JP2008115528A - Feed control device - Google Patents

Feed control device Download PDF

Info

Publication number
JP2008115528A
JP2008115528A JP2006296761A JP2006296761A JP2008115528A JP 2008115528 A JP2008115528 A JP 2008115528A JP 2006296761 A JP2006296761 A JP 2006296761A JP 2006296761 A JP2006296761 A JP 2006296761A JP 2008115528 A JP2008115528 A JP 2008115528A
Authority
JP
Japan
Prior art keywords
valve
pressure
control device
differential pressure
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006296761A
Other languages
Japanese (ja)
Other versions
JP4880424B2 (en
Inventor
Toshihiko Gomi
敏彦 五味
Masatoshi Honma
正敏 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Rock Drill Co Ltd
Original Assignee
Furukawa Rock Drill Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Rock Drill Co Ltd filed Critical Furukawa Rock Drill Co Ltd
Priority to JP2006296761A priority Critical patent/JP4880424B2/en
Publication of JP2008115528A publication Critical patent/JP2008115528A/en
Application granted granted Critical
Publication of JP4880424B2 publication Critical patent/JP4880424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Earth Drilling (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a feed control device which can rapidly control a feed speed of a rock drill in accordance with the change of a drilling situation, which can perform proper feed speed control without being affected by the degree of an operator's skill, and which can reduce costs. <P>SOLUTION: This feed control device 40 for feeding a hydraulic fluid to a feed mechanism 21 of the rock drill comprises a differential pressure detecting valve 42, a pressure compensating valve 44, and a throttling valve 46. The degree of the opening of the valve 42 is changed by a spring Sa against the differential pressure ΔP1 of the hydraulic fluid in the front and rear of the feed control device 40; the degree of the opening of the valve 44 is changed by a spring Sb against the differential pressure ΔP2 of the hydraulic fluid in the front and rear of the valve 42; and the flow rate of the hydraulic oil downstream of the valve 44 is reduced by an orifice of the throttling valve 46, so that the pressure can be decreased. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、さく孔機に搭載されたさく岩機のフィード機構に供給される作動油の流量を調整することにより、さく岩機のフィード速度を油圧制御するフィード制御装置に関するものである。   The present invention relates to a feed control device that hydraulically controls the feed speed of a drilling machine by adjusting the flow rate of hydraulic oil supplied to the feed mechanism of the drilling machine mounted on the drilling machine.

鉱山、採石、土木工事等の現場でさく孔作業に使用されるジャンボやクローラドリル等のさく孔機では、ガイドシェルに搭載されたさく岩機からロッド先端に取付けたビットに打撃と回転を伝達すると共に、さく岩機にフィードを与えてさく孔対象をさく孔する。
さく孔作業においては、オペレータは、さく岩機の作動機構の作動状況を視覚や聴覚で把握してさく孔対象の岩質を判断し、岩質に合わせてさく岩機の作動機構の作動条件を調整する。さく孔対象の岩質は一定ではなく変化するものであるため、オペレータは、常にさく岩機の作動機構の作動状況を把握して岩質の変化を判断し、さく孔状況の変化の都度、さく岩機やロッドやビットに最も負荷がかからず、且つさく孔が迅速に行えるように、油圧バルブや電気スイッチ等の操作機器を操作し、さく岩機の作動機構の作動条件の調整を行なわねばならない。長孔をさく孔する場合、さく岩機のフィード速度を特に慎重に調整して制御する必要がある。
In drilling machines such as jumbo and crawler drills used for drilling work at mining, quarrying, civil engineering work, etc., hammering and rotation are transmitted from the drilling machine mounted on the guide shell to the bit attached to the tip of the rod. At the same time, a feed is given to the rock drill to drill the object to be drilled.
In drilling work, the operator determines the rock quality of the drilling target by visually and auditorily grasping the operating status of the drilling mechanism's operating mechanism, and the operating conditions of the drilling mechanism's operating mechanism according to the rock quality. Adjust. Since the rock quality of the drilling target is not constant, the operator always grasps the operating status of the drilling machine's operating mechanism to judge the rock quality change, and whenever the drilling status changes, Operate operating devices such as hydraulic valves and electrical switches to adjust the operating conditions of the drilling machine's operating mechanism so that the drilling machine, rod, and bit are least loaded and the drilling holes can be drilled quickly. Must be done. When drilling long holes, it is necessary to carefully control the feed rate of the drilling machine.

通常、さく岩機のフィード速度は、さく孔速度に対して20〜40%大きな値となるように調整する。ビットは岩質に対応した推力で押されてさく孔対象に着岩しさく孔がなされるが、さく孔中に岩質が変化する場合がある。例えば、ビットがガマ等の岩石内に存在する内空間や軟岩に達すると、さく孔速度は急激に大きくなるので、オペレータはレバー操作や調整バルブの操作を瞬時に行い、フィード速度を岩盤にあわせて直ちに調整する。   Usually, the feed speed of the rock drill is adjusted to be 20 to 40% larger than the drill speed. The bit is pushed by the thrust corresponding to the rock quality, and the rock formation is made in the drill target, but the rock quality may change in the drill hole. For example, when the bit reaches an inner space or soft rock existing in rocks such as rocks, the drilling speed increases rapidly, so the operator operates the lever and adjusts the valve instantaneously to adjust the feed speed to the rock. Adjust immediately.

このとき、オペレータが行う調整の判断に遅滞があったり、調整の操作に誤りがあったりすると、さく孔の直進性や孔壁の仕上がり等にばらつきを生じ、さく孔精度が低下する原因となる。さらに、ロッドや、ロッドをつなぐカップリングへも大きな負荷がかかり、さく岩機のドリリングツールの消耗が早まり、さく孔機にも大きな負荷がかかる。
なお、以下の説明において、岩石内の内空間や軟岩へビットが突入した状態を「突込状態」という。
At this time, if there is a delay in the adjustment judgment made by the operator or there is an error in the adjustment operation, the straightness of the drill holes or the finish of the hole walls will vary, which will cause the drilling accuracy to decrease. . Furthermore, a large load is applied to the rod and the coupling connecting the rods, and the drilling tool of the drilling machine is quickly consumed, and the drilling machine is also subjected to a large load.
In the following description, a state in which a bit has plunged into the inner space or soft rock in the rock is referred to as a “plunged state”.

このようにさく孔作業は、常時さく岩機の作動機構の作動状況を監視してさく岩機のフィード速度を調整して制御する必要があるので、オペレータの疲労が大きくなる。また、さく孔中にさく岩機の作動機構の作動状況を視覚や聴覚で把握してさく孔対象の岩質を判断する作業は、オペレータの熟練度による個人差が大きく、さく孔精度にばらつきを生じやすい。さく孔精度が低下すると、計画されたさく孔パターンと実さく孔パターンの差が大きくなり、破砕が均一に行われなくなる。   In this way, the drilling operation needs to be controlled by constantly monitoring the operation status of the operation mechanism of the drilling machine and adjusting the feed rate of the drilling machine, which increases operator fatigue. In addition, the operation of the drilling mechanism in the drilling hole is visually and auditorily determined to determine the rock quality of the drilling target, and there are large individual differences depending on the skill level of the operator, and the drilling accuracy varies. It is easy to produce. When the drilling accuracy is lowered, the difference between the planned drilling pattern and the actual drilling pattern is increased, and crushing is not performed uniformly.

そこで、さく岩機の作動機構の作動状況に応じて、さく岩機の作動機構の作動条件を最適なものに調整可能とするさく孔機の制御装置が開発されている(特許文献1を参照)。図5に示すように、この制御装置100は記憶装置102、検出器104、処理装置106とを備える。記憶装置102は、予設定情報としてさく岩機の作動機構108の最適作動条件を種々のさく孔状況に対応させて記憶している。検出器104は、フィード、打撃、回転に関する作動機構108の実際の作動状況を検出する。処理装置106は検出器104により検出された作動機構108の実際の作動状況と予設定情報とを比較してさく孔状況を判断し、このさく孔状況において作動機構108の最適作動条件を選定し、作動機構108へ制御信号を出力する。
特開昭62―156494号公報(第3〜4頁、第1図)
Therefore, a drilling machine control device has been developed that can adjust the operating conditions of the drilling machine's operating mechanism to the optimum according to the operating status of the drilling machine's operating mechanism (see Patent Document 1). ). As shown in FIG. 5, the control device 100 includes a storage device 102, a detector 104, and a processing device 106. The storage device 102 stores optimum operating conditions of the drilling machine operating mechanism 108 as preset information in association with various drilling conditions. The detector 104 detects an actual operating state of the operating mechanism 108 relating to feed, striking, and rotation. The processing device 106 compares the actual operating status of the operating mechanism 108 detected by the detector 104 with the preset information to determine the drilling status, and selects the optimal operating condition of the operating mechanism 108 in this drilling status. The control signal is output to the operation mechanism 108.
Japanese Patent Laid-Open No. 62-156494 (pages 3 to 4, FIG. 1)

しかしながら、図5の制御装置100にあっては、処理装置106において検出器104より検出された情報と予設定情報との比較演算を行っている。この比較演算には時間がかかり、作動機構108への制御信号の出力が迅速に行われないという不都合があった。例えば、突込状態となって急激にさく孔状況が変化しても、処理装置106からの制御信号の出力遅れがあり、作動機構108を迅速に最適作動条件へ調整することができなかった。   However, in the control device 100 of FIG. 5, a comparison operation is performed between the information detected by the detector 104 in the processing device 106 and the preset information. This comparison operation takes time, and there is a disadvantage that the output of the control signal to the operation mechanism 108 is not performed quickly. For example, even if the drilling state changes suddenly due to a rushing state, there is a delay in the output of the control signal from the processing device 106, and the operating mechanism 108 cannot be quickly adjusted to the optimal operating condition.

また、記憶装置102に記憶されている予設定情報と検出器104により検出される情報との間に大きな乖離があると、処理装置106による作動機構108の最適作動条件の選定が困難となり、作動機構108へ適切な制御信号を出力できないという不具合もあった。
さらに、制御装置100は検出器104等に数多くの精密機器を備えており、断線等の故障の発生頻度が高くなるおそれがあり、制御装置100の設置、メンテナンスに要するコストも嵩むというという不具合もあった。
Further, if there is a large difference between the preset information stored in the storage device 102 and the information detected by the detector 104, it becomes difficult for the processing device 106 to select the optimum operating condition of the operating mechanism 108, and the operation There was also a problem that an appropriate control signal could not be output to the mechanism 108.
Furthermore, since the control device 100 includes a number of precision devices in the detector 104 and the like, there is a risk that the occurrence frequency of failures such as disconnection may increase, and there is a problem that the cost required for installation and maintenance of the control device 100 increases. there were.

本発明は、上記した従来の技術の問題点を解決するためになされたものであり、その目的とするところは、さく孔状況の変化に対応して迅速にさく岩機のフィード速度を制御でき、オペレータの熟練の程度に左右されずに適切なフィード速度制御が可能であり、コスト低減を可能とするフィード制御装置を提供することである。   The present invention has been made to solve the above-described problems of the prior art, and the object of the present invention is to control the rock drill feed speed quickly in response to changes in drilling conditions. It is an object of the present invention to provide a feed control apparatus that can perform appropriate feed speed control regardless of the skill level of an operator and can reduce costs.

本発明は、その課題を解決するために以下のような構成をとる。請求項1の発明は、さく孔機に搭載されたさく岩機のフィード機構に作動油を送り、このさく岩機のフィード速度を油圧制御するフィード制御装置であって、差圧検知バルブと圧力補償バルブと絞りバルブとを備え、前記差圧検知バルブは、前記フィード制御装置の前後における作動油の差圧と対抗してこの差圧検知バルブの開度を変化させるスプリングを有し、前記圧力補償バルブは、前記差圧検知バルブの前後における作動油の差圧と対抗してこの圧力補償バルブの開度を変化させるスプリングを有し、前記絞りバルブは、前記圧力補償バルブの下流で作動油の流量を絞り圧力を低下させるオリフィスを有するフィード制御装置である。   The present invention adopts the following configuration in order to solve the problem. The invention of claim 1 is a feed control device that feeds hydraulic oil to a feed mechanism of a drilling machine mounted on a drilling machine, and hydraulically controls the feed speed of the drilling machine. Compensation valve and throttle valve, the differential pressure detection valve has a spring that changes the opening of the differential pressure detection valve against the differential pressure of the hydraulic oil before and after the feed control device, The compensation valve has a spring that changes the opening of the pressure compensation valve against the differential pressure of the hydraulic oil before and after the differential pressure detection valve, and the throttle valve is located downstream of the pressure compensation valve. Is a feed control device having an orifice for reducing the flow pressure of the nozzle and reducing the pressure.

請求項1の発明によると、フィード制御装置の下流で作動油の圧力が上昇すると、フィード制御装置の前後における作動油の差圧が低下し、スプリングの力により差圧検知バルブの開度は小さくなる。差圧検知バルブの開度が小さくなり、差圧検知バルブの前後における作動油の差圧が大きくなると、スプリングの力により差圧検知バルブの開度は小さくなり、圧力補償が行われる。
したがって、さく孔条件の変化によりフィード制御装置の下流で作動油の圧力が変化すると、差圧検知バルブ、圧力補償バルブの各開度が変化し、作動油の流量が調整され、フィード速度も制御される。
According to the first aspect of the present invention, when the hydraulic oil pressure increases downstream of the feed control device, the differential pressure of the hydraulic oil before and after the feed control device decreases, and the opening of the differential pressure detection valve is reduced by the force of the spring. Become. When the opening of the differential pressure detection valve decreases and the differential pressure of the hydraulic oil before and after the differential pressure detection valve increases, the opening of the differential pressure detection valve decreases due to the force of the spring, and pressure compensation is performed.
Therefore, when the hydraulic oil pressure changes downstream of the feed control device due to changes in the drilling conditions, the opening of the differential pressure detection valve and pressure compensation valve changes, the hydraulic oil flow rate is adjusted, and the feed speed is also controlled. Is done.

請求項2の発明は、請求項1に記載のフィード制御装置であって、前記オリフィスは交換可能に構成されているフィード制御装置である。
請求項2の発明によると、絞りバルブのオリフィスを交換することでオリフィス径を変更可能となり、油圧式フィード機構へ送られる作動油の最大流量を変更できる。
A second aspect of the present invention is the feed control device according to the first aspect, wherein the orifice is configured to be replaceable.
According to the invention of claim 2, the orifice diameter can be changed by exchanging the orifice of the throttle valve, and the maximum flow rate of the hydraulic oil sent to the hydraulic feed mechanism can be changed.

本発明は、上記のようなフィード制御装置であるので、さく孔状況の変化に対応して迅速にさく岩機のフィード速度を制御でき、オペレータの熟練の程度に左右されずに適切なフィード速度制御が可能であり、コスト低減を可能とするフィード制御装置を提供できるという効果がある。   Since the present invention is a feed control apparatus as described above, the feed speed of the rock drill can be quickly controlled in response to changes in drilling conditions, and an appropriate feed speed can be obtained regardless of the level of skill of the operator. There is an effect that it is possible to provide a feed control device that can be controlled and can reduce costs.

本発明の実施の形態を図面に基づいて説明する。
まず、図1ないし図4を参照して本実施の形態の構成を説明する。図1は本実施の形態に係るフィード制御装置を備えた油圧クローラドリルの斜視図、図2はさく岩機の構成図、図3及び図4はフィード制御装置の構成と動作の説明図である。
図1に示すように、油圧クローラドリル10は、走行台車11上に旋回起伏可能にブーム12が設けられており、ブーム12の先端部にはさく岩機13を搭載したガイドシェル14が支持されている。図2に示すように、さく岩機13にはシャンクロッド15が挿着されており、シャンクロッド15に所定長のロッド16がスリーブ17を介して接続され、このロッド16の先端にはビット18が取付けられている。
Embodiments of the present invention will be described with reference to the drawings.
First, the configuration of the present embodiment will be described with reference to FIGS. FIG. 1 is a perspective view of a hydraulic crawler drill provided with a feed control device according to the present embodiment, FIG. 2 is a configuration diagram of a rock drill, and FIGS. 3 and 4 are explanatory diagrams of the configuration and operation of the feed control device. .
As shown in FIG. 1, the hydraulic crawler drill 10 has a boom 12 provided on a traveling carriage 11 so as to be able to turn up and down, and a guide shell 14 on which a rock drill 13 is mounted is supported at the tip of the boom 12. ing. As shown in FIG. 2, a shank rod 15 is inserted into the rock drill 13, and a rod 16 having a predetermined length is connected to the shank rod 15 via a sleeve 17. Is installed.

さく岩機13は、打撃機構19と回転機構20とを備えており、ガイドシェル14に設けられたフィード機構21でフィードが与えられ前後に移動可能になっていて、シャンクロッド15、ロッド16を介してビット18に打撃と回転とを伝達して岩石にさく孔する。これらの打撃機構19、回転機構20及びフィード機構21は、油圧駆動部25から送られる作動油の油圧により制御されている。また、さく岩機13はフラッシング機構22を備え、フラッシング機構22はロッド16先端に圧縮空気を供給して、さく孔内から繰粉を排出させる。ガイドシェル14の先端部には、さく孔口元を覆うダストポット23が設けられており、このダストポット23から排出された繰粉を捕集する。   The rock drill 13 includes a striking mechanism 19 and a rotating mechanism 20, and feed is given by a feed mechanism 21 provided in the guide shell 14 so that the rocker 13 can move back and forth. The bit 18 is struck and rotated to drill through the rock. The striking mechanism 19, the rotating mechanism 20, and the feed mechanism 21 are controlled by the hydraulic pressure of the hydraulic oil sent from the hydraulic drive unit 25. Further, the drill rocker 13 includes a flushing mechanism 22, and the flushing mechanism 22 supplies compressed air to the tip of the rod 16 to discharge the dust from the drill hole. The tip of the guide shell 14 is provided with a dust pot 23 that covers the hole opening, and collects the dust discharged from the dust pot 23.

さく孔長がロッド16の長さより長い場合には、ロッド16の継ぎ足しと回収が必要となるので、ガイドシェル14にはロッド16の継ぎ足しと回収を行うロッド交換装置24が装備されている。
走行台車11上には、打撃機構19、回転機構20、フィード機構21及びロッド交換装置24を駆動するための油圧駆動部25と、フラッシング機構22に圧縮空気を供給するための空気駆動部26とが設置されている。
When the drill hole length is longer than the length of the rod 16, it is necessary to add and recover the rod 16. Therefore, the guide shell 14 is equipped with a rod exchange device 24 that adds and recovers the rod 16.
On the traveling carriage 11, a hydraulic drive unit 25 for driving the striking mechanism 19, the rotation mechanism 20, the feed mechanism 21 and the rod exchange device 24, and an air drive unit 26 for supplying compressed air to the flushing mechanism 22 Is installed.

図3に示すように、油圧駆動部25にある作動油ポンプ23により、作動油が油圧駆動部25からフィード制御装置40を介してフィード機構21へ送られている。作動油ポンプ23とフィード制御装置40との間には遠隔制御バルブ24、圧力補償バルブ25及び方向切り換えバルブ26が設けられている。遠隔制御バルブ24をオペレータが操作することによって、フィード制御装置40の上流側における作動油の圧力P1を調整可能に構成されている。   As shown in FIG. 3, hydraulic oil is sent from the hydraulic drive unit 25 to the feed mechanism 21 via the feed control device 40 by the hydraulic oil pump 23 in the hydraulic drive unit 25. A remote control valve 24, a pressure compensation valve 25, and a direction switching valve 26 are provided between the hydraulic oil pump 23 and the feed control device 40. By operating the remote control valve 24 by an operator, the hydraulic oil pressure P1 on the upstream side of the feed control device 40 can be adjusted.

フィード制御装置40内には、上流側から順番に差圧検知バルブ42、圧力補償バルブ44及び絞りバルブ46を設けてある。ここで、差圧検知バルブ42と圧力補償バルブ44との間における作動油の圧力をP2、圧力補償バルブ44と絞りバルブ46との間における作動油の圧力をP3、絞りバルブ46下流側の作動油の圧力をP4とする。圧力P1、圧力P2、圧力P3及び圧力P4はそれぞれ圧力計62a、62b、62c及び62dにより計測される。   In the feed control device 40, a differential pressure detection valve 42, a pressure compensation valve 44, and a throttle valve 46 are provided in order from the upstream side. Here, the hydraulic oil pressure between the differential pressure detection valve 42 and the pressure compensation valve 44 is P2, the hydraulic oil pressure between the pressure compensation valve 44 and the throttle valve 46 is P3, and the downstream operation of the throttle valve 46 is performed. Let the oil pressure be P4. The pressure P1, the pressure P2, the pressure P3, and the pressure P4 are measured by the pressure gauges 62a, 62b, 62c, and 62d, respectively.

差圧検知バルブ42は、差圧検知バルブ入口48と差圧検知バルブ出口50との間にあって差圧検知バルブ42の開閉を行うピストン56aと、ピストン56a上端に隣接するスプリング室58aと、スプリング室58a内に収容されてピストン56a上端を反発力Psaで押圧しているスプリングSaとを有している。
スプリング室58aは圧力伝達路60aによって絞りバルブ46下流側と連通しており、スプリング室58a内は圧力P4の作動油で満たされている。ピストン56aは、スプリング室58a側から反発力Psaと圧力P4とによって押圧されており、差圧検知バルブ入口48に流入する作動油により、スプリングSaによる押圧とは逆向きに圧力P1によって押圧されている。差圧検知バルブ42の開閉方向は、スプリングSaの伸張する方向が開方向となり、スプリングSaの収縮する方向が閉方向となっている。
The differential pressure detection valve 42 is located between the differential pressure detection valve inlet 48 and the differential pressure detection valve outlet 50, a piston 56 a that opens and closes the differential pressure detection valve 42, a spring chamber 58 a adjacent to the upper end of the piston 56 a, and a spring chamber And a spring Sa which is housed in 58a and presses the upper end of the piston 56a with a repulsive force Psa.
The spring chamber 58a communicates with the downstream side of the throttle valve 46 by a pressure transmission path 60a, and the spring chamber 58a is filled with hydraulic oil having a pressure P4. The piston 56a is pressed from the spring chamber 58a side by the repulsive force Psa and the pressure P4, and is pressed by the pressure P1 in the direction opposite to the press by the spring Sa by the hydraulic oil flowing into the differential pressure detection valve inlet 48. Yes. With respect to the opening / closing direction of the differential pressure detection valve 42, the direction in which the spring Sa extends is the opening direction, and the direction in which the spring Sa contracts is the closing direction.

圧力補償バルブ44は、圧力補償バルブ入口52と圧力補償バルブ出口54との間にあって圧力補償バルブ44の開閉を行うピストン56bと、ピストン56b上端に隣接するスプリング室58bと、スプリング室58b内に収容されてピストン56b上端を反発力Psbで押圧しているスプリングSbとを有している。
スプリング室58bと圧力補償バルブ入口52とは、ピストン56b内に形成された圧力伝達路60bによって連なっており、スプリング室58b内は圧力P2の作動油で満たされている。また、ピストン56b下端は圧力伝達路60cにより差圧検知バルブ入口48上流側とつながっており、作動油がピストン56b下端をスプリングSbによる押圧とは逆向きに圧力P1で押圧している。圧力補償バルブ44の開閉方向は、スプリングSbの伸張する方向が開方向となり、スプリングSbの収縮する方向が閉方向となっている。
The pressure compensation valve 44 is located between the pressure compensation valve inlet 52 and the pressure compensation valve outlet 54, opens and closes the pressure compensation valve 44, a spring chamber 58b adjacent to the upper end of the piston 56b, and accommodated in the spring chamber 58b. And a spring Sb pressing the upper end of the piston 56b with a repulsive force Psb.
The spring chamber 58b and the pressure compensation valve inlet 52 are connected by a pressure transmission path 60b formed in the piston 56b, and the spring chamber 58b is filled with hydraulic oil having a pressure P2. The lower end of the piston 56b is connected to the upstream side of the differential pressure detection valve inlet 48 through the pressure transmission path 60c, and the hydraulic oil presses the lower end of the piston 56b with the pressure P1 in the direction opposite to the pressing by the spring Sb. Regarding the opening / closing direction of the pressure compensation valve 44, the extending direction of the spring Sb is an opening direction, and the contracting direction of the spring Sb is a closing direction.

絞りバルブ46は交換可能なオリフィスを有し、オリフィスを交換することでオリフィス径φcを変更可能に構成されている。絞りバルブ46のオリフィス径φcはさく孔対象の岩質にあわせて選定されている。掘さく対象の岩質が安定しており、ビット18がさく孔対象に着岩してさく孔している通常のさく孔条件下で、フィード機構21へ所定の流量Qstdの作動油を送ることが可能となっている。なお、以下の説明において、掘さく対象の岩質が安定しており、さく岩機13が安定してさく孔している状態を「通常さく孔状態」という。   The throttle valve 46 has a replaceable orifice, and the orifice diameter φc can be changed by replacing the orifice. The orifice diameter φc of the throttle valve 46 is selected according to the rock quality to be drilled. Sending the hydraulic fluid at a predetermined flow rate Qstd to the feed mechanism 21 under normal drilling conditions where the rock quality of the drilling target is stable and the bit 18 is rocked and drilled in the drilling target Is possible. In the following description, the state where the rock to be drilled is stable and the drilling machine 13 is drilled stably is referred to as “normal drilling state”.

本実施の形態は上記のように構成されており、次にその作用について説明する。
まず、フィード制御装置40の差圧検知バルブ42、圧力補償バルブ44及び絞りバルブ46の各作用について述べる。
差圧検知バルブ42のピストン56aは、差圧検知バルブ42の開方向に反発力Psaと圧力P4との和によって押圧され、閉方向に圧力P1によって押圧されており、次の(1)式の関係が成立する状態でピストン56aは釣り合ってとまっている。
Psa+P4=P1 ・・・・・(1)
This embodiment is configured as described above, and the operation thereof will be described next.
First, the operation of the differential pressure detection valve 42, the pressure compensation valve 44, and the throttle valve 46 of the feed control device 40 will be described.
The piston 56a of the differential pressure detection valve 42 is pressed by the sum of the repulsive force Psa and the pressure P4 in the opening direction of the differential pressure detection valve 42, and is pressed by the pressure P1 in the closing direction. The piston 56a is balanced in a state where the relationship is established.
Psa + P4 = P1 (1)

圧力P4が変化すると、(1)式の関係が崩れ、再び(1)式の関係が成立する状態までピストン56aは移動する。
すなわち、フィード制御装置40の前後の差圧ΔP1(=P1−P4)及び反発力Psaとの間に次の(2)式の関係が成立するまで、差圧検知バルブ42の開度は変化する。
ΔP1=P1−P4=Psa ・・・・・(2)
圧力補償バルブ44のピストン56bは、圧力補償バルブ44の開方向に反発力Psbと圧力P2との和によって押圧され、閉方向に圧力P1によって押圧されており、次の(3)式の関係が成立する状態でピストン56bは釣り合ってとまっている。
Psb+P2=P1 ・・・・・(3)
When the pressure P4 changes, the relationship of the expression (1) is broken, and the piston 56a moves until the relationship of the expression (1) is satisfied again.
That is, the opening degree of the differential pressure detection valve 42 changes until the relationship of the following equation (2) is established between the differential pressure ΔP1 (= P1−P4) before and after the feed control device 40 and the repulsive force Psa. .
ΔP1 = P1-P4 = Psa (2)
The piston 56b of the pressure compensation valve 44 is pressed by the sum of the repulsive force Psb and the pressure P2 in the opening direction of the pressure compensation valve 44 and is pressed by the pressure P1 in the closing direction, and the relationship of the following equation (3) is satisfied. In the established state, the piston 56b is balanced.
Psb + P2 = P1 (3)

圧力P2が変化すると、(3)式の関係が崩れ、再び(3)式の関係が成立する状態までピストン56bは移動する。
すなわち、差圧検知バルブ42の前後の差圧ΔP2(=P1−P2)及び反発力Psbとの間に次の(4)式の関係が成立するまで、圧力補償バルブ44の開度は変化する。
ΔP2=P1−P2=Psb ・・・・・(4)
絞りバルブ46は、前記オリフィスによりフィード制御装置40から出る作動油の流量を絞り、作動油の圧力をP4まで降下させている。
When the pressure P2 changes, the relationship of the expression (3) is broken, and the piston 56b moves to a state where the relationship of the expression (3) is established again.
That is, the opening degree of the pressure compensation valve 44 changes until the relationship of the following equation (4) is established between the differential pressure ΔP2 (= P1−P2) before and after the differential pressure detection valve 42 and the repulsive force Psb. .
ΔP2 = P1-P2 = Psb (4)
The throttle valve 46 throttles the flow rate of the hydraulic oil exiting the feed control device 40 through the orifice, and reduces the hydraulic oil pressure to P4.

次に、図3及び図4を参照しつつ、さく岩機13がさく孔対象の岩石をさく孔するときにおけるフィード制御装置40の作用について述べる。
通常さく孔状態のときは、流量Qstdの作動油が作動油ポンプ23からフィード制御装置40を介してフィード機構21へ送られ、さく岩機13は所定のフィード速度Vstdを与えられている。このとき、差圧検知バルブ42は開状態となって(2)式の関係が成立している。また、圧力補償バルブ44は開状態となって(4)式の関係が成立している(図3を参照)。
Next, the operation of the feed control device 40 when the rock drill 13 drills the rock to be drilled will be described with reference to FIGS. 3 and 4.
In the normal drilling state, hydraulic oil having a flow rate Qstd is sent from the hydraulic oil pump 23 to the feed mechanism 21 via the feed control device 40, and the drill rocker 13 is given a predetermined feed speed Vstd. At this time, the differential pressure detection valve 42 is opened and the relationship of the expression (2) is established. Further, the pressure compensation valve 44 is in an open state, and the relationship of the expression (4) is established (see FIG. 3).

ビット18が掘さく対象の中の内空間へ突入し、通常さく孔状態から突込状態へ変ると、フィード機構21の負荷は減少する。この負荷減少により、作動油の流量はQstdから増加し、絞りバルブ46下流側の作動油の圧力P4は低下する。圧力P4が低下すると、通常さく孔状態において成立していた(2)式の関係が崩れ、次の(5)式の関係となる。
ΔP1=P1−P4>Psa ・・・・・(5)
(5)式の関係となると、スプリングSaは(2)式の関係が再び成立するまで収縮する。スプリングSaが収縮してピストン56aが移動し、差圧検知バルブ42の開度は小さくなり、作動油の流量はQstdから減少する(図4を参照)。作動油の流量が減少すると、さく岩機13のフィード速度もVstdから減速され、さく岩機13が内空間へ突っ込むことが制御される。
When the bit 18 enters the inner space of the object to be drilled and changes from the normal drilling state to the projecting state, the load on the feed mechanism 21 decreases. Due to this decrease in the load, the flow rate of the hydraulic oil increases from Qstd, and the pressure P4 of the hydraulic oil downstream of the throttle valve 46 decreases. When the pressure P4 decreases, the relationship of the formula (2) that is normally established in the drilled state is broken, and the relationship of the following formula (5) is obtained.
ΔP1 = P1−P4> Psa (5)
When the relationship of the expression (5) is satisfied, the spring Sa contracts until the relationship of the expression (2) is established again. The spring Sa contracts and the piston 56a moves, the opening degree of the differential pressure detection valve 42 decreases, and the flow rate of the hydraulic oil decreases from Qstd (see FIG. 4). When the flow rate of the hydraulic oil decreases, the feed speed of the rock drill 13 is also decelerated from Vstd, and the drill rock machine 13 is controlled to thrust into the inner space.

差圧検知バルブ42の開度が小さくなると、差圧検知バルブ出口50において作動油の流量は絞られ、差圧検知バルブ出口50下流で作動油の圧力P2は低下する。圧力P2が低下すると、(4)式の関係が崩れ、次の(6)式の関係となる。
ΔP2=P1−P2>Psb ・・・・・(6)
(6)式の関係となると、圧力補償バルブ44のスプリングSbは(4)式の関係が再び成立するまで収縮する。スプリングSbが収縮してピストン56bが移動し、圧力補償バルブ44の開度は小さくなり、圧力補償バルブ44上流で圧力P2は上昇する(図4を参照)。したがって、差圧検知バルブ42の前後における差圧ΔP2は維持され、差圧検知バルブ42の開度が変化した後の圧力補償が行われ、作動油の流量も維持される。
When the opening of the differential pressure detection valve 42 decreases, the flow rate of the hydraulic oil is reduced at the differential pressure detection valve outlet 50, and the pressure P2 of the hydraulic oil decreases downstream of the differential pressure detection valve outlet 50. When the pressure P2 is reduced, the relationship of the formula (4) is broken and the relationship of the following formula (6) is obtained.
ΔP2 = P1-P2> Psb (6)
When the relationship of the formula (6) is satisfied, the spring Sb of the pressure compensation valve 44 contracts until the relationship of the formula (4) is established again. The spring Sb contracts and the piston 56b moves, the opening degree of the pressure compensation valve 44 decreases, and the pressure P2 increases upstream of the pressure compensation valve 44 (see FIG. 4). Therefore, the differential pressure ΔP2 before and after the differential pressure detection valve 42 is maintained, pressure compensation is performed after the opening degree of the differential pressure detection valve 42 is changed, and the flow rate of the hydraulic oil is also maintained.

突込状態にあったビット18が内空間の終端に達すると、ビット18と掘さく対象との間の着岩性がよくなり、再び、通常さく孔状態へ戻る。通常さく孔状態へ戻るとフィード機構21の負荷は増加し、圧力P4も上昇する。圧力P4が上昇すると、突込状態で成立していた(2)式の関係が崩れ、次の(7)式の関係となる。
ΔP1=P1−P4<Psa ・・・・・(7)
(7)式の関係となると、スプリングSaは(2)式の関係が成立するまで伸張する。スプリングSaが伸張してピストン56aが移動し、差圧検知バルブ42の開度は大きくなり、作動油の流量はQstdまで増加する。作動油の流量が増加すると、さく岩機13のフィード速度もVstdまで加速される。
When the bit 18 in the rushed state reaches the end of the inner space, the rocking property between the bit 18 and the object to be drilled is improved, and the normal drilling state is restored again. When returning to the normal drilling state, the load on the feed mechanism 21 increases and the pressure P4 also increases. When the pressure P4 rises, the relationship of the formula (2) established in the rush state is broken, and the relationship of the following formula (7) is obtained.
ΔP1 = P1−P4 <Psa (7)
In the relationship of the expression (7), the spring Sa expands until the relationship of the expression (2) is established. The spring Sa extends and the piston 56a moves, the opening degree of the differential pressure detection valve 42 increases, and the flow rate of the hydraulic oil increases to Qstd. When the flow rate of the hydraulic oil is increased, the feed speed of the rock drill 13 is also accelerated to Vstd.

差圧検知バルブ42の開度が大きくなると、差圧検知バルブ出口50下流で圧力P2は上昇する。圧力P2が上昇すると、突込状態で成立していた(4)式の関係が崩れ、次の(8)式の関係となる。
ΔP2=P1−P2<Psb ・・・・・(8)
(8)式の関係となると、圧力補償バルブ44のスプリングSbは(4)式の関係が成立するまで伸張し、ピストン56bは圧力補償バルブ44の開度を大きくする方向に移動し、突込状態で圧力補償バルブ44によって行われていた圧力補償も解除される。
When the opening degree of the differential pressure detection valve 42 increases, the pressure P2 increases downstream of the differential pressure detection valve outlet 50. When the pressure P2 increases, the relationship of the formula (4) established in the rushing state is broken, and the relationship of the following formula (8) is obtained.
ΔP2 = P1−P2 <Psb (8)
In the relationship of the equation (8), the spring Sb of the pressure compensation valve 44 extends until the relationship of the equation (4) is established, and the piston 56b moves in the direction of increasing the opening degree of the pressure compensation valve 44, so Thus, the pressure compensation performed by the pressure compensation valve 44 is also released.

したがって、さく孔条件が変化すると、この変化に直ちに追随して差圧検知バルブ42と圧力補償バルブ44の各開度が変化し、フィード機構21へ送られる作動油の流量は自動的に制御され、さく岩機13のフィード速度もさく孔条件に応じて自動的に制御される。
また、フィード制御装置40は、差圧検知バルブ42、圧力補償バルブ44及び絞りバルブ46が集約されて小型化されており、フィード制御装置40の取り付け作業、メンテナンス作業等が簡素化される。
さらに、フィード制御装置40は構造が簡単であるので、そのコストが廉価となるとともに、故障の発生頻度も低く押さえられる。
なお、本実施の形態において、圧力計62a、圧力計62b、圧力計62c、圧力計62dを設けることとしたが、これらの圧力計を全て備える必要がないことは勿論である。
Therefore, when the drilling conditions change, the opening degree of the differential pressure detection valve 42 and the pressure compensation valve 44 changes immediately following this change, and the flow rate of the hydraulic oil sent to the feed mechanism 21 is automatically controlled. The feed speed of the rock drill 13 is also automatically controlled according to the drilling conditions.
Further, the feed control device 40 is reduced in size by integrating the differential pressure detection valve 42, the pressure compensation valve 44, and the throttle valve 46, and the installation work, maintenance work, and the like of the feed control device 40 are simplified.
Further, since the feed control device 40 has a simple structure, its cost is low and the frequency of occurrence of failures is kept low.
In the present embodiment, the pressure gauge 62a, the pressure gauge 62b, the pressure gauge 62c, and the pressure gauge 62d are provided, but it is needless to say that all of these pressure gauges need not be provided.

本実施の形態に係るフィード制御装置を備えた油圧クローラドリルの斜視図である。It is a perspective view of the hydraulic crawler drill provided with the feed control device concerning this embodiment. さく岩機の構成図である。It is a block diagram of a rock drill. フィード制御装置の構成と通常さく孔状態における動作の説明図である。It is explanatory drawing of operation | movement in the structure of a feed control apparatus, and a normal drilling state. フィード制御装置の構成と突込状態における動作の説明図である。It is explanatory drawing of operation | movement in a structure and a rushing state of a feed control apparatus. 従来のさく孔機の制御装置のブロック図である。It is a block diagram of the conventional drilling machine control device.

符号の説明Explanation of symbols

10 油圧クローラドリル
11 走行台車
12 ブーム
13 さく岩機
14 ガイドシェル
15 シャンクロッド
16 ロッド
17 スリーブ
18 ビット
19 打撃機構
20 回転機構
21 フィード機構
22 フラッシング機構
23 ダストポット
24 ロッド交換装置
25 油圧駆動部
26 空気駆動部
23 作動油ポンプ
24 遠隔制御バルブ
25 圧力補償バルブ
26 方向切り換えバルブ
40 フィード制御装置
42 差圧検知バルブ
44 圧力補償バルブ
46 絞りバルブ
48 差圧検知バルブ入口
50 差圧検知バルブ出口
52 圧力補償バルブ入口
54 圧力補償バルブ出口
56a、56b ピストン
58a、58b スプリング室
60a、60b、60c 圧力伝達路
62a、62b、62c、62d 圧力計
Sa、Sb スプリング
P1 フィード制御装置上流の作動油の圧力
P2 差圧検知バルブと圧力補償バルブとの間における作動油の圧力
P3 圧力補償バルブと絞りバルブとの間における作動油の圧力
P4 フィード制御装置下流の作動油の圧力
DESCRIPTION OF SYMBOLS 10 Hydraulic crawler drill 11 Traveling carriage 12 Boom 13 Rock drill 14 Guide shell 15 Shank rod 16 Rod 17 Sleeve 18 Bit 19 Blowing mechanism 20 Rotating mechanism 21 Feed mechanism 22 Flushing mechanism 23 Dust pot 24 Rod exchanging device 25 Hydraulic drive part 26 Air Drive unit 23 Hydraulic oil pump 24 Remote control valve 25 Pressure compensation valve 26 Direction switching valve 40 Feed control device 42 Differential pressure detection valve 44 Pressure compensation valve 46 Throttle valve 48 Differential pressure detection valve inlet 50 Differential pressure detection valve outlet 52 Pressure compensation valve Inlet 54 Pressure compensation valve outlet 56a, 56b Piston 58a, 58b Spring chamber 60a, 60b, 60c Pressure transmission path 62a, 62b, 62c, 62d Pressure gauge Sa, Sb Spring P1 Fi Hydraulic fluid pressure upstream of the control unit P2 Hydraulic fluid pressure between the differential pressure detection valve and the pressure compensation valve P3 Hydraulic fluid pressure between the pressure compensation valve and the throttle valve P4 Hydraulic fluid pressure downstream of the feed control device pressure

Claims (2)

さく孔機に搭載されたさく岩機のフィード機構に作動油を送り、このさく岩機のフィード速度を油圧制御するフィード制御装置であって、
差圧検知バルブと圧力補償バルブと絞りバルブとを備え、
前記差圧検知バルブは、前記フィード制御装置の前後における作動油の差圧と対抗してこの差圧検知バルブの開度を変化させるスプリングを有し、
前記圧力補償バルブは、前記差圧検知バルブの前後における作動油の差圧と対抗してこの圧力補償バルブの開度を変化させるスプリングを有し、
前記絞りバルブは、前記圧力補償バルブの下流で作動油の流量を絞り圧力を低下させるオリフィスを有することを特徴とするフィード制御装置。
A feed control device that feeds hydraulic oil to a feed mechanism of a drill drill mounted on a drill drill and hydraulically controls the feed speed of the drill drill,
It has a differential pressure detection valve, a pressure compensation valve, and a throttle valve,
The differential pressure detection valve has a spring that changes the opening of the differential pressure detection valve against the differential pressure of the hydraulic oil before and after the feed control device,
The pressure compensation valve has a spring that changes the opening of the pressure compensation valve against the differential pressure of the hydraulic oil before and after the differential pressure detection valve,
2. The feed control device according to claim 1, wherein the throttle valve has an orifice for reducing the throttle pressure by reducing the flow rate of the hydraulic oil downstream of the pressure compensation valve.
請求項1に記載のフィード制御装置であって、前記オリフィスの径は変更可能に構成されていることを特徴とするフィード制御装置。   The feed control device according to claim 1, wherein the diameter of the orifice is configured to be changeable.
JP2006296761A 2006-10-31 2006-10-31 Feed control device Active JP4880424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296761A JP4880424B2 (en) 2006-10-31 2006-10-31 Feed control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296761A JP4880424B2 (en) 2006-10-31 2006-10-31 Feed control device

Publications (2)

Publication Number Publication Date
JP2008115528A true JP2008115528A (en) 2008-05-22
JP4880424B2 JP4880424B2 (en) 2012-02-22

Family

ID=39501699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296761A Active JP4880424B2 (en) 2006-10-31 2006-10-31 Feed control device

Country Status (1)

Country Link
JP (1) JP4880424B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936157A (en) * 2010-08-19 2011-01-05 中国石油大学(北京) Method for detecting pore pressure of high pressure saltwater layer by using log information
CN111101859A (en) * 2019-11-08 2020-05-05 四川诺克钻探机械有限公司 Drilling pressure adjusting method of coring drilling machine for railway engineering exploration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847802U (en) * 1971-10-06 1973-06-23
JPS4847802A (en) * 1971-10-19 1973-07-06
JPH09217582A (en) * 1996-02-09 1997-08-19 Furukawa Co Ltd Drilling control device
JPH11173062A (en) * 1997-12-16 1999-06-29 Yamamoto Rock Machine Kk Controller for hydraulic rock drill

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847802U (en) * 1971-10-06 1973-06-23
JPS4847802A (en) * 1971-10-19 1973-07-06
JPH09217582A (en) * 1996-02-09 1997-08-19 Furukawa Co Ltd Drilling control device
JPH11173062A (en) * 1997-12-16 1999-06-29 Yamamoto Rock Machine Kk Controller for hydraulic rock drill

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936157A (en) * 2010-08-19 2011-01-05 中国石油大学(北京) Method for detecting pore pressure of high pressure saltwater layer by using log information
CN101936157B (en) * 2010-08-19 2013-06-05 中国石油大学(北京) Method for detecting pore pressure of high pressure saltwater layer by using log information
CN111101859A (en) * 2019-11-08 2020-05-05 四川诺克钻探机械有限公司 Drilling pressure adjusting method of coring drilling machine for railway engineering exploration

Also Published As

Publication number Publication date
JP4880424B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
AU2007242714B2 (en) Method of controlling operation of rock drilling rig, and rock drilling rig
AU2003276295B2 (en) Arrangement for controlling rock drilling
CN102498261B (en) Control system, rock drill rig and control method
EP1699999B2 (en) Method and system for controlling power consumption during a rock drilling process and a rock drilling apparatus therefore
FI115037B (en) Method and arrangement for a rock drilling machine
EP1451444B1 (en) Method and equipment for controlling operation of rock drilling apparatus
CA2766303C (en) Method and apparatus for controlling rock drilling
ZA200503536B (en) Arrangement for controlling rock drilling
FI95166B (en) Arrangement in a pressure-driven rock drilling rig
US20140144660A1 (en) Rock drill
JP5830223B2 (en) Rock drill and method related to the rock drill
CN103069101B (en) Control method and system and the rock drilling equipment of the compressor of rock drilling equipment
JP4880424B2 (en) Feed control device
US3669197A (en) Control system for rock drills
EP2021580A1 (en) Rock drilling rig and method of controlling thereof
AU2013100244B9 (en) Improved rock drill
JP2000130063A (en) Jamming prevention device for drill

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20090806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111201

R150 Certificate of patent or registration of utility model

Ref document number: 4880424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3