JP2008107026A - Triple-pipe type heat exchanger - Google Patents

Triple-pipe type heat exchanger Download PDF

Info

Publication number
JP2008107026A
JP2008107026A JP2006290947A JP2006290947A JP2008107026A JP 2008107026 A JP2008107026 A JP 2008107026A JP 2006290947 A JP2006290947 A JP 2006290947A JP 2006290947 A JP2006290947 A JP 2006290947A JP 2008107026 A JP2008107026 A JP 2008107026A
Authority
JP
Japan
Prior art keywords
pipe
heat exchanger
refrigerant
diameter
triple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006290947A
Other languages
Japanese (ja)
Inventor
Osamu Aoyanagi
治 青柳
Shoichi Yokoyama
昭一 横山
Kazuhiko Machida
和彦 町田
Takumi Kida
琢己 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006290947A priority Critical patent/JP2008107026A/en
Publication of JP2008107026A publication Critical patent/JP2008107026A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a triple-pipe type heat exchanger, having excellent heat exchange performance without extending the length of piping of the heat exchanger. <P>SOLUTION: This triple-pipe type heat exchanger includes a large-diameter pipe 7 for circulating water; a medium-diameter pipe 2 having a leakage detecting groove 3 on the inner surface; and a small-diameter pipe 5 for circulating a refrigerant, wherein the medium-diameter pipe 2 and the small-diameter pipe 5 are inserted through the large-diameter pipe 7, the inner surface of the medium-diameter pipe 2 and the outer surface of the small-diameter pipe 5 are brought into close contact with each other to form a refrigerant pipe 1, and a recessed part 4 is provided on the outer surface of the medium-diameter pipe 2, whereby heat exchange area of the refrigerant and water can be enlarged, and a turbulent flow is promoted on the water side and the refrigerant side to improve heat exchange performance without extending the piping. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヒートポンプ式給湯機における3重管式熱交換器の構成に関するものである。   The present invention relates to a configuration of a triple pipe heat exchanger in a heat pump type hot water heater.

図7、図8は、第1の従来の水−冷媒熱交換器の上面図および正面図である。また図9は、従来の水−冷媒熱交換器の接続部の拡大図である。従来の構成では、二重熱交換器の水管内部に複数本の冷媒管を挿通する熱交換器や、水間の外周にコイル状に巻きつけて構成するCO2冷媒用の熱交換器が開示されている。また、従来の水−冷媒熱交換器の接続部は、ブロック化されておりCO2冷媒の高圧仕様に対応するための銅管が厚い構成となっており、加熱によるロウ付けが不安定であった。また、従来の接続部には、複数の冷媒管を同時に接続部に接続して、ロウ付けする必要があったため、冷媒管の端部がきっちりとそろっていなければ、接続部に挿入しづらく作業効率が悪かった(例えば、特許文献1参照)。   7 and 8 are a top view and a front view of a first conventional water-refrigerant heat exchanger, respectively. FIG. 9 is an enlarged view of a connection portion of a conventional water-refrigerant heat exchanger. In the conventional configuration, a heat exchanger in which a plurality of refrigerant pipes are inserted inside the water pipe of the double heat exchanger, and a heat exchanger for a CO2 refrigerant configured by being wound around the outer periphery of water in a coil shape are disclosed. ing. Moreover, the connection part of the conventional water-refrigerant heat exchanger is made into a block, and the copper pipe | tube for corresponding to the high voltage | pressure specification of a CO2 refrigerant | coolant becomes a structure, and brazing by heating was unstable. . In addition, since it was necessary to connect a plurality of refrigerant pipes to the connection part at the same time and braze to the conventional connection part, if the ends of the refrigerant pipes are not aligned, it is difficult to insert into the connection part. The efficiency was poor (see, for example, Patent Document 1).

また、図10は、第2の従来の3重管式熱交換器の断面図である。従来の構成では、中径管の外面に突部を形成し、水との熱交換面積を拡大させることができ、高効率化が図れるというものである。
特開2005−147570号公報
FIG. 10 is a sectional view of a second conventional triple-pipe heat exchanger. In the conventional configuration, a protrusion is formed on the outer surface of the medium-diameter pipe, the heat exchange area with water can be expanded, and high efficiency can be achieved.
JP 2005-147570 A

しかしながら、第1の従来の構成では、熱交換器の性能には限度があり、性能を向上させるには、冷凍サイクルにおいて圧縮機の冷媒循環量を増加させ、性能を向上するために熱交換器の配管長さを延伸するなどの手法により、熱交換器の配管の管内面積を大きくして性能を向上させなければならなかった。このような手法では、熱交換器の大きさが大きくなってしまい、ひいては、ヒートポンプ式給湯機の設置スペースが大きくなってしまうという課題を有していた。また、第2の従来の構成ではでは、凸部を加工する際の加工方法に課題があった。例えば、平板の状態で突部を加工し、次に平板を湾曲させ、端部を突合せて溶接し、中径管を加工する方法があるが、この方法では、中径管の外面に凸部を形成した後に、小径管を中径管の内部に挿入し、中径管を縮径しながら密着させる必要があり、縮径する際、突部を押しつぶしてしまい、所定の高さを確保できないという課題を有していた。   However, in the first conventional configuration, there is a limit to the performance of the heat exchanger. In order to improve the performance, the amount of refrigerant circulating in the compressor is increased in the refrigeration cycle, and the heat exchanger is improved in order to improve the performance. By extending the length of the pipe, the area inside the pipe of the heat exchanger must be increased to improve the performance. Such a method has a problem that the size of the heat exchanger is increased, and as a result, the installation space for the heat pump type hot water heater is increased. In the second conventional configuration, there is a problem in the processing method when processing the convex portion. For example, there is a method of processing a projection in the state of a flat plate, then bending the flat plate, butting the end portion and welding, and processing a medium diameter tube, but in this method, a convex portion is formed on the outer surface of the medium diameter tube After forming the small diameter tube, it is necessary to insert the small diameter tube into the inside of the medium diameter tube and closely contact the medium diameter tube while reducing the diameter. When the diameter is reduced, the protrusion is crushed and the predetermined height cannot be secured. It had the problem that.

本発明は、前記従来の課題を解決するもので、熱交換器の配管長さを延伸することなく、熱交換性能に優れた3重管式熱交換器を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the triple tube | pipe type heat exchanger excellent in heat exchange performance, without extending | stretching the piping length of a heat exchanger.

前記従来の課題を解決するために、本発明の3重管式熱交換器は、水が流通する大径管と、内面に漏洩検知溝を有する中径管と、冷媒が流通する小径管とを備え、前記大径管に、前記中径管と前記小径管とを内挿し、前記中径管の内面と前記小径管の外面とが密着して冷媒管を構成するとともに、前記中径管の外面に凹みを設けたことを特徴とするものである。   In order to solve the above-mentioned conventional problems, a triple-tube heat exchanger according to the present invention includes a large-diameter pipe through which water flows, an intermediate-diameter pipe having a leak detection groove on the inner surface, and a small-diameter pipe through which refrigerant flows. The medium-diameter pipe and the small-diameter pipe are inserted into the large-diameter pipe, and an inner surface of the medium-diameter pipe and an outer surface of the small-diameter pipe constitute a refrigerant pipe, and the medium-diameter pipe This is characterized in that a recess is provided on the outer surface of the.

これによって、冷媒と水との熱交換面積を拡大させることができる。また、管壁面を流れる水が凹みにより渦状に流れることで、壁面近傍を流れる高温の水と壁面から離れたと
ころを流れる比較的低温の水によって形成されていた温度境界層が乱れ、混合することで、熱交換性能を向上させることができる。これにより、配管を延伸することなく熱交換性能を向上させることができる。
Thereby, the heat exchange area of a refrigerant | coolant and water can be expanded. In addition, the water flowing on the pipe wall flows in a vortex shape due to the depression, so that the temperature boundary layer formed by the high-temperature water flowing near the wall surface and the relatively low-temperature water flowing away from the wall surface is disturbed and mixed. Thus, the heat exchange performance can be improved. Thereby, heat exchange performance can be improved, without extending piping.

熱交換器の配管長さを延伸することなく、熱交換性能に優れた3重管式熱交換器を提供することができる。   A triple pipe heat exchanger excellent in heat exchange performance can be provided without extending the pipe length of the heat exchanger.

第1の発明は、水が流通する大径管と、内面に漏洩検知溝を有する中径管と、冷媒が流通する小径管とを備え、前記大径管に、前記中径管と前記小径管とを内挿し、前記中径管の内面と前記小径管の外面とが密着して冷媒管を構成するとともに、前記中径管の外面に凹みを設けたことにより、冷媒と水との熱交換面積が拡大すること、また、管壁面を流れる水が凹みにより渦状に流れることで、壁面近傍を流れる高温の水と壁面から離れたところを流れる比較的低温の水によって形成されていた温度境界層が乱れ、混合することなどにより、より効率のよい熱交換を実現することができるので、配管を延伸せずとも熱交換性能を向上させることができる。   1st invention is equipped with the large diameter pipe | tube through which water distribute | circulates, the intermediate diameter pipe | tube which has a leak detection groove | channel on the inner surface, and the small diameter pipe | tube through which a refrigerant | coolant distribute | circulates, The said intermediate diameter pipe | tube and the said small diameter are provided in the said large diameter pipe | tube. A refrigerant pipe is formed by inserting a pipe and the inner surface of the medium-diameter pipe and the outer surface of the small-diameter pipe are in close contact with each other. The temperature boundary that was formed by the high temperature water flowing near the wall surface and the relatively low temperature water flowing away from the wall surface due to the expansion of the exchange area and the flow of water flowing in the tube wall in a spiral shape due to the depression. Since the layer is disturbed and mixed, more efficient heat exchange can be realized, so that the heat exchange performance can be improved without extending the piping.

第2の発明は、中径管の凹みに同期して小径管の壁面も凹みを形成することにより、水に乱流を起こさせるとともに、小径管の内部を流れる冷媒にも乱流を起こさせることができ、水−冷媒の熱交換性能を向上させることができる。   In the second aspect of the invention, the wall surface of the small-diameter pipe is also formed with a depression in synchronization with the depression of the medium-diameter pipe, thereby causing turbulence in the water and causing turbulence in the refrigerant flowing in the small-diameter pipe. And the water-refrigerant heat exchange performance can be improved.

第3の発明は、特に第1の発明において、中径管の凹みは、前記中径管の延伸方向に沿って外面上をスパイラルに配設されていることにより、水に乱流を起こさせることで、水−冷媒の熱交換性能を向上させることができる。   According to a third aspect of the invention, in particular, in the first aspect of the invention, the recess of the medium diameter tube is spirally arranged on the outer surface along the extending direction of the medium diameter tube, thereby causing turbulence in the water. Thereby, the heat exchange performance of water-refrigerant can be improved.

第4の発明は、特に第1〜3の発明において、複数本の冷媒管を備え、前記複数本の冷媒管をねじり合わせたことにより、より水に乱流を起こさせるので、熱交換性能が向上する。   In the fourth invention, in particular, in the first to third inventions, a plurality of refrigerant tubes are provided, and the plurality of refrigerant tubes are twisted together to cause more turbulent flow in water. improves.

第5の発明は、特に第4の発明において、中径管の長手方向に形成する凹みのピッチは、凹みの長手方向の長さの2〜5倍とすることにより、乱流効果を促進させ、安定した熱交換器を提供できる。   In the fifth invention, particularly in the fourth invention, the pitch of the recesses formed in the longitudinal direction of the medium-diameter pipe is set to 2 to 5 times the length of the recesses in the longitudinal direction, thereby promoting the turbulent flow effect. Can provide a stable heat exchanger.

第6の発明は、特に第1〜5の発明において、小径管の内面に溝部を設けたことにより、冷媒の伝熱面積を向上させるとともに、冷凍サイクルの圧縮機からの冷媒の圧力を下げるなどの相乗効果が得られる。   In the sixth invention, in particular, in the first to fifth inventions, the groove portion is provided on the inner surface of the small-diameter pipe, thereby improving the heat transfer area of the refrigerant and reducing the pressure of the refrigerant from the compressor of the refrigeration cycle. The synergistic effect is obtained.

第7の発明は、特に第1〜6の発明において、冷媒管および大径管を渦巻状に曲成し、積層させたことにより、コンパクトに熱交換器を製作できる。   In the seventh invention, in particular, in the first to sixth inventions, the refrigerant pipe and the large-diameter pipe are spirally bent and laminated, so that a heat exchanger can be manufactured in a compact manner.

第8の発明は、特に第1〜6の発明において、冷媒管および大径管を同一平面上で渦巻状に曲成した熱交換ユニットと、複数の前記熱交換ユニットの大径管を接続する接続手段とを備え、前記冷媒管は前記接続手段を貫通し、前記冷媒管の端部をC状配管で接続したことにより、端部が不揃いで変形していたとしても、C状配管を接続してロウ付けするだけなので、廉価で作業性の高い熱交換器を提供することができる。   In an eighth aspect of the invention, particularly in the first to sixth aspects of the invention, the heat exchange unit in which the refrigerant pipe and the large diameter pipe are spirally bent on the same plane is connected to the large diameter pipes of the plurality of heat exchange units. Connecting the connecting means, and connecting the C-shaped pipe even if the end of the refrigerant pipe is irregularly deformed by connecting the end of the refrigerant pipe with the C-shaped pipe. Therefore, it is possible to provide a heat exchanger that is inexpensive and highly workable.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における3重管式熱交換器を構成する冷媒管の断面図、図2は、本発明の第1の実施の形態における3重管式熱交換器を構成する冷媒管の側面図である。図1、図2において、冷媒管1は、漏洩検知溝3を有した中径管2と、内面に溝6が加工されている小径管5より構成される。中径管2の内面と、小径管5の外面は密着しており、中径管2の中に小径管5を挿入して中径管2を縮管するか、もしくは、中径管2の中に小径管5を挿入して小径管5を拡管することで、冷媒管1を製造している。漏洩検知溝3は、配管の延伸方向に沿って形成され、冷媒管1から漏出した冷媒が検知されるように構成されている。本実施の形態においては、漏洩検知溝3の一端をロウ付けなどで塞ぎ、他端を開放することで、開放されている端部から冷媒を検知することができる構成となっている。また開放されている端部に漏洩検知センサー(図示せず)を取り付けて、冷媒の漏洩を検知する構成としてもよい。また中径管2の外面には、凹み4が形成され、中径管2の外面に沿ってスパイラルに形成されている。同様に、小径管5の内面に形成されている溝6も、小径管5の内面に沿ってスパイラルに形成されている。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a refrigerant tube constituting the triple-pipe heat exchanger in the first embodiment of the present invention, and FIG. 2 is a triple-pipe heat exchange in the first embodiment of the present invention. It is a side view of the refrigerant pipe which comprises a container. 1 and 2, the refrigerant pipe 1 includes a medium diameter pipe 2 having a leakage detection groove 3 and a small diameter pipe 5 in which a groove 6 is processed on the inner surface. The inner surface of the medium diameter tube 2 and the outer surface of the small diameter tube 5 are in close contact with each other, and the small diameter tube 5 is inserted into the medium diameter tube 2 to contract the medium diameter tube 2 or The refrigerant pipe 1 is manufactured by inserting the small diameter pipe 5 therein and expanding the small diameter pipe 5. The leak detection groove 3 is formed along the extending direction of the pipe, and is configured to detect the refrigerant leaked from the refrigerant pipe 1. In the present embodiment, one end of the leakage detection groove 3 is closed by brazing or the like, and the other end is opened, whereby the refrigerant can be detected from the opened end. Moreover, it is good also as a structure which attaches a leak detection sensor (not shown) to the open edge part, and detects the leakage of a refrigerant | coolant. Further, a recess 4 is formed on the outer surface of the medium diameter tube 2 and is formed in a spiral along the outer surface of the medium diameter tube 2. Similarly, the groove 6 formed on the inner surface of the small diameter tube 5 is also formed in a spiral along the inner surface of the small diameter tube 5.

図3は、本発明の第1の実施の形態における3重管式熱交換器の断面図である。図3において、本実施の形態における3重管式熱交換器は、2本の冷媒管1と1本の大径管7で構成されており、冷媒管1が大径管7に挿入されている。冷媒管1内部には、CO2冷媒が流通し、冷媒管1と大径管7の間には水が流通する。また、2本の冷媒管1は、互いにねじれあってスパイラル形状を成している。中径管2の外周面に形成されている凹み4のピッチ間隔Pは、凹み4の長手方向の長さの2〜5倍の間隔で設けることが望ましい。これは、間隔が大きいと乱流促進が図れず、また、間隔が狭すぎると冷媒側の圧力損失が増大してしまい能力を低下させてしまうからである。また凹み4の深さtは、中径管2の肉厚以下の深さで構成されている。これは、中径管2の肉厚以上に凹みの深さを設定すると、小径管5の流路が著しく狭くなってしまい、冷媒の抵抗が増大し、熱交換性能を減ずることになる。なお、本実施の形態で用いる冷媒は、CO2に限定されるものではなく、例えばR410Aなどの冷媒、またはその他の冷媒を用いてもよい。   FIG. 3 is a cross-sectional view of the triple pipe heat exchanger according to the first embodiment of the present invention. In FIG. 3, the triple pipe heat exchanger in the present embodiment is composed of two refrigerant pipes 1 and one large diameter pipe 7, and the refrigerant pipe 1 is inserted into the large diameter pipe 7. Yes. CO 2 refrigerant flows through the refrigerant pipe 1, and water flows between the refrigerant pipe 1 and the large diameter pipe 7. Further, the two refrigerant tubes 1 are twisted with each other to form a spiral shape. It is desirable that the pitch interval P of the recesses 4 formed on the outer peripheral surface of the medium diameter pipe 2 is 2 to 5 times the length of the recesses 4 in the longitudinal direction. This is because turbulent flow cannot be promoted if the interval is large, and pressure loss on the refrigerant side increases if the interval is too narrow, thereby reducing the ability. Further, the depth t of the recess 4 is configured to have a depth equal to or less than the thickness of the medium diameter tube 2. This is because if the depth of the dent is set to be greater than the wall thickness of the medium diameter pipe 2, the flow path of the small diameter pipe 5 becomes extremely narrow, the resistance of the refrigerant increases, and the heat exchange performance decreases. Note that the refrigerant used in the present embodiment is not limited to CO2, and for example, a refrigerant such as R410A or other refrigerants may be used.

図4は、本発明の第1の実施の形態における3重管式熱交換器の上面図であり、図5は、本発明の第1の実施の形態における3重管式熱交換器の側面図である。図4および図5において、本実施の形態における3重管式熱交換器10は、上層熱交換器20、中層熱交換器30、下層熱交換器40から構成されており、3個の熱交換ユニットを積層した構成となっている。また、3重管式熱交換器10は、冷媒入り口管11、冷媒出口管12、水入り口管13、水出口管14、冷媒漏れ検知部15を有する。また、上層熱交換器20、中層熱交換器30、下層熱交換器40のそれぞれは、渦巻状に形成されており、冷媒と水とは対向流となっている。また、上層熱交換器20は、中層熱交換器30、下層熱交換器40に比べて、大径管の管径が大きい構成となっている。   FIG. 4 is a top view of the triple tube heat exchanger according to the first embodiment of the present invention, and FIG. 5 is a side view of the triple tube heat exchanger according to the first embodiment of the present invention. FIG. 4 and 5, the triple-pipe heat exchanger 10 in the present embodiment includes an upper layer heat exchanger 20, a middle layer heat exchanger 30, and a lower layer heat exchanger 40, and three heat exchanges are performed. The unit is stacked. The triple pipe heat exchanger 10 includes a refrigerant inlet pipe 11, a refrigerant outlet pipe 12, a water inlet pipe 13, a water outlet pipe 14, and a refrigerant leakage detector 15. Moreover, each of the upper layer heat exchanger 20, the middle layer heat exchanger 30, and the lower layer heat exchanger 40 is formed in a spiral shape, and the refrigerant and the water are counterflowing. Further, the upper layer heat exchanger 20 has a configuration in which the diameter of the large-diameter pipe is larger than that of the middle layer heat exchanger 30 and the lower layer heat exchanger 40.

図6(a)は、各熱交換器同士の接続部の拡大上面図であり、図6(b)は、各熱交換器同士の接続部の拡大側面図である。図6(a)(b)においては、下層熱交換器40と中層熱交換器30の接続部の拡大図を示している。中層熱交換器30および下層熱交換器40は、それぞれ水流路を2系統含む構成となっている。つまり、冷媒入り口管11および水入り口管13から冷媒もしくは水が流入するが、中層熱交換器30および下層熱交換器40では、流入する時は1流路であった水流路および冷媒流路が分流されて、2流路の構成となっている。また、中層熱交換器30および下層熱交換器40の水流路は接続部16で接続される構成となっている。一方、冷媒流路である冷媒管1は、接続部16を貫通して外部へと延伸され、C状配管17で冷媒流路が接続されている。   Fig.6 (a) is an enlarged top view of the connection part of each heat exchanger, FIG.6 (b) is an enlarged side view of the connection part of each heat exchanger. 6 (a) and 6 (b), enlarged views of the connecting portion between the lower layer heat exchanger 40 and the middle layer heat exchanger 30 are shown. Each of the middle layer heat exchanger 30 and the lower layer heat exchanger 40 includes two systems of water flow paths. That is, the refrigerant or water flows in from the refrigerant inlet pipe 11 and the water inlet pipe 13, but in the middle layer heat exchanger 30 and the lower layer heat exchanger 40, the water flow path and the refrigerant flow path that were one flow path when flowing in are The flow is divided into two flow paths. In addition, the water flow paths of the middle layer heat exchanger 30 and the lower layer heat exchanger 40 are configured to be connected by the connecting portion 16. On the other hand, the refrigerant pipe 1 which is a refrigerant flow path extends through the connecting portion 16 to the outside, and the refrigerant flow path is connected by a C-shaped pipe 17.

以上のように構成された3重管式熱交換器について、以下その動作、作用を説明する。   The operation and action of the triple tube heat exchanger configured as described above will be described below.

まず、上層熱交換器に設けた冷媒入り口管11より冷媒が、下層熱交換器40に設けた水入り口管13より水がそれぞれ流入する。水入り口管13より流入した水は、各熱交換器を接続する接続部を介して、上層熱交換器20に設けた水出口管14まで導通する。また冷媒入り口管11より流入した冷媒は、接続部を貫通してC状配管17で各熱交換器の冷媒管1同士が接続され、下層熱交換器40に設けた冷媒出口管12まで導通する。このように、本実施の形態における3重管式熱交換器10は、水と冷媒が対向流となっているため、効率のよい熱交換を実現することができる。   First, refrigerant flows in from the refrigerant inlet pipe 11 provided in the upper layer heat exchanger, and water flows in from the water inlet pipe 13 provided in the lower layer heat exchanger 40. The water flowing in from the water inlet pipe 13 is conducted to the water outlet pipe 14 provided in the upper layer heat exchanger 20 through the connecting portion connecting the heat exchangers. In addition, the refrigerant flowing in from the refrigerant inlet pipe 11 passes through the connecting portion, is connected to the refrigerant pipes 1 of the respective heat exchangers by the C-shaped pipe 17, and is conducted to the refrigerant outlet pipe 12 provided in the lower layer heat exchanger 40. . As described above, the triple-pipe heat exchanger 10 according to the present embodiment can realize efficient heat exchange because water and the refrigerant are opposed to each other.

また、各熱交換器(上層熱交換器20、中層熱交換器30、下層熱交換器40)内では、冷媒管1の内面に溝6を、冷媒管1の外面に凹み4を備えたことで、伝熱面積を拡大させ、熱交換性能を向上させている。またそれぞれ溝6、凹み4を形成する面に沿ってスパイラル形状とすることで、水および冷媒に乱流を起こし、さらなる熱交換性能を向上させるとともに、冷媒循環量が同じであっても、熱交換が促進するので、管内圧力が下がり、圧縮機からの循環量をあげることができるので、さらなる熱交換性能を向上させることができる。また、上層熱交換器20(水出口管14側の熱交換器)の大径管の管径を、他の熱交換器(中層熱交換器30および下層熱交換器40)よりも大に形成することで、水流路におけるスケールの堆積を防止することができる。一般的に、炭酸カルシウムなどの水成分に含まれる堆積物は、高温なほど析出しやすい物質であり、水流路の高温側の熱交換器である上層熱交換器20に堆積しやすいため、スケールの堆積を想定した水流路の大きさとしている。   Further, in each heat exchanger (upper layer heat exchanger 20, middle layer heat exchanger 30, lower layer heat exchanger 40), a groove 6 is provided on the inner surface of the refrigerant tube 1 and a recess 4 is provided on the outer surface of the refrigerant tube 1. Therefore, the heat transfer area is expanded and the heat exchange performance is improved. Moreover, by making it spiral shape along the surface which each forms the groove | channel 6 and the dent 4, it causes a turbulent flow in water and a refrigerant | coolant, improves further heat exchange performance, and even if the amount of refrigerant | coolants circulation is the same, Since the exchange is promoted, the pressure in the pipe is lowered, and the amount of circulation from the compressor can be increased, so that further heat exchange performance can be improved. Further, the diameter of the large diameter pipe of the upper layer heat exchanger 20 (heat exchanger on the water outlet pipe 14 side) is formed larger than that of the other heat exchangers (the middle layer heat exchanger 30 and the lower layer heat exchanger 40). By doing so, accumulation of scale in the water flow path can be prevented. Generally, deposits contained in water components such as calcium carbonate are substances that are likely to precipitate as the temperature increases, and are easily deposited on the upper heat exchanger 20 that is the heat exchanger on the high temperature side of the water flow path. The size of the water channel is assumed to be accumulated.

また、各熱交換器の冷媒管1同士を接続するのに、C状配管17を用いることで、冷媒管1の端部が不揃いで変形していても、容易に冷媒管1同士を接続することができ、なおかつ、冷媒管1とC状配管17を部分加熱によるロウ付けが可能なので、作業時間の短縮化を図ることができ、作業性のよい3重管式熱交換器を提供することができる。   Further, by using the C-shaped pipe 17 to connect the refrigerant pipes 1 of the respective heat exchangers, the refrigerant pipes 1 can be easily connected even if the ends of the refrigerant pipes 1 are uneven and deformed. In addition, since the refrigerant pipe 1 and the C-shaped pipe 17 can be brazed by partial heating, the working time can be shortened, and a triple pipe heat exchanger with good workability is provided. Can do.

以上のように、本実施の形態においては、水が流通する大径管と、内面に漏洩検知溝を有する中径管と、冷媒が流通する小径管とを備え、前記大径管に、前記中径管と前記小径管とを内挿し、前記中径管の内面と前記小径管の外面とが密着して冷媒管を構成するとともに、前記中径管の外面に凹みを設けたことにより、冷媒と水との熱交換面積が拡大すること、また、管壁面を流れる水が凹みにより渦状に流れることで、壁面近傍を流れる高温の水と壁面から離れたところを流れる比較的低温の水によって形成されていた温度境界層が乱れ、混合することなどにより、より効率のよい熱交換を実現することができるので、配管を延伸せずとも熱交換性能を向上させることができる。また、中径管の凹みが、前記中径管の延伸方向に沿って外面上をスパイラルに配設されていることにより、水に乱流を起こさせることで、水−冷媒の熱交換性能を向上させることができる。また、凹みの深さは、中径管の肉厚以下とすることにより、管に凹みを加工する加工性が向上し、なおかつスケールが堆積しにくい深さ、および水流路の抵抗として影響しない深さを実現するとともに、熱伝達率を向上することができる。また、複数本の冷媒管を備え、前記複数本の冷媒管をねじり合わせたことにより、より水に乱流を起こさせるので、熱交換性能が向上する。また、中径管の円周方向に形成する凹みのピッチは、凹みの深さの2〜5倍とすることにより、冷媒側の圧力損失を抑制しながら乱流促進が、安定した熱交換器を提供できる。また、小径管の内面に溝部を設けたことにより、冷媒の伝熱面積を向上させるとともに、冷凍サイクルの圧縮機からの冷媒の圧力を下げるなどの相乗効果が得られる。また、冷媒管および大径管を渦巻状に曲成し、積層させたことにより、コンパクトに熱交換器を製作できる。また、冷媒管および大径管を同一平面上で渦巻状に曲成した熱交換ユニットと、複数の前記熱交換ユニットの大径管を接続する接続手段とを備え、前記冷媒管は前記接続手段を貫通し、前記冷媒管の端部をC状配管で接続したことにより、端部が不揃いで変形していたとしても、C状配管を接続してロウ付けするだけなので、廉価で作業性の容易な熱交換器を提供することができる。   As described above, the present embodiment includes a large-diameter pipe through which water flows, an intermediate-diameter pipe having a leakage detection groove on the inner surface, and a small-diameter pipe through which a refrigerant flows, By inserting the medium diameter pipe and the small diameter pipe, the inner surface of the medium diameter pipe and the outer surface of the small diameter pipe are in close contact to form a refrigerant pipe, and by providing a recess on the outer surface of the medium diameter pipe, The heat exchange area between the refrigerant and water is expanded, and the water flowing on the wall of the tube flows in a vortex shape due to the depression, so that hot water flowing near the wall and relatively cold water flowing away from the wall Since the formed temperature boundary layer is disturbed and mixed, more efficient heat exchange can be realized, so that the heat exchange performance can be improved without extending the piping. In addition, the dent of the medium-diameter pipe is spirally arranged on the outer surface along the extending direction of the medium-diameter pipe, thereby causing turbulent flow in the water, thereby improving the water-refrigerant heat exchange performance. Can be improved. In addition, by setting the depth of the recess to be equal to or less than the thickness of the medium-diameter pipe, the workability of processing the recess in the tube is improved, and the depth at which the scale is difficult to deposit and the depth that does not affect the resistance of the water flow path. In addition, the heat transfer rate can be improved. Moreover, since a plurality of refrigerant tubes are provided, and the plurality of refrigerant tubes are twisted together, turbulent flow is caused in the water, so that the heat exchange performance is improved. In addition, the pitch of the recesses formed in the circumferential direction of the medium-diameter pipe is 2 to 5 times the depth of the recesses, so that the turbulent flow can be promoted while suppressing the pressure loss on the refrigerant side, and a stable heat exchanger. Can provide. Further, by providing the groove on the inner surface of the small diameter tube, the heat transfer area of the refrigerant can be improved, and a synergistic effect such as lowering the pressure of the refrigerant from the compressor of the refrigeration cycle can be obtained. In addition, the heat exchanger can be made compact by bending the refrigerant pipe and the large diameter pipe into a spiral shape and stacking them. And a heat exchange unit in which the refrigerant pipe and the large diameter pipe are spirally bent on the same plane, and a connection means for connecting the large diameter pipes of the plurality of heat exchange units. Since the end of the refrigerant pipe is connected by a C-shaped pipe, even if the end is uneven and deformed, the C-shaped pipe is only connected and brazed, so it is inexpensive and easy to work with. An easy heat exchanger can be provided.

以上のように、本発明に係る3重管式熱交換器は、ヒートポンプサイクルと給湯サイクルが一体に構成された一体型ヒートポンプ式給湯機、別体に構成された分離型ヒートポンプ式給湯機、給湯用熱交換器で加熱したお湯をそのまま出湯できる直接出湯型ヒートポンプ式給湯機などの各種ヒートポンプ給湯機の水―冷媒熱交換器に適用でき、給湯機能のほかに、浴槽給湯、暖房機能、乾燥機能を有するヒートポンプ装置にも適用できる。   As described above, the triple-pipe heat exchanger according to the present invention includes an integrated heat pump type hot water heater in which a heat pump cycle and a hot water supply cycle are integrally configured, a separate type heat pump type hot water heater configured separately, and a hot water source. It can be applied to water-refrigerant heat exchangers of various heat pump water heaters such as direct hot water heat pump water heaters that can discharge hot water heated by a heat exchanger for a bath. In addition to the hot water supply function, bath water supply, heating function, drying function It is applicable also to the heat pump apparatus which has this.

本発明の第1の実施の形態における3重管式熱交換器の冷媒管の断面図Sectional drawing of the refrigerant | coolant pipe | tube of the triple pipe | tube type heat exchanger in the 1st Embodiment of this invention 同実施の形態における3重管式熱交換器の冷媒管の側面図およびその断面図Side view and sectional view of refrigerant pipe of triple pipe heat exchanger in same embodiment 同実施の形態における3重管式熱交換器の断面図Sectional drawing of the triple pipe type heat exchanger in the same embodiment 同実施の形態における3重管式熱交換器の上面図Top view of triple tube heat exchanger in the same embodiment 同実施の形態における3重管式熱交換器の側面図Side view of triple pipe heat exchanger in the same embodiment (a)同実施の形態における3重管式熱交換器の要部上面図(b)同実施の形態における3重管式熱交換器の要部側面図(A) Top view of main part of triple pipe heat exchanger in the same embodiment (b) Side view of main part of triple pipe heat exchanger in the same embodiment 従来の水−冷媒熱交換器の上面図Top view of conventional water-refrigerant heat exchanger 従来の水−冷媒熱交換器の側面図Side view of a conventional water-refrigerant heat exchanger (a)従来の水−冷媒熱交換器の要部上面図(b)従来の水−冷媒熱交換器の要部側面図(A) The principal part top view of the conventional water-refrigerant heat exchanger (b) The principal part side view of the conventional water-refrigerant heat exchanger 従来の形態における3重管式熱交換器の断面図Sectional view of a triple-pipe heat exchanger in a conventional configuration

符号の説明Explanation of symbols

1 冷媒管
2 中径管
3 漏洩検知溝
4 凹み
5 小径管
6 溝
7 大径管
10 3重管式熱交換器
11 冷媒入り口管
12 冷媒出口管
13 水入り口管
14 水出口管
15 冷媒漏れ検知部
16 接続部
17 C状配管
20 上層熱交換器
30 中層熱交換器
40 下層熱交換器
DESCRIPTION OF SYMBOLS 1 Refrigerant pipe 2 Medium diameter pipe 3 Leak detection groove 4 Recess 5 Small diameter pipe 6 Groove 7 Large diameter pipe 10 Triple pipe heat exchanger 11 Refrigerant inlet pipe 12 Refrigerant outlet pipe 13 Water inlet pipe 14 Water outlet pipe 15 Refrigerant leak detection Part 16 Connection part 17 C-shaped pipe 20 Upper layer heat exchanger 30 Middle layer heat exchanger 40 Lower layer heat exchanger

Claims (8)

水が流通する大径管と、内面に漏洩検知溝を有する中径管と、冷媒が流通する小径管とを備え、前記大径管に、前記中径管と前記小径管とを内挿し、前記中径管の内面と前記小径管の外面とが密着して冷媒管を構成するとともに、前記中径管の外面に多数の凹みを設けたことを特徴とする3重管式熱交換器。 A large-diameter pipe through which water circulates, an intermediate-diameter pipe having a leakage detection groove on the inner surface, and a small-diameter pipe through which refrigerant circulates, and the medium-diameter pipe and the small-diameter pipe are inserted into the large-diameter pipe, A triple pipe heat exchanger characterized in that an inner surface of the medium-diameter tube and an outer surface of the small-diameter tube are in close contact to form a refrigerant tube, and a plurality of recesses are provided on the outer surface of the medium-diameter tube. 中径管の外面に設けた多数の凹みは、小径管の外壁面も同期して凹みが形成されたことを特徴とする請求項1に記載の3重管式熱交換器。 2. The triple pipe heat exchanger according to claim 1, wherein a plurality of recesses provided on an outer surface of the medium diameter tube are formed in synchronization with an outer wall surface of the small diameter tube. 中径管の多数の凹みは、前記中径管の延伸方向に沿って外面上をスパイラルに配設されていることを特徴とする請求項1または2に記載の3重管式熱交換器。 3. The triple pipe heat exchanger according to claim 1, wherein a plurality of dents in the medium diameter pipe are spirally arranged on the outer surface along the extending direction of the medium diameter pipe. 複数本の冷媒管を備え、前記複数本の冷媒管をねじり合わせたことを特徴とする請求項1〜3のいずれか1項に記載の3重管式熱交換器。 The triple pipe heat exchanger according to any one of claims 1 to 3, further comprising a plurality of refrigerant pipes, wherein the plurality of refrigerant pipes are twisted together. 中径管の長手方向に形成する凹みのピッチは、前記凹みの長手方向の長さの2〜5倍とすることを特徴とする請求項4に記載の3重管式熱交換器。 The triple pipe heat exchanger according to claim 4, wherein the pitch of the recesses formed in the longitudinal direction of the medium diameter tube is 2 to 5 times the length of the recesses in the longitudinal direction. 小径管の内面に溝部を設けたことを特徴とする請求項1〜5のいずれか1項に記載の3重管式熱交換器。 The triple pipe heat exchanger according to any one of claims 1 to 5, wherein a groove is provided on an inner surface of the small diameter pipe. 冷媒管および大径管を渦巻状に曲成かつ積層させたことを特徴とする請求項1〜6のいずれか1項に記載の3重管式熱交換器。 The triple pipe heat exchanger according to any one of claims 1 to 6, wherein the refrigerant pipe and the large diameter pipe are spirally bent and laminated. 冷媒管および大径管を同一平面上で渦巻状に曲成した熱交換ユニットと、複数の前記熱交換ユニットの大径管を接続する接続手段とを備え、前記冷媒管は前記接続手段を貫通し、前記冷媒管の端部をC状接続管で接続したことを特徴とする請求項1〜6のいずれか1項に記載の3重管式熱交換器。 A heat exchange unit in which a refrigerant pipe and a large-diameter pipe are spirally bent on the same plane; and a connection means for connecting the large-diameter pipes of the plurality of heat exchange units. The refrigerant pipe penetrates the connection means. And the end part of the said refrigerant | coolant pipe | tube was connected with the C-shaped connecting pipe, The triple pipe type heat exchanger of any one of Claims 1-6 characterized by the above-mentioned.
JP2006290947A 2006-10-26 2006-10-26 Triple-pipe type heat exchanger Pending JP2008107026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290947A JP2008107026A (en) 2006-10-26 2006-10-26 Triple-pipe type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290947A JP2008107026A (en) 2006-10-26 2006-10-26 Triple-pipe type heat exchanger

Publications (1)

Publication Number Publication Date
JP2008107026A true JP2008107026A (en) 2008-05-08

Family

ID=39440512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290947A Pending JP2008107026A (en) 2006-10-26 2006-10-26 Triple-pipe type heat exchanger

Country Status (1)

Country Link
JP (1) JP2008107026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032183A (en) * 2008-07-31 2010-02-12 Panasonic Corp Heat exchanger

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117615A (en) * 1977-03-24 1978-10-14 Toshiba Corp Tungsten wire for production of coil filament
JPS57104182A (en) * 1980-12-20 1982-06-29 Ricoh Kk Indication control system of terminal apparatus
JPS5821774A (en) * 1981-07-31 1983-02-08 Ricoh Co Ltd Separating system for recording paper
JPS5893677A (en) * 1981-11-25 1983-06-03 ケルンフオルシユングスツエントルム・カ−ルスル−エ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Chassis of car, shape of travelling device thereof change
JPS5893676A (en) * 1981-11-25 1983-06-03 ケルンフオルシユングスツエントルム・カ−ルスル−エ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Car, shape of travelling device thereof change
JPS6071882A (en) * 1983-09-29 1985-04-23 日本酸素株式会社 Air separator using gas bearing type expansion turbine
JPS6071881A (en) * 1983-09-28 1985-04-23 松下電器産業株式会社 Heat-insulating structure
JPS61125592A (en) * 1984-11-22 1986-06-13 Kobe Steel Ltd Heat transfer tube and manufacturing device therefor
JPS636391A (en) * 1986-06-26 1988-01-12 Kobe Steel Ltd Heat transfer tube and manufacture thereof
JP2002257432A (en) * 2001-02-26 2002-09-11 Furukawa Electric Co Ltd:The Heat transfer pipe for absorber
JP2005147570A (en) * 2003-11-18 2005-06-09 Toyo Radiator Co Ltd Double pipe type heat exchanger
JP2006170571A (en) * 2004-12-17 2006-06-29 Hitachi Cable Ltd Double multitubular heat exchanger

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117615A (en) * 1977-03-24 1978-10-14 Toshiba Corp Tungsten wire for production of coil filament
JPS57104182A (en) * 1980-12-20 1982-06-29 Ricoh Kk Indication control system of terminal apparatus
JPS5821774A (en) * 1981-07-31 1983-02-08 Ricoh Co Ltd Separating system for recording paper
JPS5893677A (en) * 1981-11-25 1983-06-03 ケルンフオルシユングスツエントルム・カ−ルスル−エ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Chassis of car, shape of travelling device thereof change
JPS5893676A (en) * 1981-11-25 1983-06-03 ケルンフオルシユングスツエントルム・カ−ルスル−エ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Car, shape of travelling device thereof change
JPS6071881A (en) * 1983-09-28 1985-04-23 松下電器産業株式会社 Heat-insulating structure
JPS6071882A (en) * 1983-09-29 1985-04-23 日本酸素株式会社 Air separator using gas bearing type expansion turbine
JPS61125592A (en) * 1984-11-22 1986-06-13 Kobe Steel Ltd Heat transfer tube and manufacturing device therefor
JPS636391A (en) * 1986-06-26 1988-01-12 Kobe Steel Ltd Heat transfer tube and manufacture thereof
JP2002257432A (en) * 2001-02-26 2002-09-11 Furukawa Electric Co Ltd:The Heat transfer pipe for absorber
JP2005147570A (en) * 2003-11-18 2005-06-09 Toyo Radiator Co Ltd Double pipe type heat exchanger
JP2006170571A (en) * 2004-12-17 2006-06-29 Hitachi Cable Ltd Double multitubular heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032183A (en) * 2008-07-31 2010-02-12 Panasonic Corp Heat exchanger

Similar Documents

Publication Publication Date Title
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP4572662B2 (en) Heat exchanger
JP4978301B2 (en) Heat exchanger
JP2009210232A (en) Heat exchanger
JP2007247917A (en) Triple tube-type heat exchanger
JP2013120027A (en) Double pipe type heat exchanger
JP2005069620A (en) Heat exchanger
JP5513738B2 (en) Heat exchanger and heat pump water heater
JP2005009833A (en) Double pipe type heat exchanger
JP2008107026A (en) Triple-pipe type heat exchanger
JP2005147567A (en) Double pipe type heat exchanger
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP2007218461A (en) Double tube type heat exchanger
JP2008267631A (en) Heat exchanger
JP3922088B2 (en) Heat exchanger
JP5540683B2 (en) Heat exchanger and water heater provided with the same
JP2006317094A (en) Heat exchanger
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
JP5200684B2 (en) Heat exchanger
JP2010255980A (en) Heat exchanger and heat pump water heater using the same
JP2005024109A (en) Heat exchanger
JP5533328B2 (en) Heat exchanger
JP4552567B2 (en) Heat exchanger
JP2005147569A (en) Double pipe type heat exchanger
JP2010078171A (en) Internal heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090608

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090714

A977 Report on retrieval

Effective date: 20110518

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

A02 Decision of refusal

Effective date: 20111101

Free format text: JAPANESE INTERMEDIATE CODE: A02