JP2008116210A - Sensor and detection method - Google Patents

Sensor and detection method Download PDF

Info

Publication number
JP2008116210A
JP2008116210A JP2006296915A JP2006296915A JP2008116210A JP 2008116210 A JP2008116210 A JP 2008116210A JP 2006296915 A JP2006296915 A JP 2006296915A JP 2006296915 A JP2006296915 A JP 2006296915A JP 2008116210 A JP2008116210 A JP 2008116210A
Authority
JP
Japan
Prior art keywords
sensor
working electrode
substrate
electrode
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006296915A
Other languages
Japanese (ja)
Other versions
JP5229849B2 (en
Inventor
Makoto Sawamura
誠 澤村
Satoshi Hattori
聡史 服部
Koichi Mukasa
幸一 武笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP2006296915A priority Critical patent/JP5229849B2/en
Publication of JP2008116210A publication Critical patent/JP2008116210A/en
Application granted granted Critical
Publication of JP5229849B2 publication Critical patent/JP5229849B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor having the sensitivity capable of corresponding to that of a sensor, which has FET as a signal transducer, as a signal transducer though having the signal transducer of two terminals and reduced in the irregularity of characteristics. <P>SOLUTION: The sensor contains a substrate containing an insulating film, the acting electrode (preferably having a large number of aperture parts) being in contact with the insulating film of the substrate and a two-terminal element having the pair electrode connected to the substrate. A substance to be detected is detected by providing a sample solution to the acting electrode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、二端子素子を信号変換素子として用いるセンサ、およびそれを用いて被検出物質を検出する方法に関する。   The present invention relates to a sensor using a two-terminal element as a signal conversion element and a method for detecting a substance to be detected using the sensor.

タンパク質や化学物質などを検出するセンサは、一般的に分子認識素子および信号変換素子(トランスデューサー)を有し、分子認識素子が化学反応などを検出して、信号変換素子が分子認識素子により検出された信号を電気信号に変換することで、被検出物質を検出する。   Sensors that detect proteins and chemical substances generally have molecular recognition elements and signal conversion elements (transducers). The molecular recognition elements detect chemical reactions and the like, and the signal conversion elements are detected by the molecular recognition elements. The detected substance is detected by converting the converted signal into an electric signal.

このようなセンサの一つとして、電界効果型トランジスタ(FET)を信号変換素子とするセンサがあり、イオン選択性の膜を有するイオン感応性電界効果型トランジスタ(ISFET)を用いるpHセンサや血糖値(グルコース)センサなどが実用化されている。FETを信号変換素子とすることで、既存の半導体製造技術を用いてセンサの小型化および集積化を進めることができる。また、感染症の危機感が高まるなか、従来の抗体検査やウイルス検査よりも迅速かつ高感度で簡便に動作するセンサが求められている。現在、このようなセンサを提供するべく、FETを信号変換素子として使用するバイオセンサの開発が急速に進められており、数多くのバイオセンサが提案されている(例えば特許文献1〜3を参照)。   As one of such sensors, there is a sensor using a field effect transistor (FET) as a signal conversion element, and a pH sensor or blood glucose level using an ion sensitive field effect transistor (ISFET) having an ion selective film. A (glucose) sensor has been put into practical use. By using the FET as a signal conversion element, the sensor can be miniaturized and integrated using existing semiconductor manufacturing technology. In addition, as the sense of crisis of infectious diseases increases, there is a need for a sensor that operates more quickly, with higher sensitivity and more easily than conventional antibody tests and virus tests. Currently, in order to provide such a sensor, development of a biosensor using an FET as a signal conversion element has been rapidly advanced, and many biosensors have been proposed (see, for example, Patent Documents 1 to 3). .

また、二端子素子を信号変換素子とするセンサも報告されている(例えば、特許文献4を参照)。
特開2005−218310号公報 特開2004−347532号公報 特開2005−229017号公報 特開2004−108815号公報
A sensor using a two-terminal element as a signal conversion element has also been reported (see, for example, Patent Document 4).
JP 2005-218310 A JP 2004-347532 A Japanese Patent Laying-Open No. 2005-229017 JP 2004-108815 A

FETセンサは感度もよく実用性も高くなりつつあるが、一方で種々の課題も有している。例えば、ISFETを信号変換素子とするセンサには、イオン選択性の膜を一定の品質を維持して製造することが困難であるため、素子特性にバラつきが生じてしまうことがある。また、分子認識素子(抗原抗体反応などを検出する電極)の構造の自由度が制限される面もある。また、一般的な構造のMOSFETを信号変換素子とするセンサには、MOSFETを製造する装置は高価であるため、素子の製造コストが上昇してしまうこともある。   FET sensors are increasing in sensitivity and practicality, but have various problems. For example, in a sensor using an ISFET as a signal conversion element, it is difficult to manufacture an ion-selective film while maintaining a certain quality, and thus element characteristics may vary. In addition, there is a limit to the degree of freedom of the structure of the molecular recognition element (electrode for detecting antigen-antibody reaction). Further, in a sensor using a MOSFET having a general structure as a signal conversion element, since the device for manufacturing the MOSFET is expensive, the manufacturing cost of the element may increase.

一方、二端子の信号変換素子を有するセンサは、FETを信号変換素子とするセンサと比較して、単純な回路構造を有するので、特性のバラつきを抑えることができ、コスト面でも有利になりうる。しかしながら、二端子素子によっては、微少な信号(例えば、電界の変化)を変換することが困難であったため、実用性のあるセンサは提供されてこなかった。また、従来の二端子素子のセンサでは、分子認識素子が溶液に浸されているため、参照電極が必要であり、分子認識素子の構造が著しく制限されてしまうという問題もあった。   On the other hand, a sensor having a two-terminal signal conversion element has a simple circuit structure as compared with a sensor using an FET as a signal conversion element, so that variation in characteristics can be suppressed and the cost can be advantageous. . However, since it is difficult to convert a minute signal (for example, change in electric field) depending on the two-terminal element, a practical sensor has not been provided. Further, in the conventional two-terminal element sensor, since the molecular recognition element is immersed in the solution, a reference electrode is necessary, and the structure of the molecular recognition element is significantly limited.

本発明は、二端子の信号変換素子を有しながら、FETを信号変換素子とするセンサにも匹敵しうる感度を有するセンサを提供することを目的とする。また本発明は、特性のバラつきが小さく、かつ構造の自由度の高いセンサを、安価に提供することを目的とする。   An object of the present invention is to provide a sensor having a sensitivity comparable to that of a sensor using a FET as a signal conversion element while having a two-terminal signal conversion element. It is another object of the present invention to provide a sensor having a small characteristic variation and a high degree of structural freedom at a low cost.

本発明の第一は、以下に示すセンサに関する。
[1]絶縁膜を含む基板、前記基板の絶縁膜に接触している作用電極、および前記基板に接続している対電極を有する二端子素子を含むセンサ。
[2]前記絶縁膜は、酸化シリコンまたは窒化シリコンである、[1]記載のセンサ。
[3]前記作用電極は多数の開口部を有する、[1]または[2]記載のセンサ。
[4]前記作用電極はメッシュ形電極、櫛形電極、放射状形電極または格子形電極である、[3]記載のセンサ。
[5]前記基板は、半導体または導電体からなる支持基板をさらに含む、[1]〜[4]のいずれかに記載のセンサ。
[6]前記対電極は、前記支持基板に配置される、[5]記載のセンサ。
[7]前記対電極は、前記絶縁膜に配置される、[1]〜[5]のいずれかに記載のセンサ。
[8]前記二端子素子は、複数の前記作用電極を有する、[1]〜[7]のいずれかに記載のセンサ。
[9]前記基板の絶縁膜に結合された被検出物質認識分子をさらに含む、[1]〜[8]のいずれかに記載のセンサ。
[10]前記被検出物質認識分子は抗体または抗原である、[9]記載のセンサ。
The first of the present invention relates to the following sensors.
[1] A sensor including a two-terminal element having a substrate including an insulating film, a working electrode in contact with the insulating film of the substrate, and a counter electrode connected to the substrate.
[2] The sensor according to [1], wherein the insulating film is silicon oxide or silicon nitride.
[3] The sensor according to [1] or [2], wherein the working electrode has a large number of openings.
[4] The sensor according to [3], wherein the working electrode is a mesh electrode, a comb electrode, a radial electrode, or a grid electrode.
[5] The sensor according to any one of [1] to [4], wherein the substrate further includes a support substrate made of a semiconductor or a conductor.
[6] The sensor according to [5], wherein the counter electrode is disposed on the support substrate.
[7] The sensor according to any one of [1] to [5], wherein the counter electrode is disposed on the insulating film.
[8] The sensor according to any one of [1] to [7], wherein the two-terminal element includes a plurality of the working electrodes.
[9] The sensor according to any one of [1] to [8], further including a target substance recognition molecule bonded to an insulating film of the substrate.
[10] The sensor according to [9], wherein the detected substance recognition molecule is an antibody or an antigen.

本発明の第二は、以下に示す検出方法に関する。
[11][1]〜[9]のいずれかに記載のセンサを用いて被検出物質を検出する方法であって、前記被検出物質を含みうる溶液を、前記作用電極に提供するステップと、前記提供前と提供後の二端子素子の電気特性の変化から、前記被検出物質を検出するステップと、を含む検出方法。
[12]前記作用電極に提供した溶液の溶媒を、乾燥させるステップをさらに含む、[11]記載の検出方法。
[13]前記電気特性は、前記二端子素子のIV特性である、[11]または[12]記載の検出方法。
[14]前記IV特性のヒステリシスの程度から、前記被検出物質の量を測定するステップをさらに含む、[13]記載の検出方法。
The second of the present invention relates to the following detection method.
[11] A method for detecting a substance to be detected using the sensor according to any one of [1] to [9], wherein a solution that may contain the substance to be detected is provided to the working electrode; Detecting the substance to be detected from a change in electrical characteristics of the two-terminal element before and after provision.
[12] The detection method according to [11], further comprising a step of drying the solvent of the solution provided to the working electrode.
[13] The detection method according to [11] or [12], wherein the electrical characteristic is an IV characteristic of the two-terminal element.
[14] The detection method according to [13], further including a step of measuring the amount of the substance to be detected from the degree of hysteresis of the IV characteristic.

本発明のセンサは、二端子の信号変換素子を有するため構造が単純であり、既存の半導体製造技術で量産することができるので、特性のバラつきが極めて小さい。また、FETセンサに匹敵する感度を示し、さらには安価に製造されうる。   Since the sensor of the present invention has a two-terminal signal conversion element, the structure is simple, and since it can be mass-produced by existing semiconductor manufacturing technology, the variation in characteristics is extremely small. Further, the sensitivity is comparable to that of an FET sensor, and it can be manufactured at a low cost.

1.本発明のセンサについて
本発明のセンサは、二端子素子を含むことを特徴とする。前記二端子素子は、1)絶縁膜を含む基板、2)前記絶縁膜に接触している作用電極、3)前記基板に接続している対電極を有する。
1. About the sensor of the present invention The sensor of the present invention includes a two-terminal element. The two-terminal element has 1) a substrate including an insulating film, 2) a working electrode in contact with the insulating film, and 3) a counter electrode connected to the substrate.

基板には、少なくとも絶縁膜が含まれる。絶縁膜は、後述する作用電極と対電極とを絶縁する部材である。
絶縁膜の材質の例には、酸化シリコン、窒化シリコン、酸化アルミニウムおよび酸化チタンなどの無機化合物、ならびにアクリル樹脂およびポリイミドなどの有機化合物などが含まれる。絶縁膜の表面には、水酸基、アミノ基またはカルボキシル基などの官能基が導入されていてもよい。絶縁膜の厚さは、特に限定されないが、10〜1000nmが好ましく、20〜500nmが特に好ましい。絶縁膜が薄すぎると、トンネル電流が流れてしまう可能性がある。一方、絶縁膜が厚すぎると、感度が低下する可能性がある。
The substrate includes at least an insulating film. The insulating film is a member that insulates a working electrode and a counter electrode described later.
Examples of the material of the insulating film include inorganic compounds such as silicon oxide, silicon nitride, aluminum oxide, and titanium oxide, and organic compounds such as acrylic resin and polyimide. A functional group such as a hydroxyl group, an amino group, or a carboxyl group may be introduced on the surface of the insulating film. Although the thickness of an insulating film is not specifically limited, 10-1000 nm is preferable and 20-500 nm is especially preferable. If the insulating film is too thin, a tunnel current may flow. On the other hand, if the insulating film is too thick, the sensitivity may decrease.

基板は、絶縁膜とともに、基板に強度を付与する支持基板を含むことが好ましい。
支持基板の材質は、半導体または導電体であることが好ましい。半導体の例には、シリコン、ゲルマニウムなどのIV族元素、砒化ガリウム、リン化インジウムなどのIII−V化合物、テルル化亜鉛などのII−VI化合物などが含まれる。導電体の例には、アルミニウムやニッケルなどが含まれる。支持基板の厚さは、特に限定されないが、0.1〜1.0mmであることが好ましく、0.3〜0.5mmが特に好ましい。
It is preferable that the substrate includes a support substrate that imparts strength to the substrate together with the insulating film.
The material of the support substrate is preferably a semiconductor or a conductor. Examples of the semiconductor include group IV elements such as silicon and germanium, III-V compounds such as gallium arsenide and indium phosphide, and II-VI compounds such as zinc telluride. Examples of the conductor include aluminum and nickel. Although the thickness of a support substrate is not specifically limited, It is preferable that it is 0.1-1.0 mm, and 0.3-0.5 mm is especially preferable.

作用電極は、基板に電圧を印加する電極であり、基板の絶縁膜上に配置され、好ましくは絶縁膜に接触している。作用電極の材質の例には、金、白金、チタンおよびアルミニウムなどの金属、ならびに導電性プラスチックなどが含まれる。   The working electrode is an electrode that applies a voltage to the substrate, is disposed on the insulating film of the substrate, and is preferably in contact with the insulating film. Examples of the material of the working electrode include metals such as gold, platinum, titanium and aluminum, and conductive plastics.

作用電極には、被検出物質を含みうる溶液(つまり、試料溶液)を提供されうるが(後述)、前記試料溶液との単位体積あたりの接触面積が大きくなるようにされていることが好ましい。試料溶液との単位面積あたりの接触面積が大きくなれば、試料溶液の誘電率などの影響を作用電極が受けやすくなり、例えば試料溶液に含まれる被検出物質の濃度などを高感度に測定することができる。   The working electrode can be provided with a solution (that is, a sample solution) that can contain a substance to be detected (described later), but it is preferable that the contact area per unit volume with the sample solution is increased. If the contact area per unit area with the sample solution increases, the working electrode will be more susceptible to the influence of the dielectric constant of the sample solution. For example, the concentration of the detected substance in the sample solution should be measured with high sensitivity. Can do.

接触面積を大きくするためには、例えば、作用電極を多数の開口部を有する形状とすればよい。多数の開口部を有する形状の例には、メッシュ形、櫛形、格子形、同心円形、放射状形などが含まれる。
図1は、作用電極の形状の例を示す平面図である。図1(A)はメッシュ形の作用電極、図1(B)は櫛形の作用電極を示している。図1において、作用電極140a,140bは、導電性部材142および開口部144を有する。
In order to increase the contact area, for example, the working electrode may have a shape having a large number of openings. Examples of shapes having a large number of openings include mesh shapes, comb shapes, lattice shapes, concentric circles, radial shapes, and the like.
FIG. 1 is a plan view showing an example of the shape of the working electrode. 1A shows a mesh-type working electrode, and FIG. 1B shows a comb-shaped working electrode. In FIG. 1, the working electrodes 140 a and 140 b have a conductive member 142 and an opening 144.

多数の開口部を有する形状の作用電極を構成する金属の幅(櫛の幅)の平均は、10μm〜数百μm程度であることが好ましい。櫛の幅を狭くすれば、電極の開口部面積を広げることができるので、当該開口部領域の絶縁膜に多くの被検出物質認識分子(後述)を結合させることができる。一方、櫛の幅を狭くしすぎると、作用電極から水薄膜に流れる電流値が減少して、電極としての効果を示しにくくなる可能性がる。作用電極下の電界の構造が“面”から“線”に変わることにより、シリコン基板や絶縁膜に垂直な電気力線が作用電極下で放射状に分散し、充分に高い電界を得ることができなくなるためと考えられる。   The average metal width (comb width) constituting the working electrode having a large number of openings is preferably about 10 μm to several hundred μm. If the width of the comb is narrowed, the area of the opening of the electrode can be increased, so that many substances to be detected (to be described later) can be bound to the insulating film in the opening region. On the other hand, if the width of the comb is too narrow, the value of the current flowing from the working electrode to the water thin film decreases, and it may be difficult to show the effect as an electrode. By changing the structure of the electric field under the working electrode from “surface” to “line”, electric lines of force perpendicular to the silicon substrate and the insulating film are dispersed radially under the working electrode, and a sufficiently high electric field can be obtained. It is thought to be lost.

また、作用電極を構成する金属間の間隔(櫛の間の間隔)は100〜200μm程度であることが好ましい。検出において試料溶液を乾燥させてできた薄膜が、櫛同士を結合するように、櫛の間の間隔を設定することが好ましい。   Moreover, it is preferable that the space | interval (space | interval between combs) between the metals which comprise a working electrode is about 100-200 micrometers. It is preferable to set the interval between the combs so that the thin film formed by drying the sample solution in the detection couples the combs.

さらに、作用電極を構成する金属の高さは、0.1μm〜数100μm程度であることが好ましいと考えられる。高さを大きくすれば、検出において試料溶液を乾燥させてできた薄膜に対する、作用電極からの電気力線の数を増やすことができる。   Furthermore, it is considered that the height of the metal constituting the working electrode is preferably about 0.1 μm to several 100 μm. If the height is increased, the number of lines of electric force from the working electrode can be increased with respect to the thin film formed by drying the sample solution in the detection.

さらに、開口部を有する形状の作用電極は、提供される試料溶液を保持できる形状を有していることが好ましい。提供される試料溶液は、通常は水溶液であり、その量は特に限定されないが、本発明のセンサでは数μl程度にすることができる。また、作用電極の全体の大きさも特に制限はないが、絶縁膜上に数mm程度の径を有しうる。   Furthermore, it is preferable that the working electrode having an opening has a shape capable of holding the provided sample solution. The sample solution to be provided is usually an aqueous solution, and the amount thereof is not particularly limited, but can be about several μl in the sensor of the present invention. The overall size of the working electrode is not particularly limited, but may have a diameter of about several mm on the insulating film.

多数の開口部を有する形状の作用電極は、市販のメッシュ形電極などであってもよいが、電子ビームリソグラフィやフォトリソグラフィなどにより、基板の絶縁膜上に直接形成してもよい。   The working electrode having a large number of openings may be a commercially available mesh electrode or the like, but may be directly formed on the insulating film of the substrate by electron beam lithography or photolithography.

一の基板上に配置される作用電極の数は、一であってもよいし、複数であってもよい。一の基板上に複数の作用電極を配置すれば、一のセンサで多検体または多項目の検出を行うことができる。一の基板上に複数の作用電極を配置する場合、PN接合などを用いて各作用電極間を電気的に分離することが好ましい。   The number of working electrodes arranged on one substrate may be one or plural. If a plurality of working electrodes are arranged on one substrate, multiple samples or multiple items can be detected by one sensor. When a plurality of working electrodes are arranged on one substrate, it is preferable to electrically separate the working electrodes using a PN junction or the like.

対電極は、基板に接続していればよい。ここで接続しているとは、電気的に接続していることを意味し、基板に接触して配置されてもよく、導電性部材を介して接続されていてもよい。また、対電極は接地されていることが好ましい。   The counter electrode may be connected to the substrate. Here, “connected” means electrically connected, and may be placed in contact with the substrate or may be connected via a conductive member. The counter electrode is preferably grounded.

対電極は、基板の任意の部位に接続していればよいが、通常は1)支持基板に接続しているか(図2および図3を参照)、または2)作用電極が接触している絶縁膜に接続している(図4を参照)ことが好ましい。対電極が支持基板に接続している場合は、作用電極が配置されている側の面に接続していても、その反対側の面に接続していてもよい。   The counter electrode may be connected to any part of the substrate, but usually 1) is connected to the support substrate (see FIGS. 2 and 3), or 2) the insulation is in contact with the working electrode It is preferably connected to the membrane (see FIG. 4). When the counter electrode is connected to the support substrate, the counter electrode may be connected to the surface on which the working electrode is disposed or may be connected to the opposite surface.

対電極の材質は特に限定されないが、例えば金属である。インジウムなどの柔らかい金属を半導体基板に密着させてもよいし、金やチタンなどを用いて密着させてもよい。対電極を形成する方法は、特に限定されないが、金属を基板上に蒸着させればよい。   Although the material of a counter electrode is not specifically limited, For example, it is a metal. A soft metal such as indium may be adhered to the semiconductor substrate, or may be adhered using gold or titanium. A method for forming the counter electrode is not particularly limited, and a metal may be deposited on the substrate.

本発明のセンサは、被検出物質認識分子を結合されていてもよい。被検出物質認識分子を結合させることで、特定のタンパク質や化学物質などを特異的に検出することができ、バイオセンサとして用いることができる。被検出物質認識分子の例には、抗体および酵素などが含まれる。   The sensor of the present invention may be bound with a substance to be detected. By binding a substance-recognizing molecule, a specific protein or chemical substance can be specifically detected, and can be used as a biosensor. Examples of the target substance recognition molecule include an antibody and an enzyme.

被検出物質認識分子は、センサの任意の位置に結合されていればよいが、好ましくは作用電極が接触している絶縁膜に結合されており、さらに好ましくは作用電極を配置された領域付近の絶縁膜に結合されている。
前述の通り、作用電極は多数の開口部を有する形状を有しうるが、その場合には当該開口部領域の絶縁膜に、被検出物質認識分子を結合させることが好ましい。
The target substance recognition molecule may be bound to any position of the sensor, but is preferably bound to the insulating film with which the working electrode is in contact, and more preferably in the vicinity of the region where the working electrode is disposed. Bonded to the insulating film.
As described above, the working electrode may have a shape having a large number of openings. In this case, it is preferable that the substance to be detected is bound to the insulating film in the opening region.

作用電極の付近の絶縁膜に被検出物質認識分子が結合されていれば、当該被検出物質認識分子と被検出物質との反応(例えば抗体−抗原反応)による電場の変化が、作用電極に効果的に及ぼされるので、センサの感度が高まると考えられる。   If the substance-recognized molecule is bound to the insulating film near the working electrode, a change in the electric field due to the reaction between the substance-recognized molecule and the substance to be detected (for example, antibody-antigen reaction) is effective on the working electrode. Therefore, it is considered that the sensitivity of the sensor is increased.

2.本発明の検出方法について
本発明の検出方法は、前述のセンサを用いることを特徴とする。本明細書において「検出」とは、被検出物質の有無を判断することだけではなく、被検出物質の量を測定することも含む。
2. About the detection method of the present invention The detection method of the present invention is characterized by using the aforementioned sensor. In this specification, “detection” includes not only determining the presence or absence of a substance to be detected but also measuring the amount of the substance to be detected.

検出される被検出物質は、溶液に含まれていることが好ましく、溶解されていることが特に好ましい。被検出物質は、例えばタンパク質や化学物質などである。   The detected substance to be detected is preferably contained in a solution, and particularly preferably dissolved. The substance to be detected is, for example, a protein or a chemical substance.

本発明の検出方法は、1)被検出物質を含みうる溶液(試料溶液)を、二端子素子の作用電極に提供するステップ、および2)溶液を提供する前とした後の二端子素子の電気特性の変化から、被検出物質を検出するステップを含む。   The detection method of the present invention includes 1) a step of providing a solution (sample solution) that can contain a substance to be detected to the working electrode of the two-terminal element, and 2) electricity of the two-terminal element before and after providing the solution. A step of detecting a substance to be detected from a change in characteristics is included.

まず、センサに含まれる二端子素子の作用電極に、被検出物質を含む溶液を滴下などにより提供する。提供される溶液の量は特に限定されず、作用電極の構造などに応じて調整されるが、数μlと少量にすることができる。ただし、作用電極が保持しうる量以下にすることが好ましい。   First, a solution containing a substance to be detected is provided to the working electrode of the two-terminal element included in the sensor by dropping or the like. The amount of the solution to be provided is not particularly limited and is adjusted according to the structure of the working electrode, but can be as small as several μl. However, it is preferable to make it below the amount that the working electrode can hold.

センサの作用電極に提供される試料溶液は、別途に調製された、被検出物質を含みうる溶液と一定の被検出物質認識分子を含む溶液との混合溶液であってもよい。前記混合溶液に含まれる被検出物質と被検出物質認識分子との複合体を検出することによって、被検出物質を検出することができるので、容易な検出法が提供されうる。   The sample solution provided to the working electrode of the sensor may be a separately prepared mixed solution of a solution containing a substance to be detected and a solution containing a certain substance to be detected. Since the substance to be detected can be detected by detecting the complex of the substance to be detected and the substance to be detected recognition contained in the mixed solution, an easy detection method can be provided.

二端子素子の電気特性を測定する前に、作用電極に提供した溶液をある程度蒸散させることが好ましいが、必ずしも完全に乾燥させる必要はない。例えば、自然乾燥させることが好ましい。完全には除去されない溶液自体が薄膜電極として作用することができ、溶液の誘電率に応じて二端子素子の電気特性が変化すると考えられる。したがって、被検出物質の濃度による溶液の誘電率の変化が、二端子素子の電気特性を変化させる。   Before measuring the electrical properties of the two-terminal element, it is preferable to evaporate the solution provided to the working electrode to some extent, but it is not necessary to completely dry it. For example, natural drying is preferable. The solution itself that is not completely removed can act as a thin film electrode, and the electrical characteristics of the two-terminal element are considered to change depending on the dielectric constant of the solution. Therefore, the change in the dielectric constant of the solution due to the concentration of the substance to be detected changes the electrical characteristics of the two-terminal element.

二端子素子の電気特性は、例えば、作用電極に印加された直流電圧、交流電圧またはパルス電圧と、作用電極−対電極間を流れる電流との関係(IV特性)などである。二端子素子の電気特性を増幅するために、FETなどの増幅装置を用いてもよい。二端子素子の電気特性を測定するには、例えば、作用電極に印加された直流電圧を0V付近(例えば、−20〜+20Vの間、好ましくは−5〜+5Vの間)で徐々に変化させて、そのときの作用電極−対電極間を流れる電流を測定すればよい。   The electrical characteristics of the two-terminal element are, for example, the relationship (IV characteristics) between a DC voltage, an AC voltage, or a pulse voltage applied to the working electrode and a current flowing between the working electrode and the counter electrode. In order to amplify the electrical characteristics of the two-terminal element, an amplifying device such as an FET may be used. In order to measure the electrical characteristics of the two-terminal element, for example, the DC voltage applied to the working electrode is gradually changed around 0V (for example, between -20 and + 20V, preferably between -5 and + 5V). The current flowing between the working electrode and the counter electrode may be measured.

本発明の検出方法では、IV特性のヒステリシスの程度に基づいて、被検出物質の量を測定してもよい。つまり、本発明のセンサのIV特性にはヒステリシスが表れることがあるので、試料溶液を滴下する前と、作用電極に試料溶液を提供し、該溶液を乾燥させた後のIV特性のヒステリシスの程度を比較すればよい。ここで「IV特性のヒステリシス」とは、作用電極に印加された電圧を徐々に上昇(または下降)させた後、逆に下降(または上昇)させて元に戻したときに(例えば、−20V→+20V→−20V)、電圧上昇時と下降時とで、電流値が異なる現象をいう。   In the detection method of the present invention, the amount of the substance to be detected may be measured based on the degree of hysteresis of the IV characteristics. In other words, since hysteresis may appear in the IV characteristics of the sensor of the present invention, the degree of hysteresis of the IV characteristics before dropping the sample solution and after providing the sample solution to the working electrode and drying the solution. Should be compared. Here, “IV characteristic hysteresis” means that the voltage applied to the working electrode is gradually increased (or decreased) and then decreased (or increased) to return to the original value (for example, −20 V). → + 20V → −20V), a phenomenon in which the current value differs between when the voltage rises and when it falls.

IV特性のヒステリシスの程度とは、例えば、1)一定の電圧値における、電圧上昇時の電流値と下降時の電流値との差異、2)一定範囲の電圧におけるIV特性曲線の傾きなどを意味するが、特に限定されない。   The degree of hysteresis of the IV characteristic means, for example, 1) the difference between the current value when the voltage rises and the current value when the voltage falls when the voltage is constant, and 2) the slope of the IV characteristic curve when the voltage is in a certain range. However, it is not particularly limited.

また、予め取得した、被検出物質の濃度と電気特性との関係を示す検量線を用いれば、被検出物質の濃度を定量することもできる。   Further, the concentration of the substance to be detected can be quantified by using a calibration curve obtained in advance and showing the relationship between the concentration of the substance to be detected and the electrical characteristics.

以下、本発明の実施の形態について、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図2は、本発明の実施の形態1に係るセンサの構成を示す図である。図2(A)は実施の形態1に係るセンサの斜視図であり、図2(B)および図2(C)は実施の形態1に係るセンサの断面図である。
(Embodiment 1)
FIG. 2 is a diagram showing the configuration of the sensor according to Embodiment 1 of the present invention. 2A is a perspective view of the sensor according to Embodiment 1, and FIGS. 2B and 2C are cross-sectional views of the sensor according to Embodiment 1. FIG.

図2において、センサ100は、基板110、作用電極140および対電極150を有する。基板110は、支持基板120と、支持基板120の片面全面を覆う絶縁膜130とを有する。作用電極140は、絶縁膜130に接触しており、電源(図2(A)では図示しない)に接続されている。対電極150は、支持基板120上に配置されており、基板110の作用電極140が配置されていない側の面に位置している。対電極150は、電流計(図2(A)では図示しない)を介して接地されている。   In FIG. 2, the sensor 100 includes a substrate 110, a working electrode 140, and a counter electrode 150. The substrate 110 includes a support substrate 120 and an insulating film 130 that covers the entire surface of one side of the support substrate 120. The working electrode 140 is in contact with the insulating film 130 and is connected to a power source (not shown in FIG. 2A). The counter electrode 150 is disposed on the support substrate 120 and is located on the surface of the substrate 110 where the working electrode 140 is not disposed. The counter electrode 150 is grounded via an ammeter (not shown in FIG. 2A).

図2に示されたセンサ100を用いて被検出物質を検出するには、図2(B)に示されるように、絶縁膜130表面の作用電極140を配置された領域に試料溶液160を提供すればよい。このとき、試料溶液160は作用電極140に保持されて拡がらないことが好ましい。この試料溶液160を自然乾燥させた後、作用電極−対電極間の電気特性の変化(例えば、IV特性の変化)を測定することで、被検出物質を検出することができる。   In order to detect a substance to be detected using the sensor 100 shown in FIG. 2, as shown in FIG. 2B, the sample solution 160 is provided in the region where the working electrode 140 is disposed on the surface of the insulating film 130. do it. At this time, it is preferable that the sample solution 160 is held by the working electrode 140 and does not spread. After the sample solution 160 is naturally dried, a substance to be detected can be detected by measuring a change in electrical characteristics (for example, a change in IV characteristics) between the working electrode and the counter electrode.

図2(C)は、絶縁膜130表面の作用電極140を配置された領域に抗体などの被検出物質認識分子170を結合させた例を示す図である。作用電極140の開口部領域に被検出物質認識分子170を結合させることが好ましい。このように絶縁膜130上に被検出物質認識分子170を結合させることで、特定のタンパク質や化学物質などを特異的に検出することができる。   FIG. 2C is a diagram showing an example in which a substance to be detected recognition molecule 170 such as an antibody is bound to the region where the working electrode 140 is disposed on the surface of the insulating film 130. It is preferable that the substance to be detected recognition molecule 170 is bonded to the opening region of the working electrode 140. In this way, by binding the substance-to-be-detected molecule 170 on the insulating film 130, a specific protein or chemical substance can be specifically detected.

(実施の形態2)
実施の形態1では、作用電極と対電極を基板の異なる面に配置する例を示した。実施の形態2では、作用電極と対電極を基板の同一の面に配置する例を示す。
(Embodiment 2)
In Embodiment 1, the example which arrange | positions a working electrode and a counter electrode on a different surface of a board | substrate was shown. Embodiment 2 shows an example in which the working electrode and the counter electrode are arranged on the same surface of the substrate.

図3は、本発明の実施の形態2に係るセンサの構成を示す図である。図3(A)は実施の形態2に係るセンサの斜視図であり、図3(B)および図3(C)は実施の形態2に係るセンサの断面図である。実施の形態1に係るセンサと同じ構成要素については同一の符号を付し、重複箇所の説明を省略する。   FIG. 3 is a diagram showing the configuration of the sensor according to Embodiment 2 of the present invention. 3A is a perspective view of the sensor according to the second embodiment, and FIGS. 3B and 3C are cross-sectional views of the sensor according to the second embodiment. The same components as those of the sensor according to Embodiment 1 are denoted by the same reference numerals, and description of overlapping portions is omitted.

図3において、センサ200は、基板112、作用電極140および対電極152を有する。実施の形態1のセンサと同様に、作用電極140は電源に、対電極152は電流計に接続されているが、図示していない。   In FIG. 3, the sensor 200 has a substrate 112, a working electrode 140 and a counter electrode 152. As with the sensor of the first embodiment, the working electrode 140 is connected to a power source, and the counter electrode 152 is connected to an ammeter, which is not shown.

基板112は、支持基板120と、支持基板120の片面の一部分の面を覆う絶縁膜132とを有する。対電極152は、支持基板120上に配置されており、基板110の作用電極140が配置されている側の面に位置している。   The substrate 112 includes a support substrate 120 and an insulating film 132 that covers a part of one surface of the support substrate 120. The counter electrode 152 is disposed on the support substrate 120 and is located on the surface of the substrate 110 on the side where the working electrode 140 is disposed.

このセンサ200を用いて被検出物質を検出するには、実施の形態1のセンサと同様の手順で検出すればよい。図3(C)に示されるように、絶縁膜132表面の作用電極140を配置された領域に被検出物質認識分子170を結合させてもよい。   In order to detect a substance to be detected using this sensor 200, detection may be performed by the same procedure as that of the sensor of the first embodiment. As shown in FIG. 3C, a substance-recognizing molecule 170 to be detected may be bound to a region where the working electrode 140 is disposed on the surface of the insulating film 132.

(実施の形態3)
実施の形態1,2では、作用電極を絶縁膜上に配置し、対電極を支持基板上に配置する例を示した。実施の形態3では、作用電極および対電極を共に絶縁膜上に配置する例を示す。
(Embodiment 3)
In the first and second embodiments, the working electrode is disposed on the insulating film and the counter electrode is disposed on the support substrate. In the third embodiment, an example in which the working electrode and the counter electrode are both arranged on the insulating film is shown.

図4は、本発明の実施の形態3に係るセンサの構成を示す図である。図4(A)は実施の形態3に係るセンサの斜視図であり、図4(B)および図4(C)は実施の形態3に係るセンサの断面図である。実施の形態1に係るセンサと同じ構成要素については同一の符号を付し、重複箇所の説明を省略する。   FIG. 4 is a diagram showing a configuration of a sensor according to Embodiment 3 of the present invention. 4A is a perspective view of a sensor according to Embodiment 3, and FIGS. 4B and 4C are cross-sectional views of the sensor according to Embodiment 3. FIG. The same components as those of the sensor according to Embodiment 1 are denoted by the same reference numerals, and description of overlapping portions is omitted.

図4において、センサ300は、基板110、作用電極140および対電極154を有する。実施の形態1のセンサと同様に、作用電極140は電源に、対電極154は電流計に接続されているが、図示していない。対電極154は、基板110の絶縁膜130上に配置されている。   In FIG. 4, the sensor 300 includes a substrate 110, a working electrode 140, and a counter electrode 154. Similar to the sensor of the first embodiment, the working electrode 140 is connected to a power source, and the counter electrode 154 is connected to an ammeter, which is not shown. The counter electrode 154 is disposed on the insulating film 130 of the substrate 110.

このセンサ200を用いて被検出物質を検出するには、実施の形態1のセンサと同様の手順で検出すればよい。図4(C)に示されるように、実施の形態1のセンサと同様に、絶縁膜130表面の作用電極140を配置された領域に被検出物質認識分子170を結合させてもよい。   In order to detect a substance to be detected using this sensor 200, detection may be performed by the same procedure as that of the sensor of the first embodiment. As shown in FIG. 4C, similarly to the sensor of Embodiment 1, the substance-recognizing molecule 170 to be detected may be bound to the region where the working electrode 140 is disposed on the surface of the insulating film 130.

(実施の形態4)
実施の形態1〜3では、一の基板に一の作用電極を配置する例を示した。実施の形態4では、一の基板に複数の作用電極を配置する例を示す。
(Embodiment 4)
In the first to third embodiments, an example in which one working electrode is arranged on one substrate has been described. Embodiment 4 shows an example in which a plurality of working electrodes are arranged on one substrate.

図5は、本発明の実施の形態4に係るセンサの構成を示す平面図である。図5において、センサ400は、基板114、複数の作用電極142a〜142iおよび対電極156を有する。基板114は、実施の形態1の基板と同様に、支持基板と、支持基板の片面全面を覆う絶縁膜とを有する。   FIG. 5 is a plan view showing a configuration of a sensor according to Embodiment 4 of the present invention. In FIG. 5, the sensor 400 includes a substrate 114, a plurality of working electrodes 142 a to 142 i, and a counter electrode 156. Substrate 114 has a support substrate and an insulating film that covers the entire surface of one side of the support substrate, similarly to the substrate of Embodiment 1.

作用電極142a〜142iは、実施の形態1の作用電極と同様に基板114の絶縁膜上に配置されており、電源と作用電極142a〜142iとの接続を切り替えるマトリックススイッチ410を介して電源に接続されている。   The working electrodes 142a to 142i are arranged on the insulating film of the substrate 114 like the working electrodes of the first embodiment, and are connected to the power supply via the matrix switch 410 that switches the connection between the power supply and the working electrodes 142a to 142i. Has been.

対電極156は、実施の形態1の対電極と同様に基板裏側の支持基板上に配置されており、電流計を介して接地されている。   The counter electrode 156 is disposed on the support substrate on the back side of the substrate similarly to the counter electrode of the first embodiment, and is grounded via an ammeter.

このセンサ400を用いて被検出物質を検出するには、基板114の絶縁膜表面の各作用電極142a〜142iを配置された領域に試料溶液を提供すればよい。提供した試料溶液を自然乾燥させた後、マトリックススイッチ410を切り替えて、作用電極−対電極間の電気特性の変化(例えば、IV特性の変化)を各作用電極142a〜142iについて測定することで、各作用電極142a〜142iに提供した試料溶液内の被検出物質を検出することができる。このとき、各作用電極142a〜142iに提供する試料溶液をそれぞれ異なるものとすれば、多検体について一度に検出することができる。例えば、各作用電極142a〜142iにそれぞれ異なる濃度の被検出物質を含む試料溶液を提供すれば、一度の検出で検量線を作成することができる。   In order to detect a substance to be detected using the sensor 400, a sample solution may be provided to a region where the working electrodes 142a to 142i on the insulating film surface of the substrate 114 are disposed. After the provided sample solution is air-dried, the matrix switch 410 is switched, and a change in electrical characteristics between the working electrode and the counter electrode (for example, a change in IV characteristics) is measured for each working electrode 142a to 142i. A substance to be detected in the sample solution provided to each working electrode 142a to 142i can be detected. At this time, if the sample solutions provided to the working electrodes 142a to 142i are different from each other, multiple samples can be detected at a time. For example, if a sample solution containing a substance to be detected having a different concentration is provided to each of the working electrodes 142a to 142i, a calibration curve can be created by one detection.

また、絶縁膜表面の各作用電極142a〜142iを配置された領域に被検出物質認識分子を結合させてもよい。このとき、各作用電極142a〜142iに結合させる被検出物質認識分子をそれぞれ異なるものとして、各作用電極142a〜142iに同一の試料溶液を提供すれば、1検体について多項目の検出をすることができる。   In addition, a substance to be detected may be bound to a region where the working electrodes 142a to 142i are disposed on the surface of the insulating film. At this time, if the detection target substance recognition molecules to be bound to the working electrodes 142a to 142i are different from each other and the same sample solution is provided to the working electrodes 142a to 142i, multiple items can be detected for one specimen. it can.

本実施の形態のセンサは、既存の半導体製造技術で、特性のバラつきが極めて小さいものを量産すること、および集積化することができる。   The sensor according to the present embodiment can be mass-produced and integrated with an existing semiconductor manufacturing technique with extremely small variation in characteristics.

以下、本発明を、実施例を参照してさらに説明する。なお、本発明の範囲は本実施例により限定して解釈されない。   Hereinafter, the present invention will be further described with reference to examples. It should be noted that the scope of the present invention is not construed as being limited by this example.

本実施例では、図5に示されるセンサ(実施の形態4)を用いて、リジンを検出した例を示す。   In this example, lysine is detected using the sensor (Embodiment 4) shown in FIG.

(1)センサ
図5に示されるセンサを作製した。基板の面積は4cm(2cm×2cm)とし、支持基板は厚さ500μmのシリコン基板として、絶縁膜は厚さ300nmの酸化シリコン膜とした。
絶縁膜上に直径5mmの円形の放射状形電極(金属材質;チタンと金の二層構造、櫛の幅;100μm、櫛の高さ;チタン50nmおよび金60nm、櫛の間隔;250μm)を、真空蒸着法により形成して、作用電極とした。
対電極はインジウム電極として、基板の裏面(絶縁膜がない面)の支持基板の全面に配置した。
(1) Sensor The sensor shown in FIG. 5 was produced. The area of the substrate was 4 cm 2 (2 cm × 2 cm), the supporting substrate was a silicon substrate having a thickness of 500 μm, and the insulating film was a silicon oxide film having a thickness of 300 nm.
A circular radial electrode having a diameter of 5 mm (metal material: titanium and gold two-layer structure, comb width: 100 μm, comb height; titanium 50 nm and gold 60 nm, comb spacing; 250 μm) on an insulating film, vacuum A working electrode was formed by vapor deposition.
The counter electrode was an indium electrode and was disposed on the entire surface of the support substrate on the back surface (surface without an insulating film) of the substrate.

(2)試料溶液の調製
本実施例では、リジンを検出対象とした。0.01重量%リジン水溶液を原液として、純水で希釈系列(1×10倍,1×10倍,1×10倍,1×10倍,1×1012倍)を作製することで、各種濃度の試料溶液を得た。各試料溶液は、2μlあたり、1.68×1012個(1×10倍希釈)、1.68×1011個(1×10倍希釈)、1.68×1010個(1×10倍希釈)、1.68×10個(1×10倍希釈)、1.68×10個(1×1012倍希釈)のリジン分子を含む。
(2) Preparation of sample solution In this example, lysine was the detection target. A dilution series (1 × 10 1 time, 1 × 10 2 times, 1 × 10 3 times, 1 × 10 4 times, 1 × 10 12 times) is prepared with pure water using 0.01% by weight lysine aqueous solution. As a result, sample solutions of various concentrations were obtained. Each sample solution has 1.68 × 10 12 (1 × 10 1- fold dilution), 1.68 × 10 11 (1 × 10 2- fold dilution), 1.68 × 10 10 (1 ×) per 2 μl. 10 3 times dilution), 1.68 × 10 9 (1 × 10 4 times dilution), 1.68 × 10 1 (1 × 10 12 times dilution) lysine molecules.

(3)検出の手順
各試料溶液(2μl)を、作用電極に滴下した。作用電極−対電極間のIV特性を測定した。IV特性の測定は、作用電極に印加する電圧を−20Vから+20Vに、次いで+20Vから−20Vに約1分間かけて変化させて、その間の電流値を測定する(対電極側に設けた電流計で測定した)ことで行った。測定後、各作用電極に提供した試料溶液を3時間かけて自然乾燥させて(気温24℃、湿度30%)、再び作用電極−対電極間のIV特性を各作用電極について同様に測定した。
(3) Detection procedure Each sample solution (2 μl) was dropped onto the working electrode. The IV characteristics between the working electrode and the counter electrode were measured. The IV characteristic is measured by changing the voltage applied to the working electrode from −20 V to +20 V and then from +20 V to −20 V over about 1 minute, and measuring the current value during that time (an ammeter provided on the counter electrode side). It was measured by the above). After the measurement, the sample solution provided to each working electrode was naturally dried over 3 hours (air temperature 24 ° C., humidity 30%), and the IV characteristics between the working electrode and the counter electrode were measured in the same manner for each working electrode.

(4)結果
図6は、比較例として試料溶液を作用電極に提供せずにIV特性を測定した結果を示すグラフである。1回目の測定の結果を破線で、1回目の測定から3時間後に行った2回目の測定の結果を実線で示す(ほぼ完全に重なっている)。いずれの測定においても、作用電極に印加する電圧を−20Vから+20Vに変化させた際のIV曲線(下側の曲線)と+20Vから−20Vに変化させた際のIV曲線(上側の曲線)とが一致しておらず、ヒステリシスが観察された。
(4) Results FIG. 6 is a graph showing the results of measuring IV characteristics without providing a sample solution to the working electrode as a comparative example. The result of the first measurement is indicated by a broken line, and the result of the second measurement performed 3 hours after the first measurement is indicated by a solid line (almost completely overlapped). In any measurement, the IV curve (lower curve) when the voltage applied to the working electrode is changed from −20 V to +20 V, and the IV curve (upper curve) when changed from +20 V to −20 V Did not match and hysteresis was observed.

図7は、別の比較例として、試料溶液の代わりに純水を作用電極に提供してIV特性を測定した結果を示すグラフである。また、図8は、試料溶液(1×1012倍希釈溶液)を作用電極に提供してIV特性を測定した結果を示すグラフである。いずれの図においても、提供直後の測定結果を破線で;3時間自然乾燥させた後の測定結果を実線で示す。図7および図8から、溶液(水、試料溶液)を自然乾燥させるとIV曲線が変化することがわかる。また、図7および図8から、リジンを含む試料溶液を提供すると、水を提供した場合に比べてヒステリシスの程度が大きくなることがわかる。 FIG. 7 is a graph showing the results of measuring IV characteristics by providing pure water instead of the sample solution to the working electrode as another comparative example. FIG. 8 is a graph showing the results of measuring IV characteristics by providing a sample solution (1 × 10 12- fold diluted solution) to the working electrode. In any figure, the measurement result immediately after provision is shown by a broken line; the measurement result after natural drying for 3 hours is shown by a solid line. 7 and 8 that the IV curve changes when the solution (water, sample solution) is naturally dried. 7 and 8, it can be seen that providing a sample solution containing lysine increases the degree of hysteresis as compared to the case of providing water.

図9は、異なる濃度の試料溶液(1×10倍,1×10倍,1×10倍,1×10倍希釈溶液)を作用電極に提供して自然乾燥させた後に、各試料溶液についてIV特性を測定した結果を示すグラフである。リジンの濃度と各IV曲線との関係を調べるため、図9に示される各IV曲線について、左上側のIV曲線の直線様の領域(−20V〜−10V)を近似直線として、当該近似直線に含まれる50の観測データから最小二乗法により求めた当該近似直線の傾き(以下「傾き」という)、および当該近似直線の0Vにおける電流値、つまりy軸切片(以下「切片」という)を求めた。 FIG. 9 shows sample solutions of different concentrations (diluted solutions of 1 × 10 1 times, 1 × 10 2 times, 1 × 10 3 times, 1 × 10 4 times) provided to the working electrode and air-dried. It is a graph which shows the result of having measured IV characteristic about the sample solution. In order to investigate the relationship between the concentration of lysine and each IV curve, for each IV curve shown in FIG. 9, the straight line-like region (−20 V to −10 V) of the upper left IV curve is used as an approximate line. The slope of the approximate line (hereinafter referred to as “slope”) obtained by the least square method from the 50 observation data included, and the current value at 0 V of the approximate line, that is, the y-axis intercept (hereinafter referred to as “intercept”) were obtained. .

図9において、右下側のIV曲線にも直線様の領域があるが、この領域は光の影響を受けて変化しやすく、また空亡層の変化も現れているので、左上のIV曲線の直線様の領域から近似直線を求めた。
いずれの領域から近似直線を求めるかは、例えば、基板のシリコンの種類に応じて決められる。基板のシリコンがP型であれば、図9に示されたように、IV曲線の左上の領域から近似直線を求めることが好ましい。一方、基板のシリコンがN型であれば、IV曲線の左上の領域が、光の影響や空乏層の影響を受けやすいので、右下の領域から近似直線を求めることが好ましいと思われる。
In FIG. 9, there is a straight line-like region in the lower right IV curve, but this region is easily changed by the influence of light, and the change in the sky layer appears. An approximate straight line was obtained from the straight line-like region.
From which region the approximate straight line is determined is determined according to the type of silicon of the substrate, for example. If the silicon of the substrate is P-type, it is preferable to obtain an approximate straight line from the upper left region of the IV curve as shown in FIG. On the other hand, if the silicon of the substrate is N-type, the upper left region of the IV curve is easily affected by light and depletion layers, so it is preferable to obtain an approximate line from the lower right region.

図10は、試料溶液2μlあたりのリジンの分子数と、「傾き」または「切片」との関係を示すグラフである。図10から、1.68×1010〜1.68×1012個の範囲ではいずれの曲線もほぼ直線状となっていることがわかる。したがって、本実施例のセンサは、1.68×1010〜1.68×1012個/2μlの範囲でリジンを測定するための検量線を作成できること、すなわち1.68×1010〜1.68×1012個/2μlの範囲であればリジンの濃度を測定できることがわかる。 FIG. 10 is a graph showing the relationship between the number of lysine molecules per 2 μl of sample solution and “slope” or “intercept”. From Figure 10, it is understood that the 1.68 × 10 10 ~1.68 × 10 12 pieces in the range either curves substantially straight. Thus, the sensor of this example, you can create a calibration curve for measuring lysine in the range of 1.68 × 10 10 ~1.68 × 10 12 atoms / 2 [mu] l, i.e. 1.68 × 10 10 ~1. It can be seen that the concentration of lysine can be measured in the range of 68 × 10 12 cells / 2 μl.

本発明に係るセンサは、バイオセンサや免疫センサ、イオンセンサ、酵素センサ、DNAチップなどとして使用することができる。特に、本発明に係るセンサは、感染症の検出や、食物の安全性の確認、環境汚染物質の検出などに有用である。   The sensor according to the present invention can be used as a biosensor, an immune sensor, an ion sensor, an enzyme sensor, a DNA chip, or the like. In particular, the sensor according to the present invention is useful for detection of infectious diseases, confirmation of food safety, detection of environmental pollutants, and the like.

(A)メッシュ形の作用電極の一例を示す平面図、(B)櫛形の作用電極の一例を示す平面図(A) Plan view showing an example of a mesh-shaped working electrode, (B) Plan view showing an example of a comb-shaped working electrode (A)本発明の実施の形態1に係るセンサの斜視図、(B),(C)本発明の実施の形態1に係るセンサの断面図(A) The perspective view of the sensor which concerns on Embodiment 1 of this invention, (B), (C) Sectional drawing of the sensor which concerns on Embodiment 1 of this invention (A)本発明の実施の形態2に係るセンサの斜視図、(B),(C)本発明の実施の形態2に係るセンサの断面図(A) Perspective view of sensor according to Embodiment 2 of the present invention, (B), (C) Cross-sectional view of sensor according to Embodiment 2 of the present invention (A)本発明の実施の形態3に係るセンサの斜視図、(B),(C)本発明の実施の形態3に係るセンサの断面図(A) Perspective view of sensor according to embodiment 3 of the present invention, (B), (C) Cross-sectional view of sensor according to embodiment 3 of the present invention 本発明の実施の形態4に係るセンサの平面図Plan view of a sensor according to Embodiment 4 of the present invention 本発明のセンサを用いて試料溶液を作用電極に提供せずにIV特性を測定した結果を示すグラフThe graph which shows the result of having measured IV characteristic, without providing a sample solution to a working electrode using the sensor of this invention 本発明のセンサを用いて純水を作用電極に提供してIV特性を測定した結果を示すグラフThe graph which shows the result of having provided pure water to the working electrode using the sensor of this invention, and measuring IV characteristic 本発明のセンサを用いて試料溶液を作用電極に提供してIV特性を測定した結果を示すグラフThe graph which shows the result of having provided the sample solution to the working electrode using the sensor of this invention, and measuring IV characteristic 本発明のセンサを用いて試料溶液の希釈系列を作用電極に提供してIV特性を測定した結果を示すグラフThe graph which shows the result of having provided the dilution series of the sample solution to the working electrode using the sensor of this invention, and measuring IV characteristic 試料溶液内の分子数とIV曲線の傾きまたはIV曲線の切片との関係を示すグラフGraph showing the relationship between the number of molecules in the sample solution and the slope of the IV curve or the intercept of the IV curve

符号の説明Explanation of symbols

100,200,300 センサ
110〜114 基板
120 支持基板
130,132 絶縁膜
140 作用電極
142 導電性部材
144 開口部
150〜156 対電極
160 試料溶液
170 非検出物質認識分子
100, 200, 300 Sensor 110-114 Substrate 120 Support substrate 130, 132 Insulating film 140 Working electrode 142 Conductive member 144 Opening 150-156 Counter electrode 160 Sample solution 170 Non-detectable substance recognition molecule

Claims (14)

絶縁膜を含む基板、前記基板の絶縁膜に接触している作用電極、および前記基板に接続している対電極を有する二端子素子を含むセンサ。   A sensor comprising a two-terminal element having a substrate including an insulating film, a working electrode in contact with the insulating film of the substrate, and a counter electrode connected to the substrate. 前記絶縁膜は、酸化シリコンまたは窒化シリコンである、請求項1記載のセンサ。   The sensor according to claim 1, wherein the insulating film is silicon oxide or silicon nitride. 前記作用電極は多数の開口部を有する、請求項1記載のセンサ。   The sensor of claim 1, wherein the working electrode has a number of openings. 前記作用電極はメッシュ形電極、櫛形電極、放射状形電極または格子形電極である、請求項3記載のセンサ。   4. A sensor according to claim 3, wherein the working electrode is a mesh electrode, a comb electrode, a radial electrode or a grid electrode. 前記基板は、半導体または導電体からなる支持基板をさらに含む、請求項1記載のセンサ。   The sensor according to claim 1, wherein the substrate further includes a support substrate made of a semiconductor or a conductor. 前記対電極は、前記支持基板に接続している、請求項5記載のセンサ。   The sensor according to claim 5, wherein the counter electrode is connected to the support substrate. 前記対電極は、前記絶縁膜に接続している、請求項1記載のセンサ。   The sensor according to claim 1, wherein the counter electrode is connected to the insulating film. 前記二端子素子は、複数の前記作用電極を有する、請求項1記載のセンサ。   The sensor according to claim 1, wherein the two-terminal element includes a plurality of the working electrodes. 前記基板の絶縁膜に結合された、被検出物質認識分子をさらに含む、請求項1記載のセンサ。   The sensor according to claim 1, further comprising a target substance recognition molecule bonded to an insulating film of the substrate. 前記被検出物質認識分子は抗体または抗原である、請求項9記載のセンサ。   The sensor according to claim 9, wherein the substance-recognizing molecule is an antibody or an antigen. 請求項1記載のセンサを用いて被検出物質を検出する方法であって、
前記被検出物質を含みうる溶液を、前記作用電極に提供するステップと、
前記提供前と提供後の二端子素子の電気特性の変化から、前記被検出物質を検出するステップと、
を含む検出方法。
A method for detecting a substance to be detected using the sensor according to claim 1,
Providing a solution that may contain the substance to be detected to the working electrode;
Detecting the substance to be detected from a change in electrical characteristics of the two-terminal element before and after the provision;
A detection method comprising:
前記作用電極に提供した溶液の溶媒を、乾燥させるステップをさらに含む、請求項11記載の検出方法。   The detection method according to claim 11, further comprising the step of drying the solvent of the solution provided to the working electrode. 前記電気特性は、前記二端子素子のIV特性である、請求項11記載の検出方法。   The detection method according to claim 11, wherein the electrical characteristic is an IV characteristic of the two-terminal element. 前記IV特性のヒステリシスの程度から、前記被検出物質の量を測定するステップをさらに含む、請求項11記載の検出方法。   The detection method according to claim 11, further comprising a step of measuring an amount of the substance to be detected from a degree of hysteresis of the IV characteristic.
JP2006296915A 2006-10-31 2006-10-31 Sensor Expired - Fee Related JP5229849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296915A JP5229849B2 (en) 2006-10-31 2006-10-31 Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296915A JP5229849B2 (en) 2006-10-31 2006-10-31 Sensor

Publications (2)

Publication Number Publication Date
JP2008116210A true JP2008116210A (en) 2008-05-22
JP5229849B2 JP5229849B2 (en) 2013-07-03

Family

ID=39502273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296915A Expired - Fee Related JP5229849B2 (en) 2006-10-31 2006-10-31 Sensor

Country Status (1)

Country Link
JP (1) JP5229849B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110458A1 (en) * 2009-03-26 2010-09-30 独立行政法人物質・材料研究機構 Sensor for detecting material to be tested

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139289A (en) * 1975-03-12 1976-12-01 Univ Utah Chemically sensitive fe converter
JPS6026456B2 (en) * 1978-08-18 1985-06-24 松下電器産業株式会社 Gas/humidity sensor and its manufacturing method
JPH04223256A (en) * 1990-12-25 1992-08-13 Terumo Corp Enzyme sensor and manufacture thereof
JPH0460549B2 (en) * 1985-10-08 1992-09-28 Sharp Kk
JP2006084417A (en) * 2004-09-17 2006-03-30 Canon Inc Sensor and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139289A (en) * 1975-03-12 1976-12-01 Univ Utah Chemically sensitive fe converter
JPS6026456B2 (en) * 1978-08-18 1985-06-24 松下電器産業株式会社 Gas/humidity sensor and its manufacturing method
JPH0460549B2 (en) * 1985-10-08 1992-09-28 Sharp Kk
JPH04223256A (en) * 1990-12-25 1992-08-13 Terumo Corp Enzyme sensor and manufacture thereof
JP2006084417A (en) * 2004-09-17 2006-03-30 Canon Inc Sensor and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110458A1 (en) * 2009-03-26 2010-09-30 独立行政法人物質・材料研究機構 Sensor for detecting material to be tested
EP2413134A1 (en) * 2009-03-26 2012-02-01 National Institute for Materials Science Sensor for detecting material to be tested
CN102449468A (en) * 2009-03-26 2012-05-09 独立行政法人物质·材料研究机构 Sensor for detecting material to be tested
KR101340400B1 (en) * 2009-03-26 2013-12-11 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 Sensor for detecting material to be tested
JP5376383B2 (en) * 2009-03-26 2013-12-25 独立行政法人物質・材料研究機構 Test substance detection sensor
US8806923B2 (en) 2009-03-26 2014-08-19 National Institute For Materials Science Sensor for detecting material to be tested
EP2413134A4 (en) * 2009-03-26 2014-10-08 Nat Inst For Materials Science Sensor for detecting material to be tested

Also Published As

Publication number Publication date
JP5229849B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
US11422139B2 (en) Biosensors including surface resonance spectroscopy and semiconductor devices
US11008611B2 (en) Double gate ion sensitive field effect transistor
Knopfmacher et al. Nernst limit in dual-gated Si-nanowire FET sensors
US20190242885A1 (en) Digital protein sensing chip and methods for detection of low concentrations of molecules
TWI245073B (en) Biological identification system with integrated sensor chip
Poghossian et al. Detecting both physical and (bio‐) chemical parameters by means of ISFET devices
US20190017103A1 (en) Nano-sensor array
WO2016157117A1 (en) Nanoelectronic sensor pixel
JP5061342B2 (en) Carbon nanotube electrode and sensor using the electrode
Liang et al. Highly sensitive covalently functionalized light-addressable potentiometric sensor for determination of biomarker
Ginet et al. CMOS-compatible fabrication of top-gated field-effect transistor silicon nanowire-based biosensors
Xiao-Fei et al. Progress of interdigitated array microelectrodes based impedance immunosensor
JP6638913B2 (en) Biological substance detection device, biological substance detection detection device, ionic current measurement method, and biological substance identification method
JP5424227B2 (en) Test substance detection sensor
CN108120752B (en) Sensor chip with air bridge reference electrode shading structure and preparation method
JP5229849B2 (en) Sensor
Gotoh et al. Micro-FET biosensors using polyvinylbutyral membrane
Ingebrandt et al. Top-down processed SOI nanowire devices for biomedical applications
US20220003711A1 (en) Field-effect transistor for sensing target molecules
TWI495872B (en) Electrochemical bio-affinity sensing chips integrated with fluidic stirring and operation method thereof
CN109950157A (en) Biochemical sensor and preparation method thereof based on nanometer sheet stacked structure
CN207587696U (en) Biochemical sensor based on nanometer sheet stacked structure
US20220170920A1 (en) Apparatus and method for measuring hormone concentration in biofluids
CN107831202B (en) Sensor chip with shading packaging structure and preparation method thereof
Lai et al. Development of a High Sensitivity, Wide Range CMOS Capacitive DNA Sensor Array

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees