JP2008110894A - Baking method of honeycomb structure - Google Patents

Baking method of honeycomb structure Download PDF

Info

Publication number
JP2008110894A
JP2008110894A JP2006295123A JP2006295123A JP2008110894A JP 2008110894 A JP2008110894 A JP 2008110894A JP 2006295123 A JP2006295123 A JP 2006295123A JP 2006295123 A JP2006295123 A JP 2006295123A JP 2008110894 A JP2008110894 A JP 2008110894A
Authority
JP
Japan
Prior art keywords
honeycomb
furnace
firing
carbon content
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006295123A
Other languages
Japanese (ja)
Other versions
JP4650392B2 (en
Inventor
Kinji Houdaira
欣二 宝平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006295123A priority Critical patent/JP4650392B2/en
Publication of JP2008110894A publication Critical patent/JP2008110894A/en
Application granted granted Critical
Publication of JP4650392B2 publication Critical patent/JP4650392B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a baking method of a honeycomb structure, capable of improving productivity by simultaneously and stably baking a mixture of honeycomb structures with different carbon contents. <P>SOLUTION: In the baking method of the honeycomb structure 1, honeycomb structures 1 with different carbon contents are mixed and loaded into a continuous furnace 3, provided that the continuous furnace 3 used here has a furnace body 31 whose temperatures in different zones can be adjusted individually and a conveying means. In the continuous furnace 3, by defining an area corresponding to a combustion zone 312 in which the temperature is adjusted to 500-700°C as a unit area, the honeycomb structures 1 loaded into the continuous furnace 3 are arranged so that a total carbon content A (wt.%) and a total carbon content B (wt.%) satisfy the relation: ¾B-A¾≤5, provided that the total carbon content A (wt.%) is the carbon content against the total weight of all the honeycomb structures 1 contained in a unit area at a given position in the arrangement and the total carbon content B (wt.%) is that in a unit area following the unit area in the given position. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、セラミック材料を押出成形することによって成形されたハニカム成形体を焼成する方法に関する。   The present invention relates to a method for firing a honeycomb formed body formed by extruding a ceramic material.

従来から、コーディエライト等のセラミックからなるハニカム構造体は、内燃機関より排出される排ガスの浄化を行う排ガス浄化フィルタ等として用いられている。
ハニカム構造体は、粘土質のセラミック材料を押出成形してハニカム成形体を作製し、そのハニカム成形体を乾燥させた後、焼成することによって製造される(特許文献1参照)。
Conventionally, a honeycomb structure made of a ceramic such as cordierite has been used as an exhaust gas purification filter for purifying exhaust gas discharged from an internal combustion engine.
The honeycomb structure is manufactured by extruding a clay-like ceramic material to prepare a honeycomb formed body, drying the honeycomb formed body, and firing the honeycomb formed body (see Patent Document 1).

上記ハニカム構造体は、用途によって求められる特性も異なる。例えば、ディーゼルエンジン用の排ガス浄化フィルタとして適用される場合には、排ガス中のパティキュレートを捕集するために高い気孔率が要求される。そのため、造孔材としてのカーボンを添加したセラミック材料を押出成形してハニカム成形体を作製し、焼成時にカーボンを焼失させることによって高い気孔率を得ていた。一方、ガソリンエンジン用の触媒担体として適用される場合には、そのような高い気孔率は要求されないため、カーボンの添加量はディーゼルエンジン用に比べて少ない。
つまり、ハニカム構造体においては、最終的に得ようとする気孔率によってカーボンの添加量が異なっていた。
The honeycomb structure has different required characteristics depending on the application. For example, when applied as an exhaust gas purification filter for a diesel engine, a high porosity is required for collecting particulates in the exhaust gas. Therefore, a ceramic material added with carbon as a pore forming material is extruded to produce a honeycomb formed body, and high porosity is obtained by burning out carbon during firing. On the other hand, when applied as a catalyst carrier for a gasoline engine, such a high porosity is not required, so the amount of carbon added is smaller than that for a diesel engine.
That is, in the honeycomb structure, the amount of carbon added differs depending on the porosity to be finally obtained.

しかしながら、ディーゼルエンジン用とガソリンエンジン用とのように、カーボン添加量が異なるセラミック材料を押出成形してハニカム成形体を作製し、これらを混在させて焼成すると以下のような問題が生じる。
すなわち、カーボン含有量が多いハニカム成形体ほど、焼成時に多くの燃焼熱が発生するため、炉内温度の急激な変化やばらつきが生じると共に、炉内温度を安定的に制御することができない。よって、単純にカーボン含有量が異なる複数種のハニカム成形体を混在させて同時に焼成することが困難であった。そのため、従来は、例えばカーボン含有量の高いものを投入した後にカーボン含有量の低いものを投入したい場合には、両者の間に充分な間隔を設けて、つまり被処理材を投入しない領域を設けて、炉内温度変化の影響を回避する必要があった。この場合には、生産性が低下するという問題があった。
However, when a honeycomb formed body is produced by extruding ceramic materials having different carbon addition amounts as in a diesel engine and a gasoline engine, and these are mixed and fired, the following problems occur.
That is, as the honeycomb formed body having a higher carbon content, more combustion heat is generated at the time of firing, the furnace temperature rapidly changes and varies, and the furnace temperature cannot be stably controlled. Therefore, it was difficult to simultaneously fire a plurality of types of honeycomb molded bodies having different carbon contents at the same time. Therefore, in the past, for example, when a material with a high carbon content is introduced and then a material with a low carbon content is to be introduced, a sufficient interval is provided between them, that is, a region in which the material to be processed is not provided is provided. Therefore, it was necessary to avoid the influence of the temperature change in the furnace. In this case, there is a problem that productivity is lowered.

このようなことから、最終的に得ようとする気孔率が異なる、つまりカーボン含有量が異なる異種のハニカム成形体を混在させて焼成する場合でも、これらを同時に安定的に焼成することができ、生産性の向上を図ることができるハニカム成形体の焼成方法が望まれている。   Therefore, even when different honeycomb formed bodies having different porosity, that is, different carbon contents are mixed and fired, these can be fired stably at the same time, There is a demand for a method for firing a honeycomb formed body capable of improving productivity.

特開平8−73274号公報JP-A-8-73274

本発明は、かかる従来の問題点に鑑みてなされたものであり、カーボン含有量が異なる異種のハニカム成形体を混在させて同時に安定的に焼成することができ、生産性の向上を図ることができるハニカム成形体の焼成方法を提供しようとするものである。   The present invention has been made in view of such conventional problems, and it is possible to mix different types of honeycomb molded bodies having different carbon contents and to simultaneously fire stably, thereby improving productivity. An object of the present invention is to provide a method for firing a honeycomb formed body.

本発明は、焼成後にコーディエライトとなるセラミック材料を押出成形することによって成形された、隔壁をハニカム状に配して多数のセルを設けてなるハニカム成形体を焼成する方法において、
複数のゾーンに分割され各ゾーン毎に温度調整可能な炉本体と、該炉本体内において順次連続的に被処理材を搬送可能な搬送手段とを有する連続炉を用い、
カーボン含有量が異なる異種の上記ハニカム成形体を混在させて上記連続炉に投入するに当たり、
上記連続炉において炉内温度が500〜700℃の範囲に調温される領域に相当する領域を単位領域とした場合、
上記連続炉に投入する上記ハニカム成形体の配列は、該配列中の任意の位置における単位領域に含まれる全ての上記ハニカム成形体の総重量に対するカーボンの含有量である総カーボン含有量A重量%と、その後側の単位領域における総カーボン含有量B重量%とが、|B−A|≦5の関係を満たすように設定することを特徴とするハニカム成形体の焼成方法にある(請求項1)。
The present invention is a method for firing a honeycomb formed body in which partition walls are arranged in a honeycomb shape and provided with a number of cells formed by extruding a ceramic material that becomes cordierite after firing.
Using a continuous furnace having a furnace body that is divided into a plurality of zones and that can be temperature-adjusted for each zone, and a transport means that can sequentially and continuously transport the material to be processed in the furnace body,
When mixing different types of honeycomb molded bodies having different carbon contents and putting them into the continuous furnace,
When the region corresponding to the region in which the temperature in the furnace is adjusted to a range of 500 to 700 ° C. in the continuous furnace is a unit region,
The array of the honeycomb formed bodies to be charged into the continuous furnace has a total carbon content A weight% which is a carbon content with respect to the total weight of all the honeycomb formed bodies included in the unit region at an arbitrary position in the array. And the total carbon content B wt% in the rear unit region is set so as to satisfy a relationship of | B−A | ≦ 5 (Claim 1). ).

本発明は、上記構成の連続炉を用い、カーボン含有量の異なる異種の上記ハニカム成形体を混在させて焼成する方法であり、上記連続炉において炉内温度が500〜700℃の範囲に調温される領域に相当する領域を単位領域として設定している。つまり、上記ハニカム成形体に含有されるカーボンが燃焼して焼失し、それに伴う燃焼熱が発生する領域(以下、燃焼領域という)に相当する領域を単位領域として設定している。そして、この単位領域を基準として上記連続炉に投入する上記ハニカム成形体の配列を規定している。   The present invention is a method of using the continuous furnace having the above-described configuration and firing the different honeycomb formed bodies having different carbon contents, and adjusting the furnace temperature in the range of 500 to 700 ° C. in the continuous furnace. An area corresponding to the area to be set is set as a unit area. That is, a region corresponding to a region where the carbon contained in the honeycomb molded body burns and burns and the associated combustion heat is generated (hereinafter referred to as a combustion region) is set as a unit region. And the arrangement | sequence of the said honeycomb molded object thrown into the said continuous furnace is prescribed | regulated on the basis of this unit area | region.

詳しくは、上記連続炉に投入する上記ハニカム成形体の配列は、該配列中の任意の位置における単位領域に含まれる全ての上記ハニカム成形体の総重量に対するカーボンの含有量である総カーボン含有率A重量%と、その後側の単位領域における総カーボン含有率B重量%とが、|B−A|≦5の関係を満たすように設定する。
すなわち、上記連続炉に投入する上記ハニカム成形体の配列を単位領域ごとに分割して見た場合、各単位領域間における総カーボン含有量の変化量が5%以下となるように、上記ハニカム成形体の配列を設定する。
Specifically, the array of the honeycomb formed bodies to be charged into the continuous furnace is a total carbon content that is a carbon content with respect to a total weight of all the honeycomb formed bodies included in a unit region at an arbitrary position in the array. A weight% and the total carbon content B weight% in the rear unit region are set so as to satisfy the relationship of | B−A | ≦ 5.
That is, when the arrangement of the honeycomb molded bodies to be introduced into the continuous furnace is divided into unit regions, the change in the total carbon content between the unit regions is 5% or less. Sets the body array.

そのため、上記連続炉内に上記ハニカム成形体を上記設定の配列で投入し、順次連続的に搬送して焼成を行うことにより、上記連続炉の上記燃焼領域では、カーボンの燃焼によって発生する燃焼熱の急激な増減を抑制することができる。そして、上記燃焼領域の炉内温度の急激な変化やばらつきを抑制することができ、上記燃焼領域の炉内温度を安定的に制御することができる。   For this reason, the honeycomb molded bodies are put into the continuous furnace in the above-described arrangement, and are sequentially conveyed and fired sequentially, so that combustion heat generated by carbon combustion is generated in the combustion region of the continuous furnace. Can be suppressed. And the rapid change and dispersion | variation in the furnace temperature of the said combustion area | region can be suppressed, and the furnace temperature of the said combustion area | region can be controlled stably.

これにより、カーボン含有量が異なる異種の上記ハニカム成形体を混在させて上記連続炉に投入しても、これらを同時に安定的に焼成することができる。そして、上記ハニカム成形体に含まれるカーボンを確実に焼失させて細孔を形成し、所望の気孔率を得ることができる。また、複数種の上記ハニカム成形体を同時に焼成することができるため、生産性の向上を図ることができる。   Thereby, even if different types of honeycomb molded bodies having different carbon contents are mixed and put into the continuous furnace, they can be simultaneously fired stably. And the carbon contained in the said honeycomb molded object can be burned down reliably and a pore can be formed, and a desired porosity can be obtained. Further, since a plurality of types of the honeycomb formed bodies can be fired at the same time, productivity can be improved.

このように、本発明のハニカム成形体の焼成方法によれば、カーボン含有量の異なる異種のハニカム成形体を混在させて同時に安定的に焼成することができる。そして、生産性の向上を図ることができる。   As described above, according to the method for firing a honeycomb formed body of the present invention, different types of honeycomb formed bodies having different carbon contents can be mixed and simultaneously fired stably. And productivity can be improved.

本発明においては、上記総カーボン含有量A重量%と上記総カーボン含有量B重量%との関係が|B−A|>5の場合には、上記連続炉の上記燃焼領域は、発生するカーボンの燃焼熱が急激に増えたり減ったりするおそれがある。そのため、上記燃焼領域の炉内温度の急激な変化やばらつきが生じ、カーボン含有量が異なる異種の上記ハニカム成形体を同時に安定的に焼成することができないおそれがある。   In the present invention, when the relationship between the total carbon content A wt% and the total carbon content B wt% is | BA−> 5, the combustion region of the continuous furnace is generated carbon. There is a risk of sudden increase or decrease in the heat of combustion. For this reason, rapid changes and variations in the furnace temperature in the combustion region occur, and different types of honeycomb molded bodies having different carbon contents may not be simultaneously fired stably.

また、混在させる上記ハニカム成形体は、カーボン含有量が5〜40重量%の高カーボンタイプと、カーボン含有量が5重量%未満の低カーボンタイプとの2種類とすることができる(請求項2)。
この場合には、例えば高カーボンタイプの上記ハニカム成形体を高い気孔率が望まれるディーゼルエンジン用の排ガス浄化フィルタとして、低カーボンタイプの上記ハニカム成形体を高い気孔率が要求されないガソリンエンジン用の触媒担体として適用することができる。すなわち、ディーゼルエンジン用の上記ハニカム成形体とガソリンエンジン用の上記ハニカム成形体とを同時に焼成することができ、生産性の向上を図ることができる。
The honeycomb formed body to be mixed can be of two types: a high carbon type having a carbon content of 5 to 40% by weight and a low carbon type having a carbon content of less than 5% by weight. ).
In this case, for example, a high carbon type honeycomb molded body is used as an exhaust gas purification filter for a diesel engine where a high porosity is desired, and a low carbon type honeycomb molded body is a catalyst for a gasoline engine that does not require a high porosity. It can be applied as a carrier. That is, the honeycomb molded body for a diesel engine and the honeycomb molded body for a gasoline engine can be fired at the same time, and productivity can be improved.

また、上記連続炉における上記搬送手段は、上記ハニカム成形体を積載して順次前進する複数の台車を有しており、上記単位領域は、上記台車1台又は複数台を連ねた領域に合致するよう設定することが好ましい(請求項3)。
この場合には、上記単位領域毎の上記ハニカム成形体の配列を上記台車1台又は複数台の単位で設定することができる。そのため、上記ハニカム成形体の配列の設定が容易となる。
Further, the conveying means in the continuous furnace has a plurality of carriages that are sequentially advanced by loading the honeycomb formed body, and the unit region matches an area in which one or more carriages are connected. It is preferable to set so (Claim 3).
In this case, the arrangement of the honeycomb formed bodies for each unit region can be set in units of one or more carriages. Therefore, the arrangement of the honeycomb formed body can be easily set.

また、上記各台車には、長手方向及び幅方向に複数個の上記ハニカム成形体を配置すると共に、上下方向にも複数段配置することが好ましい(請求項4)。
この場合には、上記各台車に上記ハニカム成形体を効率よく配置することができ、より一層生産性の向上を図ることができる。また、カーボン含有量が異なる異種の上記ハニカム成形体の配置を様々に変えることができると共に、上記燃焼領域の炉内温度を様々な方法で制御することができる。
Moreover, it is preferable that a plurality of the honeycomb formed bodies are arranged in the longitudinal direction and the width direction, and a plurality of stages are also arranged in the vertical direction on each carriage.
In this case, the honeycomb formed body can be efficiently arranged on each carriage, and productivity can be further improved. In addition, the disposition of the different types of honeycomb molded bodies having different carbon contents can be changed in various ways, and the furnace temperature in the combustion region can be controlled by various methods.

例えば、上記各台車における上下方向の各段ごとの上記ハニカム成形体に含有される合計のカーボン量は、下段に行くほど多くなるように設定することができる(請求項5)。
この場合には、カーボンの燃焼熱を上記各台車の下段から上段のほうへ循環させることにより、カーボンの燃焼熱を安定的に利用して上記燃焼領域の炉内温度を制御することができる。
For example, the total amount of carbon contained in the honeycomb formed body for each step in the vertical direction of each carriage can be set so as to increase toward the lower step (Claim 5).
In this case, by circulating the combustion heat of carbon from the lower stage to the upper stage of each carriage, it is possible to control the in-furnace temperature in the combustion region using the combustion heat of carbon stably.

また、上記各台車における上下方向の各段ごとの上記ハニカム成形体に含有される合計のカーボン量は、略同じになるように設定することができる(請求項6)。
この場合には、上記各台車の各段ごとのカーボンの燃焼熱が略同一となるため、上記燃焼領域の炉内温度のばらつきをより一層抑制することができる。
Further, the total amount of carbon contained in the honeycomb formed body for each step in the vertical direction of each carriage can be set to be substantially the same (Claim 6).
In this case, since the combustion heat of carbon for each stage of each carriage is substantially the same, variation in the furnace temperature in the combustion region can be further suppressed.

また、上記以外にも、上記各台車において、高カーボンタイプの上記ハニカム成形体と低カーボンタイプの上記ハニカム成形体とを交互に配置したり、高カーボンタイプの上記ハニカム成形体の周りを低カーボンタイプの上記ハニカム成形体で囲うように配置したりする等の様々な方法によって、上記燃焼領域の炉内温度を制御することができる。   In addition to the above, in each of the above carts, the high carbon type honeycomb molded body and the low carbon type honeycomb molded body are alternately arranged, or the high carbon type honeycomb molded body is surrounded by the low carbon. The furnace temperature in the combustion region can be controlled by various methods such as arranging the honeycomb molded body so as to be surrounded by the type.

(実施例)
本発明の実施例につき、図を用いて説明する。
本例においては、カーボン含有量の異なる2種類のハニカム成形体(第1ハニカム成形体及び第2ハニカム成形体)を作製し、これらを混在させて連続炉により焼成する。
以下、詳細について説明する。
(Example)
Embodiments of the present invention will be described with reference to the drawings.
In this example, two types of honeycomb molded bodies (a first honeycomb molded body and a second honeycomb molded body) having different carbon contents are produced, and these are mixed and fired in a continuous furnace.
Details will be described below.

本例においては、図1、図2に示すごとく、隔壁21をハニカム状に配し、断面四角形状のセル22を多数設けてなるハニカム成形体1を焼成する。ハニカム成形体1は、コーディエライトを主成分とするセラミックより構成されており、円筒形状を呈している。
このハニカム成形体1は、セラミック材料を押出成形機等により押出成形し、所望の長さで切断した後、乾燥させて作製したものである。セラミック材料としては、カオリン、溶融シリカ、水酸化アルミニウム、アルミナ、タルク、造孔材としてのカーボンを含有し、化学組成が最終的にコーディエライトを主成分とする組成となるように調整したコーディエライト化原料を水に混合し、有機バインダ等を加えて混練したものを用いている。
In this example, as shown in FIGS. 1 and 2, the honeycomb formed body 1 in which the partition walls 21 are arranged in a honeycomb shape and a large number of cells 22 having a square cross section are provided is fired. The honeycomb formed body 1 is made of a ceramic mainly composed of cordierite, and has a cylindrical shape.
The honeycomb formed body 1 is manufactured by extruding a ceramic material with an extrusion molding machine or the like, cutting it to a desired length, and then drying it. The ceramic material contains kaolin, fused silica, aluminum hydroxide, alumina, talc, carbon as a pore former, and a cordier that is adjusted so that its chemical composition is finally composed mainly of cordierite. A material obtained by mixing an elite material with water and kneading it with an organic binder or the like is used.

そして、本例では、2種類のハニカム成形体1を作製した。
一方は、カーボンの含有率が20重量%の第1ハニカム成形体である。第1ハニカム成形体は、焼成後の目標気孔率が60%であり、例えばディーゼルエンジン用の排ガス浄化フィルタ等に適用されるものである。第1ハニカム成形体のサイズは、直径144mm、長さ152mm、隔壁の厚み0.3mm、セル数300cpiメッシュである。
In this example, two types of honeycomb formed bodies 1 were produced.
One is a first honeycomb formed body having a carbon content of 20% by weight. The first honeycomb formed body has a target porosity of 60% after firing, and is applied to, for example, an exhaust gas purification filter for a diesel engine. The first honeycomb molded body has a diameter of 144 mm, a length of 152 mm, a partition wall thickness of 0.3 mm, and a cell count of 300 cpi mesh.

もう一方は、カーボンが含有されていない第2ハニカム成形体である。第2ハニカム成形体は、焼成後の目標気孔率が30%であり、例えばガソリンエンジン用の排ガス浄化フィルタ等に適用されるものである。第2ハニカム成形体のサイズは、直径103mm、長さ130mm、隔壁の厚み0.075mm、セル数400cpiメッシュである。
なお、これらの具体的なサイズは一例であり、用途に応じて様々なサイズがある。
The other is a second honeycomb formed body not containing carbon. The second honeycomb formed body has a target porosity after firing of 30%, and is applied to, for example, an exhaust gas purification filter for a gasoline engine. The size of the second honeycomb formed body is a diameter of 103 mm, a length of 130 mm, a partition wall thickness of 0.075 mm, and a cell count of 400 cpi mesh.
These specific sizes are examples, and there are various sizes depending on the application.

次に、ハニカム成形体1の焼成に用いる連続炉について説明する。
連続炉3は、図3に示すごとく、複数のゾーンに分割された炉本体31を有している。炉本体31は、第1低温ゾーン311、燃焼ゾーン312、高温ゾーン313及び第2低温ゾーン314の4つのゾーンで構成されている。また、炉本体31は、ゾーン毎に温度調整できるように構成されている。
Next, a continuous furnace used for firing the honeycomb formed body 1 will be described.
As shown in FIG. 3, the continuous furnace 3 has a furnace body 31 divided into a plurality of zones. The furnace body 31 includes four zones, a first low temperature zone 311, a combustion zone 312, a high temperature zone 313, and a second low temperature zone 314. Moreover, the furnace main body 31 is comprised so that temperature adjustment is possible for every zone.

また、図4に示すごとく、炉本体31の各ゾーン311〜314の炉内温度は、ハニカム成形体1を焼成する焼成温度パターンに合わせて設定されている。本例の焼成温度パターンは、室温から600℃まで昇温し、600℃で保持することによってハニカム成形体1に含有されるカーボンを焼失させる。そして、1400℃まで昇温し、1400℃で保持した後、室温まで冷却する。トータルの焼成時間は60時間である。   Moreover, as shown in FIG. 4, the furnace temperature of each zone 311 to 314 of the furnace body 31 is set according to the firing temperature pattern for firing the honeycomb formed body 1. In the firing temperature pattern of this example, the carbon contained in the honeycomb formed body 1 is burned down by raising the temperature from room temperature to 600 ° C. and holding at 600 ° C. And after heating up to 1400 degreeC and hold | maintaining at 1400 degreeC, it cools to room temperature. The total firing time is 60 hours.

また、図5に示すごとく、連続炉3は、炉本体31の搬入口30(図3)から搬出口39(図3)まで貫通するように設けられ、炉本体31内において順次連続的に被処理材(本例ではハニカム成形体1)を搬送可能な搬送コンベア32と、搬送コンベア32によって順次前進する複数の台車33とを有している。本例の台車33は、長手方向及び幅方向に複数個のハニカム成形体1を配置することができる共に、上下方向にも載置棚34を設けて複数段配置することができる。   Further, as shown in FIG. 5, the continuous furnace 3 is provided so as to penetrate from the carry-in port 30 (FIG. 3) to the carry-out port 39 (FIG. 3) of the furnace body 31. It has the conveyance conveyor 32 which can convey a processing material (this example honeycomb molded object 1), and the several trolley | bogie 33 which advances sequentially by the conveyance conveyor 32. FIG. In the cart 33 of this example, a plurality of honeycomb formed bodies 1 can be arranged in the longitudinal direction and the width direction, and a plurality of stages can be arranged by providing placement shelves 34 in the vertical direction.

ここで、図4に示すごとく、燃焼ゾーン312は、炉内温度を500〜700℃の範囲に調温される領域である。すなわち、燃焼ゾーン312は、ハニカム成形体1に含有されるカーボンが燃焼する温度範囲に調温される領域である。本例では、この燃焼ゾーン312に相当する領域を単位領域としている。そして、この単位領域は、図5に示すごとく、ちょうど台車33が1台分入る領域である。   Here, as shown in FIG. 4, the combustion zone 312 is a region in which the temperature in the furnace is adjusted to a range of 500 to 700 ° C. That is, the combustion zone 312 is a region that is adjusted to a temperature range in which carbon contained in the honeycomb formed body 1 burns. In this example, a region corresponding to the combustion zone 312 is set as a unit region. And this unit area | region is an area | region where just one trolley | bogie 33 enters as shown in FIG.

次に、連続炉3を用いたハニカム成形体1の焼成方法について具体的に説明する。
まず、ハニカム成形体1(第1ハニカム成形体及び第2ハニカム成形体)を満載状態で積載した台車33を、連続炉3の搬入口30から順次連続的に投入する。このとき、投入する台車33におけるハニカム成形体1の配列は、その配列中の任意の位置における台車33に含まれる全てのハニカム成形体1の総重量に対するカーボンの含有量である総カーボン含有量A重量%と、そのすぐ後側の台車33における総カーボン含有量B重量%とが、|B−A|≦5の関係を満たすように設定する。
Next, a method for firing the honeycomb formed body 1 using the continuous furnace 3 will be specifically described.
First, the cart 33 loaded with the honeycomb formed body 1 (the first honeycomb formed body and the second honeycomb formed body) in a fully loaded state is sequentially and sequentially fed from the carry-in port 30 of the continuous furnace 3. At this time, the arrangement of the honeycomb formed bodies 1 in the cart 33 to be introduced is the total carbon content A which is the carbon content with respect to the total weight of all the honeycomb formed bodies 1 included in the carriage 33 at an arbitrary position in the arrangement. The weight% and the total carbon content B weight% in the bogie 33 immediately behind it are set so as to satisfy the relationship | BA− ≦ 5.

なお、各台車33におけるハニカム成形体1の積載位置は、上述した総カーボン含有量の関係式を満たす範囲であれば、どのように変更してもよい。1台の台車33に積載する形態の例としては、図6(a)に示すごとく、下段に高カーボンタイプの第1ハニカム成形体11を配置し、その上に低カーボンタイプの第2ハニカム成形体12を配置してもよい。また、図6(b)、(c)に示すごとく、長手方向に第1ハニカム成形体11及び第2ハニカム成形体12を1列又は2列ごとに交互に配置してもよい。   Note that the loading position of the honeycomb formed body 1 in each carriage 33 may be changed in any way as long as it satisfies the above-described relational expression of the total carbon content. As an example of the form of loading on one carriage 33, as shown in FIG. 6 (a), a high carbon type first honeycomb formed body 11 is arranged at the lower stage, and a low carbon type second honeycomb formed is formed thereon. The body 12 may be arranged. Further, as shown in FIGS. 6B and 6C, the first honeycomb formed bodies 11 and the second honeycomb formed bodies 12 may be alternately arranged in one or two rows in the longitudinal direction.

次いで、各台車33を搬送コンベア32上に載置し、それぞれ所定の温度に調温された第1低温ゾーン311、燃焼ゾーン312、高温ゾーン313及び第2低温ゾーン314の4つのゾーンを順次連続的に搬送する。そして、図4の焼成温度パターンによりハニカム成形体1を焼成する。最後に、各台車33を連続炉3の搬出口39から搬出する。
以上により、ハニカム成形体1を焼成する。
Next, each carriage 33 is placed on the conveyor 32, and the four zones of the first low-temperature zone 311, the combustion zone 312, the high-temperature zone 313, and the second low-temperature zone 314, which are each adjusted to a predetermined temperature, are successively connected. Transport it. Then, the honeycomb formed body 1 is fired according to the firing temperature pattern of FIG. Finally, each carriage 33 is unloaded from the unloading port 39 of the continuous furnace 3.
Thus, the honeycomb formed body 1 is fired.

次に、連続炉3の燃焼ゾーン312における炉内温度を測定した結果を示す。
本例では、連続炉3に投入する台車33の総カーボン含有量を連続的に0重量%から20重量%まで5重量%刻みで増加させ、その後、20重量%から0重量%まで5重量%刻みで減少させた。そして、これらの台車33が通過したときの燃焼ゾーン312における炉内温度を時間の経過とともに測定した。その結果を図7に示す。
Next, the result of measuring the furnace temperature in the combustion zone 312 of the continuous furnace 3 will be shown.
In this example, the total carbon content of the cart 33 put into the continuous furnace 3 is continuously increased in increments of 5 wt% from 0 wt% to 20 wt%, and then 5 wt% from 20 wt% to 0 wt%. Decrease in steps. And the furnace temperature in the combustion zone 312 when these trolley | bogies 33 passed was measured with progress of time. The result is shown in FIG.

図7は、縦軸に温度(℃)、横軸に時間をとったものである。図中の温度変化線Eは、燃焼ゾーン312における炉内温度の経時変化を示している。
同図から知られるように、燃焼ゾーン312において、炉内温度の急激な変化は見られなかった。すなわち、燃焼ゾーン312の炉内温度は、カーボンの燃焼熱によって上昇するものの、550℃付近から600℃付近まで徐々に上昇している。また、600℃付近から550℃付近まで徐々に下降している。
FIG. 7 shows temperature (° C.) on the vertical axis and time on the horizontal axis. A temperature change line E in the figure indicates a change with time in the furnace temperature in the combustion zone 312.
As can be seen from the figure, in the combustion zone 312, there was no rapid change in the furnace temperature. That is, the furnace temperature in the combustion zone 312 rises due to the combustion heat of carbon, but gradually rises from around 550 ° C. to around 600 ° C. In addition, the temperature gradually decreases from around 600 ° C. to around 550 ° C.

このことから、各台車33間における総カーボン含有量の変化量を5%以下とすることにより、カーボンの燃焼によって発生する燃焼熱の急激な増減を抑制することができることがわかる。また、燃焼ゾーン312の炉内温度の急激な変化やばらつきを抑制することができ、燃焼ゾーン312の炉内温度を安定的に制御することができることがわかる。   From this, it can be seen that by making the change amount of the total carbon content between the carts 33 5% or less, a rapid increase or decrease in combustion heat generated by the combustion of carbon can be suppressed. It can also be seen that rapid changes and variations in the furnace temperature in the combustion zone 312 can be suppressed, and the furnace temperature in the combustion zone 312 can be stably controlled.

このように、本例の焼成方法によれば、カーボン含有量が異なる異種のハニカム成形体1(例えば、本例の第1ハニカム成形体及び第2ハニカム成形体)を混在させて連続炉3に投入しても、これらを同時に安定的に焼成することができる。そして、ハニカム成形体1に含まれるカーボンを確実に焼失させて細孔を形成し、所望の気孔率を得ることができる。また、複数種のハニカム成形体1を同時に焼成することができ、常時台車33に満載状態で処理することができるため、生産性の向上を図ることができる。   Thus, according to the firing method of the present example, different types of honeycomb molded bodies 1 having different carbon contents (for example, the first honeycomb molded body and the second honeycomb molded body of the present example) are mixed to the continuous furnace 3. Even if they are added, they can be simultaneously and stably fired. And the carbon contained in the honeycomb formed body 1 can be surely burnt down to form pores, and a desired porosity can be obtained. In addition, a plurality of types of honeycomb formed bodies 1 can be fired simultaneously, and the cart 33 can be always processed in a full state, so that productivity can be improved.

(比較例)
本例では、実施例の比較として、連続炉3に投入する台車33の総カーボン含有量を断続的に0重量%又は20重量%に変化させ、これらの台車33が通過したときの燃焼ゾーン312における炉内温度を時間の経過とともに測定した。その結果を図8に示す。
なお、その他の条件は実施例と同様である。
(Comparative example)
In this example, as a comparison with the embodiment, the total carbon content of the cart 33 to be introduced into the continuous furnace 3 is intermittently changed to 0 wt% or 20 wt%, and the combustion zone 312 when these carts 33 pass is used. The in-furnace temperature in was measured over time. The result is shown in FIG.
The other conditions are the same as in the example.

図8は、図7と同様に、縦軸に温度(℃)、横軸に時間をとったものである。図中の温度変化線Cは、燃焼ゾーン312における炉内温度の経時変化を示している。
同図から知られるように、燃焼ゾーン312において、温度の急激な変化が見られた。すなわち、総カーボン含有量が変化する際に、燃焼ゾーン312の炉内温度が550℃付近から650℃付近まで急激に上昇している。また、650℃付近から550℃付近まで急激に下降している。このことから、カーボンの燃焼によって発生する燃焼熱の急激な増減が生じていることがわかる。
As in FIG. 7, FIG. 8 shows temperature (° C.) on the vertical axis and time on the horizontal axis. A temperature change line C in the figure indicates a change with time in the furnace temperature in the combustion zone 312.
As can be seen from the figure, a rapid change in temperature was observed in the combustion zone 312. That is, when the total carbon content changes, the furnace temperature in the combustion zone 312 rapidly increases from around 550 ° C. to around 650 ° C. Moreover, it has fallen rapidly from around 650 ° C. to around 550 ° C. From this, it can be seen that a sudden increase or decrease in combustion heat generated by the combustion of carbon occurs.

このように、比較例の焼成方法では、カーボン含有量が異なる異種のハニカム成形体1を混在させて連続炉3に投入しても、これらを同時に安定的に焼成することができない。また、焼成後に所望の気孔率を得ることができない。   Thus, in the firing method of the comparative example, even if different types of honeycomb molded bodies 1 having different carbon contents are mixed and put into the continuous furnace 3, they cannot be fired stably at the same time. Moreover, a desired porosity cannot be obtained after baking.

実施例における、ハニカム成形体を示す斜視図。The perspective view which shows the honeycomb molded object in an Example. 実施例における、ハニカム成形体を示す断面説明図。Cross-sectional explanatory drawing which shows the honeycomb molded object in an Example. 実施例における、連続炉の構成を示す説明図。Explanatory drawing which shows the structure of the continuous furnace in an Example. 実施例における、連続炉における焼成温度パターンを示す説明図。Explanatory drawing which shows the baking temperature pattern in a continuous furnace in an Example. 実施例における、燃焼ゾーンを示す拡大図。The enlarged view which shows a combustion zone in an Example. 実施例における、ハニカム成形体の配列を示す説明図。Explanatory drawing which shows the arrangement | sequence of the honeycomb molded object in an Example. 実施例における、燃焼ゾーンにおける温度変化を示す説明図。Explanatory drawing which shows the temperature change in a combustion zone in an Example. 比較例における、燃焼ゾーンにおける温度変化を示す説明図。Explanatory drawing which shows the temperature change in a combustion zone in a comparative example.

符号の説明Explanation of symbols

1 ハニカム成形体
11 第1ハニカム成形体
12 第2ハニカム成形体
21 隔壁
22 セル
3 連続炉
31 炉本体
32 搬送コンベア
33 台車
312 燃焼ゾーン
DESCRIPTION OF SYMBOLS 1 Honeycomb molded object 11 1st honeycomb molded object 12 2nd honeycomb molded object 21 Partition 22 Cell 3 Continuous furnace 31 Furnace main body 32 Conveyor conveyer 33 Car 312 Combustion zone

Claims (6)

焼成後にコーディエライトとなるセラミック材料を押出成形することによって成形された、隔壁をハニカム状に配して多数のセルを設けてなるハニカム成形体を焼成する方法において、
複数のゾーンに分割され各ゾーン毎に温度調整可能な炉本体と、該炉本体内において順次連続的に被処理材を搬送可能な搬送手段とを有する連続炉を用い、
カーボン含有量が異なる異種の上記ハニカム成形体を混在させて上記連続炉に投入するに当たり、
上記連続炉において炉内温度が500〜700℃の範囲に調温される領域に相当する領域を単位領域とした場合、
上記連続炉に投入する上記ハニカム成形体の配列は、該配列中の任意の位置における単位領域に含まれる全ての上記ハニカム成形体の総重量に対するカーボンの含有量である総カーボン含有量A重量%と、その後側の単位領域における総カーボン含有量B重量%とが、|B−A|≦5の関係を満たすように設定することを特徴とするハニカム成形体の焼成方法。
In a method of firing a honeycomb formed body formed by extruding a ceramic material that becomes cordierite after firing, and having a large number of cells provided with partition walls in a honeycomb shape,
Using a continuous furnace having a furnace body that is divided into a plurality of zones and that can be temperature-adjusted for each zone, and a transport means that can sequentially and continuously transport the material to be processed in the furnace body,
When mixing different types of honeycomb molded bodies having different carbon contents and putting them into the continuous furnace,
When the region corresponding to the region in which the temperature in the furnace is adjusted to a range of 500 to 700 ° C. in the continuous furnace is a unit region,
The array of the honeycomb formed bodies to be charged into the continuous furnace has a total carbon content A weight% which is a carbon content with respect to the total weight of all the honeycomb formed bodies included in the unit region at an arbitrary position in the array. And the total carbon content B wt% in the rear unit region is set so as to satisfy the relationship of | B−A | ≦ 5.
請求項1において、混在させる上記ハニカム成形体は、カーボン含有量が5〜40重量%の高カーボンタイプと、カーボン含有量が5重量%未満の低カーボンタイプとの2種類であることを特徴とするハニカム成形体の焼成方法。   The honeycomb formed body to be mixed according to claim 1, characterized in that there are two types, a high carbon type having a carbon content of 5 to 40% by weight and a low carbon type having a carbon content of less than 5% by weight. A method for firing a honeycomb formed body. 請求項1又は2において、上記連続炉における上記搬送手段は、上記ハニカム成形体を積載して順次前進する複数の台車を有しており、上記単位領域は、上記台車1台又は複数台を連ねた領域に合致するよう設定することを特徴とするハニカム成形体の焼成方法。   In Claim 1 or 2, the said conveying means in the said continuous furnace has the several trolley | bogie which carries the said honeycomb molded object and advances sequentially, and the said unit area | region has connected the said trolley | bogie 1 unit or multiple units | sets. A method for firing a honeycomb formed body, characterized in that it is set so as to match the region. 請求項3において、上記各台車には、長手方向及び幅方向に複数個の上記ハニカム成形体を配置すると共に、上下方向にも複数段配置することを特徴とするハニカム成形体の焼成方法。   4. The method for firing a honeycomb molded body according to claim 3, wherein a plurality of the honeycomb molded bodies are arranged in the longitudinal direction and the width direction in each of the carts, and a plurality of stages are also arranged in the vertical direction. 請求項4において、上記各台車における上下方向の各段ごとの上記ハニカム成形体に含有される合計のカーボン量は、下段に行くほど多くなるように設定することを特徴とするハニカム成形体の焼成方法。   The firing of the honeycomb molded body according to claim 4, wherein the total amount of carbon contained in the honeycomb molded body for each step in the vertical direction in each carriage is set to increase toward the lower stage. Method. 請求項4において、上記各台車における上下方向の各段ごとの上記ハニカム成形体に含有される合計のカーボン量は、略同じになるように設定することを特徴とするハニカム成形体の焼成方法。   5. The method for firing a honeycomb molded body according to claim 4, wherein the total amount of carbon contained in the honeycomb molded body for each step in the vertical direction of each carriage is set to be substantially the same.
JP2006295123A 2006-10-31 2006-10-31 Method for firing honeycomb formed body Expired - Fee Related JP4650392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006295123A JP4650392B2 (en) 2006-10-31 2006-10-31 Method for firing honeycomb formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006295123A JP4650392B2 (en) 2006-10-31 2006-10-31 Method for firing honeycomb formed body

Publications (2)

Publication Number Publication Date
JP2008110894A true JP2008110894A (en) 2008-05-15
JP4650392B2 JP4650392B2 (en) 2011-03-16

Family

ID=39443635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295123A Expired - Fee Related JP4650392B2 (en) 2006-10-31 2006-10-31 Method for firing honeycomb formed body

Country Status (1)

Country Link
JP (1) JP4650392B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030461A1 (en) * 2009-09-14 2011-03-17 イビデン株式会社 Method for manufacturing honeycomb structure
JP2018146522A (en) * 2017-03-08 2018-09-20 日本碍子株式会社 Temperature measurement method of honeycomb molding, and temperature measurement device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160976A (en) * 2000-11-21 2002-06-04 Hitachi Metals Ltd Method for manufacturing ceramic honeycomb structure
JP2003212672A (en) * 2002-01-21 2003-07-30 Ngk Insulators Ltd Process for manufacturing porous ceramic structure
JP2008110896A (en) * 2006-10-31 2008-05-15 Denso Corp Method of manufacturing ceramic honeycomb structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160976A (en) * 2000-11-21 2002-06-04 Hitachi Metals Ltd Method for manufacturing ceramic honeycomb structure
JP2003212672A (en) * 2002-01-21 2003-07-30 Ngk Insulators Ltd Process for manufacturing porous ceramic structure
JP2008110896A (en) * 2006-10-31 2008-05-15 Denso Corp Method of manufacturing ceramic honeycomb structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030461A1 (en) * 2009-09-14 2011-03-17 イビデン株式会社 Method for manufacturing honeycomb structure
US8168018B2 (en) 2009-09-14 2012-05-01 Ibiden Co., Ltd. Method for manufacturing honeycomb structure
JP2018146522A (en) * 2017-03-08 2018-09-20 日本碍子株式会社 Temperature measurement method of honeycomb molding, and temperature measurement device

Also Published As

Publication number Publication date
JP4650392B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
EP1900709B1 (en) Method for manufacturing honeycomb structured body and material composition for honeycomb fired body
EP1857427B1 (en) Honeycomb structure and method of manufacturing the same
JP4869295B2 (en) Method for firing ceramic honeycomb body
CN105008050B (en) Ceramic honeycomb structural body and its manufacture method
EP1647790A1 (en) Jig for baking ceramic and method of manufacturing porous ceramic body
US20080150200A1 (en) Jig for firing silicon carbide based material and method for manufacturing porous silicon carbide body
US20110127699A1 (en) Method And Apparatus For Thermally Debindering A Cellular Ceramic Green Body
KR20010032704A (en) Method for firing ceramic honeycomb bodies
US20140215843A1 (en) Drying process and apparatus for ceramic greenware
JP4826439B2 (en) Method for firing ceramic honeycomb formed body
EP1042640A1 (en) Tunnel kiln for firing ceramic honeycomb bodies
JP2006232590A (en) Method for manufacturing ceramic structure
CN108503372B (en) Method for producing ceramic body
JP4650392B2 (en) Method for firing honeycomb formed body
JP2008110896A (en) Method of manufacturing ceramic honeycomb structure
JP5082398B2 (en) Manufacturing method of exhaust gas purification filter
CN110041082A (en) The manufacturing method of ceramic firing body and the process for calcining of ceramic mouldings
EP3202480A1 (en) Method for producing honeycomb filter
US8192680B2 (en) Method for firing ceramic honeycomb bodies in a kiln
CN104583151A (en) Method of preparing high porosity ceramic material
US11046621B2 (en) Honeycomb structure
KR101297059B1 (en) Ceramics Extrusion Die Structure and Manufacture Method thereof for Internal Crack Prevention of Large Size Honeycomb Compacts
JP4768044B2 (en) Firing method for Si-bonded SiC ceramics
EP3202478B1 (en) Method for producing honeycomb filter
JP2007237653A (en) Manufacturing method for ceramic honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees