6.4 μm were used as spherical core particles. The average particle diameter of the particles (K2) on which the elastic coating layer was formed was 6.8 μm. Next, a conductive thin film layer was formed in the same manner as in Example 1 for the particles (K2). The obtained conductive fine particles (E2) have a specific gravity of 2.4, a thickness of the conductive thin film layer of 340 mm and a specific resistance of 3 × 10 −3 Ω · cm.
Met. Using this conductive particle (E2), an anisotropic conductive adhesive and an anisotropic conductive film were prepared in the same manner as in Example 1, and the insulation between adjacent electrodes and the vertical conductivity were examined.
The results are shown in Table 1.

球状コア粒子の調製
内容積10Lの容器に純水6,581gを入れ、撹拌しながらメチルトリメトキシシラン
750gを静かに加え、メチルトリメトキシシランと純水が上下2層に分離した状態とし
た。次いで、上層のメチルトリメトキシシランを撹拌しながら冷却した。別途、純水139.6gにブチルアルコール3.49gと濃度28重量%のアンモニア水1.35gを加えこれにアニオン性界面活性剤(オクチルナフタレンスルホン酸ナトリウム)7.5gを加えた。この界面活性剤混合溶液を、上下2層に分離した下層(水層)に上層と下層とが完全には混合しない程度に撹拌しながら60分かけて添加し、引き続き2時間撹拌を継続して球状コア粒子(C3)の分散液を調製した。この球状コア粒子(C3)の分散液の一部採取し、球状コア粒子を分離し、洗浄乾燥し、次いで300℃で2時間焼成して球状コア粒子粉末を得た。得られた球状コア粒子について10%K値、平均粒子径および粒子径変動係数(CV値)を測定した。
結果を表1に示す。
Preparation of spherical core particles 6,581 g of pure water was put into a container having an internal volume of 10 L, and 750 g of methyltrimethoxysilane was gently added while stirring, so that methyltrimethoxysilane and pure water were separated into two upper and lower layers. Next, the upper layer of methyltrimethoxysilane was cooled with stirring. Separately, 3.49 g of butyl alcohol and 1.35 g of 28% by weight ammonia water were added to 139.6 g of pure water, and 7.5 g of an anionic surfactant (sodium octylnaphthalenesulfonate) was added thereto. This surfactant mixed solution was added to the lower layer (aqueous layer) separated into upper and lower layers over 60 minutes while stirring so that the upper layer and the lower layer were not completely mixed, and the stirring was continued for 2 hours. A dispersion of spherical core particles (C3) was prepared. A part of the dispersion of the spherical core particles (C3) was collected, the spherical core particles were separated, washed and dried, and then fired at 300 ° C. for 2 hours to obtain spherical core particle powder. The obtained spherical core particles were measured for 10% K value, average particle diameter, and particle diameter variation coefficient (CV value).
The results are shown in Table 1.

弾性被覆層の形成
次いで、上記球状コア粒子(C3)の分散液1,496.6gにメチルトリメトキシシラン600.8gと純水2,352.8g、ブチルアルコール58.9g、濃度28重量%のアンモ
ニア水0.48gの混合液をそれぞれ6時間かけて添加し、弾性被覆層を形成した粒子(K3)の分散液を調製した。この分散液から粒子(K3)を分離し、洗浄し、次いで110℃で2時間乾燥して弾性被覆層を形成した粒子(K3)を得た。得られた粒子(K3)について10%K値、平均粒子径および粒子径変動係数(CV値)を測定した。
結果を表1に示す。
Formation of elastic coating layer Next, 1,486.6 g of the spherical core particle (C3) dispersion was mixed with 60.8 g of methyltrimethoxysilane, 2,352.8 g of pure water, 58.9 g of butyl alcohol, and a concentration of 28% by weight. A mixture of 0.48 g of aqueous ammonia was added over 6 hours to prepare a dispersion of particles (K3) having an elastic coating layer. Particles (K3) were separated from this dispersion, washed, and then dried at 110 ° C. for 2 hours to obtain particles (K3) having an elastic coating layer. The obtained particles (K3) were measured for a 10% K value, an average particle size, and a particle size variation coefficient (CV value).
The results are shown in Table 1.

導電性薄膜層の形成
次いで、得られた弾性被覆層を形成した粒子(K3)について実施例1と同様にして導
電性薄膜層を形成した。得られた導電性微粒子(E3)の比重は2.5であり導電性薄膜層の厚みは360Åであり比抵抗は3×10-3Ω・cmであった。
Formation of Conductive Thin Film Layer Next, a conductive thin film layer was formed in the same manner as in Example 1 for the particles (K3) on which the obtained elastic coating layer was formed. The specific gravity of the obtained conductive fine particles (E3) was 2.5, the thickness of the conductive thin film layer was 360 mm, and the specific resistance was 3 × 10 −3 Ω · cm.

異方導電性接着剤の調製
次に、上記で得た導電性微粒子(E3)を用い実施例1と同様にして異方導電性接着剤
および異方導電性フィルムを調製し、隣接電極間絶縁率、上下導通性を調べた。結果を表1に示す。
Preparation of anisotropic conductive adhesive Next, using the conductive fine particles (E3) obtained above, an anisotropic conductive adhesive and an anisotropic conductive film were prepared in the same manner as in Example 1, and insulation between adjacent electrodes was performed. The rate and vertical conductivity were examined. The results are shown in Table 1.

絶縁性熱可塑性樹脂層を形成した導電性微粒子の調製
実施例1で得られた導電性微粒子(E1)80gとメチルメタクリレート粉末(綜研化学
製、商品名MP-1000、粒子径0.4μm)80gとを混合して、導電性微粒子(E1)
表面にメチルメタクリレート粉末を吸着させた。さらにこの混合粉末をボールミルに入れて十分に混合し、導電性微粒子表面を上記樹脂粒子で被覆して、メチルメタクリレート層で被覆した導電性微粒子(R1)を得た。この微粒子(R1)の平均粒子径は7.6μmで
、メチルメタクリレート層の厚みは0.2μmであった。なお、樹脂層の厚さは以下のよ
うにして測定した。
Preparation of conductive fine particles having an insulating thermoplastic resin layer 80 g of conductive fine particles (E1) obtained in Example 1 and 80 g of methyl methacrylate powder (manufactured by Soken Chemical Co., Ltd., trade name MP-1000, particle size 0.4 μm) Is mixed with conductive fine particles (E1)
Methyl methacrylate powder was adsorbed on the surface. Further, this mixed powder was put in a ball mill and mixed well, and the surface of the conductive fine particles was coated with the resin particles to obtain conductive fine particles (R1) coated with a methyl methacrylate layer. The fine particles (R1) had an average particle size of 7.6 μm and a methyl methacrylate layer thickness of 0.2 μm. The thickness of the resin layer was measured as follows.

(3)熱可塑性樹脂層の厚さ;
熱可塑性樹脂層形成前後の粒子について、SEM観察し、熱可塑性樹脂層形成前後の粒子径の差から熱可塑性樹脂層の厚さを算出した。この導電性粒子(R1)を用い、実施例1と同様にして異方導電性接着剤および異方導電性フィルムを調製し、隣接電極間絶縁率、上下導通性を調べた。
(3) the thickness of the thermoplastic resin layer;
The particles before and after the formation of the thermoplastic resin layer were observed with an SEM, and the thickness of the thermoplastic resin layer was calculated from the difference in particle diameter before and after the formation of the thermoplastic resin layer. Using this conductive particle (R1), an anisotropic conductive adhesive and an anisotropic conductive film were prepared in the same manner as in Example 1, and the insulation between adjacent electrodes and the vertical conductivity were examined.

実施例2で得られた導電性微粒子(E2)について、実施例4と同様にして、絶縁性熱
可塑性樹脂(メチルメタクリレート)層で被覆した導電性微粒子(R2)を得た。この微
粒子(R2)の平均粒子径は7.1μmで、メチルメタクリレート層の厚みは0.15μm
であった。この導電性粒子(R2)を用い、実施例1と同様にして異方導電性接着剤およ
び異方導電性フィルムを調製し、隣接電極間絶縁率、上下導通性を調べた。
結果を表1に示す。
About the electroconductive fine particles (E2) obtained in Example 2, it carried out similarly to Example 4, and obtained the electroconductive fine particles (R2) coat | covered with the insulating thermoplastic resin (methyl methacrylate) layer. The average particle diameter of the fine particles (R2) is 7.1 μm, and the thickness of the methyl methacrylate layer is 0.15 μm.
Met. Using this conductive particle (R2), an anisotropic conductive adhesive and an anisotropic conductive film were prepared in the same manner as in Example 1, and the insulation between adjacent electrodes and the vertical conductivity were examined.
The results are shown in Table 1.

実施例3で得られた導電性微粒子(E3)についても実施例4と同様にして、絶縁性熱
可塑性樹脂層で被覆した導電性微粒子(R3)を得た。この微粒子(R3)の平均粒子径は7.2μmで、樹脂層の厚みは0.15μmであった。この導電性粒子および異方導電性フィルムを用い、実施例1と同様にして異方導電性接着剤および異方導電性フィルムを調製し、隣接電極間絶縁率、上下導通性を調べた。
結果を表1に示す。
[比較例1]
The conductive fine particles (E3) obtained in Example 3 were obtained in the same manner as in Example 4 to obtain conductive fine particles (R3) covered with an insulating thermoplastic resin layer. The fine particles (R3) had an average particle diameter of 7.2 μm and a resin layer thickness of 0.15 μm. Using the conductive particles and the anisotropic conductive film, an anisotropic conductive adhesive and an anisotropic conductive film were prepared in the same manner as in Example 1, and the insulation between adjacent electrodes and the vertical conductivity were examined.
The results are shown in Table 1.
[Comparative Example 1]

シリカ粒子(触媒化成工業(株)製、SW、平均粒子径7.0μm、粒子径変動係数1
.0%、10%K値4900kgf/mm2)10gを用い、これに弾性被覆層を形成することなしに、これに実施例1と同様にして導電性薄膜層を形成した。得られた導電性微粒子(E4)は、比重が3.1、導電性薄膜層の厚みが400Å、比抵抗が3×10-3Ω・cmであった。
Silica particles (manufactured by Catalyst Kasei Kogyo Co., Ltd., SW, average particle size 7.0 μm, particle size variation coefficient 1
. Using 10 g of 0%, 10% K value 4900 kgf / mm 2 ), a conductive thin film layer was formed in the same manner as in Example 1 without forming an elastic coating layer thereon. The obtained conductive fine particles (E4) had a specific gravity of 3.1, a thickness of the conductive thin film layer of 400 mm, and a specific resistance of 3 × 10 −3 Ω · cm.

次いで、導電性微粒子(E4)を用い実施例1と同様にして異方導電性接着剤および異
方導電性フィルムを調製し、隣接電極間絶縁率、上下導通性を調べた。結果を表1に示す。
[比較例2]
Next, an anisotropic conductive adhesive and an anisotropic conductive film were prepared using the conductive fine particles (E4) in the same manner as in Example 1, and the insulation between adjacent electrodes and the vertical conductivity were examined. The results are shown in Table 1.
[Comparative Example 2]

平均粒子径が7.0μmのプラスチック粒子(スチレンの架橋系重合体)100gを用い、これに実施例1と同様にして導電性薄膜層を形成した。得られた導電性微粒子(E5)の
比重は2.4、導電性薄膜層の厚みは340Å、比抵抗は1×10-3Ω・cmであった。次
いで、導電性微粒子(E5)を用い実施例1と同様にして異方導電性接着剤および異方導
電性フィルムを調製し、隣接電極間絶縁率、上下導通性を調べた。
結果を表1に示す。
[比較例3]
Using 100 g of plastic particles (styrene cross-linked polymer) having an average particle size of 7.0 μm, a conductive thin film layer was formed in the same manner as in Example 1. The obtained conductive fine particles (E5) had a specific gravity of 2.4, a thickness of the conductive thin film layer of 340 mm, and a specific resistance of 1 × 10 −3 Ω · cm. Next, an anisotropic conductive adhesive and an anisotropic conductive film were prepared in the same manner as in Example 1 using the conductive fine particles (E5), and the insulation between adjacent electrodes and the vertical conductivity were examined.
The results are shown in Table 1.
[Comparative Example 3]

シリカ粒子の調製
内容積10Lの容器に純水6,581gを入れ、撹拌しながらメチルトリメトキシシラン
750gを静かに加え、メチルトリメトキシシランと純水が上下2層に分離した状態とし
た。
Preparation of silica particles 6,581 g of pure water was put into a container having an internal volume of 10 L, and 750 g of methyltrimethoxysilane was gently added while stirring, so that methyltrimethoxysilane and pure water were separated into upper and lower layers.

次いで、上層のメチルトリメトキシシランを撹拌しながら冷却した。別途、純水139.6gにブチルアルコール3.49gと濃度28重量%のアンモニア水1.35gを加えこれにアニオン性界面活性剤(オクチルナフタレンスルホン酸ナトリウム)7.5gを加えた。この界面活性剤混合溶液を、上下2層に分離した下層(水層)に上層と下層とが完全には混合しない程度に撹拌しながら60分かけて添加し、引き続き2時間撹拌を継続した後、この分散液1,496.6gに、メチルトリメトキシシラン600.8g、純水2,352.8g、ブチルアルコール58.9gおよび濃度28重量%のアンモニア水0.48gの混合液をそれぞれ8時間かけて添加してシリカ粒子(P1)の分散液を調製した。   Next, the upper layer of methyltrimethoxysilane was cooled with stirring. Separately, 3.49 g of butyl alcohol and 1.35 g of 28% by weight ammonia water were added to 139.6 g of pure water, and 7.5 g of an anionic surfactant (sodium octylnaphthalenesulfonate) was added thereto. This surfactant mixed solution was added to the lower layer (aqueous layer) separated into two upper and lower layers over 60 minutes while stirring so that the upper layer and the lower layer were not completely mixed, and then the stirring was continued for 2 hours. A mixture of 1,486.6 g of this dispersion, 60.8 g of methyltrimethoxysilane, 2,352.8 g of pure water, 58.9 g of butyl alcohol, and 0.48 g of ammonia water having a concentration of 28% by weight is obtained for 8 hours. To obtain a dispersion of silica particles (P1).

この分散液からシリカ粒子(P1)を分離し、洗浄し、次いで110℃で2時間乾燥し、次いで300℃で3時間加熱処理してシリカ粒子(P1)を得た。得られたシリカ粒子(P1)について10%K値、平均粒子径および粒子径変動係数(CV値)を測定した。結果を表1に示す。このシリカ粒子(P1)に、実施例1と同様にして導電性薄膜層を形成した。得られた導電性微粒子(E6)の比重は2.5、導電性薄膜層の厚みは350Å、比抵抗は5×10-3Ω・cmであった。 Silica particles (P1) were separated from this dispersion, washed, dried at 110 ° C. for 2 hours, and then heat-treated at 300 ° C. for 3 hours to obtain silica particles (P1). The silica particles (P1) thus obtained were measured for 10% K value, average particle size, and particle size variation coefficient (CV value). The results are shown in Table 1. A conductive thin film layer was formed on the silica particles (P1) in the same manner as in Example 1. The obtained conductive fine particles (E6) had a specific gravity of 2.5, a thickness of the conductive thin film layer of 350 mm, and a specific resistance of 5 × 10 −3 Ω · cm.

次いで、得られた導電性微粒子(E6)を用い実施例1と同様にして異方導電性接着剤
および異方導電性フィルムを調製し、隣接電極間絶縁率、上下導通性を調べた。結果を表1に示す。
Next, using the obtained conductive fine particles (E6), an anisotropic conductive adhesive and an anisotropic conductive film were prepared in the same manner as in Example 1, and the insulation between adjacent electrodes and the vertical conductivity were examined. The results are shown in Table 1.

Figure 2008117759
Figure 2008117759

本発明に係る導電性微粒子の概略断面図を示す。The schematic sectional drawing of the electroconductive fine particles concerning this invention is shown. 本発明に係る導電性微粒子の概略断面図を示す。The schematic sectional drawing of the electroconductive fine particles concerning this invention is shown. 本発明に係る電気回路基板の製造工程を示す概略図を示す。The schematic which shows the manufacturing process of the electric circuit board which concerns on this invention is shown. 本発明に係る電気回路基板の製造工程を示す概略図を示す。The schematic which shows the manufacturing process of the electric circuit board which concerns on this invention is shown. 本発明に係る電気回路基板の製造工程を示す概略図を示す。The schematic which shows the manufacturing process of the electric circuit board which concerns on this invention is shown. 本発明に係る電気回路基板の製造工程を示す概略図を示す。The schematic which shows the manufacturing process of the electric circuit board which concerns on this invention is shown.

符号の説明Explanation of symbols

1・・・・・球状コア粒子
2・・・・・弾性被覆層
3・・・・・導電性薄膜層
4・・・・・絶縁性熱可塑性樹脂層
11・・・・・電極
12・・・・・基板
13・・・・・電極
14・・・・・ICチップ
15・・・・・導電性微粒子
16・・・・・接着成分
21・・・・・電極
22・・・・・基板
23・・・・・入出力パッド
24・・・・・バンプ
25・・・・・LSIベアチップ
26・・・・・封止樹脂
27・・・・・絶縁性熱可塑性樹脂フィルム
DESCRIPTION OF SYMBOLS 1 ... Spherical core particle 2 ... Elastic coating layer 3 ... Conductive thin film layer 4 ... Insulating thermoplastic resin layer 11 ... Electrode 12 ... ... Board 13 ... Electrode 14 ... IC chip 15 ... Conductive fine particles 16 ... Adhesive component 21 ... Electrode 22 ... Board 23... I / O pad 24... Bump 25... LSI bare chip 26... Sealing resin 27 .. Insulating thermoplastic resin film

Claims (12)

球状コア粒子と、該球状コア粒子表面に形成された弾性被覆層と、
該弾性被覆層表面に形成された導電性薄膜層とからなり導電性微粒子であり、
前記弾性被覆層が次の工程により形成することを特徴とする導電性微粒子の製造方法。(a)球状コア粒子表面に疎水性官能基を付与する工程
(b)前記疎水性球状コア粒子を水および/または有機溶媒に分散させて疎水性
球状コア粒子の分散液を調製する工程
(C)前記疎水性球状コア粒子分散液に界面活性剤を添加する工程
(d)界面活性剤が添加された疎水性球状コア粒子分散液に下記(2)式で示される有機ケイ素化合物の1種または2種以上の混合物を添加し、さらにアルカリを添加して前記疎水性球状コア粒子表面に有機ケイ素化合物の加水分解縮重合物からなる弾性被覆層を形成させる工程
R1 nSi(OR2)4-n (2)
(式中nは1〜3の整数であり、R1は置換または非置換の炭化水素基から選ばれる炭素数1〜10の炭化水素であり、R2は水素原子、炭素数1〜5のアルキル基、炭素数2〜5のアシル基の
いずれかを示す)
A spherical core particle, and an elastic coating layer formed on the spherical core particle surface;
Conductive fine particles comprising a conductive thin film layer formed on the surface of the elastic coating layer,
The method for producing conductive fine particles, wherein the elastic coating layer is formed by the following step. (a) A step of imparting a hydrophobic functional group to the surface of the spherical core particle
(b) A step of preparing a dispersion of hydrophobic spherical core particles by dispersing the hydrophobic spherical core particles in water and / or an organic solvent.
(C) adding a surfactant to the hydrophobic spherical core particle dispersion
(d) To the hydrophobic spherical core particle dispersion to which the surfactant is added, one or a mixture of two or more organosilicon compounds represented by the following formula (2) is added, and an alkali is further added to the hydrophobic spherical core particle dispersion. Of forming an elastic coating layer composed of a hydrolytic condensation polymer of an organosilicon compound on the surface of a conductive spherical core particle
R 1 n Si (OR 2 ) 4-n (2)
(In the formula, n is an integer of 1 to 3, R 1 is a hydrocarbon having 1 to 10 carbon atoms selected from a substituted or unsubstituted hydrocarbon group, and R 2 is a hydrogen atom, having 1 to 5 carbon atoms. An alkyl group or an acyl group having 2 to 5 carbon atoms)
前記工程(a)において、球状コア粒子表面に予め水酸基を付与したのち疎水性官能基を
付与することを特徴とする請求項1に記載の導電性微粒子の製造方法。
2. The method for producing conductive fine particles according to claim 1, wherein in the step (a), the surface of the spherical core particle is previously provided with a hydroxyl group and then a hydrophobic functional group.
前記(e)工程において、前記疎水性球状コア粒子表面に有機ケイ素化合物の加水分解縮
重合物を形成させたのち、20〜95℃の温度で熟成することを特徴とする請求項1または2記載の導電性微粒子の製造方法。
3. The step (e), wherein a hydrolytic condensation polymer of an organosilicon compound is formed on the surface of the hydrophobic spherical core particle, and then ripened at a temperature of 20 to 95 ° C. Manufacturing method of conductive fine particles.
前記導電性薄膜層の表面に、さらに絶縁性熱可塑性樹脂層を形成することを特徴とする請求項1に記載の導電性微粒子の製造方法。   The method for producing conductive fine particles according to claim 1, further comprising forming an insulating thermoplastic resin layer on a surface of the conductive thin film layer. (i)前記球状コア粒子の平均粒子径が0.5〜30μmの範囲にあり、(ii)弾性被覆層の厚さが0.1〜10μmの範囲にあり、(iii)導電性薄膜層の厚さが0.01〜5μmの範
囲にあり、(iv)導電性微粒子の平均粒子径が1〜35μmの範囲にあり、(v)弾性被覆層
の10%K値は、球状コア粒子の10%K値よりも低く、かつ50〜500kgf/mm2の範
囲にある(但し、10%K値は下式(1)で表され、 K=(3/21/2)・F・S-3/2・(D/2)-1/2 …(1)
式中、Fは微粒子の10%圧縮変形時の荷重値(kgf)、Sは微粒子の10%圧縮変形時の
圧縮変位(mm)、Dは粒子直径(mm)を示す)
ことを特徴とする請求項1〜4のいずれかに記載の導電性微粒子の製造方法。
(i) The average particle diameter of the spherical core particles is in the range of 0.5 to 30 μm, (ii) the thickness of the elastic coating layer is in the range of 0.1 to 10 μm, and (iii) the conductive thin film layer The thickness is in the range of 0.01 to 5 μm, (iv) the average particle diameter of the conductive fine particles is in the range of 1 to 35 μm, and (v) the 10% K value of the elastic coating layer is 10% of the spherical core particles. % K value is in the range of 50 to 500 kgf / mm 2 (however, the 10% K value is expressed by the following formula (1): K = (3/2 1/2 ) · F · S − 3/2・ (D / 2) -1/2 ... (1)
In the formula, F is a load value (kgf) at the time of 10% compression deformation of fine particles, S is a compression displacement (mm) at the time of 10% compression deformation of fine particles, and D is a particle diameter (mm))
The method for producing conductive fine particles according to any one of claims 1 to 4.
前記球状コア粒子が金属酸化物または樹脂からなる粒子であり、球状コア粒子の粒子径変動係数が20%以下であり、10%K値が300〜6000kgf/mm2の範囲にあること
を特徴とする請求項1〜5のいずれかに記載の導電性微粒子の製造方法。
The spherical core particles are particles made of a metal oxide or a resin, the spherical core particles have a particle diameter variation coefficient of 20% or less, and a 10% K value is in a range of 300 to 6000 kgf / mm 2. The manufacturing method of the electroconductive fine particles in any one of Claims 1-5.
請求項1〜6いずれかに記載の方法で得られた導電性微粒子が絶縁性熱硬化性樹脂の接着成分中に分散されてなることを特徴とする異方導電性接着剤。   An anisotropic conductive adhesive, wherein the conductive fine particles obtained by the method according to any one of claims 1 to 6 are dispersed in an adhesive component of an insulating thermosetting resin. 請求項1〜6のいずれかに記載の方法で得られた導電性微粒子が、絶縁性熱可塑性樹脂に分散されてなることを特徴とする絶縁性熱可塑性樹脂フィルム。   An insulating thermoplastic resin film, wherein the conductive fine particles obtained by the method according to claim 1 are dispersed in an insulating thermoplastic resin. 請求項1〜6のいずれかに記載の方法で得られた導電性微粒子から形成された微粒子層を表面に有する絶縁性熱可塑性樹脂フィルム。   An insulating thermoplastic resin film having on its surface a fine particle layer formed from conductive fine particles obtained by the method according to claim 1. 請求項1〜6のいずれかに記載の方法で得られた導電性微粒子が対向する電極間に電極接続用導電性微粒子として介在することを特徴とする電気回路基板。   7. An electric circuit board, wherein the conductive fine particles obtained by the method according to claim 1 are interposed as electrode connecting conductive fine particles between opposing electrodes. 請求項7に記載の異方導電性接着剤を用いて形成された電気回路基板。   An electric circuit board formed using the anisotropic conductive adhesive according to claim 7. 請求項8または9に記載の絶縁性熱可塑性樹脂フィルムを用いて形成された電気回路基板。   An electric circuit board formed using the insulating thermoplastic resin film according to claim 8.
JP2007257543A 2007-10-01 2007-10-01 Method for producing novel conductive fine particles and use of the fine particles Expired - Lifetime JP4860587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007257543A JP4860587B2 (en) 2007-10-01 2007-10-01 Method for producing novel conductive fine particles and use of the fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007257543A JP4860587B2 (en) 2007-10-01 2007-10-01 Method for producing novel conductive fine particles and use of the fine particles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11180660A Division JP2001011503A (en) 1999-06-25 1999-06-25 New conductive fine particle and its use

Publications (2)

Publication Number Publication Date
JP2008117759A true JP2008117759A (en) 2008-05-22
JP4860587B2 JP4860587B2 (en) 2012-01-25

Family

ID=39503508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007257543A Expired - Lifetime JP4860587B2 (en) 2007-10-01 2007-10-01 Method for producing novel conductive fine particles and use of the fine particles

Country Status (1)

Country Link
JP (1) JP4860587B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133916A1 (en) 2008-04-28 2009-11-05 シャープ株式会社 Radio communication system, radio communication device, and radio communication method
JP2012224525A (en) * 2011-04-21 2012-11-15 Nippon Shokubai Co Ltd Amorphous silica particle
CN102990062A (en) * 2012-12-17 2013-03-27 苏州纳微生物科技有限公司 Method for preparing composite microsphere
KR101309584B1 (en) 2010-09-10 2013-09-17 니끼 쇼꾸바이 카세이 가부시키가이샤 Dispersion liquid of fine particles of core-shell type inorganic oxide, method for producing the dispersion liquid, and coating composition containing the dispersion liquid
WO2014061545A1 (en) * 2012-10-15 2014-04-24 積水化学工業株式会社 Organic-inorganic hybrid particles, conductive particles, conductive material, and connection structure
KR20150100601A (en) 2012-12-28 2015-09-02 세키스이가가쿠 고교가부시키가이샤 Organic-inorganic hybrid particle, conductive particle, conductive material and connection structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203640A (en) * 1992-12-29 1994-07-22 Casio Comput Co Ltd Anisotropic electric conductive bonding agent and electric conductive connection structure
JPH0750104A (en) * 1993-08-05 1995-02-21 Hitachi Chem Co Ltd Conductive particle and connection member using conductive particle
JPH08193186A (en) * 1995-01-13 1996-07-30 Sony Chem Corp Conductive particle for anisotropically conductive adhesive and anisotropically conductive adhesive containing same
JPH09237517A (en) * 1996-02-27 1997-09-09 Sony Chem Corp Conductive particle for anisotropic conductive adhesive film, its manufacture and anisotropic conductive adhesive film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203640A (en) * 1992-12-29 1994-07-22 Casio Comput Co Ltd Anisotropic electric conductive bonding agent and electric conductive connection structure
JPH0750104A (en) * 1993-08-05 1995-02-21 Hitachi Chem Co Ltd Conductive particle and connection member using conductive particle
JPH08193186A (en) * 1995-01-13 1996-07-30 Sony Chem Corp Conductive particle for anisotropically conductive adhesive and anisotropically conductive adhesive containing same
JPH09237517A (en) * 1996-02-27 1997-09-09 Sony Chem Corp Conductive particle for anisotropic conductive adhesive film, its manufacture and anisotropic conductive adhesive film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133916A1 (en) 2008-04-28 2009-11-05 シャープ株式会社 Radio communication system, radio communication device, and radio communication method
KR101309584B1 (en) 2010-09-10 2013-09-17 니끼 쇼꾸바이 카세이 가부시키가이샤 Dispersion liquid of fine particles of core-shell type inorganic oxide, method for producing the dispersion liquid, and coating composition containing the dispersion liquid
JP2012224525A (en) * 2011-04-21 2012-11-15 Nippon Shokubai Co Ltd Amorphous silica particle
WO2014061545A1 (en) * 2012-10-15 2014-04-24 積水化学工業株式会社 Organic-inorganic hybrid particles, conductive particles, conductive material, and connection structure
TWI612081B (en) * 2012-10-15 2018-01-21 Sekisui Chemical Co Ltd Organic-inorganic hybrid particles, conductive particles, conductive materials, and bonded structures
CN102990062A (en) * 2012-12-17 2013-03-27 苏州纳微生物科技有限公司 Method for preparing composite microsphere
KR20150100601A (en) 2012-12-28 2015-09-02 세키스이가가쿠 고교가부시키가이샤 Organic-inorganic hybrid particle, conductive particle, conductive material and connection structure

Also Published As

Publication number Publication date
JP4860587B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP2001011503A (en) New conductive fine particle and its use
JP4860587B2 (en) Method for producing novel conductive fine particles and use of the fine particles
JP5957042B2 (en) Conductive fine particles and anisotropic conductive materials
JP5151902B2 (en) Anisotropic conductive film
KR102172942B1 (en) Base material particle, conductive particle, conductive material, and connection structure
JP2010199087A (en) Anisotropic conductive film and manufacturing method therefor, and junction body and manufacturing method therefor
KR102172940B1 (en) Base material particle, conductive particle, conductive material, and connection structure
JP4724369B2 (en) Method for producing conductive particles
JP5599674B2 (en) Polymer fine particles and conductive fine particles
JP2015167106A (en) Anisotropic conductive film, and connection structure
JP7259113B2 (en) Anisotropic conductive film, display device including same and/or semiconductor device including same
JP2648712B2 (en) Anisotropic conductive adhesive, method for electrically connecting electrodes using the anisotropic conductive adhesive, and electric circuit board formed by the method
TW201927970A (en) Conductive adhesive composition and isotropic conductive film formed therefrom capable of exhibiting uniform electrical conductivity
JP2006032335A (en) Anisotropic conductive adhesion film
JP6326867B2 (en) Connection structure manufacturing method and connection structure
KR100651177B1 (en) Bump Type Conductive Particle Composition with Anisotropic Conduction and Anisotropic Conductive Film Using the Same
JP4175347B2 (en) Method for producing anisotropic conductive adhesive film
JP4387653B2 (en) Metal fine particles and adhesive, film and electric circuit board using the fine particles
KR101534841B1 (en) Bump-type conductive microspheres and an anisotropic conductive film comprising the same
JP5010417B2 (en) Conductive particles and anisotropic conductive material using the same
TWI719054B (en) Method for manufacturing connection structure, conductive particles, conductive film, and connection structure
TWI774675B (en) Conductive material, connecting structure, and manufacturing method of connecting structure
JP2006107881A (en) Conductive fine particle and anisotropic conductive material
KR100589586B1 (en) Insulated Conductive Particles and an Anisotropic Conductive Film Using the Same
KR20110059274A (en) Insulated conductive ball for anisotropic electric connection and anisotropic conductive material using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

R150 Certificate of patent or registration of utility model

Ref document number: 4860587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term