JP2008112692A - Overcurrent protective device - Google Patents

Overcurrent protective device Download PDF

Info

Publication number
JP2008112692A
JP2008112692A JP2006296079A JP2006296079A JP2008112692A JP 2008112692 A JP2008112692 A JP 2008112692A JP 2006296079 A JP2006296079 A JP 2006296079A JP 2006296079 A JP2006296079 A JP 2006296079A JP 2008112692 A JP2008112692 A JP 2008112692A
Authority
JP
Japan
Prior art keywords
overcurrent
contact
magnetic flux
reactor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006296079A
Other languages
Japanese (ja)
Other versions
JP4835388B2 (en
Inventor
Junichi Nakano
淳一 中野
Hideyoshi Dobashi
栄喜 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2006296079A priority Critical patent/JP4835388B2/en
Publication of JP2008112692A publication Critical patent/JP2008112692A/en
Application granted granted Critical
Publication of JP4835388B2 publication Critical patent/JP4835388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an overcurrent protective device in which downsizing, weight saving, and cost reduction of a power conversion system or the like are made possible by extinguishing an arc current of a contact part early and reducing a tolerated overcurrent dose of a breaker and peripheral equipment. <P>SOLUTION: In the overcurrent protective device in which a contact part of the breaker consisting of a movable contact and a fixed contact and a direct current reactor are connected in series in a conduction route of a current and in which the overcurrent is broken by utilizing a force generated by the overcurrent flowing in the contact part and a magnetic flux by this overcurrent and by separating the movable contact from the fixed contact, in order that the magnetic flux 12 generated by the overcurrent flowing in an air-core direct current reactor 8 is to be additive in the same direction to the magnetic flux 6 generated by the overcurrent flowing in the contact part 4, the air-core direct current reactor 8 is arranged adjacent to the contact part 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えばインバータ等を有する電力変換システムにおいて、その入力電流が過電流となったときに遮断器の動作により入力電流を迅速に遮断可能とした過電流保護装置に関するものである。   The present invention relates to an overcurrent protection device capable of quickly interrupting an input current by an operation of a circuit breaker when the input current becomes an overcurrent in a power conversion system having an inverter or the like, for example.

図3は、直流電気車用電力変換システムの概略的な構成図であり、20は給電線を介して接続された直流電源、1は高速度遮断器、8は空芯直流リアクトル、9は充電回路、10はインバータである。このインバータ10には、交流電動機等の負荷(図示せず)が接続されている。
なお、前記充電回路9は、例えば限流抵抗とサイリスタスイッチとの並列回路によって構成されていると共に、インバータ10の直流入力側にはフィルタコンデンサ(図示せず)が設けられており、フィルタコンデンサの充電時には、前記サイリスタスイッチをオフすることにより、充電電流を前記限流抵抗により制限して過大な突入電流が流れるのを防止している。
FIG. 3 is a schematic configuration diagram of a power conversion system for a DC electric vehicle, in which 20 is a DC power source connected via a feeder line, 1 is a high-speed circuit breaker, 8 is an air-core DC reactor, and 9 is a charge. Circuits 10 are inverters. A load (not shown) such as an AC motor is connected to the inverter 10.
The charging circuit 9 is configured by a parallel circuit of a current limiting resistor and a thyristor switch, for example, and a filter capacitor (not shown) is provided on the DC input side of the inverter 10. At the time of charging, by turning off the thyristor switch, the charging current is limited by the current limiting resistor to prevent an excessive inrush current from flowing.

図4は、前記高速度遮断器1の接点構造を示している。
図4(a)において、2は固定接点、3は一端が固定接点2に軸支された可動接点、4は接点部であり、インバータ10の直流入力電流が許容値以下である場合には、図示するように、接点部4内の固定接点2と可動接点3とが接触していて図の矢印方向に直流電流が流れているとする。
FIG. 4 shows the contact structure of the high-speed circuit breaker 1.
In FIG. 4A, 2 is a fixed contact, 3 is a movable contact whose one end is pivotally supported by the fixed contact 2, 4 is a contact portion, and when the DC input current of the inverter 10 is below an allowable value, As shown in the figure, it is assumed that the fixed contact 2 and the movable contact 3 in the contact portion 4 are in contact with each other and a direct current flows in the direction of the arrow in the figure.

しかし、例えばインバータ10のアーム短絡等により、上記接点部4に1000Aを超える過電流が流れると、図4(b)に示す如く過電流による磁束6(その向きは紙面の裏から表に向かう方向)が発生し、この磁束6と電流とによる力7が接点部4に作用するため、可動接点3が固定接点2から開離するように回動する。
これにより、両接点2,3の接触が断たれると共に、両接点2,3間を流れるアーク電流5も力7の方向に引き延ばされて遮断されるため、両接点2,3間を流れる過電流はその後、完全に遮断されることとなる。
However, if an overcurrent exceeding 1000 A flows through the contact portion 4 due to, for example, an arm short circuit of the inverter 10, the magnetic flux 6 due to the overcurrent (the direction is the direction from the back to the front of the page) as shown in FIG. ) Is generated, and the force 7 generated by the magnetic flux 6 and the current acts on the contact portion 4, so that the movable contact 3 rotates so as to be separated from the fixed contact 2.
As a result, the contact between the two contacts 2 and 3 is cut off, and the arc current 5 flowing between the two contacts 2 and 3 is also stretched and cut off in the direction of the force 7. The flowing overcurrent is then completely cut off.

なお、上述したような接点式の高速度遮断器を備えた電力変換システムは、特許文献1等に記載されている。   Note that a power conversion system including the contact-type high-speed circuit breaker as described above is described in Patent Document 1 and the like.

特開昭63−114501号公報(第2頁右上欄第12行〜第17行、第2頁左下欄第13行〜右上欄第9行、第4図,第5図等)JP-A-63-114501 (second page, upper right column, lines 12 to 17, second page, lower left column, line 13 to upper right column, line 9, FIG. 4, FIG. 5)

図3,図4に示した従来技術において、通常、高速度遮断器1と空芯直流リアクトル8とは離れて配置されている。また、前述した如く、接点部4の開放には高速度遮断器1内で発生する磁束のみを電流と共に利用する原理を採っている。   In the prior art shown in FIGS. 3 and 4, the high-speed circuit breaker 1 and the air-core DC reactor 8 are usually arranged apart from each other. As described above, the principle of using only the magnetic flux generated in the high-speed circuit breaker 1 together with the current is used to open the contact portion 4.

しかしながら、特許文献1の第2頁右上欄第9行〜第3頁左上欄第1行、第6図等にも記載されているように、高速度遮断器1が過電流を遮断する際には、過電流が流れ始めてからアーク電流5が完全に消滅するまでにかなりの遅れ時間があり、この遅れ時間内に、過電流設定値(例えば1000A)を遙かに超える大きな電流(3000A〜数千A)が流れてしまう。
従って、インバータ10の入力回路に使用する機器としては、通常の定格電流以上に大きな過電流耐量を考慮しなくてはならず、限定されたスペースに設置することが要求される電力変換システムとしては、小型化や軽量化を妨げる原因となっていた。
However, as described in Patent Document 1, page 2, upper right column, line 9 to page 3, upper left column, line 1, FIG. 6 and the like, when high-speed circuit breaker 1 interrupts overcurrent, There is a considerable delay time from when the overcurrent starts to flow until the arc current 5 completely disappears, and within this delay time, a large current (3000 A to several numbers) far exceeding the overcurrent set value (for example, 1000 A). 1000 A) will flow.
Therefore, as an apparatus used for the input circuit of the inverter 10, an overcurrent withstand capability larger than a normal rated current must be taken into consideration, and as a power conversion system required to be installed in a limited space, It was a cause that hindered miniaturization and weight reduction.

そこで、本発明の解決課題は、接点部のアーク電流を早期に消滅させ、遮断器や周辺機器の過電流耐量を低減させることによって電力変換システム等の小型化、軽量化、低価格化を可能にした過電流保護装置を提供することにある。   Therefore, the problem to be solved by the present invention is that it is possible to reduce the size, weight, and cost of power conversion systems by eliminating the arc current at the contact point early and reducing the overcurrent capability of the circuit breaker and peripheral devices. An overcurrent protection device is provided.

上記課題を解決するため、請求項1に記載した発明は、電流の通流経路に、可動接点及び固定接点からなる遮断器の接点部と、直流リアクトルとが直列に接続され、前記接点部を流れる過電流とこの過電流による磁束とによって発生する力を利用して前記可動接点を前記固定接点から開離させることにより前記過電流を遮断する過電流保護装置において、前記直流リアクトルを流れる過電流によって発生する磁束が、前記接点部を流れる過電流によって発生する磁束に同方向で加わり合うように、前記直流リアクトルを前記接点部に近接して配置したものである。   In order to solve the above-mentioned problem, the invention described in claim 1 is characterized in that a contact portion of a circuit breaker composed of a movable contact and a fixed contact and a DC reactor are connected in series to a current flow path, and the contact portion is In the overcurrent protection device that cuts off the overcurrent by separating the movable contact from the fixed contact using a force generated by the flowing overcurrent and the magnetic flux due to the overcurrent, the overcurrent that flows through the DC reactor The DC reactor is disposed close to the contact portion so that the magnetic flux generated by the above is added to the magnetic flux generated by the overcurrent flowing through the contact portion in the same direction.

請求項2に記載した発明は、請求項1に記載した過電流保護装置において、
前記接点部及び直流リアクトルが、電力変換システムの直流入力部に接続されていることを特徴とする。
The invention described in claim 2 is the overcurrent protection device according to claim 1,
The contact part and the direct current reactor are connected to a direct current input part of a power conversion system.

本発明によれば、遮断器の接点部に発生する磁束に直流リアクトルによる磁束を合成し、これらの合成磁束によってアーク電流に作用する力を増大させることにより、アーク電流が消滅するまでの時間を短縮することができる。
これにより、接点部における遮断電流が従来よりも減少するので、遮断器や周辺機器の過電流耐量を低減させて電力変換システム等の小型化、軽量化、低価格化を図ることができる。
According to the present invention, the magnetic flux generated by the DC reactor is combined with the magnetic flux generated at the contact portion of the circuit breaker, and the force acting on the arc current is increased by these combined magnetic fluxes, thereby reducing the time until the arc current disappears. It can be shortened.
As a result, the breaking current at the contact portion is reduced as compared with the prior art, so that the overcurrent capability of the breaker and peripheral devices can be reduced, and the power conversion system and the like can be reduced in size, weight, and cost.

以下、図に沿って本発明の実施形態を説明する。
まず、図1は本発明の実施形態を示す主要部の構成図であり、図3,図4と同一の構成要素には同一の番号を付してある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 is a configuration diagram of a main part showing an embodiment of the present invention, and the same components as those in FIGS. 3 and 4 are denoted by the same reference numerals.

図1において、前記同様に1は高速度遮断器、8は空芯直流リアクトルであり、この実施形態では、空芯直流リアクトル8を流れる電流によって発生する磁束12が、高速度遮断器1内の接点部4自体によって発生する磁束6と同方向に加わり合うように、空芯直流リアクトル8と高速度遮断器1の接点部4とが近接して配置されている。
また、11はケーシングであり、高速度遮断器1及び空芯直流リアクトル8の他に、図示されていない充電回路9、インバータ10等の電力変換システムの構成要素の全てを内蔵している。なお、磁束6,12が同方向に加わり合う位置関係が保てれば、高速度遮断器1及び空芯直流リアクトル8をそれぞれ別個のケーシング内に収容しても良い。
In FIG. 1, 1 is a high-speed circuit breaker and 8 is an air-core DC reactor, and in this embodiment, a magnetic flux 12 generated by a current flowing through the air-core DC reactor 8 is generated in the high-speed circuit breaker 1. The air-core DC reactor 8 and the contact part 4 of the high-speed circuit breaker 1 are arranged close to each other so as to join in the same direction as the magnetic flux 6 generated by the contact part 4 itself.
Reference numeral 11 denotes a casing, which incorporates all components of the power conversion system such as the charging circuit 9 and the inverter 10 (not shown) in addition to the high-speed circuit breaker 1 and the air-core DC reactor 8. Note that the high-speed circuit breaker 1 and the air-core DC reactor 8 may be housed in separate casings as long as the positional relationship in which the magnetic fluxes 6 and 12 are applied in the same direction can be maintained.

ここで、磁束6,12の方向は図1の例に限られるものではなく、図1の左側に向かう方向であっても良い。何れにしても、磁束6,12の方向が同一であって磁束6を増加させるように磁束12が作用すれば良い。   Here, the direction of the magnetic fluxes 6 and 12 is not limited to the example of FIG. 1, and may be a direction toward the left side of FIG. 1. In any case, the direction of the magnetic fluxes 6 and 12 should be the same, and the magnetic flux 12 should act so as to increase the magnetic flux 6.

上記のように構成することにより、固定接点2と可動接点3との間を流れる電流に対して、接点部4による磁束6に空芯直流リアクトル8による磁束12が合成されて作用することになり、過電流発生時に電流と合成磁束によって発生する力13は、図4に示した力7よりも大きくなる。このため、可動接点3が開離したときには、アーク電流5に従来よりも大きな力13が作用し、その結果として、従来よりも早期にアーク電流5が遮断されることになる。   By configuring as described above, the magnetic flux 12 generated by the air-core DC reactor 8 is combined with the magnetic flux 6 generated by the contact portion 4 and acts on the current flowing between the fixed contact 2 and the movable contact 3. When the overcurrent is generated, the force 13 generated by the current and the combined magnetic flux is larger than the force 7 shown in FIG. For this reason, when the movable contact 3 is separated, a larger force 13 is applied to the arc current 5 than before, and as a result, the arc current 5 is interrupted earlier than before.

図2は、本実施形態と従来技術において、アーク電流5が完全に遮断される際の電流値(遮断電流)を比較した特性図であり、Δtは接点部4に過電流が流れ始めてから高速度遮断器1が過電流を検知するまでの時間、Δtは本実施形態において高速度遮断器1が過電流を検知してからアーク電流5が完全に遮断されるまでの時間、Δtは図4の従来技術において高速度遮断器1が過電流を検知してからアーク電流5が完全に遮断されるまでの時間である。 FIG. 2 is a characteristic diagram comparing the current value (breaking current) when the arc current 5 is completely interrupted in the present embodiment and the prior art, and Δt 1 is after the overcurrent starts flowing through the contact portion 4. The time until the high-speed circuit breaker 1 detects the overcurrent, Δt 2 is the time until the arc current 5 is completely interrupted after the high-speed circuit breaker 1 detects the overcurrent in this embodiment, Δt 3 Is the time from when the high speed circuit breaker 1 detects an overcurrent until the arc current 5 is completely interrupted in the prior art of FIG.

図2によれば、従来ではアーク電流5が完全に遮断される時点(Δt+Δt)で約3000Aの電流が流れていたのに対し、本実施形態では、アーク電流5が完全に遮断される時点(Δt+Δt)の電流を約2000Aに低減することが可能になっている。
従って、インバータ10の入力回路を構成する高速度遮断器1や空芯直流リアクトル8、充電回路9等の回路部品、回路素子の電流耐量を大幅に低減することができ、電力変換システム全体の小型化、軽量化、低価格化が可能になる。
According to FIG. 2, a current of about 3000 A flows at the time point when the arc current 5 is completely interrupted (Δt 1 + Δt 3 ) in the prior art, whereas in the present embodiment, the arc current 5 is completely interrupted. It is possible to reduce the current at the time (Δt 1 + Δt 2 ) to about 2000A.
Therefore, the current tolerance of circuit components and circuit elements such as the high-speed circuit breaker 1, the air core DC reactor 8, and the charging circuit 9 that constitute the input circuit of the inverter 10 can be greatly reduced, and the entire power conversion system can be reduced in size. , Weight reduction, and price reduction.

なお、本実施形態において、充電回路9に使用するスイッチは特に限定されないが、サイリスタ以外にIGBTやコンタクタを用いることができる。
また、本発明は、電力変換システムの入力部に限らず、遮断器により過電流を遮断して機器や回路を保護するための用途全般に適用することが可能である。
In the present embodiment, the switch used for the charging circuit 9 is not particularly limited, but an IGBT or a contactor can be used in addition to the thyristor.
Further, the present invention is not limited to the input unit of the power conversion system, and can be applied to all applications for protecting devices and circuits by interrupting overcurrent with a circuit breaker.

本発明の実施形態の主要部を示す図である。It is a figure which shows the principal part of embodiment of this invention. 本発明の実施形態及び従来技術の作用を比較するための遮断電流の特性図である。It is a characteristic view of the breaking current for comparing the operation of the embodiment of the present invention and the prior art. 電力変換システムの概略的な構成図である。It is a schematic block diagram of a power conversion system. 図3における高速度遮断器の接点構造を示す図である。It is a figure which shows the contact structure of the high speed circuit breaker in FIG.

符号の説明Explanation of symbols

1:高速度遮断器
2:固定接点
3:可動接点
4:接点部
5:アーク電流
6,12:磁束
7,13:力
8:空芯直流リアクトル
9:充電回路
10:インバータ
11:ケーシング
20:直流電源
1: high-speed circuit breaker 2: fixed contact 3: movable contact 4: contact portion 5: arc current 6, 12: magnetic flux 7, 13: force 8: air-core DC reactor 9: charging circuit 10: inverter 11: casing 20: DC power supply

Claims (2)

電流の通流経路に、可動接点及び固定接点からなる遮断器の接点部と、直流リアクトルとが直列に接続され、前記接点部を流れる過電流とこの過電流による磁束とによって発生する力を利用して前記可動接点を前記固定接点から開離させることにより前記過電流を遮断する過電流保護装置において、
前記直流リアクトルを流れる過電流によって発生する磁束が、前記接点部を流れる過電流によって発生する磁束に同方向で加わり合うように、前記直流リアクトルを前記接点部に近接して配置したことを特徴とする過電流保護装置。
A circuit breaker contact made up of a movable contact and a fixed contact and a DC reactor are connected in series to the current flow path, and the force generated by the overcurrent flowing through the contact and the magnetic flux generated by this overcurrent is used. In the overcurrent protection device that interrupts the overcurrent by separating the movable contact from the fixed contact,
The DC reactor is arranged close to the contact portion so that a magnetic flux generated by an overcurrent flowing through the DC reactor is added in the same direction to a magnetic flux generated by an overcurrent flowing through the contact portion. Overcurrent protection device.
請求項1に記載した過電流保護装置において、
前記接点部及び直流リアクトルが、電力変換システムの直流入力部に接続されていることを特徴とする過電流保護装置。
The overcurrent protection device according to claim 1,
The overcurrent protection device, wherein the contact portion and the DC reactor are connected to a DC input portion of a power conversion system.
JP2006296079A 2006-10-31 2006-10-31 Overcurrent protection device Active JP4835388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296079A JP4835388B2 (en) 2006-10-31 2006-10-31 Overcurrent protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296079A JP4835388B2 (en) 2006-10-31 2006-10-31 Overcurrent protection device

Publications (2)

Publication Number Publication Date
JP2008112692A true JP2008112692A (en) 2008-05-15
JP4835388B2 JP4835388B2 (en) 2011-12-14

Family

ID=39445084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296079A Active JP4835388B2 (en) 2006-10-31 2006-10-31 Overcurrent protection device

Country Status (1)

Country Link
JP (1) JP4835388B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125078A (en) * 1974-03-25 1975-10-01
JPS63114501A (en) * 1986-10-29 1988-05-19 Fuji Electric Co Ltd Protective system of power converter for dc electric rolling stock
JPH06131949A (en) * 1992-10-15 1994-05-13 Meidensha Corp Dc high-speed circuit breaker
JPH1125836A (en) * 1997-06-27 1999-01-29 Toshiba Fa Syst Eng Kk Circuit breaker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125078A (en) * 1974-03-25 1975-10-01
JPS63114501A (en) * 1986-10-29 1988-05-19 Fuji Electric Co Ltd Protective system of power converter for dc electric rolling stock
JPH06131949A (en) * 1992-10-15 1994-05-13 Meidensha Corp Dc high-speed circuit breaker
JPH1125836A (en) * 1997-06-27 1999-01-29 Toshiba Fa Syst Eng Kk Circuit breaker

Also Published As

Publication number Publication date
JP4835388B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP6250153B2 (en) High voltage direct current interrupting device and method
JP5622978B1 (en) DC power transmission system protection system, AC / DC converter, and DC power transmission system disconnection method
JP5115829B2 (en) Switching device
Krstic et al. Circuit breaker technologies for advanced ship power systems
KR101652937B1 (en) DC circuit breaker
KR101766229B1 (en) Apparatus and method for interrupting high voltage direct current using gap switch
JPH11297170A (en) Dc arc-extinguishing method and device
JP2008252966A (en) Motor drive device
JP2007043822A (en) Overvoltage protection circuit
JPH11234894A (en) Circuit breaker employing semiconductor device
WO2016108528A1 (en) Dc circuit breaker
JP6202871B2 (en) DC circuit breaker
JPWO2019202703A1 (en) DC circuit breaker
JP2009181908A (en) Dc high-speed vacuum circuit breaker
JP2010238391A (en) Direct-current breaker
JP4835388B2 (en) Overcurrent protection device
KR20220163337A (en) Solid State Switch
JP4641287B2 (en) Commutation type DC circuit breaker
JP3511173B2 (en) Regenerative resistance protection mechanism
JP5271248B2 (en) Circuit breaker
JP2015011933A (en) Dc breaker
JP2014044904A (en) Dc interrupting device
JP2006260925A (en) Direct current high speed vacuum circuit breaker
JP5677145B2 (en) DC circuit breaker
JP2008067440A (en) Dc interruption system control method and dc interruption system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4835388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250