JP2008107295A - Optical pressure sensor and its manufacturing method - Google Patents

Optical pressure sensor and its manufacturing method Download PDF

Info

Publication number
JP2008107295A
JP2008107295A JP2006292735A JP2006292735A JP2008107295A JP 2008107295 A JP2008107295 A JP 2008107295A JP 2006292735 A JP2006292735 A JP 2006292735A JP 2006292735 A JP2006292735 A JP 2006292735A JP 2008107295 A JP2008107295 A JP 2008107295A
Authority
JP
Japan
Prior art keywords
space
optical fiber
cylindrical member
pressure
fbg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006292735A
Other languages
Japanese (ja)
Inventor
Masato Wakahara
正人 若原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suncall Corp
Original Assignee
Suncall Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suncall Corp filed Critical Suncall Corp
Priority to JP2006292735A priority Critical patent/JP2008107295A/en
Publication of JP2008107295A publication Critical patent/JP2008107295A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical pressure sensor capable of detecting, even the minuter changes in pressure. <P>SOLUTION: The inside of a cylindrical member 5 is partitioned into a first space S1 and a second space S2 by a partitioning member 7. The member is fixed so that the FBG section 31 of an optical fiber 3 is located in the first space S1, and that the FBG section 31 is not located in the second space S2. The first space S1 is sealed; and the second space S2 has an opening 8, capable of ventilation, an external fluid (air, water, etc.) is let into the space, and its pressure becomes equal to an outside pressure (external air pressure, hydraulic pressure). The partitioning member 7 is formed so as to be swayable in the longitudinal direction of the cylindrical member 5, together with the optical fiber 3; and when a difference is produced between the outside pressure and the predetermined inside pressure of the sealed space, the partitioning member 7 moves in either direction, and according to this, the FBG section 31 of the optical fiber 31 expands or contracts. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光ファイバにFBG(Fiber Bragg Grating)部を少なくとも1つ有する光学式圧力センサおよびその製造方法に関する。   The present invention relates to an optical pressure sensor having at least one FBG (Fiber Bragg Grating) portion in an optical fiber and a method for manufacturing the same.

自動車、船舶、航空機等の設計、解析分野において、安全性や高効率化の観点から様々な最適設計がなされている。特に、上記分野においては、物体表面に作用する空気圧や水圧等の流体物理量の把握が重要となっており、縮小モデルを用いた風洞装置による空気圧(風圧)測定や水槽による水圧測定により得られた結果をフィードバックすることにより最適設計を行っている。   In the design and analysis fields of automobiles, ships, aircraft, etc., various optimum designs have been made from the viewpoint of safety and high efficiency. In particular, in the above field, it is important to understand the fluid physical quantities such as air pressure and water pressure acting on the object surface, and it was obtained by measuring air pressure (wind pressure) with a wind tunnel device using a reduced model and water pressure measurement with a water tank. Optimal design is performed by feeding back the results.

上記のような空気圧や水圧を測定するための構成としては、圧電式、半導体式や歪みゲージ式による圧力センサが公知である。   As a configuration for measuring the air pressure and the water pressure as described above, a pressure sensor of a piezoelectric type, a semiconductor type or a strain gauge type is known.

しかし、上記の構成では、以下の問題が生じていた。圧電式、半導体式の圧力センサにおいては、縮小モデルに孔を開け、当該孔にチューブを挿通し、開口端と圧力センサ本体とを繋ぐ必要があるが、十数点から数十点までが多点測定における事実上の技術的限界があった。というのも、チューブ径が数mmあるため、測定点が多くなると測定点の配置が困難となってしまうからである。また、歪みゲージ式による圧力センサにおいては、測定点ごとにアンプを設ける必要があり、多点の測定は事実上困難であった。さらに、圧電式、半導体式及び歪みゲージ式の双方とも、縮小モデル等の対象物体に孔を開ける必要があり、これを水圧測定に使用した場合、当該孔からの浸水により縮小モデルが破損するという問題があった。また、歪みゲージ式は電気式であるため浸水によりショートする危険性もあった。   However, the above configuration has caused the following problems. In piezoelectric and semiconductor pressure sensors, it is necessary to open a hole in a reduced model, insert a tube through the hole, and connect the open end to the pressure sensor body. There were practical technical limitations in point measurement. This is because, since the tube diameter is several mm, the arrangement of the measurement points becomes difficult when the number of measurement points increases. In addition, in a strain gauge type pressure sensor, it is necessary to provide an amplifier for each measurement point, and it is practically difficult to measure multiple points. Furthermore, it is necessary to make a hole in a target object such as a reduction model for both the piezoelectric type, semiconductor type, and strain gauge type, and when this is used for water pressure measurement, the reduction model is damaged by water immersion from the hole. There was a problem. Further, since the strain gauge type is an electric type, there is a risk of short-circuiting due to water immersion.

上記のような、縮小モデルに孔を開けることなく表面の圧力を測定する圧力センサとして、例えば、光ファイバに感圧部としてFBG部が設けられた光学式圧力センサが公知である(例えば、特許文献1)。ここで、FBG部は、入射する光の進行方向に所定の波長の光のみ反射するグレーティング(回折格子)が形成されたものであり、このFBG部がベースフィルム上に貼り付けられてセンサを構成する。したがって、ベースフィルムに圧力変化(歪み)が生じるとベースフィルムに取り付けられた光ファイバのFBG部にも圧力変化が生じる。そして、FBG部に圧力変化が生じると、グレーティングの回折ピッチが変化して反射光のピーク波長が変位する。つまり、FBG部に圧力が生じた際に反射光のピーク波長の変位を検知することにより、当該FBG部に圧力がかかっている(歪みが生じている)ことを検知するものである。   As a pressure sensor for measuring the surface pressure without opening a hole in the reduced model as described above, for example, an optical pressure sensor in which an FBG portion is provided as a pressure-sensitive portion in an optical fiber is known (for example, a patent Reference 1). Here, the FBG part is formed with a grating (diffraction grating) that reflects only light of a predetermined wavelength in the traveling direction of incident light, and this FBG part is pasted on a base film to constitute a sensor. To do. Therefore, when a pressure change (distortion) occurs in the base film, a pressure change also occurs in the FBG portion of the optical fiber attached to the base film. When a pressure change occurs in the FBG portion, the diffraction pitch of the grating changes and the peak wavelength of the reflected light is displaced. That is, by detecting the displacement of the peak wavelength of reflected light when pressure is generated in the FBG portion, it is detected that pressure is applied to the FBG portion (distortion is generated).

しかしながら、より安全かつより高効率な最適設計を行うべく、特許文献1のような光学式圧力センサにおいてもより微小な圧力変化を検知することが要求されてきている。
特開2002−71323号公報
However, in order to perform safer and more efficient optimal design, even an optical pressure sensor such as Patent Document 1 is required to detect a smaller pressure change.
JP 2002-71323 A

本発明はかかる従来技術に鑑みなされたものであり、より微小な圧力変化をも検知することができる光学式圧力センサおよびその製造方法を提供することを目的とする。   The present invention has been made in view of the prior art, and an object thereof is to provide an optical pressure sensor capable of detecting even a finer pressure change and a method for manufacturing the same.

本発明に係る光学式圧力センサの一の態様は、光ファイバと、長手方向に前記光ファイバが挿通される筒状部材と、前記筒状部材の両端部を前記光ファイバとともに固定して密閉する固定部材と、前記筒状部材の内部を第1空間と第2空間とに流体的に分離し、前記光ファイバとともに長手方向に揺動可能な区画部材とを具備し、前記第1空間または第2空間のいずれか一方は、密閉空間とされ、前記第1空間または第2空間のいずれか他方には、少なくとも1つの通気可能な開口孔が設けられた開放空間とされ、前記光ファイバは、前記密閉空間または開放空間の少なくともいずれか一方の内部にFBG部が設けられることを特徴とするものである。   One aspect of the optical pressure sensor according to the present invention is an optical fiber, a cylindrical member into which the optical fiber is inserted in the longitudinal direction, and both ends of the cylindrical member are fixed and sealed together with the optical fiber. A fixing member; and a partition member that fluidly separates the inside of the cylindrical member into a first space and a second space and swings in a longitudinal direction together with the optical fiber. One of the two spaces is a sealed space, and the other of the first space or the second space is an open space provided with at least one ventable opening, and the optical fiber is An FBG portion is provided in at least one of the sealed space and the open space.

上記構成の光学式圧力センサによれば、筒状部材の長手方向にFBG部を有する光ファイバが挿通される。この光ファイバが挿通された筒状部材の両端部を固定部材を用いて密閉しつつ、光ファイバを固定する。また、筒状部材内は、区画部材により第1空間と第2空間とに区画される。第1空間または第2空間のいずれか一方は、密閉空間とされ、いずれか他方は、通気可能な開口孔が設けられた開放空間とされて、外部の流体(気体、液体等)が導入されて外圧(外気圧、水圧等)と等しくなる。ここで、密閉空間または開放空間の少なくともいずれか一方の内部には、光ファイバのFBG部が位置される。区画部材は、光ファイバとともに筒状部材の長手方向に揺動可能に構成され、外圧と密閉空間内の所定圧力との差が生じた際、区画部材がいずれかの方向へ移動し、それに応じて光ファイバのFBG部が伸縮する。   According to the optical pressure sensor having the above configuration, the optical fiber having the FBG portion is inserted in the longitudinal direction of the cylindrical member. The optical fiber is fixed while sealing both ends of the cylindrical member through which the optical fiber is inserted using a fixing member. Moreover, the inside of the cylindrical member is partitioned into a first space and a second space by a partition member. One of the first space and the second space is a sealed space, and the other is an open space provided with an opening hole through which air can be vented, and an external fluid (gas, liquid, etc.) is introduced. It becomes equal to the external pressure (external pressure, water pressure, etc.). Here, the FBG portion of the optical fiber is positioned inside at least one of the sealed space and the open space. The partition member is configured to be swingable in the longitudinal direction of the cylindrical member together with the optical fiber, and when the difference between the external pressure and the predetermined pressure in the sealed space occurs, the partition member moves in any direction, and accordingly Thus, the FBG part of the optical fiber expands and contracts.

このように、筒状部材内の一方を密閉空間とし、他方を外圧とすることにより、外圧の変化を光ファイバのFBG部の軸方向の伸縮として直接的に検知することができる。しかも、光ファイバのFBG部は、側方の変位(曲がりによる変位)よりも軸方向の変位(伸縮による変位)の方が感度が高いため、より高感度に測定することができる。さらに、従来のように、ベースフィルムを必要としないため、ベースフィルムによってFBG部の変位が阻害または減衰されることもない。以上より、ベースフィルムが撓むことを前提としていた従来の光学式圧力センサに比べてより微小な圧力変化をも検知することができる。   In this way, by setting one of the cylindrical members as a sealed space and the other as an external pressure, a change in the external pressure can be directly detected as the expansion and contraction in the axial direction of the FBG portion of the optical fiber. Moreover, since the FBG portion of the optical fiber is more sensitive to axial displacement (displacement due to expansion / contraction) than lateral displacement (displacement due to bending), it can be measured with higher sensitivity. Further, since a base film is not required as in the prior art, the displacement of the FBG portion is not hindered or attenuated by the base film. From the above, it is possible to detect even a minute pressure change as compared with the conventional optical pressure sensor that presupposes that the base film is bent.

好ましくは、前記FBG部は、前記第1空間内に設けられ、前記開口孔は、前記第2空間に設けられるように構成される。   Preferably, the FBG portion is provided in the first space, and the opening hole is provided in the second space.

この場合、開口孔が第2空間に設けられ、FBG部のある第1空間は密閉空間とされる。したがって、密閉空間である第1空間内のFBG部に外乱となる風圧が直接的にかかることを防止することができる。   In this case, an opening hole is provided in the second space, and the first space with the FBG portion is a sealed space. Therefore, it is possible to prevent the wind pressure as a disturbance from being directly applied to the FBG portion in the first space which is a sealed space.

好ましくは、前記筒状部材は、前記光ファイバと略等しい膨張率を有するように構成される。   Preferably, the cylindrical member is configured to have an expansion coefficient substantially equal to that of the optical fiber.

この場合、筒状部材と光ファイバとは、略等しい膨張率を有しており、筒状部材が膨張した際、光ファイバも同様に膨張する。これにより、筒状部材が膨張しても光ファイバのFBG部の伸縮に影響を与え難くすることができる。したがって、筒状部材が膨張するような環境においても外乱の影響を低減してより高精度に圧力測定することができる。   In this case, the tubular member and the optical fiber have substantially the same expansion rate, and when the tubular member is expanded, the optical fiber is similarly expanded. Thereby, even if a cylindrical member expand | swells, it can make it difficult to influence the expansion-contraction of the FBG part of an optical fiber. Therefore, even in an environment where the tubular member expands, the influence of disturbance can be reduced and pressure can be measured with higher accuracy.

好ましくは、前記区画部材は、可撓性を有し、前記筒状部材に固着されるように構成される。   Preferably, the partition member has flexibility and is configured to be fixed to the cylindrical member.

この場合、区画部材は、筒状部材に固着され、外圧と密閉空間内の所定圧力との差が生じた際、区画部材がいずれかの方向へ撓むことにより光ファイバのFBG部を伸縮させる。このように、筒状部材に可撓性を有する区画部材を固着させることにより、容易に筒状部材の内部を第1空間と第2空間とに流体的に分離させるとともに、圧力変化を光ファイバのFBG部の伸縮として確実に伝えることができる。   In this case, the partition member is fixed to the cylindrical member, and when the difference between the external pressure and the predetermined pressure in the sealed space occurs, the partition member bends in either direction to expand and contract the FBG portion of the optical fiber. . As described above, by fixing the partition member having flexibility to the cylindrical member, the inside of the cylindrical member can be easily fluidly separated into the first space and the second space, and the pressure change can be changed with the optical fiber. This can be reliably transmitted as the expansion and contraction of the FBG part.

好ましくは、前記筒状部材は、いずれか一方の端部に前記固定部材が固定され、いずれか他方の端部に前記区画部材が固定されて、前記固定部材および前記区画部材の間で前記第1空間または第2空間のいずれか一方を形成する第1筒状部材と、いずれか一方の端部に前記固定部材が固定され、いずれか他方の端部が前記第1筒状部材の前記区画部材が固定された側の端部に固定されて、前記固定部材および前記区画部材の間で前記第1空間または第2空間のいずれか他方を形成する第2筒状部材とを有するように構成される。   Preferably, the cylindrical member has the fixing member fixed to any one end, the partition member fixed to any other end, and the first member between the fixing member and the partition member. A first cylindrical member that forms one of the first space and the second space, and the fixing member is fixed to one end, and the other end is the partition of the first cylindrical member. A member is fixed to an end portion on the fixed side, and has a second cylindrical member that forms either the first space or the second space between the fixing member and the partition member. Is done.

この場合、筒状部材が第1筒状部材および第2筒状部材からなり、それぞれの筒状部材内に第1空間または第2空間のいずれかが形成される。この際、第1筒状部材の固定部材が固定される端部とは反対側の端部に区画部材が固定される一方、第2筒状部材の固定部材が固定される端部とは反対側の端部は、第1筒状部材の区画部材が固定される端部に固定される。したがって、筒状部材内に区画部材を容易に固定することができるので、光学式圧力センサを容易かつ低コストに製造することができ、製造効率を高めることができる。   In this case, the cylindrical member includes a first cylindrical member and a second cylindrical member, and either the first space or the second space is formed in each cylindrical member. At this time, the partition member is fixed to the end portion opposite to the end portion to which the fixing member of the first cylindrical member is fixed, and opposite to the end portion to which the fixing member of the second cylindrical member is fixed. The side end is fixed to the end to which the partition member of the first tubular member is fixed. Therefore, since the partition member can be easily fixed in the cylindrical member, the optical pressure sensor can be manufactured easily and at low cost, and the manufacturing efficiency can be increased.

好ましくは、複数のFBG部を有する前記光ファイバに対して前記筒状部材が複数箇所設けられるように構成される。   Preferably, the cylindrical member is configured to be provided at a plurality of locations with respect to the optical fiber having a plurality of FBG portions.

この場合、一本で複数のFBG部を有する光ファイバにおいて、当該FBG部の複数箇所に筒状部材が設けられる。したがって、同時に複数箇所の測定を行うことができ、より広範囲かつ詳細な圧力変化を計測することができる。   In this case, in a single optical fiber having a plurality of FBG portions, cylindrical members are provided at a plurality of locations of the FBG portions. Therefore, it is possible to perform measurement at a plurality of locations at the same time, and it is possible to measure a wider range and detailed pressure change.

好ましくは、前記筒状部材内の前記区画部材と前記筒状部材のいずれか一方の端部との間に、光ファイバを揺動不能に固定しつつ、前記区画部材側の空間と流体的に分離して、密閉空間となる第3空間を形成する固定区画部材を具備し、前記光ファイバは、前記第3空間の内部にも、FBG部を有するように構成される。   Preferably, the optical fiber is fixed between the partition member in the tubular member and one end of the tubular member so as not to swing, and fluidly with the space on the partition member side. The optical fiber is configured to have an FBG portion also inside the third space. The fixed partition member forms a third space that is separated to form a sealed space.

この場合、筒状部材内に第1および第2空間とは別に、筒状部材の一端部の固定部材と筒状部材内の固定区画部材とで区画された第3空間が形成される。第3空間は、第1空間、第2空間および外部とは流体的に分離され、外圧の影響を受けない。この第3空間内に第1空間または第2空間内の感圧用のFBG部とは別のFBG部が配置される。したがって、第3空間内のFBG部は、外圧の影響を受けることなく、温度変化による変位を検知することができる。これにより、感圧用のFBG部で測定された変位から第3空間内のFBG部で測定された変位を差し引くことにより、温度変化による変位分を相殺することができるため、温度変化の影響を受けることなく、より高精度に圧力変化を測定することができる。   In this case, apart from the first and second spaces, a third space defined by a fixing member at one end of the cylindrical member and a fixed partition member in the cylindrical member is formed in the cylindrical member. The third space is fluidly separated from the first space, the second space, and the outside, and is not affected by external pressure. In this third space, an FBG part different from the pressure-sensitive FBG part in the first space or the second space is arranged. Therefore, the FBG portion in the third space can detect the displacement due to the temperature change without being affected by the external pressure. As a result, by subtracting the displacement measured by the FBG portion in the third space from the displacement measured by the pressure-sensitive FBG portion, the displacement due to the temperature change can be canceled out, so that it is affected by the temperature change. Therefore, the pressure change can be measured with higher accuracy.

あるいは、長手方向に前記光ファイバが挿通され、内部に前記光ファイバのFBG部を有するように、両端部が固定部材で固定されて内部が密閉空間となった温度補償用筒状部材を具備し、複数のFBG部を有する前記光ファイバに対して前記温度補償用筒状部材および前記筒状部材が少なくとも1箇所ずつ設けられるように構成される。   Alternatively, a temperature-compensating cylindrical member having both ends fixed by fixing members and the inside becoming a sealed space so that the optical fiber is inserted in the longitudinal direction and the FBG portion of the optical fiber is included inside. The temperature-compensating cylindrical member and the cylindrical member are configured to be provided at least one place for the optical fiber having a plurality of FBG portions.

この場合、あるFBG部に設けられた第1空間および第2空間を有する筒状部材において圧力変化(温度変化分を含む)による変位が計測される。そして、別途両端部が固定部材により固定されて内部が密閉空間となった温度補償用筒状部材が別のFBG部に設けられ、当該温度補償用筒状部材内のFBG部において外圧の影響を受けることなく、温度変化による変位が検知される。これにより、第1空間内のFBG部で測定された変位から温度補償用筒状部材の密閉空間内のFBG部で測定された変位を差し引くことにより、温度変化による変位分を相殺することができるため、温度変化の影響を受けることなく、より高精度に圧力変化を測定することができる。   In this case, the displacement due to the pressure change (including the temperature change) is measured in the cylindrical member having the first space and the second space provided in a certain FBG portion. Then, a temperature compensating cylindrical member whose both ends are fixed by a fixing member and the inside becomes a sealed space is provided in another FBG portion, and the influence of external pressure is exerted on the FBG portion in the temperature compensating cylindrical member. The displacement due to the temperature change is detected without receiving. Thereby, the displacement due to the temperature change can be canceled by subtracting the displacement measured in the FBG portion in the sealed space of the temperature compensating tubular member from the displacement measured in the FBG portion in the first space. Therefore, the pressure change can be measured with higher accuracy without being affected by the temperature change.

好ましくは、前記光ファイバがシートフィルムに固着されているように構成される。   Preferably, the optical fiber is configured to be fixed to a sheet film.

この場合、光ファイバがシートフィルムに固着されるため、光学式圧力センサをシート状にすることができ、計測対象に容易に取り付けることができる。   In this case, since the optical fiber is fixed to the sheet film, the optical pressure sensor can be formed into a sheet shape and can be easily attached to the measurement target.

また、本発明に係る光学式圧力センサの他の態様は、光ファイバと、長手方向に前記光ファイバが挿通される筒状部材と、前記筒状部材の両端部を前記光ファイバとともに固定して密閉する固定部材と、前記筒状部材の内部を第1空間と第2空間とに流体的に分離し、前記光ファイバとともに長手方向に揺動可能な区画部材とを具備し、前記光ファイバは、前記第1空間または第2空間の少なくともいずれか一方の内部にFBG部が設けられ、前記第1空間および第2空間の双方に、少なくとも1つの通気可能な開口孔がそれぞれ設けられ、前記第1空間または第2空間のいずれか一方は、前記開口孔から通気パイプを通じて空間内が一定の基準圧に維持されることを特徴とするものである。   In another aspect of the optical pressure sensor according to the present invention, an optical fiber, a cylindrical member into which the optical fiber is inserted in the longitudinal direction, and both ends of the cylindrical member are fixed together with the optical fiber. A fixing member for sealing, and a partition member that fluidly separates the inside of the cylindrical member into a first space and a second space, and is swingable in a longitudinal direction together with the optical fiber, the optical fiber comprising: , An FBG portion is provided in at least one of the first space and the second space, and at least one ventable opening is provided in each of the first space and the second space. One of the first space and the second space is characterized in that the space is maintained at a constant reference pressure from the opening hole through the ventilation pipe.

上記構成の光学式圧力センサによれば、筒状部材の長手方向にFBG部を有する光ファイバが挿通される。この光ファイバが挿通された筒状部材の両端部を固定部材を用いて密閉しつつ、光ファイバを固定する。また、筒状部材内は、区画部材により第1空間と第2空間とに区画される。第1空間または第2空間の少なくとも一方の内部には、光ファイバのFBG部が位置するように固定されている。第1空間および第2空間の双方に通気可能な開口孔が設けられる。このうち、第1空間または第2空間のいずれか一方に設けられた開口孔には、通気パイプを通じて空間内が一定の基準圧に維持されており、いずれか他方に設けられた開口孔には外部の流体が導入されて外圧と等しくなる。区画部材は、光ファイバとともに筒状部材の長手方向に揺動可能に構成され、外圧と基準圧との差が生じた際、区画部材がいずれかの方向へ移動し、それに応じて光ファイバのFBG部が伸縮する。   According to the optical pressure sensor having the above configuration, the optical fiber having the FBG portion is inserted in the longitudinal direction of the cylindrical member. The optical fiber is fixed while sealing both ends of the cylindrical member through which the optical fiber is inserted using a fixing member. Moreover, the inside of the cylindrical member is partitioned into a first space and a second space by a partition member. The FBG portion of the optical fiber is fixed so as to be located in at least one of the first space and the second space. Openable holes are provided in both the first space and the second space. Among these, in the opening hole provided in either the first space or the second space, the inside of the space is maintained at a constant reference pressure through the ventilation pipe, and in the opening hole provided in either one of the two, External fluid is introduced to equal the external pressure. The partition member is configured to be swingable in the longitudinal direction of the cylindrical member together with the optical fiber, and when the difference between the external pressure and the reference pressure occurs, the partition member moves in either direction, and accordingly, the optical fiber The FBG part expands and contracts.

このように、筒状部材内の一方を基準圧に維持し、他方を外圧とすることにより、外圧の変化を光ファイバのFBG部の軸方向の伸縮として直接的に検知することができる。しかも、光ファイバのFBG部は、側方の変位(曲がりによる変位)よりも軸方向の変位(伸縮による変位)の方が感度が高いため、より高感度に測定することができる。さらに、従来のように、ベースフィルムを必要としないため、ベースフィルムによってFBG部の変位が阻害または減衰されることもない。以上より、ベースフィルムが撓むことを前提としていた従来の光学式圧力センサに比べてより微小な圧力変化をも検知することができる。   Thus, by maintaining one of the cylindrical members at the reference pressure and using the other as the external pressure, a change in the external pressure can be directly detected as the expansion and contraction in the axial direction of the FBG portion of the optical fiber. Moreover, since the FBG portion of the optical fiber is more sensitive to axial displacement (displacement due to expansion / contraction) than lateral displacement (displacement due to bending), it can be measured with higher sensitivity. Further, since a base film is not required as in the prior art, the displacement of the FBG portion is not hindered or attenuated by the base film. From the above, it is possible to detect even a minute pressure change as compared with the conventional optical pressure sensor that presupposes that the base film is bent.

本発明に係る光学式圧力センサの製造方法は、第1筒状部材または第2筒状部材のいずれか一方の側面に少なくとも1つの通気可能な開口孔を設ける工程と、少なくとも1つのFBG部を有する光ファイバを前記第1筒状部材内に挿通する工程と、前記FBG部が前記第1筒状部材内に位置するように、前記第1筒状部材の一端部を固定部材を用いて光ファイバとともに固定して密閉する工程と、前記第1筒状部材の他端部を前記光ファイバとともに長手方向に揺動可能な可撓性の区画部材で密閉することにより、前記固定部材と前記区画部材との間の第1筒状部材内に第1空間を形成する工程と、前記第1筒状部材の他端部が前記第2筒状部材の一端部を向いた状態となるように前記第2筒状部材に前記光ファイバを挿通し、前記第1筒状部材の他端部と前記第2筒状部材の一端部とを固定する工程と、前記第2筒状部材の他端部を固定部材を用いて光ファイバとともに固定して密閉することにより、前記固定部材と前記区画部材との間の第2筒状部材内に第2空間を形成する工程とを有することを特徴とするものである。   The method for manufacturing an optical pressure sensor according to the present invention includes a step of providing at least one ventable opening on one side surface of the first cylindrical member or the second cylindrical member, and at least one FBG portion. A step of inserting an optical fiber having the first cylindrical member into the first cylindrical member, and an end portion of the first cylindrical member using a fixing member so that the FBG portion is positioned in the first cylindrical member. Fixing and sealing together with the fiber, and sealing the other end of the first tubular member with a flexible partitioning member that can swing in the longitudinal direction together with the optical fiber, so that the fixing member and the partitioning Forming the first space in the first tubular member between the member and the other end of the first tubular member facing the one end of the second tubular member; The optical fiber is inserted into a second cylindrical member, and the first cylindrical shape Fixing the other end of the material and one end of the second cylindrical member, and fixing the other end of the second cylindrical member together with the optical fiber using a fixing member, Forming a second space in the second cylindrical member between the fixing member and the partition member.

上記のような光学式圧力センサの製造方法によれば、まず、第1筒状部材または第2筒状部材のいずれか一方の側面に少なくとも1つの通気可能な開口孔が設けられ、少なくとも1つのFBG部を有する光ファイバが前記第1筒状部材内に挿通される。そして、FBG部が前記第1筒状部材内に位置するように、前記第1筒状部材の一端部が固定部材を用いて光ファイバとともに固定され、密閉される。この後、前記第1筒状部材の他端部が前記光ファイバとともに長手方向に揺動可能な可撓性の区画部材で密閉されることにより、前記固定部材と前記区画部材との間の第1筒状部材内に第1空間が形成される。続いて、前記第1筒状部材の他端部が前記第2筒状部材の一端部を向いた状態となるように前記第2筒状部材に前記光ファイバが挿通され、前記第1筒状部材の他端部と前記第2筒状部材の一端部とが固定される。さらに、前記第2筒状部材の他端部が固定部材を用いて光ファイバとともに固定されて密閉されることにより、前記固定部材と前記区画部材との間の第2筒状部材内に第2空間が形成される。   According to the manufacturing method of the optical pressure sensor as described above, first, at least one vent hole is provided on one side surface of the first cylindrical member or the second cylindrical member, and at least one An optical fiber having an FBG portion is inserted into the first cylindrical member. And the one end part of the said 1st cylindrical member is fixed with an optical fiber using a fixing member so that an FBG part may be located in the said 1st cylindrical member, and is sealed. Thereafter, the other end portion of the first cylindrical member is sealed with a flexible partition member that can swing in the longitudinal direction together with the optical fiber, so that the first member between the fixed member and the partition member is sealed. A first space is formed in one cylindrical member. Subsequently, the optical fiber is inserted into the second tubular member such that the other end portion of the first tubular member faces the one end portion of the second tubular member, and the first tubular shape is inserted. The other end of the member and one end of the second tubular member are fixed. Furthermore, the other end portion of the second cylindrical member is fixed together with the optical fiber using a fixing member and sealed, so that the second cylindrical member between the fixing member and the partition member is second. A space is formed.

このように、第1空間を形成した後に、第2空間を形成することにより、筒状部材の内部に形成する区画部材の固定を容易に行うことができる。したがって、光学式圧力センサを容易かつ低コストに製造することができ、製造効率を高めることができる。   Thus, after forming 1st space, fixation of the division member formed in the inside of a cylindrical member can be performed easily by forming 2nd space. Therefore, the optical pressure sensor can be manufactured easily and at low cost, and the manufacturing efficiency can be increased.

本発明に係る光学式圧力センサおよびその製造方法によれば、筒状部材内の一方を密閉空間または基準圧に維持することとし、他方を外圧とすることにより、外圧の圧力変化を光ファイバのFBG部の軸方向の伸縮として直接的に検知することができる。しかも、光ファイバのFBG部は、側方の変位(曲がりによる変位)よりも軸方向の変位(伸縮による変位)の方が感度が高いため、より高感度に測定することができる。さらに、従来のように、ベースフィルムを必要としないため、ベースフィルムによってFBG部の変位が阻害または減衰されることもない。以上より、ベースフィルムが撓むことを前提としていた従来の光学式圧力センサに比べてより微小な圧力変化をも検知することができる。また、第1空間または第2空間のいずれか一方を形成した後に、第1空間または第2空間のいずれか他方を形成することにより、筒状部材の内部に形成する区画部材の固定を容易に行うことができる。したがって、光学式圧力センサを容易かつ低コストに製造することができ、製造効率を高めることができる。   According to the optical pressure sensor and the method for manufacturing the same according to the present invention, one of the cylindrical members is maintained in a sealed space or a reference pressure, and the other is set as an external pressure, so that the pressure change of the external pressure is reduced. It can be directly detected as the expansion and contraction of the FBG portion in the axial direction. Moreover, since the FBG portion of the optical fiber is more sensitive to axial displacement (displacement due to expansion / contraction) than lateral displacement (displacement due to bending), it can be measured with higher sensitivity. Further, since a base film is not required as in the prior art, the displacement of the FBG portion is not hindered or attenuated by the base film. From the above, it is possible to detect even a minute pressure change as compared with the conventional optical pressure sensor that presupposes that the base film is bent. In addition, after forming either the first space or the second space, the partition member formed inside the cylindrical member can be easily fixed by forming either the first space or the second space. It can be carried out. Therefore, the optical pressure sensor can be manufactured easily and at low cost, and the manufacturing efficiency can be increased.

以下、本発明に係る光学式圧力センサの好ましい実施形態について、添付図面を参照しつつ説明する。図1は本発明に係る第1実施形態における光学式圧力センサの概略平面図である。図2は図1の光学式圧力センサの感圧部の1つを示す図である。図2(a)は上面図であり、図2(b)は図2(a)のA−A断面図である。   Hereinafter, a preferred embodiment of an optical pressure sensor according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic plan view of an optical pressure sensor according to the first embodiment of the present invention. FIG. 2 is a view showing one of the pressure sensitive parts of the optical pressure sensor of FIG. FIG. 2A is a top view, and FIG. 2B is a cross-sectional view taken along the line AA in FIG.

本実施形態においては、図1に示すように、光学式センサ1は、複数(6つ)の感圧部2を有する光ファイバ3により構成される。感圧部2は、光ファイバ3に設けられたFBG部31に後述する筒状部材5を長手方向から挿通して構成される。FBG部31は、光ファイバ3のコア部の屈折率を周期的に変化させた回折格子構造からなり、入射光がFBG部31を通過すると、所定の波長(ブラッグ波長)成分のみが反射されるものである。光ファイバ3の先端にはプローブ4が取り付けられ、光源及び受光器(ともに図示せず)が取り付けられ、光源からの入射光に対して反射して戻ってきた光の波長を受光器にて測定する。   In the present embodiment, as shown in FIG. 1, the optical sensor 1 is constituted by an optical fiber 3 having a plurality (six) of pressure-sensitive parts 2. The pressure-sensitive part 2 is configured by inserting a cylindrical member 5 described later from the longitudinal direction into an FBG part 31 provided in the optical fiber 3. The FBG portion 31 has a diffraction grating structure in which the refractive index of the core portion of the optical fiber 3 is periodically changed. When incident light passes through the FBG portion 31, only a predetermined wavelength (Bragg wavelength) component is reflected. Is. A probe 4 is attached to the tip of the optical fiber 3, a light source and a light receiver (both not shown) are attached, and the wavelength of the light reflected and returned from the incident light from the light source is measured by the light receiver. To do.

ここで、外部圧力の変化によりFBG部31に伸縮や歪みが生じると、FBG部31の回折格子の格子ピッチが伸縮し、反射されるブラッグ波長が変位する。この変位量を測定することにより、FBG部31の歪み量、つまりFBG部31にかかる圧力を測定することができる。   Here, when expansion or contraction or distortion occurs in the FBG unit 31 due to a change in external pressure, the grating pitch of the diffraction grating of the FBG unit 31 expands or contracts, and the reflected Bragg wavelength is displaced. By measuring the amount of displacement, the strain amount of the FBG unit 31, that is, the pressure applied to the FBG unit 31 can be measured.

なお、光ファイバ3のプローブ4が取り付けられた側の端部とは反対側の端部にもプローブを取り付けて、一方に光源、他方に受光器を取り付けることとしてもよい。この際には、受光器において入射光のうち透過して来ない波長を測定することとなる。   A probe may be attached to the end of the optical fiber 3 opposite to the end where the probe 4 is attached, and a light source may be attached to one end and a light receiver attached to the other end. At this time, the wavelength of the incident light that does not pass through the light receiver is measured.

本実施形態において、前記光ファイバ3には、FBG部31が長手方向に沿って複数(6つ)設けられている。なお、FBG部31は、1つのみ用いてもよいし、6つより多くても少なくても同様に適用できる。   In the present embodiment, the optical fiber 3 is provided with a plurality (six) of FBG portions 31 along the longitudinal direction. Note that only one FBG unit 31 may be used, and more or less than six FBG units 31 can be similarly applied.

6つのFBG部31は、反射特性(ブラッグ波長)が異なる。例えば、ある1つのFBG部31の圧力変化がない状態(初期状態)におけるブラッグ波長が1520nmである場合に、他のFBG部31のブラッグ波長として、順に1nmずつ増やした波長(1521nm,1522nm,…)を適用することができる。この場合、光源からの入射光の波長は、上記ブラッグ波長を含む波長でなければならない。つまり、例えば、1520nm−1570nmの波長領域を有する入射光を使用する。このようにして、予め定められた各ブラッグ波長の変位をそれぞれ測定することにより、従来の圧電式、半導体式の圧力センサのようにチューブを使用することなく容易に複数(多数)点での計測が可能となる。これにより、より広範囲かつ詳細な圧力変化を計測することができる。なお、本実施形態において、感圧部2は、それぞれシート状のフィルム200に取り付けられ、フィルム200を計測対象の表面に貼り付けることにより、圧力測定を行うが、直接計測対象に貼り付けたり、別の治具を用いて取り付けることとしてもよい。   The six FBG units 31 have different reflection characteristics (Bragg wavelengths). For example, when the Bragg wavelength in a state in which there is no pressure change in one FBG unit 31 (initial state) is 1520 nm, the Bragg wavelengths of the other FBG units 31 are sequentially increased by 1 nm (1521 nm, 1522 nm,... ) Can be applied. In this case, the wavelength of incident light from the light source must be a wavelength including the Bragg wavelength. That is, for example, incident light having a wavelength region of 1520 nm to 1570 nm is used. In this way, by measuring the displacement of each predetermined Bragg wavelength, it is easy to measure at multiple (multiple) points without using a tube like conventional piezoelectric and semiconductor pressure sensors. Is possible. Thereby, a wider range and detailed pressure change can be measured. In the present embodiment, each pressure-sensitive part 2 is attached to a sheet-like film 200 and measures the pressure by sticking the film 200 to the surface of the measurement object. It is good also as attaching using another jig | tool.

本実施形態の感圧部2は、図2に示すように、前記筒状部材5の両端部51,52を前記光ファイバ3とともに固定して密閉する固定部材6と、前記筒状部材5の内部を前記FBG部31を有する第1空間S1と前記FBG部31を有しない第2空間S2とに流体的に分離し、前記光ファイバ3とともに長手方向に揺動可能な可撓性の区画部材7とをさらに具備する。そして、前記第1空間S1は、密閉空間とされ、前記第2空間S2には、少なくとも1つ(図示は1つ)の通気可能な開口孔8が設けられた開放空間とされることを特徴とするものである。   As shown in FIG. 2, the pressure-sensitive portion 2 of the present embodiment includes a fixing member 6 that fixes and seals both end portions 51 and 52 of the cylindrical member 5 together with the optical fiber 3, and the cylindrical member 5. A flexible partition member that is fluidly separated into a first space S1 having the FBG portion 31 and a second space S2 not having the FBG portion 31 and is capable of swinging in the longitudinal direction together with the optical fiber 3 7 is further provided. The first space S1 is a sealed space, and the second space S2 is an open space provided with at least one (in the figure, one) vent hole 8 that can be ventilated. It is what.

上記構成の光学式圧力センサ1によれば、光ファイバ3が挿通された筒状部材5の両端部51,52を固定部材6を用いて密閉しつつ、光ファイバ3を固定する。これにより、感圧部2の外方から光ファイバ3を引っ張っても固定部材6の内部に位置するFBG部31には負荷がかからないため、光ファイバ3の張力変化による外乱の影響を効果的に防止することができる。また、筒状部材5内は、区画部材7により第1空間S1と第2空間S2とに区画される。第1空間S1内には、光ファイバ3のFBG部31が位置し、第2空間S2内には、FBG部31が位置しないように固定されている。第1空間S1は、密閉空間とされる一方、第2空間S2は、通気可能な開口孔8が設けられた開放空間とされ、外部の流体(空気、水等)が導入されて外圧(外気圧、水圧等)と等しくなる。なお、本実施形態においては、筒状部材5の長手方向略中央に区画部材7が設けられるが、これに限定されることなく、位置の設定は、種々可能である。   According to the optical pressure sensor 1 having the above configuration, the optical fiber 3 is fixed while the both ends 51 and 52 of the cylindrical member 5 through which the optical fiber 3 is inserted are sealed using the fixing member 6. Thereby, even if the optical fiber 3 is pulled from the outside of the pressure-sensitive part 2, no load is applied to the FBG part 31 positioned inside the fixing member 6, so that the influence of disturbance due to a change in the tension of the optical fiber 3 is effectively prevented. Can be prevented. Further, the inside of the cylindrical member 5 is partitioned into a first space S1 and a second space S2 by a partition member 7. The FBG portion 31 of the optical fiber 3 is located in the first space S1, and the FBG portion 31 is fixed so as not to be located in the second space S2. The first space S1 is a sealed space, while the second space S2 is an open space provided with an opening 8 through which air can be vented, and an external fluid (air, water, etc.) is introduced to external pressure (external pressure). Pressure, water pressure, etc.). In the present embodiment, the partition member 7 is provided substantially at the center in the longitudinal direction of the cylindrical member 5, but the position is not limited to this, and various positions can be set.

区画部材7は、光ファイバ3とともに筒状部材5の長手方向に揺動可能に構成され、外圧と密閉空間内の所定圧力との差が生じた際、区画部材7がいずれかの方向へ移動し、それに応じて光ファイバ3のFBG部31が伸縮する。図3は図2(b)において外圧変化が生じた際の様子を示す断面図である。図3(a)は正圧が生じた際の様子を示す図であり、図3(b)は負圧が生じた際の様子を示す図である。図3(a)に示すように、正圧(外圧>密閉空間内圧力)が生じると区画部材7が第2空間S2側に移動し、それに伴ってFBG部31が収縮する。一方、図3(b)に示すように、負圧(外圧<密閉空間内圧力)が生じると区画部材7が第1空間S1側に移動し、それに伴ってFBG部31が延伸する。   The partition member 7 is configured to be swingable in the longitudinal direction of the cylindrical member 5 together with the optical fiber 3, and when the difference between the external pressure and the predetermined pressure in the sealed space occurs, the partition member 7 moves in any direction. Accordingly, the FBG portion 31 of the optical fiber 3 expands and contracts accordingly. FIG. 3 is a cross-sectional view showing a state when an external pressure change occurs in FIG. FIG. 3A is a diagram illustrating a state when a positive pressure is generated, and FIG. 3B is a diagram illustrating a state when a negative pressure is generated. As shown in FIG. 3A, when positive pressure (external pressure> pressure in the sealed space) is generated, the partition member 7 moves to the second space S2 side, and the FBG portion 31 contracts accordingly. On the other hand, as shown in FIG. 3B, when negative pressure (external pressure <pressure in the sealed space) is generated, the partition member 7 moves to the first space S1 side, and the FBG portion 31 extends accordingly.

このように、筒状部材5内の一方(第1空間S1)を密閉空間とし、他方(第2空間S2)を開放空間(外圧)とすることにより、外圧の変化を光ファイバ3のFBG部31の軸方向の伸縮として直接的に検知することができる。しかも、光ファイバ3のFBG部31は、側方の変位(曲がりによる変位)よりも軸方向の変位(伸縮による変位)の方が感度が高いため、より高感度に測定することができる。さらに、従来のように、ベースフィルムを必要としないため、ベースフィルムによってFBG部31の変位が阻害または減衰されることもない。以上より、ベースフィルムが撓むことを前提としていた従来の光学式圧力センサに比べてより微小な圧力変化をも検知することができる。   In this way, by changing one (first space S1) in the cylindrical member 5 as a sealed space and the other (second space S2) as an open space (external pressure), the change in the external pressure is caused by the FBG portion of the optical fiber 3. It can be directly detected as 31 axial expansion and contraction. In addition, since the FBG section 31 of the optical fiber 3 is more sensitive to axial displacement (displacement due to expansion / contraction) than lateral displacement (displacement due to bending), it can measure with higher sensitivity. Furthermore, since a base film is not required as in the prior art, the displacement of the FBG portion 31 is not hindered or attenuated by the base film. From the above, it is possible to detect even a minute pressure change as compared with the conventional optical pressure sensor that presupposes that the base film is bent.

また、開口孔8がFBG部31のない第2空間S2に設けられ、FBG部31のある第1空間S1が密閉空間とされる。したがって、密閉空間である第1空間S1内のFBG部31に外乱となる風圧が直接的にかかることを防止することができる。   Moreover, the opening hole 8 is provided in 2nd space S2 without the FBG part 31, and 1st space S1 with the FBG part 31 is made into sealed space. Therefore, it is possible to prevent a wind pressure that is a disturbance from being directly applied to the FBG portion 31 in the first space S1 that is a sealed space.

ここで、筒状部材5は、金属管やガラス管等の剛性を有する種々の筒状(円筒、角筒等は問わない)の部材が用いられるが、好ましくは、光ファイバ3(を構成するガラス素材)と膨張率が略同等のガラス管を用いることが好ましい。光ファイバ3と同等の膨張率とすることにより、温度変化により筒状部材5が膨張・収縮することに起因する光ファイバ3のFBG部の伸縮作用(外乱となる)を低減させることができる。   Here, as the cylindrical member 5, various cylindrical members (such as cylindrical and rectangular tubes) having rigidity such as a metal tube and a glass tube are used. Preferably, the optical member 3 is configured. It is preferable to use a glass tube having an expansion coefficient substantially equal to that of the glass material. By setting the expansion coefficient to be equal to that of the optical fiber 3, it is possible to reduce the expansion / contraction action (disturbance) of the FBG portion of the optical fiber 3 caused by the expansion and contraction of the tubular member 5 due to the temperature change.

また、区画部材7は、例えば、Si系樹脂等の薄膜フィルムを貼り付けたり、筒状部材5内に薄くゴム材料を充填すること等によりダイヤフラム機構を有するべく形成される。筒状部材5に可撓性を有する区画部材7を固着させることにより、容易に筒状部材5の内部を第1空間S1と第2空間S2とに流体的に分離させるとともに、圧力変化を光ファイバ3のFBG部31の伸縮として確実に伝えることができる。   Moreover, the partition member 7 is formed so as to have a diaphragm mechanism, for example, by attaching a thin film such as a Si-based resin or by filling a thin rubber material into the cylindrical member 5. By fixing the flexible partition member 7 to the cylindrical member 5, the inside of the cylindrical member 5 can be easily fluidly separated into the first space S1 and the second space S2, and the pressure change can be lightened. This can be reliably transmitted as the expansion and contraction of the FBG portion 31 of the fiber 3.

なお、筒状部材5の材質、全長および直径、区画部材7の材質および厚み、開口孔8の開口径等は、計測する圧力の大きさ、圧力の種類(水圧、空気圧等)に応じて種々変更される。例えば、筒状部材5の全長約20mm、直径約0.5〜1mm、開口孔の開口径0.2〜0.3mm程度の寸法が採用可能である(図示は見易いように縮尺を変えてある)。   The material of the cylindrical member 5, the total length and diameter, the material and thickness of the partition member 7, the opening diameter of the opening hole 8, and the like vary depending on the magnitude of pressure to be measured and the type of pressure (water pressure, air pressure, etc.) Be changed. For example, the overall length of the cylindrical member 5 is about 20 mm, the diameter is about 0.5 to 1 mm, and the opening diameter of the opening hole is about 0.2 to 0.3 mm (the scale is changed for easy viewing). ).

ただし、開口孔8は、可及的に小径であることが好ましい。流体は、波状に圧力変化するため、局所的に圧力が大きくなったり小さくなったりする。これに対し、開口孔8の開口径があまり大きいと液体の圧力が平均化されてしまい、局所的な圧力変位を計測することができない。したがって、開口孔8の開口径を可及的に小径とすることにより、圧力計測の分解能を高めることができる。また、開口孔8は、円形の他、長円(楕円)、角形等、形状は種々適用可能であり、その個数、位置も適宜採用可能である。   However, the opening hole 8 is preferably as small as possible. Since the fluid pressure changes in a wave shape, the pressure locally increases or decreases. On the other hand, when the opening diameter of the opening hole 8 is too large, the liquid pressure is averaged, and the local pressure displacement cannot be measured. Therefore, the resolution of pressure measurement can be increased by making the opening diameter of the opening hole 8 as small as possible. In addition to the circular shape, the opening hole 8 can have various shapes such as an ellipse (ellipse), a square, and the like, and the number and position thereof can be appropriately employed.

また、光ファイバ3は、FBG部31に長手方向への引張力が付加された状態で、該FBG部31の両側が前記固定部材5により固定されることがより好ましい。これは、FBG部31において、FBG部31への引張力と反射するブラッグ波長とは線形的な特性を有するため、FBG部31の両端部に予め所定の引張力を付加しておくことにより、基準となる(圧力変化を生じていないときの)ブラッグ波長を安定化させることができる。   The optical fiber 3 is more preferably fixed by the fixing member 5 on both sides of the FBG portion 31 in a state where a tensile force in the longitudinal direction is applied to the FBG portion 31. This is because, in the FBG part 31, the tensile force to the FBG part 31 and the reflected Bragg wavelength have linear characteristics, so by adding a predetermined tensile force to both ends of the FBG part 31 in advance, The reference Bragg wavelength (when no pressure change occurs) can be stabilized.

なお、本実施形態においては、FBG部31のない第2空間S2に開口孔8を設けることとしたが、これに限られず、FBG部31のある第1空間S1に開口孔8を設けることとしてもよい。また、FBG部31は、第2空間S2内にも設けられることとしてもよい。   In the present embodiment, the opening hole 8 is provided in the second space S2 without the FBG portion 31. However, the present invention is not limited to this, and the opening hole 8 is provided in the first space S1 with the FBG portion 31. Also good. In addition, the FBG unit 31 may be provided in the second space S2.

また、前記固定部材6は、前記筒状部材5と略等しい膨張率を有することが好ましい。より具体的には、例えば、筒状部材5がガラス管である場合、ガラスと膨張率が略等しいエポキシ系の接着剤を充填する等により固定部材6が構成される。これにより、筒状部材が膨張しても光ファイバのFBG部の伸縮に影響を与え難くすることができる。したがって、筒状部材が膨張するような環境においても外乱の影響を低減してより高精度に圧力測定することができる。   Further, the fixing member 6 preferably has an expansion coefficient substantially equal to that of the tubular member 5. More specifically, for example, when the cylindrical member 5 is a glass tube, the fixing member 6 is configured by filling an epoxy-based adhesive having an expansion coefficient substantially equal to that of glass. Thereby, even if a cylindrical member expand | swells, it can make it difficult to influence the expansion-contraction of the FBG part of an optical fiber. Therefore, even in an environment where the tubular member expands, the influence of disturbance can be reduced and pressure can be measured with higher accuracy.

本実施形態においては、図1に示すように、6つのFBG部31を有する前記光ファイバ3に対して、6つのうちの5つのFBG部31が感圧部2として構成されるべく、圧力計測用の筒状部材5が取り付けられる一方、残りの1つは、温度補償部21として、温度補償用筒状部材9が取り付けられるように構成される。図4は図1の光学式圧力センサの温度補償部を示す図である。図4(a)は上面図であり、図4(b)は図4(a)のB−B断面図である。この温度補償用筒状部材9は、図4に示すように、長手方向に前記光ファイバ3が挿通され、内部に前記光ファイバ3のFBG部31を有するように、両端部91,92が固定部材6で固定されて内部が密閉空間となったものである。   In the present embodiment, as shown in FIG. 1, pressure measurement is performed so that five of the six FBG units 31 are configured as the pressure sensitive unit 2 with respect to the optical fiber 3 having six FBG units 31. While the cylindrical member 5 is attached, the remaining one is configured as the temperature compensating portion 21 so that the temperature compensating cylindrical member 9 is attached. FIG. 4 is a diagram showing a temperature compensation unit of the optical pressure sensor of FIG. 4A is a top view, and FIG. 4B is a cross-sectional view taken along the line BB in FIG. 4A. As shown in FIG. 4, the temperature compensating cylindrical member 9 has both end portions 91 and 92 fixed so that the optical fiber 3 is inserted in the longitudinal direction and the FBG portion 31 of the optical fiber 3 is provided inside. It is fixed by the member 6 and the inside becomes a sealed space.

この場合、第1空間S1および第2空間S2を有する筒状部材5が挿通された5つのFBG部31において圧力変化(温度変化分を含む)による変位が計測される。そして、別途両端部91,92が固定部材6により固定されて内部が密閉空間となった温度補償用筒状部材9が残り1つのFBG部31に設けられ、当該温度補償用筒状部材9内のFBG部31において外圧の影響を受けることなく、温度変化による変位が検知される。これにより、筒状部材5の第1空間S1内のFBG部31で測定された変位から温度補償用筒状部材9の密閉空間内のFBG部31で測定された変位を差し引くことにより、温度変化による変位分を相殺することができるため、温度変化の影響を受けることなく、より高精度に圧力変化を測定することができる。なお、本実施形態においては、一連の(複数のFBG部31が直列接続された)光学式圧力センサ1において1つ設ける構成であるが、複数設けてもよい。また、温度補償部21の配置は特に限定されないが、同じ温度条件となる程度に感圧部2に近接して設けられることが好ましい。   In this case, the displacement due to the pressure change (including the temperature change) is measured in the five FBG portions 31 through which the cylindrical members 5 having the first space S1 and the second space S2 are inserted. Further, the temperature compensating cylindrical member 9 in which both end portions 91 and 92 are separately fixed by the fixing member 6 and the inside becomes a sealed space is provided in the remaining one FBG portion 31, and the inside of the temperature compensating cylindrical member 9 In the FBG portion 31, the displacement due to the temperature change is detected without being affected by the external pressure. Thereby, the temperature change is obtained by subtracting the displacement measured in the FBG portion 31 in the sealed space of the temperature compensating tubular member 9 from the displacement measured in the FBG portion 31 in the first space S1 of the tubular member 5. Since the displacement due to can be offset, the pressure change can be measured with higher accuracy without being affected by the temperature change. In the present embodiment, one optical pressure sensor 1 is provided in the series (a plurality of FBG units 31 are connected in series), but a plurality of optical pressure sensors 1 may be provided. In addition, the arrangement of the temperature compensation unit 21 is not particularly limited, but it is preferable that the temperature compensation unit 21 be provided as close to the pressure-sensitive unit 2 as the same temperature condition.

なお、本実施形態における光学式圧力センサ1を複数直列接続して圧力計測を行うことも可能である。光ファイバ3内においては入射光の減衰が少ないため、このような接続を行っても測定誤差が低下することなく測定可能である。したがって、このように光学式圧力センサ1をユニット化し、複数の光学式圧力センサ1を接続することにより、1つのチャンネルで同時に数多くの箇所の圧力を測定することもできる。   It is also possible to perform pressure measurement by connecting a plurality of optical pressure sensors 1 in this embodiment in series. Since the attenuation of incident light is small in the optical fiber 3, even if such a connection is made, measurement can be performed without a reduction in measurement error. Therefore, the pressure of many places can be simultaneously measured by one channel by unitizing the optical pressure sensor 1 and connecting a plurality of optical pressure sensors 1 in this way.

本実施形態において、図1のような個々のフィルム20上のそれぞれに筒状部材5および温度補償用筒状部材9を設置する代わりに、複数のFBG部31が1枚のシートフィルム22上に設置されてもよい。つまり、光ファイバ3がシートフィルム22に固着されているように構成される。図5は本実施形態の光学式圧力センサを1枚のシートフィルム上に設置した状態を示す図である。また、図6は図5の光学式圧力センサの組み付け図である。   In the present embodiment, instead of installing the tubular member 5 and the temperature compensating tubular member 9 on each individual film 20 as shown in FIG. 1, a plurality of FBG portions 31 are formed on one sheet film 22. It may be installed. That is, the optical fiber 3 is configured to be fixed to the sheet film 22. FIG. 5 is a view showing a state in which the optical pressure sensor of the present embodiment is installed on one sheet film. FIG. 6 is an assembly diagram of the optical pressure sensor of FIG.

図6に示すように、シートフィルム22は、ベースフィルム221およびカバーフィルム222からなり、光ファイバ3が両者に挟み込まれた状態で固着される。また、筒状部材5の開口孔8上のカバーフィルム222には、開口孔8に相当する位置に通気孔223が設けられ、筒状部材5内に外部の流体を導入する。以上のように、光ファイバ3およびFBG部31がシートフィルム22に固着されるため、光学式圧力センサをシート状にすることができ、計測対象に容易に取り付けることができる。   As shown in FIG. 6, the sheet film 22 includes a base film 221 and a cover film 222, and is fixed in a state where the optical fiber 3 is sandwiched between the two. The cover film 222 on the opening hole 8 of the cylindrical member 5 is provided with a vent hole 223 at a position corresponding to the opening hole 8, and introduces an external fluid into the cylindrical member 5. As described above, since the optical fiber 3 and the FBG portion 31 are fixed to the sheet film 22, the optical pressure sensor can be formed into a sheet shape and can be easily attached to a measurement target.

なお、光ファイバ3の配設態様は図6に特に限定されず、渦巻き状に配設する等、種々採用可能である。   In addition, the arrangement | positioning aspect of the optical fiber 3 is not specifically limited to FIG. 6, Various arrangement | positioning is possible, such as arrange | positioning in a spiral form.

シートフィルム22(ベースフィルム221およびカバーフィルム222)は、可撓性のフィルム、例えば、ポリエステルフィルムや可撓性の衝撃吸収材からなる。このため、対象物体の表面が平面でない場合であっても対象物体に密着させて高精度の圧力測定が可能である。さらに衝撃吸収材を用いた場合、外部からの衝撃を吸収し、光ファイバ3の破損を防止することができる。また、シートフィルム22を無理な形状に変形させた場合においても光ファイバ3への応力集中を緩和することができる。なお、本実施形態の光学式圧力センサ1は、シートフィルム22のフィルム膜厚や硬さに直接的に影響を与えるものではないため、対象物体への装着に影響を与えない程度に厚くする(例えば、0.5−1.0mm程度)ことにより、光学式圧力センサ1の耐久性を向上させることができる。なお、図1のフィルム200についても同様である。   The sheet film 22 (the base film 221 and the cover film 222) is made of a flexible film such as a polyester film or a flexible shock absorbing material. For this reason, even when the surface of the target object is not a flat surface, it is possible to measure the pressure with high accuracy by being in close contact with the target object. Further, when an impact absorbing material is used, it is possible to absorb external impact and prevent the optical fiber 3 from being damaged. Further, even when the sheet film 22 is deformed into an unreasonable shape, the stress concentration on the optical fiber 3 can be alleviated. Note that the optical pressure sensor 1 of the present embodiment does not directly affect the film thickness and hardness of the sheet film 22, and thus is thick enough not to affect the mounting on the target object ( For example, the durability of the optical pressure sensor 1 can be improved. The same applies to the film 200 of FIG.

ここで、本発明に係る第2実施形態について説明する。図7は本発明に係る第2実施形態における光学式圧力フィルムの感圧部の1つを示す図である。図7(a)は上面図であり、図7(b)は図7(a)のC−C断面図である。第1実施形態と同様の構成については同じ符号を付し、説明を省略する。   Here, a second embodiment according to the present invention will be described. FIG. 7 is a diagram showing one of the pressure sensitive parts of the optical pressure film in the second embodiment according to the present invention. 7A is a top view, and FIG. 7B is a cross-sectional view taken along the line CC of FIG. 7A. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

本実施形態において、第1実施形態と異なる点は、筒状部材5が区画部材7の取り付け位置を境に別体に構成されることである。つまり、前記筒状部材5は、一方の端部51に前記固定部材6が固定され、他方の端部53に前記区画部材7が固定されて、前記固定部材6および前記区画部材7の間で前記第1空間S1を形成する第1筒状部材5aと、一方の端部52に前記固定部材6が固定され、他方の端部54が前記第1筒状部材5aの前記区画部材7が固定された側の端部53に固定されて、前記固定部材6および前記区画部材7の間で前記第2空間S2を形成する第2筒状部材5bとを有するように構成される。   In the present embodiment, the difference from the first embodiment is that the cylindrical member 5 is configured separately from the attachment position of the partition member 7. That is, the cylindrical member 5 has the fixing member 6 fixed to one end portion 51 and the partition member 7 fixed to the other end portion 53. The fixing member 6 is fixed to one end 52 of the first cylindrical member 5a forming the first space S1, and the partition member 7 of the first cylindrical member 5a is fixed to the other end 54. And a second cylindrical member 5b that is fixed to the end portion 53 on the formed side and forms the second space S2 between the fixing member 6 and the partition member 7.

この場合、筒状部材5が第1筒状部材5aおよび第2筒状部材5bからなり、それぞれの筒状部材5内に第1空間S1または第2空間S2が形成される。この際、第1筒状部材5aの固定部材6が固定される端部51とは反対側の端部53に区画部材7が固定される一方、第2筒状部材5bの固定部材6が固定される端部52とは反対側の端部54は、第1筒状部材5aの区画部材7が固定される端部53に固定される。   In this case, the cylindrical member 5 includes a first cylindrical member 5a and a second cylindrical member 5b, and the first space S1 or the second space S2 is formed in each cylindrical member 5. At this time, the partition member 7 is fixed to the end portion 53 opposite to the end portion 51 to which the fixing member 6 of the first cylindrical member 5a is fixed, while the fixing member 6 of the second cylindrical member 5b is fixed. The end portion 54 opposite to the end portion 52 is fixed to the end portion 53 to which the partition member 7 of the first tubular member 5a is fixed.

本実施形態の光学式圧力センサの製造方法について説明する。図8は図7の光学式圧力センサの感圧部の製造方法を示す図である。本実施形態の光学式圧力センサの製造方法は、図8に示すように、FBG部31を有する光ファイバ3を前記第1筒状部材5a内に挿通する工程(図8(a))と、前記FBG部31が前記第1筒状部材5a内に位置するように、前記第1筒状部材5aの一端部51を固定部材6を用いて光ファイバ3とともに固定して密閉する工程(図8(b))と、前記第1筒状部材5aの他端部53を前記光ファイバ3とともに長手方向に揺動可能な可撓性の区画部材7で密閉することにより、前記固定部材6と前記区画部材7との間の第1筒状部材5a内に第1空間S1を形成する工程(図8(c))と、第2筒状部材5bの側面に通気可能な開口孔8を設け、前記第1筒状部材5aの他端部53が前記第2筒状部材5bの一端部54を向いた状態となるように前記第2筒状部材5bに前記光ファイバ3を挿通し、前記第1筒状部材5aの他端部53と前記第2筒状部材5bの一端部54とを固定する工程(図8(d))と、前記第2筒状部材5bの他端部52を固定部材6を用いて光ファイバ3とともに固定して密閉することにより、前記固定部材6と前記区画部材7との間の第2筒状部材5b内に第2空間S2を形成する工程(図8(e))とを有することを特徴とするものである。   A method for manufacturing the optical pressure sensor of this embodiment will be described. FIG. 8 is a diagram showing a manufacturing method of the pressure sensitive part of the optical pressure sensor of FIG. As shown in FIG. 8, the manufacturing method of the optical pressure sensor of the present embodiment includes a step of inserting the optical fiber 3 having the FBG portion 31 into the first cylindrical member 5a (FIG. 8A), A step of fixing and sealing one end portion 51 of the first cylindrical member 5a together with the optical fiber 3 using the fixing member 6 so that the FBG portion 31 is positioned in the first cylindrical member 5a (FIG. 8). (B)), and the other end portion 53 of the first cylindrical member 5a is sealed with a flexible partitioning member 7 that can swing in the longitudinal direction together with the optical fiber 3, so that the fixing member 6 and the A step of forming the first space S1 in the first cylindrical member 5a between the partition member 7 (FIG. 8C), and a vent hole 8 provided in the side surface of the second cylindrical member 5b; A state in which the other end 53 of the first tubular member 5a faces the one end 54 of the second tubular member 5b; The optical fiber 3 is inserted into the second tubular member 5b so that the other end 53 of the first tubular member 5a and the one end 54 of the second tubular member 5b are fixed (FIG. 8 (d)) and the other end portion 52 of the second cylindrical member 5b are fixed together with the optical fiber 3 using the fixing member 6 and hermetically sealed, so that the space between the fixing member 6 and the partition member 7 is reduced. And the step of forming the second space S2 in the second cylindrical member 5b (FIG. 8E).

上記のような光学式圧力センサの製造方法によれば、まず、FBG部31を有する光ファイバ3が前記第1筒状部材5a内に挿通される(図8(a))。そして、FBG部31が前記第1筒状部材5a内に位置するように、前記第1筒状部材5aの一端部51が固定部材6を用いて光ファイバ3とともに固定され、密閉される(図8(b))。この後、前記第1筒状部材5aの他端部53が前記光ファイバ3とともに長手方向に揺動可能な可撓性の区画部材7で密閉されることにより、前記固定部材6と前記区画部材7との間の第1筒状部材5a内に第1空間S1が形成される(図8(c))。   According to the method for manufacturing an optical pressure sensor as described above, first, the optical fiber 3 having the FBG portion 31 is inserted into the first tubular member 5a (FIG. 8A). And the one end part 51 of the said 1st cylindrical member 5a is fixed with the optical fiber 3 using the fixing member 6, and is sealed so that the FBG part 31 may be located in the said 1st cylindrical member 5a (FIG. 8 (b)). Thereafter, the other end portion 53 of the first tubular member 5a is sealed with a flexible partition member 7 that can swing in the longitudinal direction together with the optical fiber 3, whereby the fixed member 6 and the partition member are sealed. 1st space S1 is formed in the 1st cylindrical member 5a between 7 (FIG.8 (c)).

続いて、第2筒状部材5bの側面に通気可能な開口孔8が設けられ、前記第1筒状部材5aの他端部53が前記第2筒状部材5bの一端部54を向いた状態となるように前記第2筒状部材5bに前記光ファイバ3が挿通され、前記第1筒状部材5aの他端部53と前記第2筒状部材5bの一端部54とが固定される(図8(d))。なお、本実施形態においては、第1筒状部材5aの外径が第2筒状部材5bの内径と一致するように構成され、第1筒状部材5aの他端部53の外周と第2筒状部材5bの一端部54の内周を接着剤(例えば、エポキシ系接着剤)により固着することにより固定している。ただし、これに限られず、同径の筒状部材の端部同士を接着したり、その上で接着部分近傍をシールもしくは、わずかに大径の補強パイプ等で覆う等種々適用可能である。もちろん、第1筒状部材5aの方を第2筒状部材5bより大径としてもよい。   Subsequently, a vent hole 8 is provided in the side surface of the second cylindrical member 5b, and the other end 53 of the first cylindrical member 5a faces the one end 54 of the second cylindrical member 5b. The optical fiber 3 is inserted into the second tubular member 5b so that the other end 53 of the first tubular member 5a and the one end 54 of the second tubular member 5b are fixed ( FIG. 8D). In the present embodiment, the outer diameter of the first cylindrical member 5a is configured to coincide with the inner diameter of the second cylindrical member 5b, and the outer periphery of the other end 53 of the first cylindrical member 5a and the second The inner periphery of the one end portion 54 of the cylindrical member 5b is fixed by being fixed with an adhesive (for example, epoxy adhesive). However, the present invention is not limited to this, and various applications are possible such as bonding ends of cylindrical members having the same diameter, sealing the vicinity of the bonded portion on the ends, or covering with a slightly larger diameter reinforcing pipe or the like. Of course, the first cylindrical member 5a may have a larger diameter than the second cylindrical member 5b.

さらに、前記第2筒状部材5bの他端部52が固定部材6を用いて光ファイバ3とともに固定されて密閉されることにより、前記固定部材6と前記区画部材7との間の第2筒状部材5b内に第2空間S2が形成される。   Furthermore, the other end 52 of the second cylindrical member 5b is fixed together with the optical fiber 3 using the fixing member 6 and is sealed, so that the second cylinder between the fixing member 6 and the partition member 7 is sealed. A second space S2 is formed in the shaped member 5b.

このように、第1空間S1を形成した後に、第2空間S2を形成することにより、筒状部材5の内部に形成する区画部材7の固定を容易に行うことができる。したがって、光学式圧力センサを容易かつ低コストに製造することができ、製造効率を高めることができる。   Thus, after forming 1st space S1, the division member 7 formed in the inside of the cylindrical member 5 can be fixed easily by forming 2nd space S2. Therefore, the optical pressure sensor can be manufactured easily and at low cost, and the manufacturing efficiency can be increased.

なお、第1空間S1に開口孔8を設ける構成においては、第1筒状部材5aを光ファイバ3に挿通する前に開口孔8を設ける工程を組み込めばよい。   In the configuration in which the opening hole 8 is provided in the first space S1, a step of providing the opening hole 8 may be incorporated before the first cylindrical member 5a is inserted into the optical fiber 3.

続いて、本発明の第3実施形態について説明する。図9は本発明に係る第3実施形態における光学式圧力センサの感圧部の1つを示す図である。図9(a)は上面図であり、図9(b)は図9(a)のD−D断面図である。第1実施形態と同様の構成については同じ符号を付し、説明を省略する。   Subsequently, a third embodiment of the present invention will be described. FIG. 9 is a view showing one of the pressure sensitive parts of the optical pressure sensor according to the third embodiment of the present invention. FIG. 9A is a top view, and FIG. 9B is a cross-sectional view taken along the line DD in FIG. 9A. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

本実施形態について、第1実施形態と異なる点は、筒状部材5内に温度補償用の第3空間S3を形成することである。すなわち、前記筒状部材5内の前記区画部材7と前記筒状部材5のいずれか一方の端部52との間に、光ファイバ3を揺動不能に固定しつつ、前記区画部材7側の第1空間S2と流体的に分離して、密閉空間となる第3空間S3を形成する固定区画部材60を具備し、前記第3空間S3内に、第1空間S1内の前記FBG部31とは別のFBG部31’を有するように構成される。   About this embodiment, a different point from 1st Embodiment is forming the 3rd space S3 for temperature compensation in the cylindrical member 5. FIG. That is, between the partition member 7 in the tubular member 5 and one end portion 52 of the tubular member 5, the optical fiber 3 is fixed so as not to swing, and the partition member 7 side is fixed. A fixed partition member 60 that fluidly separates from the first space S2 to form a third space S3 that becomes a sealed space is provided, and the FBG portion 31 in the first space S1 is included in the third space S3. Is configured to have another FBG portion 31 '.

この場合、筒状部材5内に第1および第2空間S1,S2とは別に、筒状部材5の一端部52の固定部材6と筒状部材5内の固定区画部材60とで区画された第3空間S3が形成される。固定区画部材60は、固定部材6と同様の材料で形成可能である。第3空間S3は、第1空間S1、第2空間S2および外部とは流体的に分離され、外圧の影響を受けない。この第3空間S3内に第1空間S1内のFBG部31とは別のFBG部31’が配置される。なお、本実施形態においても第2実施形態と同様に筒状部材を2つまたは3つの部分に分けて所定の空間(例えば第1空間S1および第3空間S3)を形成した後、各部分を結合固定することにより残りの空間(例えば第2空間S2)を形成することとしてもよい。   In this case, the cylindrical member 5 is partitioned by the fixing member 6 at the one end 52 of the cylindrical member 5 and the fixed partition member 60 in the cylindrical member 5 separately from the first and second spaces S1 and S2. A third space S3 is formed. The fixed partition member 60 can be formed of the same material as the fixed member 6. The third space S3 is fluidly separated from the first space S1, the second space S2, and the outside, and is not affected by external pressure. In the third space S3, an FBG part 31 'different from the FBG part 31 in the first space S1 is arranged. In the present embodiment, as in the second embodiment, the cylindrical member is divided into two or three parts to form a predetermined space (for example, the first space S1 and the third space S3), and then each part is formed. The remaining space (for example, the second space S2) may be formed by coupling and fixing.

以上のように、第3空間S3内のFBG部31’は、外圧の影響を受けることなく、温度変化による変位を検知することができる。これにより、第1空間S1内のFBG部31で測定された変位から第3空間S3内のFBG部31’で測定された変位を差し引くことにより、温度変化による変位分を相殺することができるため、温度変化の影響を受けることなく、より高精度に圧力変化を測定することができる。   As described above, the FBG portion 31 ′ in the third space S <b> 3 can detect a displacement due to a temperature change without being affected by the external pressure. Accordingly, the displacement due to the temperature change can be canceled by subtracting the displacement measured by the FBG unit 31 ′ in the third space S3 from the displacement measured by the FBG unit 31 in the first space S1. The pressure change can be measured with higher accuracy without being affected by the temperature change.

次に、本発明の第4実施形態について説明する。図10は本発明に係る第4実施形態における光学式圧力センサの概略平面図である。また、図11は図10の光学式圧力センサの感圧部の1つを示す図である。図11(a)は上面図であり、図11(b)は図11(a)のE−E断面図である。本実施形態について、第1実施形態と異なる点は、第2空間S2だけでなく第1空間S1にも開口孔8’が設けられ、当該開口孔8’を通じて第1空間S1内が所定の基準圧に保持されることにより、差圧計測を行うものである。すなわち、前記第1空間S1および第2空間S2の双方に、1つずつ通気可能な開口孔8’,8がそれぞれ設けられ、前記第1空間S1は、前記開口孔8’から通気パイプ80を通じて第1空間S1内が一定の基準圧に維持されることを特徴とするものである。   Next, a fourth embodiment of the present invention will be described. FIG. 10 is a schematic plan view of an optical pressure sensor according to the fourth embodiment of the present invention. FIG. 11 is a diagram showing one of the pressure sensitive parts of the optical pressure sensor of FIG. FIG. 11A is a top view, and FIG. 11B is an EE cross-sectional view of FIG. 11A. This embodiment is different from the first embodiment in that an opening hole 8 ′ is provided not only in the second space S2 but also in the first space S1, and the inside of the first space S1 is a predetermined reference through the opening hole 8 ′. The pressure difference is measured by being held at the pressure. That is, each of the first space S1 and the second space S2 is provided with opening holes 8 'and 8 that can be vented one by one, and the first space S1 passes through the ventilation pipe 80 from the opening hole 8'. The inside of the first space S1 is maintained at a constant reference pressure.

上記構成の光学式圧力センサ1によれば、筒状部材5の長手方向にFBG部31を有する光ファイバ3が挿通される。この光ファイバ3が挿通された筒状部材5の両端部51,52を固定部材6を用いて密閉しつつ、光ファイバ3を固定する。また、筒状部材5内は、区画部材7により第1空間S1と第2空間S2とに区画される。第1空間S1内には、光ファイバ3のFBG部31が位置し、第2空間S2内には、FBG部31が位置しないように固定されている。第1空間S1に通気可能な開口孔8’が設けられるとともに第2空間S2にも通気可能な開口孔8が設けられる。   According to the optical pressure sensor 1 having the above configuration, the optical fiber 3 having the FBG portion 31 is inserted in the longitudinal direction of the cylindrical member 5. The optical fiber 3 is fixed while the both ends 51 and 52 of the cylindrical member 5 through which the optical fiber 3 is inserted are sealed with the fixing member 6. Further, the inside of the cylindrical member 5 is partitioned into a first space S1 and a second space S2 by a partition member 7. The FBG portion 31 of the optical fiber 3 is located in the first space S1, and the FBG portion 31 is fixed so as not to be located in the second space S2. The first space S1 is provided with an opening hole 8 'that allows ventilation, and the second space S2 is also provided with an opening hole 8 that allows ventilation.

このうち、第1空間S1に設けられた開口孔8’には、通気パイプ80が取り付けられる。本実施形態においては、開口孔8’上に分岐管81が形成されており、分岐管81の外周面に通気パイプ80を被せるようにして接着剤または拘束具等により固定される。本実施形態においては、さらに複数の感圧部2にそれぞれ設けられた開口孔8’からの通気パイプ80が1つにまとめられて、プローブ82を介してエアポンプ等の気圧制御装置(図示せず)に接続される。このようにして、通気バイプ80を通じて第1空間S1内が一定の基準圧に維持されており、第2空間S2に設けられた開口孔8には外部の流体が導入されて外圧と等しくなる。区画部材7は、光ファイバ3とともに筒状部材5の長手方向に揺動可能に構成され、外圧と基準圧との差が生じた際、区画部材7がいずれかの方向へ移動し、それに応じて光ファイバ3のFBG部31が伸縮する。   Among these, the ventilation pipe 80 is attached to the opening 8 'provided in the first space S1. In the present embodiment, a branch pipe 81 is formed on the opening hole 8 ′, and is fixed by an adhesive or a restraining tool so that the outer peripheral surface of the branch pipe 81 is covered with the ventilation pipe 80. In the present embodiment, the ventilation pipes 80 from the opening holes 8 ′ provided in each of the plurality of pressure sensing units 2 are combined into one, and an air pressure control device (not shown) such as an air pump is connected via the probe 82. ). Thus, the inside of the first space S1 is maintained at a constant reference pressure through the ventilation vip 80, and an external fluid is introduced into the opening hole 8 provided in the second space S2 and becomes equal to the external pressure. The partition member 7 is configured to be swingable in the longitudinal direction of the tubular member 5 together with the optical fiber 3, and when a difference between the external pressure and the reference pressure occurs, the partition member 7 moves in any direction, and accordingly Thus, the FBG portion 31 of the optical fiber 3 expands and contracts.

このように、筒状部材5内の一方を基準圧に維持し、他方を外圧とすることにより、外圧の変化を光ファイバ3のFBG部31の軸方向の伸縮として直接的に検知することができる。しかも、光ファイバ3のFBG部31は、側方の変位(曲がりによる変位)よりも軸方向の変位(伸縮による変位)の方が感度が高いため、より高感度に測定することができる。さらに、従来のように、ベースフィルムを必要としないため、ベースフィルムによってFBG部31の変位が阻害または減衰されることもない。以上より、ベースフィルムが撓むことを前提としていた従来の光学式圧力センサに比べてより微小な圧力変化をも検知することができる。   Thus, by maintaining one of the cylindrical members 5 at the reference pressure and the other as the external pressure, it is possible to directly detect a change in the external pressure as the expansion and contraction of the FBG portion 31 of the optical fiber 3 in the axial direction. it can. In addition, since the FBG section 31 of the optical fiber 3 is more sensitive to axial displacement (displacement due to expansion / contraction) than lateral displacement (displacement due to bending), it can measure with higher sensitivity. Furthermore, since a base film is not required as in the prior art, the displacement of the FBG portion 31 is not hindered or attenuated by the base film. From the above, it is possible to detect even a minute pressure change as compared with the conventional optical pressure sensor that presupposes that the base film is bent.

なお、本実施形態において温度補償部21を設ける際は、図10に示すように、感圧部2の第1空間S1と同様に、筒状部材9に開口孔8’を設けて他の感圧部2と同じ基準圧とすることが好ましいが、計測環境によっては開口孔8’を設けなくてもよい。また、本実施形態においては、FBG部31のある第1空間S1内を所定の基準圧に維持することとしたが、これに限られず、FBG部31のない第2空間S2に通気パイプを取り付け、第2空間S2内を所定の基準圧に維持することとしてもよい。   In addition, when providing the temperature compensation part 21 in this embodiment, as shown in FIG. 10, similarly to the 1st space S1 of the pressure sensitive part 2, opening 8 'is provided in the cylindrical member 9, and another sensitivity is provided. The reference pressure is preferably the same as that of the pressure unit 2, but the opening 8 ′ may not be provided depending on the measurement environment. In the present embodiment, the first space S1 where the FBG portion 31 is located is maintained at a predetermined reference pressure. However, the present invention is not limited to this, and a ventilation pipe is attached to the second space S2 where the FBG portion 31 is not present. The second space S2 may be maintained at a predetermined reference pressure.

以上、本発明に係る実施の形態を説明したが、本発明は上記実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の改良、変更、修正が可能である。   The embodiment according to the present invention has been described above, but the present invention is not limited to the above embodiment, and various improvements, changes, and modifications can be made without departing from the spirit of the present invention.

例えば、上記実施形態においては、可撓性を有する区画部材7が筒状部材5に固着される構成(ダイヤフラム機構)について説明しているが、筒状部材5を第1空間S1と第2空間S2とに流体的に分離し、かつ、光ファイバ3とともに長手方向に揺動可能であれば、これに限られない。例えば、区画部材7がスライダ機構を有することとしてもよい。具体的には、図12(a)に示すように、区画部材7が、光ファイバ3に固着された剛性の区画部材本体71(例えば、金属板等)と、区画部材本体71と筒状部材5の内周面との間を滑動可能に密閉された滑動性の高いシーリング部材72とを有することとしてもよい。この場合、剛性の区画部材本体71と筒状部材5との間に滑動性の高いシーリング部材72を挟み込むことにより、第1空間S1と第2空間S2とを流体的に確実に分離することができ、しかも、微弱な圧力変化に対しても滑らかに揺動して測定精度を向上させることができる。なお、図12(b)に示すように、シーリング部材72を用いずに、剛性の区画部材本体71の外周円の径と筒状部材5の内周円の径とを高精度に略一致させることにより、区画部材7を筒状部材5に固定させることなく、長手方向に揺動可能に構成することとしてもよい。また、オイル等で潤滑することとしてもよい。   For example, in the above-described embodiment, the configuration (diaphragm mechanism) in which the partition member 7 having flexibility is fixed to the cylindrical member 5 has been described. However, the cylindrical member 5 includes the first space S1 and the second space. The present invention is not limited to this as long as it is fluidly separated into S2 and can be swung in the longitudinal direction together with the optical fiber 3. For example, the partition member 7 may have a slider mechanism. Specifically, as shown in FIG. 12A, the partition member 7 includes a rigid partition member main body 71 (for example, a metal plate) fixed to the optical fiber 3, and the partition member main body 71 and the cylindrical member. It is good also as having the sealing member 72 with high sliding property sealed between the inner peripheral surfaces of 5 so that sliding was possible. In this case, the first space S1 and the second space S2 can be fluidly reliably separated by sandwiching the sealing member 72 having a high sliding property between the rigid partition member main body 71 and the cylindrical member 5. In addition, the measurement accuracy can be improved by smoothly swinging even a slight pressure change. As shown in FIG. 12B, without using the sealing member 72, the diameter of the outer circumference circle of the rigid partition member main body 71 and the diameter of the inner circumference circle of the cylindrical member 5 are substantially matched with high accuracy. Accordingly, the partition member 7 may be configured to be swingable in the longitudinal direction without being fixed to the cylindrical member 5. Further, it may be lubricated with oil or the like.

本発明に係る第1実施形態における光学式圧力センサの概略平面図である。1 is a schematic plan view of an optical pressure sensor according to a first embodiment of the present invention. 図1の光学式圧力センサの感圧部の1つを示す図である。It is a figure which shows one of the pressure sensitive parts of the optical pressure sensor of FIG. 図2(b)において外圧変化が生じた際の様子を示す断面図である。It is sectional drawing which shows a mode when the external pressure change arises in FIG.2 (b). 図1の光学式圧力センサの温度補償部を示す図である。It is a figure which shows the temperature compensation part of the optical pressure sensor of FIG. 本実施形態の光学式圧力センサを1枚のシートフィルム上に設置した状態を示す図である。It is a figure which shows the state which installed the optical pressure sensor of this embodiment on the sheet | seat film of 1 sheet. 図5の光学式圧力センサの組み付け図である。FIG. 6 is an assembly diagram of the optical pressure sensor of FIG. 5. 本発明に係る第2実施形態における光学式圧力フィルムの感圧部の1つを示す図である。It is a figure which shows one of the pressure sensitive parts of the optical pressure film in 2nd Embodiment which concerns on this invention. 図7の光学式圧力センサの感圧部の製造方法を示す図である。It is a figure which shows the manufacturing method of the pressure sensitive part of the optical pressure sensor of FIG. 本発明に係る第3実施形態における光学式圧力センサの感圧部の1つを示す図である。It is a figure which shows one of the pressure sensitive parts of the optical pressure sensor in 3rd Embodiment which concerns on this invention. 本発明に係る第4実施形態における光学式圧力センサの概略平面図である。It is a schematic plan view of the optical pressure sensor in 4th Embodiment which concerns on this invention. 図10の光学式圧力センサの感圧部の1つを示す図である。It is a figure which shows one of the pressure sensitive parts of the optical pressure sensor of FIG. 本発明に係る他の例における光学式圧力センサの感圧部の1つを示す断面図である。It is sectional drawing which shows one of the pressure sensitive parts of the optical pressure sensor in the other example which concerns on this invention.

符号の説明Explanation of symbols

1 光学式圧力センサ
3 光ファイバ
31 FBG部
4 プローブ
5 筒状部材
5a 第1筒状部材
5b 第2筒状部材
6 固定部材
7 区画部材
8,8’ 開口孔
9 温度補償用筒状部材
22 シートフィルム
51,52 筒状部材の端部
60 固定区画部材
80 通気パイプ
91,92 温度補償用筒状部材の端部
S1 第1空間
S2 第2空間
S3 第3空間
DESCRIPTION OF SYMBOLS 1 Optical pressure sensor 3 Optical fiber 31 FBG part 4 Probe 5 Cylindrical member 5a 1st cylindrical member 5b 2nd cylindrical member 6 Fixing member 7 Partition member 8, 8 'Opening hole 9 Temperature-compensating cylindrical member 22 Sheet Film 51, 52 End portion 60 of cylindrical member Fixed partition member 80 Ventilation pipes 91, 92 End portion of temperature compensating cylindrical member S1 First space S2 Second space S3 Third space

Claims (11)

光ファイバと、
長手方向に前記光ファイバが挿通される筒状部材と、
前記筒状部材の両端部を前記光ファイバとともに固定して密閉する固定部材と、
前記筒状部材の内部を第1空間と第2空間とに流体的に分離し、前記光ファイバとともに長手方向に揺動可能な区画部材とを具備し、
前記第1空間または第2空間のいずれか一方は、密閉空間とされ、前記第1空間または第2空間のいずれか他方には、少なくとも1つの通気可能な開口孔が設けられた開放空間とされ、
前記光ファイバは、前記密閉空間または開放空間の少なくともいずれか一方の内部にFBG部が設けられることを特徴とする光学式圧力センサ。
Optical fiber,
A cylindrical member through which the optical fiber is inserted in the longitudinal direction;
A fixing member that fixes and seals both ends of the cylindrical member together with the optical fiber;
A partition member that fluidly separates the inside of the cylindrical member into a first space and a second space, and that can swing in a longitudinal direction together with the optical fiber;
Either the first space or the second space is a sealed space, and the other of the first space or the second space is an open space provided with at least one ventable opening. ,
The optical fiber is characterized in that an FBG portion is provided in at least one of the sealed space and the open space.
前記FBG部は、前記第1空間内に設けられ、
前記開口孔は、前記第2空間に設けられることを特徴とする請求項1記載の光学式圧力センサ。
The FBG portion is provided in the first space,
The optical pressure sensor according to claim 1, wherein the opening hole is provided in the second space.
光ファイバと、
長手方向に前記光ファイバが挿通される筒状部材と、
前記筒状部材の両端部を前記光ファイバとともに固定して密閉する固定部材と、
前記筒状部材の内部を第1空間と第2空間とに流体的に分離し、前記光ファイバとともに長手方向に揺動可能な区画部材とを具備し、
前記光ファイバは、前記第1空間または第2空間の少なくともいずれか一方の内部にFBG部が設けられ、
前記第1空間および第2空間の双方に、少なくとも1つの通気可能な開口孔がそれぞれ設けられ、前記第1空間または第2空間のいずれか一方は、前記開口孔から通気パイプを通じて空間内が一定の基準圧に維持されることを特徴とする光学式圧力センサ。
Optical fiber,
A cylindrical member through which the optical fiber is inserted in the longitudinal direction;
A fixing member that fixes and seals both ends of the cylindrical member together with the optical fiber;
A partition member that fluidly separates the inside of the cylindrical member into a first space and a second space, and that can swing in a longitudinal direction together with the optical fiber;
The optical fiber includes an FBG portion in at least one of the first space and the second space,
Both the first space and the second space are provided with at least one ventable opening hole, and either the first space or the second space has a constant space through the ventilation hole through the ventilation pipe. An optical pressure sensor that is maintained at a reference pressure.
前記筒状部材は、前記光ファイバと略等しい膨張率を有することを特徴とする請求項1〜3のいずれかに記載の光学式圧力センサ。   The optical pressure sensor according to claim 1, wherein the cylindrical member has an expansion coefficient substantially equal to that of the optical fiber. 前記区画部材は、可撓性を有し、前記筒状部材に固着されることを特徴とする請求項1〜4のいずれかに記載の光学式圧力センサ。   The optical pressure sensor according to claim 1, wherein the partition member has flexibility and is fixed to the cylindrical member. 前記筒状部材は、
いずれか一方の端部に前記固定部材が固定され、いずれか他方の端部に前記区画部材が固定されて、前記固定部材および前記区画部材の間で前記第1空間または第2空間のいずれか一方を形成する第1筒状部材と、
いずれか一方の端部に前記固定部材が固定され、いずれか他方の端部が前記第1筒状部材の前記区画部材が固定された側の端部に固定されて、前記固定部材および前記区画部材の間で前記第1空間または第2空間のいずれか他方を形成する第2筒状部材とを有することを特徴とする請求項5記載の光学式圧力センサ。
The cylindrical member is
The fixing member is fixed to one of the end portions, the partition member is fixed to the other end portion, and either the first space or the second space is between the fixing member and the partition member. A first tubular member forming one;
The fixing member is fixed to any one end portion, and the other end portion is fixed to the end portion of the first tubular member to which the partition member is fixed, and the fixing member and the partition The optical pressure sensor according to claim 5, further comprising a second tubular member that forms either the first space or the second space between the members.
複数のFBG部を有する前記光ファイバに対して前記筒状部材が複数箇所設けられることを特徴とする請求項1〜6のいずれかに記載の光学式圧力センサ。   The optical pressure sensor according to claim 1, wherein the cylindrical member is provided at a plurality of locations with respect to the optical fiber having a plurality of FBG portions. 前記筒状部材内の前記区画部材と前記筒状部材のいずれか一方の端部との間に、光ファイバを揺動不能に固定しつつ、前記区画部材側の空間と流体的に分離して、密閉空間となる第3空間を形成する固定区画部材を具備し、
前記光ファイバは、前記第3空間の内部にも、FBG部を有することを特徴とする請求項1〜7のいずれかに記載の光学式圧力センサ。
An optical fiber is fixed between the partition member in the tubular member and one end of the tubular member so as not to swing, and is separated from the space on the partition member side in a fluid manner. , Including a fixed partition member that forms a third space to be a sealed space,
The optical pressure sensor according to claim 1, wherein the optical fiber has an FBG portion also in the third space.
長手方向に前記光ファイバが挿通され、内部に前記光ファイバのFBG部を有するように、両端部が固定部材で固定されて内部が密閉空間となった温度補償用筒状部材を具備し、
複数のFBG部を有する前記光ファイバに対して前記温度補償用筒状部材および前記筒状部材が少なくとも1箇所ずつ設けられることを特徴とする請求項1〜7のいずれかに記載の光学式圧力センサ。
A temperature-compensating cylindrical member having both ends fixed by fixing members so that the inside has a sealed space so that the optical fiber is inserted in the longitudinal direction and has an FBG portion of the optical fiber inside;
The optical pressure according to any one of claims 1 to 7, wherein the temperature-compensating tubular member and the tubular member are provided at least one place for the optical fiber having a plurality of FBG portions. Sensor.
前記光ファイバがシートフィルムに固着されていることを特徴とする請求項1〜9のいずれかに記載の光学式圧力センサ。   The optical pressure sensor according to claim 1, wherein the optical fiber is fixed to a sheet film. 第1筒状部材または第2筒状部材のいずれか一方の側面に少なくとも1つの通気可能な開口孔を設ける工程と、
少なくとも1つのFBG部を有する光ファイバを前記第1筒状部材内に挿通する工程と、
前記FBG部が前記第1筒状部材内に位置するように、前記第1筒状部材の一端部を固定部材を用いて光ファイバとともに固定して密閉する工程と、
前記第1筒状部材の他端部を前記光ファイバとともに長手方向に揺動可能な可撓性の区画部材で密閉することにより、前記固定部材と前記区画部材との間の第1筒状部材内に第1空間を形成する工程と、
前記第1筒状部材の他端部が前記第2筒状部材の一端部を向いた状態となるように前記第2筒状部材に前記光ファイバを挿通し、前記第1筒状部材の他端部と前記第2筒状部材の一端部とを固定する工程と、
前記第2筒状部材の他端部を固定部材を用いて光ファイバとともに固定して密閉することにより、前記固定部材と前記区画部材との間の第2筒状部材内に第2空間を形成する工程とを有することを特徴とする光学式圧力センサの製造方法。
Providing at least one ventable opening in the side surface of either the first tubular member or the second tubular member;
Inserting an optical fiber having at least one FBG portion into the first tubular member;
Fixing and sealing one end of the first tubular member with an optical fiber using a fixing member so that the FBG portion is located in the first tubular member;
The first cylindrical member between the fixed member and the partition member is sealed by sealing the other end portion of the first cylindrical member with a flexible partition member that can swing in the longitudinal direction together with the optical fiber. Forming a first space therein,
The optical fiber is inserted into the second cylindrical member so that the other end portion of the first cylindrical member faces the one end portion of the second cylindrical member, and other than the first cylindrical member. Fixing the end and one end of the second tubular member;
A second space is formed in the second cylindrical member between the fixing member and the partition member by fixing the other end of the second cylindrical member together with the optical fiber using a fixing member and sealing it. A method for manufacturing an optical pressure sensor.
JP2006292735A 2006-10-27 2006-10-27 Optical pressure sensor and its manufacturing method Withdrawn JP2008107295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006292735A JP2008107295A (en) 2006-10-27 2006-10-27 Optical pressure sensor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006292735A JP2008107295A (en) 2006-10-27 2006-10-27 Optical pressure sensor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008107295A true JP2008107295A (en) 2008-05-08

Family

ID=39440750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006292735A Withdrawn JP2008107295A (en) 2006-10-27 2006-10-27 Optical pressure sensor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008107295A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276127A (en) * 2008-05-13 2009-11-26 Honda Motor Co Ltd Tactile sensor
JP2010216877A (en) * 2009-03-13 2010-09-30 Neubrex Co Ltd Distribution type optical fiber pressure sensor
JP2011017652A (en) * 2009-07-10 2011-01-27 Neubrex Co Ltd Distributed type optical fiber pressure sensor system
CN102901593A (en) * 2012-11-01 2013-01-30 中国科学院半导体研究所 Fiber Bragg grating soil pressure sensor based on two L-type beams
CN102944342A (en) * 2012-11-16 2013-02-27 中国科学院半导体研究所 Differential type optical fiber earth pressure gage
JP2014041054A (en) * 2012-08-22 2014-03-06 Japan Atomic Energy Agency Moisture sensor
WO2017049392A1 (en) * 2015-09-21 2017-03-30 Opsens Solutions Inc. Optical pressure sensor with reduced mechanical stresses
CN109990931A (en) * 2018-01-03 2019-07-09 中交第二公路勘察设计研究院有限公司 Ultra-thin optical fibre Tunnel Surrounding Rock Pressure box
WO2023029313A1 (en) * 2021-09-03 2023-03-09 河北地质大学 Fiber bragg grating sensor applied to underground stress monitoring

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276127A (en) * 2008-05-13 2009-11-26 Honda Motor Co Ltd Tactile sensor
JP2010216877A (en) * 2009-03-13 2010-09-30 Neubrex Co Ltd Distribution type optical fiber pressure sensor
JP2011017652A (en) * 2009-07-10 2011-01-27 Neubrex Co Ltd Distributed type optical fiber pressure sensor system
JP2014041054A (en) * 2012-08-22 2014-03-06 Japan Atomic Energy Agency Moisture sensor
CN102901593A (en) * 2012-11-01 2013-01-30 中国科学院半导体研究所 Fiber Bragg grating soil pressure sensor based on two L-type beams
CN102901593B (en) * 2012-11-01 2014-10-15 中国科学院半导体研究所 Fiber Bragg grating soil pressure sensor based on two L-type beams
CN102944342A (en) * 2012-11-16 2013-02-27 中国科学院半导体研究所 Differential type optical fiber earth pressure gage
WO2017049392A1 (en) * 2015-09-21 2017-03-30 Opsens Solutions Inc. Optical pressure sensor with reduced mechanical stresses
US10082437B2 (en) 2015-09-21 2018-09-25 Opsens Solutions Inc. Optical pressure sensor with reduced mechanical stresses
CN109990931A (en) * 2018-01-03 2019-07-09 中交第二公路勘察设计研究院有限公司 Ultra-thin optical fibre Tunnel Surrounding Rock Pressure box
WO2023029313A1 (en) * 2021-09-03 2023-03-09 河北地质大学 Fiber bragg grating sensor applied to underground stress monitoring

Similar Documents

Publication Publication Date Title
JP2008107295A (en) Optical pressure sensor and its manufacturing method
US7680363B2 (en) Optical pressure sensor
DK2780664T3 (en) FBG strain sensor for curved surfaces
JP6409123B2 (en) Sensor assembly
JP5005363B2 (en) Fiber optic sensor cable
US8805128B2 (en) Multi-point pressure sensor and uses thereof
JP6762466B2 (en) Sensor system with pressure sensor and one or more pressure sensors
JP5719921B2 (en) Pressure sensor based on resonance frequency
CA2676246C (en) Transducer for measuring environmental parameters
US6549488B2 (en) Fiber-optic hydrophone
JP2010266437A (en) Fiber bragg grating detection system
US7197934B2 (en) Pressure sensor with temperature compensated optical fiber
CN111750796A (en) Bragg fiber grating static and dynamic automatic compensation type structural deformation monitoring system
US20120132008A1 (en) Fiber optic load measurement device
US6321603B1 (en) Pressure sensor
JP5371527B2 (en) Civil engineering pressure transducer
JP2005055450A (en) Optical fiber strain gage
JP3598297B2 (en) Temperature compensation structure in FBG converter
JP4954687B2 (en) Fiber optic sensor cable
JP2000028456A (en) Pressure detecting unit
JP6392862B2 (en) Pressure sensor
US8205504B2 (en) Micron-scale pressure sensors and use thereof
CN105659059A (en) Strain isolation type fiber Bragg grating sensor
JP6736044B2 (en) Strain sensor and jig for mounting the strain sensor
JPH11218458A (en) Pressure sensor and pressure measuring apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105