JP2008105495A - Power output device and hybrid automobile - Google Patents

Power output device and hybrid automobile Download PDF

Info

Publication number
JP2008105495A
JP2008105495A JP2006288667A JP2006288667A JP2008105495A JP 2008105495 A JP2008105495 A JP 2008105495A JP 2006288667 A JP2006288667 A JP 2006288667A JP 2006288667 A JP2006288667 A JP 2006288667A JP 2008105495 A JP2008105495 A JP 2008105495A
Authority
JP
Japan
Prior art keywords
gear
shaft
motor
power
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006288667A
Other languages
Japanese (ja)
Other versions
JP4140647B2 (en
Inventor
Hidehiro Oba
秀洋 大庭
Yukihiko Ideshio
幸彦 出塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006288667A priority Critical patent/JP4140647B2/en
Priority to DE112007002558.1T priority patent/DE112007002558B4/en
Priority to US12/445,321 priority patent/US8056659B2/en
Priority to CN2007800376319A priority patent/CN101522452B/en
Priority to PCT/JP2007/070439 priority patent/WO2008050684A1/en
Publication of JP2008105495A publication Critical patent/JP2008105495A/en
Application granted granted Critical
Publication of JP4140647B2 publication Critical patent/JP4140647B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • F16H2037/0873Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft with switching, e.g. to change ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0034Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising two forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2046Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with six engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2064Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes using at least one positive clutch, e.g. dog clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2097Transmissions using gears with orbital motion comprising an orbital gear set member permanently connected to the housing, e.g. a sun wheel permanently connected to the housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • Structure Of Transmissions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power output device and a hybrid automobile having the device, capable of improving power transmission efficiency in a wider operation area. <P>SOLUTION: This hybrid automobile 20 has mutually coaxially arranged engine 22, motors MG1 and MG2 and power distribution integrating mechanism 40, a transmission shaft 93 extending in parallel to first and second motor shafts 45 and 55, first and second connecting gear trains and a clutch C1 capable of selectively connecting a ring gear 42 and a sun gear 41 of the power distribution integrating mechanism 40 to the transmission shaft 93, a speed reduction mechanism 94 connected to the transmission shaft 83 and capable of outputting power from the transmission shaft 93 from a carrier 98 by reducing a speed, and a transmission 90 including a clutch C2 capable of selectively connecting the carrier 98 and the ring gear 42 to a driving shaft. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、駆動軸に動力を出力する動力出力装置およびそれを備えたハイブリッド自動車に関する。   The present invention relates to a power output device that outputs power to a drive shaft and a hybrid vehicle including the same.

従来から、この種の動力出力装置として、内燃機関と、2体の電動機と、いわゆるラビニヨ型の遊星歯車機構と、遊星歯車機構の2つの出力要素を選択的に出力軸に連結可能な平行軸式変速機とを備えた動力出力装置が知られている(例えば、特許文献1参照)。また、従来から、内燃機関に接続される入力要素および2つの出力要素を含む遊星歯車装置と、当該遊星歯車機構の対応する出力要素にそれぞれ接続されるカウンタシャフトを含む平行軸式変速機とを備えたものも知られている(例えば、特許文献2参照)。この動力出力装置では、遊星歯車装置の2つの出力要素が電気駆動部の対応したロータの内周にそれぞれ固定されている。なお、従来から、内燃機関に接続された入力要素と、第1モータ・ジェネレータに接続された反力要素と、第2モータ・ジェネレータに接続された出力要素とを含む動力分配機構と、出力部材としてのアクスル軸を動力分配機構の出力要素と反力要素とに選択的に接続させるための2つのクラッチとを備えたものも知られている(例えば、特許文献3参照)。この動力出力装置では、第1モータ・ジェネレータが負回転で力行するようになると、動力分配機構の反力要素が出力部材に接続されると共に出力要素と出力部材との接続が解除されるように2つのクラッチが制御され、それにより、出力部材の動力の一部を用いて第2モータ・ジェネレータが発電した電力により第1モータ・ジェネレータを駆動する動力循環の発生が抑制される。
特開2005−155891号公報 特開2003−106389号公報 特開2005−125876号公報
Conventionally, as this type of power output device, an internal combustion engine, two electric motors, a so-called Ravigneaux type planetary gear mechanism, and a parallel shaft capable of selectively connecting two output elements of the planetary gear mechanism to the output shaft 2. Description of the Related Art A power output device including a transmission is known (see, for example, Patent Document 1). Further, conventionally, a planetary gear device including an input element connected to an internal combustion engine and two output elements, and a parallel shaft transmission including a countershaft respectively connected to a corresponding output element of the planetary gear mechanism. The thing provided is also known (for example, refer patent document 2). In this power output device, the two output elements of the planetary gear device are respectively fixed to the inner periphery of the corresponding rotor of the electric drive unit. Conventionally, a power distribution mechanism including an input element connected to the internal combustion engine, a reaction force element connected to the first motor / generator, and an output element connected to the second motor / generator, and an output member There is also known one that includes two clutches for selectively connecting an axle shaft as an output element and a reaction force element of a power distribution mechanism (see, for example, Patent Document 3). In this power output device, when the first motor / generator is powered by negative rotation, the reaction force element of the power distribution mechanism is connected to the output member and the connection between the output element and the output member is released. The two clutches are controlled, thereby suppressing the occurrence of power circulation that drives the first motor / generator with the electric power generated by the second motor / generator using a part of the power of the output member.
JP-A-2005-155891 JP 2003-106389 A Japanese Patent Laying-Open No. 2005-125876

ここで、上述のような動力出力装置を車両に適用するに際しても、より広範な走行領域において動力の伝達効率を向上させる必要があり、この点で、従来の動力出力装置には、なお改善の余地がある。また、上記特許文献1に記載の動力出力装置は、前輪駆動車両を対象とするものであるが、この動力出力装置のように平行軸式変速機を用いた場合、2体の電動機を平行軸式変速機を構成する複数の駆動側歯車の両側に配置すると動力出力装置の幅方向(平行軸式変速機の軸方向)の寸法が増加してしまう。このため、特許文献1に記載の動力出力装置では、2体の電動機、横置きに配置された内燃機関および遊星歯車機構、ならびに平行軸式変速機が互いに平行に延在することになることから、この動力出力装置は、比較的大きな搭載スペースを要求し、車両への搭載性の面で多少の問題を有している。また、上記特許文献2に記載の動力出力装置は、後輪駆動車両を対象としたものと考えられ、この動力出力装置をそのまま前輪駆動車両に適用することは容易ではない。   Here, when the power output device as described above is applied to a vehicle, it is necessary to improve the power transmission efficiency in a wider travel region. In this respect, the conventional power output device is still improved. There is room. The power output device described in Patent Document 1 is intended for a front-wheel drive vehicle. When a parallel shaft type transmission is used as in the power output device, two motors are connected to a parallel shaft. If it is arranged on both sides of a plurality of drive-side gears constituting the transmission, the size of the power output device in the width direction (the axial direction of the parallel shaft transmission) increases. For this reason, in the power output apparatus described in Patent Document 1, two electric motors, an internal combustion engine and a planetary gear mechanism arranged horizontally, and a parallel shaft transmission extend in parallel with each other. This power output device requires a relatively large mounting space and has some problems in terms of mountability on a vehicle. Further, the power output device described in Patent Document 2 is considered to be intended for a rear wheel drive vehicle, and it is not easy to apply this power output device as it is to a front wheel drive vehicle.

そこで、本発明は、より広範な運転領域において動力の伝達効率を向上させることができる動力出力装置およびそれを備えたハイブリッド自動車の提供を目的の一つとする。また、本発明は、コンパクトで搭載性に優れ、主に前輪を駆動して走行する車両に好適な動力出力装置およびそれを備えたハイブリッド自動車の提供を目的の一つとする。   Accordingly, an object of the present invention is to provide a power output device capable of improving power transmission efficiency in a wider driving range and a hybrid vehicle including the power output device. Another object of the present invention is to provide a power output apparatus that is compact and excellent in mountability, and that is suitable for a vehicle that travels mainly by driving front wheels, and a hybrid vehicle equipped with the power output apparatus.

本発明による動力出力装置およびハイブリッド自動車は、上述の目的を達成するために以下の手段を採っている。   The power output apparatus and the hybrid vehicle according to the present invention employ the following means in order to achieve the above-described object.

本発明による動力出力装置は、
駆動軸に動力を出力する動力出力装置であって、
内燃機関と、
動力を入出力可能な第1電動機と、
動力を入出力可能な第2電動機と、
前記第1電動機の回転軸に接続される第1要素と前記第2電動機の回転軸に接続される第2要素と前記内燃機関の機関軸に接続される第3要素とを含むと共にこれら3つの要素が互いに差動回転できるように構成された動力分配統合機構と、
伝達軸と、この伝達軸に前記動力分配統合機構の前記第1要素と前記第2要素とを選択的に連結可能な第1連結手段と、前記伝達軸に接続される入力要素と出力要素とを有すると共に前記伝達軸からの動力を所定の変速比で変速して前記出力要素から出力可能な変速機構と、前記変速機構の前記出力要素と前記動力分配統合機構の前記第1および第2要素の少なくとも何れか一方とを前記駆動軸に選択的に連結可能な第2連結手段とを含む変速伝達手段と、
を備えるものである。
The power output device according to the present invention is:
A power output device that outputs power to a drive shaft,
An internal combustion engine;
A first electric motor capable of inputting and outputting power;
A second electric motor capable of inputting and outputting power;
A first element connected to the rotating shaft of the first electric motor, a second element connected to the rotating shaft of the second electric motor, and a third element connected to the engine shaft of the internal combustion engine. A power distribution and integration mechanism configured to allow the elements to differentially rotate relative to each other;
A transmission shaft; first coupling means capable of selectively coupling the first element and the second element of the power distribution and integration mechanism to the transmission shaft; an input element and an output element connected to the transmission shaft; And a transmission mechanism capable of shifting the power from the transmission shaft at a predetermined transmission ratio and outputting it from the output element, the output element of the transmission mechanism, and the first and second elements of the power distribution and integration mechanism Shift transmission means including second connection means capable of selectively connecting at least one of the drive shaft and the drive shaft;
Is provided.

この動力出力装置は、伝達軸と、この伝達軸に動力分配統合機構の第1要素と第2要素とを選択的に連結可能な第1連結手段と、伝達軸に接続される入力要素と出力要素とを有すると共に伝達軸からの動力を所定の変速比で変速して出力要素から出力可能な変速機構と、変速機構の出力要素と動力分配統合機構の第1および第2要素の少なくとも何れか一方とを駆動軸に選択的に連結可能な第2連結手段とを含む変速伝達手段を備えるものである。これにより、この動力出力装置では、変速伝達手段の第1連結手段により動力分配統合機構の第1および第2要素の何れか一方を伝達軸に連結した状態で、第2連結手段により変速機構の出力要素と駆動軸とを連結すれば、動力分配統合機構の第1または第2要素からの動力を変速機構により変速した上で駆動軸に出力することができる。また、変速伝達手段の第2連結手段により動力分配統合機構の第1または第2要素の少なくとも何れか一方を駆動軸に連結すれば、第1または第2要素からの動力を駆動軸に直接出力することができる。従って、この変速伝達手段によれば、動力分配統合機構からの動力を複数段階に変速して駆動軸に出力することが可能となる。そして、この動力出力装置では、変速伝達手段の第1連結手段または第2連結手段により動力分配統合機構の第1要素が伝達軸または駆動軸に連結されるときには、出力要素となる第1要素に接続される第1電動機を電動機として機能させ、かつ反力要素となる第2要素に接続される第2電動機を発電機として機能させることが可能となる。また、変速伝達手段の第1連結手段または第2連結手段により動力分配統合機構の第2要素が伝達軸または駆動軸に連結されるときには、出力要素となる第2要素に接続される第2電動機を電動機として機能させ、かつ反力要素となる第1要素に接続される第1電動機を発電機として機能させることが可能となる。これにより、この動力出力装置では、第1連結手段や第2連結手段による連結状態の切り替えを適宜実行することにより、特に電動機として機能する第1または第2電動機の回転数が高まったときに、発電機として機能する第2または第1電動機の回転数が負の値にならないようにして、いわゆる動力循環の発生を抑制することができる。この結果、この動力出力装置によれば、より広範な運転領域において動力の伝達効率を良好に向上させることが可能となる。   The power output apparatus includes a transmission shaft, first connection means capable of selectively connecting the first element and the second element of the power distribution and integration mechanism to the transmission shaft, an input element connected to the transmission shaft, and an output. At least one of a speed change mechanism capable of shifting the power from the transmission shaft at a predetermined speed ratio and outputting it from the output element, an output element of the speed change mechanism, and a first and second element of the power distribution and integration mechanism And a second transmission means capable of selectively connecting one to the drive shaft. As a result, in this power output device, the first connecting means of the speed change transmission means connects one of the first and second elements of the power distribution and integration mechanism to the transmission shaft, and the second connecting means of the speed change mechanism If the output element and the drive shaft are connected, the power from the first or second element of the power distribution and integration mechanism can be shifted by the speed change mechanism and then output to the drive shaft. In addition, if at least one of the first and second elements of the power distribution and integration mechanism is connected to the drive shaft by the second connecting means of the transmission transmission means, the power from the first or second element is directly output to the drive shaft. can do. Therefore, according to this shift transmission means, the power from the power distribution and integration mechanism can be shifted in a plurality of stages and output to the drive shaft. In this power output apparatus, when the first element of the power distribution and integration mechanism is connected to the transmission shaft or the drive shaft by the first connection means or the second connection means of the transmission transmission means, It is possible to cause the connected first electric motor to function as an electric motor and allow the second electric motor connected to the second element serving as a reaction force element to function as a generator. Further, when the second element of the power distribution and integration mechanism is connected to the transmission shaft or the drive shaft by the first connecting means or the second connecting means of the transmission transmission means, the second electric motor connected to the second element serving as the output element Can function as a motor, and the first motor connected to the first element serving as a reaction force element can function as a generator. Thereby, in this power output device, when the number of rotations of the first or second electric motor functioning as an electric motor is increased by appropriately switching the connection state by the first connecting means or the second connecting means, Generation | occurrence | production of what is called power circulation can be suppressed so that the rotation speed of the 2nd or 1st electric motor which functions as a generator may not become a negative value. As a result, according to this power output apparatus, it becomes possible to improve the power transmission efficiency in a wider range of operation.

この場合、前記変速伝達手段の前記伝達軸は前記第1および第2電動機の回転軸と概ね平行に延在し、前記第1および第2電動機は前記内燃機関と概ね同軸に配置され、前記動力分配統合機構は前記第1電動機と前記第2電動機との間に両電動機と概ね同軸に配置されてもよい。このように第1および第2電動機の回転軸と概ね平行に延在する伝達軸を含む変速伝達手段を用いれば、第1および第2連結手段や変速機構を伝達軸の周りにそれと同軸に配置することにより動力出力装置を2軸式のものとして構成可能となり、内燃機関と第1および第2電動機と動力分配統合機構とを概ね同軸に配置しても、動力出力装置の軸方向(幅方向寸法)の増加を抑制することができる。従って、この動力出力装置は、コンパクトで搭載性に優れて主に前輪を駆動して走行する車両に極めて好適なものとなる。   In this case, the transmission shaft of the shift transmission means extends substantially parallel to the rotation shafts of the first and second electric motors, the first and second electric motors are arranged substantially coaxially with the internal combustion engine, and the power The distribution and integration mechanism may be disposed substantially coaxially with both motors between the first motor and the second motor. If the transmission transmission means including the transmission shaft extending substantially parallel to the rotation shafts of the first and second electric motors is used in this way, the first and second coupling means and the transmission mechanism are arranged around the transmission shaft coaxially therewith. As a result, the power output device can be configured as a two-shaft type, and even if the internal combustion engine, the first and second motors, and the power distribution and integration mechanism are arranged substantially coaxially, the axial direction (width direction) of the power output device Increase in size) can be suppressed. Therefore, this power output apparatus is extremely suitable for a vehicle that is compact and excellent in mountability and that mainly travels by driving the front wheels.

また、前記変速伝達手段の前記第1連結手段は、前記第1要素に連結される第1平行軸式ギヤ列と、前記第2要素に連結される第2平行軸式ギヤ列と、前記第1平行軸式ギヤ列と前記伝達軸とが連結される第1要素連結状態と前記第2平行軸式ギヤ列と前記伝達軸とが連結される第2要素連結状態とを選択的に切り替え可能な切替手段とを含むものであってもよい。このように2組の平行軸式ギヤ列と切替手段とにより変速伝達手段の第1連結手段を構成すれば、伝達軸の軸方向における第1連結手段の寸法増加を抑制しながら動力分配統合機構の第1要素と第2要素とを伝達軸に選択的に連結可能とすることができる。また、このように平行軸式ギヤ列を介して動力分配統合機構の第1または第2要素を伝達軸に連結すれば、第1要素または第2要素と伝達軸との間の変速比を自在に設定することが可能となる。   Further, the first connecting means of the speed change transmission means includes a first parallel shaft gear train connected to the first element, a second parallel shaft gear train connected to the second element, It is possible to selectively switch between a first element connection state in which one parallel shaft type gear train and the transmission shaft are connected and a second element connection state in which the second parallel shaft type gear train and the transmission shaft are connected. Switching means may be included. In this way, if the first connecting means of the transmission transmission means is constituted by the two sets of parallel shaft type gear trains and the switching means, the power distribution and integration mechanism while suppressing an increase in the size of the first connecting means in the axial direction of the transmission shaft. The first element and the second element can be selectively coupled to the transmission shaft. Further, if the first or second element of the power distribution and integration mechanism is connected to the transmission shaft via the parallel shaft type gear train in this way, the gear ratio between the first element or the second element and the transmission shaft can be freely set. It becomes possible to set to.

この場合、前記第1連結手段の前記切替手段は、前記第1要素連結状態と前記第2要素連結状態と前記第1平行軸式ギヤ列および前記第2平行軸式ギヤ列の双方が前記伝達軸に連結される両要素連結状態とを選択的に切り替え可能であってもよい。このような切替手段により両要素連結状態が設定されたときには、内燃機関からの動力を固定された変速比で機械的(直接)に駆動軸へと伝達することができる。この結果、この動力出力装置によれば、より一層広範な運転領域において動力の伝達効率を良好に向上させることが可能となる。   In this case, the switching means of the first connecting means transmits the first element connected state, the second element connected state, the first parallel shaft type gear train, and the second parallel shaft type gear train to the transmission. It may be possible to selectively switch between both element connection states connected to the shaft. When the both element coupling state is set by such switching means, the power from the internal combustion engine can be mechanically (directly) transmitted to the drive shaft at a fixed gear ratio. As a result, according to this power output apparatus, it becomes possible to improve the power transmission efficiency satisfactorily in a wider operating range.

更に、前記変速伝達手段の前記第2連結手段は、前記変速機構の前記出力要素と前記駆動軸とが連結される変速機構−駆動軸連結状態と、前記動力分配統合機構の前記第1および第2要素の何れか一方と前記駆動軸とが連結される直結状態と、前記変速機構の前記出力要素と前記動力分配統合機構の前記第1および第2要素の何れか一方とが前記駆動軸に連結される同時連結状態とを選択的に切り替え可能であってもよい。このような第2連結手段により同時連結状態が設定されたときにも、内燃機関からの動力を固定された変速比で機械的(直接)に駆動軸へと伝達することができる。この結果、この動力出力装置によれば、より一層広範な運転領域において動力の伝達効率を良好に向上させることが可能となる。   Further, the second connecting means of the speed change transmission means includes a speed change mechanism-drive shaft connection state in which the output element of the speed change mechanism and the drive shaft are connected, and the first and first of the power distribution and integration mechanism. A direct connection state in which any one of the two elements is connected to the drive shaft, and the output element of the transmission mechanism and any one of the first and second elements of the power distribution and integration mechanism are connected to the drive shaft. The simultaneous connection state to be connected may be selectively switched. Even when the simultaneous connection state is set by such second connection means, the power from the internal combustion engine can be mechanically (directly) transmitted to the drive shaft at a fixed gear ratio. As a result, according to this power output apparatus, it becomes possible to improve the power transmission efficiency satisfactorily in a wider operating range.

また、本発明による動力出力装置は、前記第1電動機の回転軸と前記第2電動機の回転軸との何れか一方を回転不能に固定可能な固定手段を更に備えてもよい。これにより、固定手段に対応していない第1または第2電動機に接続される動力分配統合機構の第1または第2要素が変速伝達手段の第1連結手段または第2連結手段によって伝達軸または駆動軸に連結されているときに、固定手段に対応した第2または第1電動機の回転軸を当該固定手段により回転不能に固定すれば、内燃機関からの動力を固定された変速比で機械的(直接)に駆動軸へと伝達することができる。従って、この動力出力装置によれば、より一層広範な運転領域において動力の伝達効率を良好に向上させることが可能となる。   In addition, the power output apparatus according to the present invention may further include a fixing unit that can fix any one of the rotating shaft of the first motor and the rotating shaft of the second motor so as not to rotate. As a result, the first or second element of the power distribution and integration mechanism connected to the first or second electric motor that does not correspond to the fixing means is transmitted or driven by the first connection means or the second connection means of the transmission transmission means. When the rotation shaft of the second or first electric motor corresponding to the fixing means is fixed to be non-rotatable by the fixing means when connected to the shaft, the power from the internal combustion engine is mechanically maintained at a fixed gear ratio ( Directly) to the drive shaft. Therefore, according to this power output device, it is possible to satisfactorily improve power transmission efficiency in a wider operating range.

更に、本発明による動力出力装置は、前記第1電動機と前記第1要素との接続および該接続の解除と、前記第2電動機と前記第2要素との接続および該接続の解除と、前記内燃機関と前記第3要素との接続および該接続の解除との何れかを実行可能な接続断接手段を更に備えてもよい。このような接続断接手段を備えた動力出力装置では、接続断接手段に上記接続を解除させれば、動力分配統合機構の機能により内燃機関を実質的に第1および第2電動機や変速伝達手段から切り離すことが可能となる。これにより、この動力出力装置では、接続断接手段に上記接続を解除させると共に内燃機関を停止させれば、第1および第2電動機の少なくとも何れかからの動力を変速伝達手段の変速状態(変速比)の変更を伴って駆動軸に効率よく伝達することが可能となる。従って、この動力出力装置によれば、第1および第2電動機に要求される最大トルク等を低下させることが可能となり、第1および第2電動機のより一層の小型化を図ることができる。   Furthermore, the power output apparatus according to the present invention includes a connection between the first motor and the first element and a release of the connection, a connection between the second motor and the second element and a release of the connection, and the internal combustion engine. There may be further provided a connection / disconnection means capable of executing either connection between the engine and the third element or release of the connection. In the power output apparatus provided with such connection / disconnection means, if the connection / disconnection means releases the connection, the internal combustion engine is substantially made to function as the first and second electric motors and the transmission gear by the function of the power distribution and integration mechanism. It becomes possible to separate from the means. As a result, in this power output device, if the connection / disconnection means releases the connection and stops the internal combustion engine, the power from at least one of the first and second motors is transferred to the speed change state (speed change) of the speed change transmission means. It is possible to efficiently transmit to the drive shaft with a change in the ratio. Therefore, according to this power output apparatus, it is possible to reduce the maximum torque required for the first and second electric motors, and it is possible to further reduce the size of the first and second electric motors.

また、前記変速伝達手段の前記変速機構は、前記伝達軸から前記入力要素に入力された動力を所定の減速比で減速して前記出力要素から出力可能な減速機構であってもよい。この場合、前記変速伝達手段の前記変速機構は、3要素式遊星歯車機構であってもよい。これにより、変速伝達手段をよりコンパクトに構成することが可能となる。   Further, the speed change mechanism of the speed change transmission means may be a speed reduction mechanism capable of decelerating the power input from the transmission shaft to the input element at a predetermined reduction ratio and outputting the power from the output element. In this case, the transmission mechanism of the transmission transmission means may be a three-element planetary gear mechanism. As a result, the shift transmission means can be configured more compactly.

更に、前記動力分配統合機構の前記第1および第2要素のうちの前記機関軸に接続される前記第3要素からより大きなトルクが入力される一方は、前記第1電動機または前記第2電動機の回転軸の回転を減速する減速手段を介して前記第1電動機または前記第2電動機に接続されてもよい。このように、動力分配統合機構の第1および第2要素のうち、内燃機関からのトルクの分配比率が大きい方を減速手段を介して第1または第2電動機と接続すれば、減速手段に接続された第1または第2電動機のトルク負担をより効果的に軽減して、当該電動機を小型化すると共にその動力損失の低減化を図ることが可能となる。   Further, one of the first and second elements of the power distribution and integration mechanism to which a larger torque is input from the third element connected to the engine shaft is the first motor or the second motor. You may connect to the said 1st electric motor or the said 2nd electric motor via the deceleration means which decelerates rotation of a rotating shaft. In this way, if the one with the larger torque distribution ratio from the internal combustion engine is connected to the first or second electric motor via the speed reduction means, the power distribution integration mechanism is connected to the speed reduction means. It is possible to more effectively reduce the torque burden on the first or second electric motor, thereby reducing the size of the electric motor and reducing the power loss.

この場合、前記動力分配統合機構は、サンギヤと、リングギヤと、前記サンギヤおよび前記リングギヤの双方と噛合するピニオンギヤを少なくとも1つ保持するキャリアとを含むシングルピニオン式遊星歯車機構であり、前記第1要素は前記サンギヤおよび前記リングギヤの何れか一方であると共に前記第2要素は前記サンギヤおよび前記リングギヤの他方であり、前記第3要素は前記キャリアであり、前記サンギヤの歯数を前記リングギヤの歯数で除した値である前記動力分配統合機構のギヤ比をρとしたときに、前記減速手段は、減速比がρ近傍の値となるように構成されると共に前記第1または第2電動機と前記リングギヤとの間に配置されてもよい。このような諸元の動力分配統合機構においては、サンギヤに比べてリングギヤに対する内燃機関からのトルクの分配比率が大きくなる。従って、リングギヤと第1または第2電動機との間に減速手段を配置することにより、当該第1または第2電動機の小型化とその動力損失の低減化を図ることが可能となる。また、減速手段の減速比をρ近傍の値とすれば、第1および第2電動機の諸元を概ね同一のものとすることが可能となるので、動力出力装置の生産性を向上させると共にコストの低減化を図ることができる。   In this case, the power distribution and integration mechanism is a single pinion type planetary gear mechanism including a sun gear, a ring gear, and a carrier that holds at least one pinion gear that meshes with both the sun gear and the ring gear, and the first element Is one of the sun gear and the ring gear, the second element is the other of the sun gear and the ring gear, the third element is the carrier, and the number of teeth of the sun gear is the number of teeth of the ring gear. When the gear ratio of the power distribution and integration mechanism, which is a divided value, is ρ, the reduction means is configured such that the reduction ratio is a value in the vicinity of ρ, and the first or second electric motor and the ring gear Between the two. In such a power distribution and integration mechanism of various specifications, the distribution ratio of torque from the internal combustion engine to the ring gear is larger than that of the sun gear. Therefore, by disposing the speed reduction means between the ring gear and the first or second motor, it becomes possible to reduce the size of the first or second motor and reduce its power loss. Further, if the speed reduction ratio of the speed reduction means is set to a value in the vicinity of ρ, the specifications of the first and second motors can be made substantially the same, which improves the productivity of the power output device and reduces the cost. Can be reduced.

また、前記動力分配統合機構は、サンギヤと、リングギヤと、互いに噛合すると共に一方が前記サンギヤと他方が前記リングギヤと噛合する2つのピニオンギヤの組を少なくとも1組保持するキャリアとを含むダブルピニオン式遊星歯車機構であり、前記第1要素は前記サンギヤおよび前記キャリアの何れか一方であると共に前記第2要素は前記サンギヤおよび前記キャリアの他方であり、前記第3要素は前記リングギヤであってもよい。この場合、前記動力分配統合機構は、前記サンギヤの歯数を前記リングギヤの歯数で除した値である該動力分配統合機構のギヤ比をρとしたときに、ρ<0.5となるように構成され、前記減速手段は、減速比がρ/(1−ρ)近傍の値となるように構成されると共に前記第1電動機または前記第2電動機と前記キャリアとの間に配置されてもよい。このような諸元の動力分配統合機構においては、サンギヤに比べてキャリアに対する内燃機関からのトルクの分配比率が大きくなる。従って、キャリアと第1または第2電動機との間に減速手段を配置することにより、当該第1または第2電動機の小型化とその動力損失の低減化を図ることが可能となる。また、減速手段の減速比をρ/(1−ρ)近傍の値とすれば、第1および第2電動機の諸元を概ね同一のものとすることが可能となるので、動力出力装置の生産性を向上させると共にコストの低減化を図ることができる。更に、ダブルピニオン式遊星歯車機構である動力分配統合機構は、前記サンギヤの歯数を前記リングギヤの歯数で除した値である該動力分配統合機構のギヤ比をρとしたときに、ρ>0.5となるように構成されてもよく、この場合、前記減速手段は、減速比が(1−ρ)/ρ近傍の値となるように構成されると共に前記第1電動機または前記第2電動機と前記サンギヤとの間に配置されてもよい。   The power distribution and integration mechanism includes a sun gear, a ring gear, and a carrier that holds at least one set of two pinion gears that mesh with each other and one meshes with the sun gear and the other meshes with the ring gear. In the gear mechanism, the first element may be one of the sun gear and the carrier, the second element may be the other of the sun gear and the carrier, and the third element may be the ring gear. In this case, the power distribution and integration mechanism is such that ρ <0.5 when the gear ratio of the power distribution and integration mechanism, which is a value obtained by dividing the number of teeth of the sun gear by the number of teeth of the ring gear, is ρ. And the speed reduction means is configured such that the speed reduction ratio becomes a value in the vicinity of ρ / (1-ρ) and is arranged between the first motor or the second motor and the carrier. Good. In the power distribution and integration mechanism of such specifications, the distribution ratio of the torque from the internal combustion engine to the carrier is larger than that of the sun gear. Therefore, by disposing the speed reduction means between the carrier and the first or second motor, it is possible to reduce the size of the first or second motor and reduce its power loss. Further, if the reduction ratio of the reduction means is set to a value in the vicinity of ρ / (1-ρ), the specifications of the first and second motors can be made substantially the same. The cost can be reduced while improving the performance. Further, the power distribution and integration mechanism, which is a double pinion planetary gear mechanism, is configured such that when the gear ratio of the power distribution and integration mechanism, which is a value obtained by dividing the number of teeth of the sun gear by the number of teeth of the ring gear, is ρ> In this case, the speed reduction means is configured so that the speed reduction ratio becomes a value in the vicinity of (1-ρ) / ρ, and the first motor or the second You may arrange | position between an electric motor and the said sun gear.

本発明によるハイブリッド自動車は、上記何れかの動力出力装置を備え、前記駆動軸からの動力により駆動される駆動輪を含むものである。このハイブリッド自動車に搭載される動力出力装置は、より広範な運転領域において動力の伝達効率を向上可能なものであるから、このハイブリッド自動車では燃費と走行性能とを良好に向上させることができる。   A hybrid vehicle according to the present invention includes any one of the power output devices described above, and includes drive wheels that are driven by power from the drive shaft. Since the power output apparatus mounted on the hybrid vehicle can improve power transmission efficiency in a wider driving range, the hybrid vehicle can improve fuel efficiency and running performance satisfactorily.

次に、本発明を実施するための最良の形態を実施例を用いて説明する。   Next, the best mode for carrying out the present invention will be described using examples.

図1は、本発明の一実施例に係るハイブリッド自動車20の概略構成図である。同図に示すハイブリッド自動車20は、前輪駆動車両として構成されており、車両前部に配置されるエンジン22と、エンジン22の出力軸であるクランクシャフト26に接続された動力分配統合機構(差動回転機構)40と、エンジン22のクランクシャフト26と同軸に配置されると共に動力分配統合機構40に接続された発電可能なモータMG1と、エンジン22およびモータMG1と同軸に配置されると共に減速ギヤ機構50を介して動力分配統合機構40に接続された発電可能なモータMG2と、動力分配統合機構40からの動力を変速状態の変更を伴ってギヤ機構61に含まれる駆動軸60に伝達可能な変速機90と、ハイブリッド自動車20の全体をコントロールするハイブリッド用電子制御ユニット(以下、「ハイブリッドECU」という)70等とを備えるものである。   FIG. 1 is a schematic configuration diagram of a hybrid vehicle 20 according to an embodiment of the present invention. A hybrid vehicle 20 shown in the figure is configured as a front-wheel drive vehicle, and includes a power distribution and integration mechanism (differential) connected to an engine 22 disposed in the front portion of the vehicle and a crankshaft 26 that is an output shaft of the engine 22. Rotation mechanism) 40, motor MG1 capable of generating electricity that is coaxially arranged with crankshaft 26 of engine 22 and connected to power distribution and integration mechanism 40, and reduction gear mechanism that is coaxially arranged with engine 22 and motor MG1 A motor MG2 capable of generating power connected to the power distribution and integration mechanism 40 via the power transmission mechanism 50, and a shift capable of transmitting the power from the power distribution and integration mechanism 40 to the drive shaft 60 included in the gear mechanism 61 with a change in the shift state. The hybrid electronic control unit (hereinafter referred to as “hybrid”) that controls the aircraft 90 and the entire hybrid vehicle 20 CU "hereinafter) in which and a 70, and the like.

エンジン22は、ガソリンや軽油といった炭化水素系燃料の供給を受けて動力を出力する内燃機関であり、エンジン用電子制御ユニット(以下、「エンジンECU」という)24から燃料噴射量や点火時期、吸入空気量等の制御を受けている。エンジンECU24には、エンジン22に対して設けられて当該エンジン22の運転状態を検出する各種センサからの信号が入力される。そして、エンジンECU24は、ハイブリッドECU70と通信しており、ハイブリッドECU70からの制御信号や上記センサからの信号等に基づいてエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータをハイブリッドECU70に出力する。   The engine 22 is an internal combustion engine that outputs power when supplied with hydrocarbon fuel such as gasoline or light oil. The engine 22 controls the fuel injection amount, ignition timing, and suction from an engine electronic control unit (hereinafter referred to as “engine ECU”) 24. The air volume is controlled. The engine ECU 24 receives signals from various sensors that are provided for the engine 22 and detect the operating state of the engine 22. The engine ECU 24 communicates with the hybrid ECU 70 to control the operation of the engine 22 based on a control signal from the hybrid ECU 70, a signal from the sensor, and the like, and to transmit data on the operation state of the engine 22 as necessary. It outputs to ECU70.

モータMG1およびモータMG2は、何れも発電機として作動すると共に電動機として作動可能な周知の同期発電電動機として構成されており、インバータ31,32を介して二次電池であるバッテリ35と電力のやり取りを行なう。インバータ31,32とバッテリ35とを接続する電力ライン39は、各インバータ31,32が共用する正極母線および負極母線として構成されており、モータMG1,MG2の何れか一方により発電される電力を他方のモータで消費できるようになっている。従って、バッテリ35は、モータMG1,MG2の何れかから生じた電力や不足する電力により充放電されることになり、モータMG1,MG2により電力収支のバランスをとるものとすれば充放電されないことになる。モータMG1,MG2は、何れもモータ用電子制御ユニット(以下、「モータECU」という)30により駆動制御される。モータECU30には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ33,34からの信号や、図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流等が入力されており、モータECU30からは、インバータ31,32へのスイッチング制御信号等が出力される。モータECU30は、回転位置検出センサ33,34から入力した信号に基づいて図示しない回転数算出ルーチンを実行し、モータMG1,MG2の回転子の回転数Nm1,Nm2を計算している。また、モータECU30は、ハイブリッドECU70と通信しており、ハイブリッドECU70からの制御信号等に基づいてモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをハイブリッドECU70に出力する。   Both the motor MG1 and the motor MG2 are configured as well-known synchronous generator motors that operate as a generator and can operate as a motor, and exchange power with a battery 35 that is a secondary battery via inverters 31 and 32. Do. The power line 39 connecting the inverters 31 and 32 and the battery 35 is configured as a positive electrode bus and a negative electrode bus shared by the inverters 31 and 32, and the electric power generated by one of the motors MG1 and MG2 is supplied to the other. It can be consumed with the motor. Therefore, the battery 35 is charged / discharged by electric power generated from one of the motors MG1 and MG2 or insufficient power, and is not charged / discharged if the balance of electric power is balanced by the motors MG1 and MG2. Become. The motors MG1 and MG2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as “motor ECU”) 30. The motor ECU 30 receives signals necessary for driving and controlling the motors MG1 and MG2, such as signals from rotational position detection sensors 33 and 34 for detecting the rotational positions of the rotors of the motors MG1 and MG2, and current sensors (not shown). The detected phase current applied to the motors MG1 and MG2 and the like are input, and the motor ECU 30 outputs a switching control signal and the like to the inverters 31 and 32. The motor ECU 30 executes a rotation speed calculation routine (not shown) based on signals input from the rotation position detection sensors 33 and 34, and calculates the rotation speeds Nm1 and Nm2 of the rotors of the motors MG1 and MG2. Further, the motor ECU 30 communicates with the hybrid ECU 70, and controls the drive of the motors MG1, MG2 based on a control signal from the hybrid ECU 70, and transmits data related to the operating state of the motors MG1, MG2 to the hybrid ECU 70 as necessary. Output.

バッテリ35は、バッテリ用電子制御ユニット(以下、「バッテリECU」という)36によって管理されている。バッテリECU36には、バッテリ35を管理するのに必要な信号、例えば、バッテリ35の端子間に設置された図示しない電圧センサからの端子間電圧、バッテリ35の出力端子に接続された電力ライン39に取り付けられた図示しない電流センサからの充放電電流、バッテリ35に取り付けられた温度センサ37からのバッテリ温度Tb等が入力されている。バッテリECU36は、必要に応じてバッテリ35の状態に関するデータを通信によりハイブリッドECU70やエンジンECU24に出力する。更に、バッテリECU36は、バッテリ35を管理するために電流センサにより検出された充放電電流の積算値に基づいて残容量SOCも算出している。   The battery 35 is managed by a battery electronic control unit (hereinafter referred to as “battery ECU”) 36. The battery ECU 36 receives signals necessary for managing the battery 35, for example, a voltage between terminals from a voltage sensor (not shown) installed between terminals of the battery 35, and a power line 39 connected to the output terminal of the battery 35. A charging / discharging current from an attached current sensor (not shown), a battery temperature Tb from a temperature sensor 37 attached to the battery 35, and the like are input. The battery ECU 36 outputs data related to the state of the battery 35 to the hybrid ECU 70 and the engine ECU 24 by communication as necessary. Further, the battery ECU 36 calculates the remaining capacity SOC based on the integrated value of the charge / discharge current detected by the current sensor in order to manage the battery 35.

動力分配統合機構40は、モータMG1,MG2、減速ギヤ機構50、変速機90と共に図示しないトランスミッションケースに収容され、エンジン22から所定距離を隔ててクランクシャフト26と同軸に配置される。実施例の動力分配統合機構40は、外歯歯車のサンギヤ41と、その内周に形成された内歯と外周に形成された外歯とを有すると共にサンギヤ41と同心円上に配置されるリングギヤ42と、サンギヤ41およびリングギヤ42の内歯の双方と噛合するピニオンギヤ43を複数保持するキャリア44とを含み、サンギヤ41(第2要素)とリングギヤ42(第1要素)とキャリア44(第3要素)とが互いに差動回転できるように構成されたシングルピニオン式遊星歯車機構である。実施例において、動力分配統合機構40は、そのギヤ比ρ(サンギヤ41の歯数をリングギヤ42の歯数で除した値)がρ<0.5となるように構成されている。動力分配統合機構40の第2要素たるサンギヤ41には、当該サンギヤ41からエンジン22とは反対側に延びるサンギヤ軸41aおよび第1モータ軸45を介して第2電動機としてのモータMG1(ロータ)が接続されている。また、第1要素たるリングギヤ42には、動力分配統合機構40のエンジン22側に配置される減速ギヤ機構50および当該減速ギヤ機構50(サンギヤ51)からエンジン22に向けて延びる中空の第2モータ軸55を介して第1電動機としてのモータMG2(中空のロータ)が接続されている。更に、第3要素たるキャリア44には、第2モータ軸55およびモータMG2を通って延びるキャリア軸44aおよびダンパ28を介してエンジン22のクランクシャフト26が接続されている。これにより、実施例のハイブリッド自動車20では、エンジン22,モータMG1,MG2、動力分配統合機構40、減速ギヤ機構50という構成要素が、図中右からエンジン22、モータMG2、減速ギヤ機構50、動力分配統合機構40、モータMG1という順番で互いに同軸に配置されることになる。   The power distribution and integration mechanism 40 is housed in a transmission case (not shown) together with the motors MG1 and MG2, the reduction gear mechanism 50, and the transmission 90, and is arranged coaxially with the crankshaft 26 at a predetermined distance from the engine 22. The power distribution and integration mechanism 40 of the embodiment has a sun gear 41 of an external gear, an inner tooth formed on the inner periphery and an outer tooth formed on the outer periphery, and a ring gear 42 disposed concentrically with the sun gear 41. And a carrier 44 that holds a plurality of pinion gears 43 that mesh with both the inner teeth of the sun gear 41 and the ring gear 42, and includes a sun gear 41 (second element), a ring gear 42 (first element), and a carrier 44 (third element). Is a single pinion type planetary gear mechanism configured to be capable of differential rotation with respect to each other. In the embodiment, the power distribution and integration mechanism 40 is configured such that the gear ratio ρ (the value obtained by dividing the number of teeth of the sun gear 41 by the number of teeth of the ring gear 42) is ρ <0.5. The sun gear 41 as the second element of the power distribution and integration mechanism 40 has a motor MG1 (rotor) as a second electric motor via a sun gear shaft 41a extending from the sun gear 41 to the opposite side of the engine 22 and a first motor shaft 45. It is connected. The ring gear 42 as the first element includes a reduction gear mechanism 50 disposed on the engine 22 side of the power distribution and integration mechanism 40 and a hollow second motor extending from the reduction gear mechanism 50 (sun gear 51) toward the engine 22. A motor MG2 (hollow rotor) as a first electric motor is connected via a shaft 55. Further, the crankshaft 26 of the engine 22 is connected to the carrier 44 as the third element through a carrier shaft 44a extending through the second motor shaft 55 and the motor MG2 and the damper 28. As a result, in the hybrid vehicle 20 of the embodiment, the components such as the engine 22, the motors MG1, MG2, the power distribution and integration mechanism 40, and the reduction gear mechanism 50 are arranged from the right in the figure, and the engine 22, the motor MG2, the reduction gear mechanism 50, The distribution and integration mechanism 40 and the motor MG1 are arranged coaxially with each other in this order.

減速ギヤ機構50は、外歯歯車のサンギヤ51と、このサンギヤ51と同心円上に配置される内歯歯車のリングギヤ52と、サンギヤ51およびリングギヤ52の双方と噛合する複数のピニオンギヤ53と、複数のピニオンギヤ53を自転かつ公転自在に保持するキャリア54とを備えるシングルピニオン式遊星歯車機構である。実施例において、減速ギヤ機構50は、その減速比(サンギヤ51の歯数/リングギヤ52の歯数)が動力分配統合機構40のギヤ比ρ近傍の値となるように構成されている。減速ギヤ機構50のサンギヤ51は、上述の第2モータ軸55を介してモータMG2のロータに接続されている。また、減速ギヤ機構50のリングギヤ52は、動力分配統合機構40のリングギヤ42に固定され、これにより減速ギヤ機構50は動力分配統合機構40と実質的に一体化される。そして、減速ギヤ機構50のキャリア54は、トランスミッションケースに対して固定されている。従って、減速ギヤ機構50の作用により、モータMG2からの動力が減速されて動力分配統合機構40のリングギヤ42に入力されると共に、リングギヤ42からの動力が増速されてモータMG2に入力されることになる。なお、実施例のように、減速ギヤ機構50をモータMG2と動力分配統合機構40との間に配置して動力分配統合機構40と一体化させれば、動力出力装置をより一層コンパクト化することができる。   The reduction gear mechanism 50 includes an external gear sun gear 51, an internal gear ring gear 52 arranged concentrically with the sun gear 51, a plurality of pinion gears 53 that mesh with both the sun gear 51 and the ring gear 52, and a plurality of gears. This is a single pinion type planetary gear mechanism including a carrier 54 that holds the pinion gear 53 so as to rotate and revolve. In the embodiment, the reduction gear mechanism 50 is configured such that the reduction ratio (the number of teeth of the sun gear 51 / the number of teeth of the ring gear 52) is a value near the gear ratio ρ of the power distribution and integration mechanism 40. The sun gear 51 of the reduction gear mechanism 50 is connected to the rotor of the motor MG2 via the second motor shaft 55 described above. Further, the ring gear 52 of the reduction gear mechanism 50 is fixed to the ring gear 42 of the power distribution integration mechanism 40, whereby the reduction gear mechanism 50 is substantially integrated with the power distribution integration mechanism 40. The carrier 54 of the reduction gear mechanism 50 is fixed to the transmission case. Accordingly, the power from the motor MG2 is decelerated and input to the ring gear 42 of the power distribution and integration mechanism 40 by the action of the reduction gear mechanism 50, and the power from the ring gear 42 is accelerated and input to the motor MG2. become. If the reduction gear mechanism 50 is arranged between the motor MG2 and the power distribution integration mechanism 40 and integrated with the power distribution integration mechanism 40 as in the embodiment, the power output device can be made more compact. Can do.

また、図1に示すように、サンギヤ軸41aと第1モータ軸45との間には、両者の接続および当該接続の解除を実行する接続断接手段として機能すると共に、モータMG1の回転軸たる第1モータ軸45(リングギヤ42)を回転不能に固定可能な固定手段として機能するクラッチC0が設けられている。実施例において、クラッチC0は、例えば、サンギヤ軸41aの先端(図中左端)に固定されたドグと、第1モータ軸45の先端(図中右端)に固定されたドグと、トランスミッションケースに固定された固定用ドグ46と、これらのドグと噛合可能であると共に電気式、電磁式あるいは油圧式のアクチュエータ100により駆動される係合部材とを含むドグクラッチとして構成され、図1に示すように、係合部材の位置であるクラッチポジションを「Rポジション」、「Mポジション」および「Lポジション」に選択的に切り替え可能である。すなわち、実施例のクラッチC0のクラッチポジションがRポジションに設定されると、係合部材を介したサンギヤ軸41aのドグと第1モータ軸45のドグとの連結すなわちモータMG1と動力分配統合機構40のサンギヤ41との接続が解除される。このように、クラッチC0によるサンギヤ軸41aと第1モータ軸45との接続を解除した際には、第2電動機としてのモータMG1と動力分配統合機構40の第2要素たるサンギヤ41との接続が解除されることになり、動力分配統合機構40の機能によりエンジン22を実質的にモータMG1,MG2や変速機90から切り離すことが可能となる。また、クラッチC0のクラッチポジションがMポジションに設定されると、係合部材を介してサンギヤ軸41aのドグと第1モータ軸45のドグとがより少ない損失で連結され、それによりモータMG1と動力分配統合機構40のサンギヤ41とが接続されることになる。そして、クラッチC0のクラッチポジションがLポジションに設定されると、係合部材を介してサンギヤ軸41aのドグと第1モータ軸45のドグと固定用ドグ46とがより少ない損失で連結され、それにより、動力分配統合機構40の第2要素たるサンギヤ41や第1モータ軸45(モータMG2)を回転不能に固定することが可能となる。   Further, as shown in FIG. 1, between the sun gear shaft 41a and the first motor shaft 45, it functions as a connection / disconnection means for executing connection / disconnection of the both, and is a rotation shaft of the motor MG1. A clutch C0 is provided that functions as a fixing means that can fix the first motor shaft 45 (ring gear 42) in a non-rotatable manner. In the embodiment, the clutch C0 is fixed to the transmission case, for example, a dog fixed to the tip (left end in the drawing) of the sun gear shaft 41a, a dog fixed to the tip (right end in the drawing) of the first motor shaft 45. 1 is configured as a dog clutch including an engaging member that can be engaged with the dogs and driven by an electric, electromagnetic, or hydraulic actuator 100, as shown in FIG. The clutch position which is the position of the engaging member can be selectively switched between “R position”, “M position” and “L position”. That is, when the clutch position of the clutch C0 of the embodiment is set to the R position, the coupling of the dog of the sun gear shaft 41a and the dog of the first motor shaft 45 via the engaging member, that is, the motor MG1 and the power distribution and integration mechanism 40 The connection with the sun gear 41 is released. As described above, when the connection between the sun gear shaft 41a and the first motor shaft 45 by the clutch C0 is released, the connection between the motor MG1 as the second electric motor and the sun gear 41 as the second element of the power distribution and integration mechanism 40 is established. As a result, the engine 22 can be substantially disconnected from the motors MG1, MG2 and the transmission 90 by the function of the power distribution and integration mechanism 40. Further, when the clutch position of the clutch C0 is set to the M position, the dog of the sun gear shaft 41a and the dog of the first motor shaft 45 are connected with less loss through the engagement member. The sun gear 41 of the distribution and integration mechanism 40 is connected. When the clutch position of the clutch C0 is set to the L position, the dog of the sun gear shaft 41a, the dog of the first motor shaft 45, and the fixing dog 46 are connected with less loss through the engaging member. Thus, the sun gear 41 and the first motor shaft 45 (motor MG2), which are the second elements of the power distribution and integration mechanism 40, can be fixed in a non-rotatable manner.

変速機90は、複数段階に変速状態(変速比)を設定可能なものであり、動力分配統合機構40のリングギヤ42および当該リングギヤ42の外歯と常時噛合する第1従動ギヤ91により構成される第1連結ギヤ列と、第1モータ軸45に取り付けられた駆動ギヤ47および当該駆動ギヤ47と常時噛合する第2従動ギヤ92により構成される第2連結ギヤ列と、エンジン22のクランクシャフト26や第1モータ軸45、第2モータ軸55と平行に延在する伝達軸93と、入力された動力を所定の減速比で減速して出力可能なシングルピニオン式遊星歯車機構である減速機構94と、駆動軸60に取り付けられたギヤと噛合する出力ギヤ99を有する出力ギヤ軸99aと、クラッチC1およびC2とを含む。第1連結ギヤ列の第1従動ギヤ91は、図示しない軸受により回転自在に支持されて第1モータ軸45および第2モータ軸55と平行に延在する中空の第1ギヤ軸91aに取り付けられている。また、第2連結ギヤ列の第2従動ギヤ92は、第1ギヤ軸91aと所定の間隔を隔てた状態で図示しない軸受により回転自在に支持されて第1モータ軸45および第2モータ軸55と平行に延在する中空の第2ギヤ軸92aに取り付けられている。なお、実施例では、第1連結ギヤ列を構成するリングギヤ42の外歯と第2連結ギヤ列を構成する駆動ギヤ47との歯数が同一とされ、第1連結ギヤ列を構成する第1従動ギヤ91と第2連結ギヤ列を構成する第2従動ギヤ92との歯数が同一とされるが、これらのギヤの歯数は任意に定めることができる。   The transmission 90 can set a shift state (transmission ratio) in a plurality of stages, and includes a ring gear 42 of the power distribution and integration mechanism 40 and a first driven gear 91 that always meshes with the external teeth of the ring gear 42. A first connection gear train; a second connection gear train comprising a drive gear 47 attached to the first motor shaft 45; a second driven gear 92 that is always meshed with the drive gear 47; and the crankshaft 26 of the engine 22. And a transmission shaft 93 extending in parallel with the first motor shaft 45 and the second motor shaft 55, and a speed reduction mechanism 94 which is a single pinion planetary gear mechanism capable of outputting the input power by decelerating at a predetermined speed reduction ratio. And an output gear shaft 99a having an output gear 99 that meshes with a gear attached to the drive shaft 60, and clutches C1 and C2. The first driven gear 91 of the first connecting gear train is attached to a hollow first gear shaft 91a that is rotatably supported by a bearing (not shown) and extends in parallel with the first motor shaft 45 and the second motor shaft 55. ing. Further, the second driven gear 92 of the second connecting gear train is rotatably supported by a bearing (not shown) in a state of being spaced apart from the first gear shaft 91a by the first motor shaft 45 and the second motor shaft 55. Is attached to a hollow second gear shaft 92a extending in parallel with the first gear shaft 92a. In the embodiment, the number of teeth of the outer teeth of the ring gear 42 constituting the first connection gear train and the drive gear 47 constituting the second connection gear train are the same, and the first tooth constituting the first connection gear train is formed. Although the number of teeth of the driven gear 91 and the second driven gear 92 constituting the second connecting gear train is the same, the number of teeth of these gears can be arbitrarily determined.

伝達軸93は、上述の第1および第2ギヤ軸91a,92aの内部を通って第1モータ軸45および第2モータ軸55と平行に延在し、その先端(図中右端)には、減速機構94が接続される。減速機構94は、伝達軸93に接続されるサンギヤ95と、このサンギヤ95と同心円上に配置されるリングギヤ96と、サンギヤ95およびリングギヤ96の双方と噛合するピニオンギヤ97を複数保持するキャリア98とを含み、サンギヤ95(入力要素)とリングギヤ(固定要素)96とキャリア98(出力要素)とが互いに差動回転できるように構成されている。減速機構94のリングギヤ96は、図1に示すように、トランスミッションケースに対して回転不能に固定される。また、減速機構94のキャリア98には、第1ギヤ軸91aに向けて延びる中空のキャリア軸98aが接続されており、伝達軸93は、このキャリア軸98aを通してサンギヤ95に固定される。キャリア軸98は、第1ギヤ軸91aと所定の間隔を隔てた状態で図示しない軸受により回転自在に支持される。これにより、変速機90では、伝達軸93の周りに、図中左側から順番に、第2従動ギヤ92が取り付けられた中空の第2ギヤ軸92a、第1従動ギヤ91が取り付けられた中空の第1ギヤ軸91a、および中空のキャリア軸98aが配置されることになる。また、出力ギヤ99を有する出力ギヤ軸99aは、第1ギヤ軸91a(および伝達軸93)の周りで回転自在となるように図示しない軸受により支持される。そして、出力ギヤ99からの動力は、ギヤ機構61に含まれる駆動軸60に伝達され、最終的にはデファレンシャルギヤ62を介して駆動輪としての前輪63a,63bに出力されることになる。   The transmission shaft 93 extends in parallel with the first motor shaft 45 and the second motor shaft 55 through the inside of the first and second gear shafts 91a and 92a described above, and at the tip (right end in the figure), A speed reduction mechanism 94 is connected. The reduction mechanism 94 includes a sun gear 95 connected to the transmission shaft 93, a ring gear 96 disposed concentrically with the sun gear 95, and a carrier 98 that holds a plurality of pinion gears 97 that mesh with both the sun gear 95 and the ring gear 96. In addition, the sun gear 95 (input element), the ring gear (fixed element) 96, and the carrier 98 (output element) are configured to be capable of differential rotation. As shown in FIG. 1, the ring gear 96 of the speed reduction mechanism 94 is fixed to the transmission case so as not to rotate. A hollow carrier shaft 98a extending toward the first gear shaft 91a is connected to the carrier 98 of the speed reduction mechanism 94, and the transmission shaft 93 is fixed to the sun gear 95 through the carrier shaft 98a. The carrier shaft 98 is rotatably supported by a bearing (not shown) with a predetermined distance from the first gear shaft 91a. Thereby, in the transmission 90, the hollow second gear shaft 92a to which the second driven gear 92 is attached and the hollow to which the first driven gear 91 is attached are sequentially arranged around the transmission shaft 93 from the left side in the drawing. The first gear shaft 91a and the hollow carrier shaft 98a are arranged. The output gear shaft 99a having the output gear 99 is supported by a bearing (not shown) so as to be rotatable around the first gear shaft 91a (and the transmission shaft 93). The power from the output gear 99 is transmitted to the drive shaft 60 included in the gear mechanism 61, and finally outputted to the front wheels 63a and 63b as drive wheels via the differential gear 62.

変速機90に含まれるクラッチC1は、第1ギヤ軸91aと第2ギヤ軸92aとの間付近に配置され、第1ギヤ軸91aと第2ギヤ軸92aとの何れか一方または双方を伝達軸93に連結可能なものである。実施例において、クラッチC1は、例えば、第1ギヤ軸91aの一端(図中左端)に固定された第1ドグと、第1ギヤ軸91aと第2ギヤ軸92aとの間に位置するように伝達軸93に固定されたドグと、第2ギヤ軸92aの一端(図中右端)に固定されたドグと、これらのドグと噛合可能であると共に電気式、電磁式あるいは油圧式のアクチュエータ101により駆動されるドグクラッチとして構成され、図1に示すように、係合部材の位置であるクラッチポジションを「Rポジション」、「Mポジション」および「Lポジション」に選択的に切り替え可能である。すなわち、変速機90のクラッチC1のクラッチポジションがRポジションに設定されると、係合部材を介して第1ギヤ軸91aの第1ドグと伝達軸93のドグとがより少ない損失で連結され、それにより第1連結ギヤ列や第1ギヤ軸91aを介して動力分配統合機構40の第1要素たるリングギヤ42と伝達軸93とが連結される(以下、適宜、このようなクラッチC1による連結状態を適宜「第1要素連結状態」という)。また、クラッチC1のクラッチポジションがMポジションに設定されると、係合部材を介して第1ギヤ軸91aの第1ドグと伝達軸93のドグと第2ギヤ軸92aのドグとがより少ない損失で連結され、それにより第1ギヤ軸91aと第2ギヤ軸92aとの双方すなわち動力分配統合機構40のリングギヤ42とサンギヤ41との双方が伝達軸93に連結される(以下、このようなクラッチC1による連結状態を適宜「両要素連結状態」という)。更に、クラッチC1のクラッチポジションがLポジションに設定されると、係合部材を介して第2ギヤ軸92aのドグと伝達軸93のドグとがより少ない損失で連結され、それにより、クラッチC0がMポジションに設定されていれば第2連結ギヤ列や第2ギヤ軸92aを介して動力分配統合機構40の第2要素たるサンギヤ41と伝達軸93とが連結される(以下、このようなクラッチC1による連結状態を適宜「第2要素連結状態」という)。   The clutch C1 included in the transmission 90 is disposed between the first gear shaft 91a and the second gear shaft 92a, and either one or both of the first gear shaft 91a and the second gear shaft 92a is a transmission shaft. 93 can be connected. In the embodiment, for example, the clutch C1 is positioned between the first dog fixed to one end (the left end in the drawing) of the first gear shaft 91a and the first gear shaft 91a and the second gear shaft 92a. A dog fixed to the transmission shaft 93, a dog fixed to one end (the right end in the figure) of the second gear shaft 92a, and an electric, electromagnetic, or hydraulic actuator 101 that can mesh with these dogs. As shown in FIG. 1, the clutch position, which is the position of the engaging member, can be selectively switched between “R position”, “M position”, and “L position”. That is, when the clutch position of the clutch C1 of the transmission 90 is set to the R position, the first dog of the first gear shaft 91a and the dog of the transmission shaft 93 are connected with less loss through the engagement member. As a result, the ring gear 42, which is the first element of the power distribution and integration mechanism 40, and the transmission shaft 93 are coupled via the first coupling gear train and the first gear shaft 91a (hereinafter, the coupling state by the clutch C1 is appropriately set. Is appropriately referred to as “first element connected state”). Further, when the clutch position of the clutch C1 is set to the M position, the first dog of the first gear shaft 91a, the dog of the transmission shaft 93, and the dog of the second gear shaft 92a are less lost through the engaging member. Accordingly, both the first gear shaft 91a and the second gear shaft 92a, that is, both the ring gear 42 and the sun gear 41 of the power distribution and integration mechanism 40 are connected to the transmission shaft 93 (hereinafter referred to as such a clutch). The connection state by C1 is appropriately referred to as “both element connection state”). Further, when the clutch position of the clutch C1 is set to the L position, the dog of the second gear shaft 92a and the dog of the transmission shaft 93 are connected with less loss via the engaging member, whereby the clutch C0 is connected. If it is set to the M position, the sun gear 41 as the second element of the power distribution and integration mechanism 40 and the transmission shaft 93 are connected via the second connecting gear train and the second gear shaft 92a (hereinafter referred to as such a clutch). The connection state by C1 is appropriately referred to as “second element connection state”).

また、変速機90に含まれるクラッチC2は、第1ギヤ軸91aとキャリア軸98aとの間付近に配置され、第1ギヤ軸91aとキャリア軸98aとの何れか一方または双方を出力ギヤ軸99aに連結可能なものである。実施例において、クラッチC2は、例えば、第1ギヤ軸91aの他端(図中右端)に固定された第2ドグと、キャリア軸98aの先端(図中左端)に固定されたドグと、第1ギヤ軸91aの第2ドグおよびキャリア軸98aのドグの周囲に位置するように出力ギヤ軸99aに取り付けられたドグと、これらのドグと噛合可能であると共に電気式、電磁式あるいは油圧式のアクチュエータ102により駆動されるドグクラッチとして構成され、図1に示すように、係合部材の位置であるクラッチポジションを「Rポジション」、「Mポジション」および「Lポジション」に選択的に切り替え可能である。すなわち、変速機90のクラッチC2のクラッチポジションがRポジションに設定されると、係合部材を介してキャリア軸98aのドグと出力ギヤ軸99aのドグとがより少ない損失で連結され、それによりキャリア軸98aすなわち減速機構94が出力ギヤ軸99aや出力ギヤ99等を介して駆動軸60に連結される(以下、このようなクラッチC2による連結状態を適宜「減速機構−駆動軸連結状態」という)。また、クラッチC2のクラッチポジションがMポジションに設定されると、係合部材を介してキャリア軸98aのドグと第1ギヤ軸91aの第2ドグと出力ギヤ軸99aのドグとがより少ない損失で連結され、それによりキャリア軸98a(減速機構94)と第1ギヤ軸91aとの双方が出力ギヤ軸99aや出力ギヤ99等を介して駆動軸60に連結される(以下、このようなクラッチC2による連結状態を適宜「同時連結状態」という)。更に、クラッチC2のクラッチポジションがLポジションに設定されると、係合部材を介して第1ギヤ軸91aの第2ドグと出力ギヤ軸99aのドグとがより少ない損失で連結され、それにより第1ギヤ軸91aが出力ギヤ軸99aや出力ギヤ99等を介して駆動軸60に連結される。この場合、第1ギヤ軸91aには第1連結ギヤ列すなわち第1従動ギヤ91およびリングギヤ42が連結されていることから、動力分配統合機構40の第1要素たるリングギヤ42が第1連結ギヤ列、第1ギヤ軸91a、出力ギヤ軸99a、出力ギヤ99等を介して駆動軸60に連結されることになる(以下、このようなクラッチC2による連結状態を適宜「直結状態」という)。   The clutch C2 included in the transmission 90 is disposed in the vicinity of between the first gear shaft 91a and the carrier shaft 98a, and either or both of the first gear shaft 91a and the carrier shaft 98a are connected to the output gear shaft 99a. Can be connected to. In the embodiment, the clutch C2 includes, for example, a second dog fixed to the other end (right end in the drawing) of the first gear shaft 91a, a dog fixed to the tip (left end in the drawing) of the carrier shaft 98a, A dog attached to the output gear shaft 99a so as to be positioned around the second dog of the one gear shaft 91a and the dog of the carrier shaft 98a, and meshable with these dogs, and of electric, electromagnetic or hydraulic type It is configured as a dog clutch driven by the actuator 102, and as shown in FIG. 1, the clutch position that is the position of the engaging member can be selectively switched to "R position", "M position", and "L position". . In other words, when the clutch position of the clutch C2 of the transmission 90 is set to the R position, the dog of the carrier shaft 98a and the dog of the output gear shaft 99a are connected with less loss via the engaging member, and thereby the carrier The shaft 98a, that is, the speed reduction mechanism 94 is connected to the drive shaft 60 via the output gear shaft 99a, the output gear 99, and the like (hereinafter, such a connection state by the clutch C2 is appropriately referred to as a “deceleration mechanism-drive shaft connection state”). . When the clutch position of the clutch C2 is set to the M position, the dog of the carrier shaft 98a, the second dog of the first gear shaft 91a, and the dog of the output gear shaft 99a are less lost through the engaging member. As a result, both the carrier shaft 98a (reduction mechanism 94) and the first gear shaft 91a are connected to the drive shaft 60 via the output gear shaft 99a, the output gear 99, and the like (hereinafter referred to as such clutch C2). The connection state according to is appropriately referred to as “simultaneous connection state”). Further, when the clutch position of the clutch C2 is set to the L position, the second dog of the first gear shaft 91a and the dog of the output gear shaft 99a are connected with less loss via the engaging member, thereby One gear shaft 91a is connected to the drive shaft 60 via the output gear shaft 99a, the output gear 99, and the like. In this case, since the first connection gear train, that is, the first driven gear 91 and the ring gear 42 are connected to the first gear shaft 91a, the ring gear 42 as the first element of the power distribution and integration mechanism 40 is connected to the first connection gear train. The first gear shaft 91a, the output gear shaft 99a, the output gear 99, and the like are connected to the drive shaft 60 (hereinafter, such a connection state by the clutch C2 is appropriately referred to as a “direct connection state”).

そして、ハイブリッドECU70は、CPU72を中心とするマイクロプロセッサとして構成されており、CPU72の他に処理プログラムを記憶するROM74と、データを一時的に記憶するRAM76と、図示しない入出力ポートおよび通信ポートとを備える。ハイブリッドECU70には、イグニッションスイッチ(スタートスイッチ)80からのイグニッション信号、シフトレバー81の操作位置であるシフトポジションSPを検出するシフトポジションセンサ82からのシフトポジションSP、アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc、ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP、車速センサ87からの車速Vが入力ポートを介して入力される。そして、ハイブリッドECU70は、上述したように、エンジンECU24やモータECU30、バッテリECU36と通信ポートを介して接続されており、エンジンECU24やモータECU30、バッテリECU36と各種制御信号やデータのやり取りを行なっている。また、クラッチC0や変速機90のクラッチC1およびC2を駆動するアクチュエータ100,101,102もハイブリッドECU70により制御される。   The hybrid ECU 70 is configured as a microprocessor centered on the CPU 72. In addition to the CPU 72, a ROM 74 that stores a processing program, a RAM 76 that temporarily stores data, an input / output port and a communication port (not shown) Is provided. The hybrid ECU 70 detects the ignition signal from the ignition switch (start switch) 80, the shift position SP from the shift position sensor 82 that detects the shift position SP that is the operation position of the shift lever 81, and the depression amount of the accelerator pedal 83. The accelerator opening Acc from the accelerator pedal position sensor 84, the brake pedal position BP from the brake pedal position sensor 86 for detecting the depression amount of the brake pedal 85, and the vehicle speed V from the vehicle speed sensor 87 are input via the input port. As described above, the hybrid ECU 70 is connected to the engine ECU 24, the motor ECU 30, and the battery ECU 36 via a communication port, and exchanges various control signals and data with the engine ECU 24, the motor ECU 30, and the battery ECU 36. . The hybrid ECU 70 also controls the actuators 100, 101, and 102 that drive the clutch C0 and the clutches C1 and C2 of the transmission 90.

次に、図2から図11を参照しながら、実施例のハイブリッド自動車20の動作について説明する。   Next, the operation of the hybrid vehicle 20 of the embodiment will be described with reference to FIGS.

図2から図7は、エンジン22の運転を伴ってハイブリッド自動車20を走行させる場合に車速変化に応じて変速機90の変速比をシフトアップ方向に変化させていくときの動力分配統合機構40および変速機90の主たる要素の回転数やトルクの関係を例示する説明図である。また、図8は、ハイブリッド自動車20の走行時におけるクラッチC0や変速機90のクラッチC1およびC2のクラッチポジションの設定状態を示す図表である。ハイブリッド自動車20が図2から図7に示す状態で走行する際には、アクセルペダル83の踏み込み量や車速Vに基づくハイブリッドECU70の統括的な制御のもと、エンジンECU24によりエンジン22が、モータECU30によりモータMG1,MG2が制御され、アクチュエータ100,101,102(クラッチC0、変速機90のクラッチC1およびC2)はハイブリッドECU70により直接制御される。なお、図2から図7において、S軸は動力分配統合機構40のサンギヤ41の回転数(モータMG1すなわち第1モータ軸45の回転数Nm1)を、C軸は動力分配統合機構40のキャリア44の回転数(エンジン22の回転数Ne)を、R軸は動力分配統合機構40のリングギヤ42の回転数(減速ギヤ機構50のリングギヤ52)の回転数を、54軸は減速ギヤ機構50のキャリア54の回転数を、51軸は減速ギヤ機構50のサンギヤ51の回転数(モータMG2すなわち第2モータ軸55の回転数Nm2)をそれぞれ示す。また、91,92,95軸は変速機90の第1従動ギヤ91(第1ギヤ軸91a)、第2従動ギヤ92(第2ギヤ軸92a)および減速機構94のサンギヤ95の回転数を、99軸は出力ギヤ99(出力ギヤ軸99a)の回転数を、96軸は減速機構94のリングギヤ96の回転数を、60軸は駆動軸60の回転数をそれぞれ示す。   FIGS. 2 to 7 show the power distribution and integration mechanism 40 when the speed ratio of the transmission 90 is changed in the upshift direction according to the change in the vehicle speed when the hybrid vehicle 20 is driven with the operation of the engine 22. 4 is an explanatory diagram illustrating the relationship between the rotational speed and torque of main elements of the transmission 90. FIG. FIG. 8 is a chart showing the setting states of the clutch positions of the clutch C0 and the clutches C1 and C2 of the transmission 90 when the hybrid vehicle 20 is traveling. When the hybrid vehicle 20 travels in the state shown in FIGS. 2 to 7, the engine ECU 24 causes the motor ECU 30 to control the engine 22 under the overall control of the hybrid ECU 70 based on the depression amount of the accelerator pedal 83 and the vehicle speed V. Thus, the motors MG1 and MG2 are controlled, and the actuators 100, 101, and 102 (the clutch C0 and the clutches C1 and C2 of the transmission 90) are directly controlled by the hybrid ECU 70. 2 to 7, the S axis represents the rotation speed of the sun gear 41 of the power distribution and integration mechanism 40 (the rotation speed Nm1 of the motor MG1, that is, the first motor shaft 45), and the C axis represents the carrier 44 of the power distribution and integration mechanism 40. (The rotational speed Ne of the engine 22), the R axis is the rotational speed of the ring gear 42 (ring gear 52 of the reduction gear mechanism 50) of the power distribution and integration mechanism 40, and the 54 axis is the carrier of the reduction gear mechanism 50. 54 represents the number of rotations, and 51 axis represents the number of rotations of the sun gear 51 of the reduction gear mechanism 50 (the number of rotations Nm2 of the motor MG2, ie, the second motor shaft 55). The 91, 92, and 95 axes represent the rotational speeds of the first driven gear 91 (first gear shaft 91a), the second driven gear 92 (second gear shaft 92a) of the transmission 90, and the sun gear 95 of the speed reduction mechanism 94. The 99 axis indicates the rotation speed of the output gear 99 (output gear shaft 99a), the 96 axis indicates the rotation speed of the ring gear 96 of the reduction mechanism 94, and the 60 axis indicates the rotation speed of the drive shaft 60.

エンジン22の運転を伴ってハイブリッド自動車20を走行させる際には、基本的にクラッチC0がMポジションに設定され、モータMG1すなわち第1モータ軸45がサンギヤ軸41aを介して動力分配統合機構40のサンギヤ41に接続される。そして、ハイブリッド自動車20の車速Vが比較的低い際には、変速機90のクラッチC1およびC2の双方がRポジションに設定される(図8参照)。以下、この状態を変速機90の「第1変速状態(1速)」という(図2)。このような第1変速状態のもとでは、動力分配統合機構40の第1要素たるリングギヤ42が第1連結ギヤ列(第1従動ギヤ91)や第1ギヤ軸91a、クラッチC1を介して伝達軸93に連結されると共に、伝達軸93に接続されている減速機構94の出力要素たるキャリア98(キャリア軸98a)がクラッチC2、出力ギヤ軸99a、出力ギヤ99等を介して駆動軸60に連結される。これにより、第1変速状態のもとでは、動力分配統合機構40のリングギヤ42が出力要素となって当該リングギヤ42に減速ギヤ機構50を介して接続されたモータMG2が電動機として機能し、かつ反力要素となるサンギヤ41に接続されたモータMG1が発電機として機能するようにモータMG1,MG2を駆動制御することが可能となる。この際、動力分配統合機構40は、キャリア44を介して入力されるエンジン22からの動力をサンギヤ41側とリングギヤ42側とにそのギヤ比ρに応じて分配すると共に、エンジン22からの動力と電動機として機能するモータMG2からの動力とを統合してリングギヤ42側に出力する。以下、このようにモータMG1が発電機として機能すると共にモータMG2が電動機として機能するモードを「第1トルク変換モード」という。このような第1トルク変換モードにおける動力分配統合機構40の各要素と減速ギヤ機構50の各要素とにおける回転数やトルクの関係を表す共線図の一例を図9に示す。なお、図9においてS軸、C軸、R軸、54軸および51軸は、図2から図7と同様のものを示し、ρは動力分配統合機構40のギヤ比を、ρrは減速ギヤ機構50の減速比をそれぞれ示す。また、図9において、太線矢印は、各要素に作用するトルクを示し、矢印が図中上向きである場合にはトルクの値が正であり、矢印が図中下向きである場合にはトルクの値が負であることを示す(図2から図7、図10、図11も同様)。かかる第1トルク変換モードのもとでは、エンジン22からの動力が動力分配統合機構40とモータMG1およびMG2とによってトルク変換されてリングギヤ42に出力され、モータMG1の回転数を制御することにより、エンジン22の回転数と出力要素たるリングギヤ42の回転数との比を無段階かつ連続的に変化させることができる。そして、リングギヤ42に出力された動力は、図2に示すように、リングギヤ42の外歯と第1従動ギヤ91とからなる第1連結ギヤ列の変速比で変速されて伝達軸93へと伝達されると共に、減速機構94のギヤ比ρx(図2参照)に基づく変速比(ρx/(1+ρx))で変速(減速)された上で駆動軸60へと出力されることになる。   When the hybrid vehicle 20 is driven with the operation of the engine 22, the clutch C0 is basically set to the M position, and the motor MG1, that is, the first motor shaft 45 of the power distribution integration mechanism 40 via the sun gear shaft 41a. Connected to the sun gear 41. When the vehicle speed V of the hybrid vehicle 20 is relatively low, both the clutches C1 and C2 of the transmission 90 are set to the R position (see FIG. 8). Hereinafter, this state is referred to as a “first shift state (first speed)” of the transmission 90 (FIG. 2). Under such a first speed change state, the ring gear 42 as the first element of the power distribution and integration mechanism 40 is transmitted via the first connecting gear train (first driven gear 91), the first gear shaft 91a, and the clutch C1. A carrier 98 (carrier shaft 98a), which is coupled to the shaft 93 and connected to the transmission shaft 93 and serving as an output element of the speed reduction mechanism 94, is connected to the drive shaft 60 via the clutch C2, the output gear shaft 99a, the output gear 99, and the like. Connected. As a result, under the first speed change state, the ring gear 42 of the power distribution and integration mechanism 40 serves as an output element, and the motor MG2 connected to the ring gear 42 via the reduction gear mechanism 50 functions as an electric motor. It becomes possible to drive and control the motors MG1 and MG2 so that the motor MG1 connected to the sun gear 41 serving as the force element functions as a generator. At this time, the power distribution and integration mechanism 40 distributes the power from the engine 22 input via the carrier 44 to the sun gear 41 side and the ring gear 42 side according to the gear ratio ρ, The power from the motor MG2 functioning as an electric motor is integrated and output to the ring gear 42 side. Hereinafter, a mode in which the motor MG1 functions as a generator and the motor MG2 functions as an electric motor will be referred to as a “first torque conversion mode”. FIG. 9 shows an example of a collinear diagram showing the relationship between the rotational speed and torque in each element of the power distribution and integration mechanism 40 and each element of the reduction gear mechanism 50 in the first torque conversion mode. 9, the S axis, C axis, R axis, 54 axis and 51 axis are the same as those in FIGS. 2 to 7, ρ is the gear ratio of the power distribution and integration mechanism 40, and ρr is the reduction gear mechanism. 50 reduction ratios are shown respectively. In FIG. 9, thick arrows indicate torque acting on each element. When the arrow is upward in the figure, the torque value is positive, and when the arrow is downward in the figure, the torque value. Is negative (the same applies to FIGS. 2 to 7, 10 and 11). Under the first torque conversion mode, the power from the engine 22 is torque-converted by the power distribution and integration mechanism 40 and the motors MG1 and MG2 and output to the ring gear 42, thereby controlling the rotational speed of the motor MG1. The ratio between the rotational speed of the engine 22 and the rotational speed of the ring gear 42 as an output element can be continuously and continuously changed. As shown in FIG. 2, the power output to the ring gear 42 is shifted by the gear ratio of the first connecting gear train composed of the outer teeth of the ring gear 42 and the first driven gear 91 and transmitted to the transmission shaft 93. At the same time, the speed is reduced (decelerated) at a speed ratio (ρx / (1 + ρx)) based on the gear ratio ρx (see FIG. 2) of the speed reduction mechanism 94 and then output to the drive shaft 60.

図2に示す状態すなわち変速機90が第1変速状態にあると共にトルク変換モードが第1トルク変換モードである状態でハイブリッド自動車20の車速Vが高まると、やがて動力分配統合機構40のリングギヤ42の回転数とサンギヤ41および駆動ギヤ47の回転数とが概ね一致するようになり、これに伴って変速機90の第2従動ギヤ92の回転数が第1従動ギヤ91の回転数と概ね一致するようになる(図3参照)。これにより、クラッチC1をMポジションに設定して第1ギヤ軸91aの第1ドグと第2ギヤ軸92aのドグと伝達軸93のドグとを連結し、動力分配統合機構40のリングギヤ42とサンギヤ41との双方を伝達軸93や減速機構94等を介して駆動軸60に連結することが可能となる。そして、変速機90のクラッチC1をMポジションに設定すると共にクラッチC2をRポジションに設定した状態でモータMG1およびMG2に対するトルク指令を値0に設定すれば、図3に示すように、モータMG1およびMG2は力行および回生の何れをも実行せずに空転し、エンジン22からの動力(トルク)は、電気エネルギへの変換を伴うことなく固定された(一定の)変速比(第1変速状態の変速比と後述の第2変速状態の変速比との間の値)で機械的(直接)に駆動軸60へと伝達されることになる。以下、このように、クラッチC1により動力分配統合機構40のリングギヤ42とサンギヤ41との双方を伝達軸93や減速機構94等を介して駆動軸60に連結するようなモードを「同時係合モード」といい、特に、図3に示す状態を「1−2速同時係合状態」という。   When the vehicle speed V of the hybrid vehicle 20 increases in the state shown in FIG. 2, that is, when the transmission 90 is in the first shift state and the torque conversion mode is the first torque conversion mode, the ring gear 42 of the power distribution and integration mechanism 40 eventually The rotational speed substantially coincides with the rotational speed of the sun gear 41 and the drive gear 47, and accordingly, the rotational speed of the second driven gear 92 of the transmission 90 substantially matches the rotational speed of the first driven gear 91. (See FIG. 3). Thus, the clutch C1 is set to the M position, the first dog of the first gear shaft 91a, the dog of the second gear shaft 92a, and the dog of the transmission shaft 93 are connected, and the ring gear 42 and the sun gear of the power distribution and integration mechanism 40 are connected. 41 can be coupled to the drive shaft 60 via the transmission shaft 93, the speed reduction mechanism 94, and the like. Then, if the torque command for the motors MG1 and MG2 is set to 0 with the clutch C1 of the transmission 90 set to the M position and the clutch C2 set to the R position, as shown in FIG. The MG2 idles without executing both power running and regeneration, and the power (torque) from the engine 22 is fixed (constant) without any conversion to electric energy (in the first speed change state). It is mechanically (directly) transmitted to the drive shaft 60 at a value between the speed ratio and the speed ratio in the second speed change state described later. Hereinafter, a mode in which both the ring gear 42 and the sun gear 41 of the power distribution and integration mechanism 40 are connected to the drive shaft 60 via the transmission shaft 93, the speed reduction mechanism 94, and the like by the clutch C1 as described above is referred to as “simultaneous engagement mode”. In particular, the state shown in FIG. 3 is referred to as “1-2 speed simultaneous engagement state”.

図3に示す1−2速同時係合状態のもとでは、第1ギヤ軸91aと第2ギヤ軸92aとの回転数が一致していることから、変速機90のクラッチC1のクラッチポジションをMポジションからLポジションに容易に切り替えて、第1ギヤ軸91a(第1連結ギヤ列)と伝達軸93との連結を解除することができる。以下、このようにクラッチC1がLポジションに設定されると共にクラッチC2がRポジションに設定される状態を変速機90の第2変速状態(2速)という(図4)。このような第2変速状態のもとでは、動力分配統合機構40の第2要素たるサンギヤ41が第2連結ギヤ列(駆動ギヤ47および第2従動ギヤ92)や第2ギヤ軸92a、クラッチC1を介して伝達軸93に連結されると共に、伝達軸93に接続されている減速機構94の出力要素たるキャリア98(キャリア軸98a)がクラッチC2、出力ギヤ軸99a、出力ギヤ99等を介して駆動軸60に連結される。これにより、第2変速状態のもとでは、動力分配統合機構40のサンギヤ41が出力要素となって当該サンギヤ41に接続されたモータMG1が電動機として機能し、かつ反力要素となるリングギヤ42に接続されたモータMG2が発電機として機能するようにモータMG1,MG2を駆動制御することが可能となる。この際、動力分配統合機構40は、キャリア44を介して入力されるエンジン22からの動力をサンギヤ41側とリングギヤ42側とにそのギヤ比ρに応じて分配すると共に、エンジン22からの動力と電動機として機能するモータMG1からの動力とを統合してサンギヤ41側に出力する。以下、このようにモータMG2が発電機として機能すると共にモータMG1が電動機として機能するモードを「第2トルク変換モード」という。このような第2トルク変換モードにおける動力分配統合機構40の各要素と減速ギヤ機構50の各要素とにおける回転数やトルクの関係を表す共線図の一例を図10に示す。なお、図10における符号は図9のものと同様である。かかる第2トルク変換モードのもとでは、エンジン22からの動力が動力分配統合機構40とモータMG1およびMG2とによってトルク変換されてサンギヤ41に出力され、モータMG2の回転数を制御することにより、エンジン22の回転数と出力要素たるサンギヤ41の回転数との比を無段階かつ連続的に変化させることができる。そして、サンギヤ41(第1モータ軸45)に出力された動力は、図4に示すように、駆動ギヤ47と第2従動ギヤ92とからなる第2連結ギヤ列の変速比で変速されて伝達軸93へと伝達されると共に、減速機構94のギヤ比ρxに基づく変速比(ρx/(1+ρx))で変速(減速)された上で駆動軸60へと出力されることになる。   Under the first-second speed simultaneous engagement state shown in FIG. 3, since the rotation speeds of the first gear shaft 91a and the second gear shaft 92a are the same, the clutch position of the clutch C1 of the transmission 90 is changed. The connection between the first gear shaft 91a (first connection gear train) and the transmission shaft 93 can be released by easily switching from the M position to the L position. Hereinafter, the state in which the clutch C1 is set to the L position and the clutch C2 is set to the R position in this way is referred to as a second speed change state (second speed) of the transmission 90 (FIG. 4). Under such a second speed change state, the sun gear 41 as the second element of the power distribution and integration mechanism 40 is connected to the second connecting gear train (the drive gear 47 and the second driven gear 92), the second gear shaft 92a, and the clutch C1. The carrier 98 (carrier shaft 98a), which is coupled to the transmission shaft 93 via the transmission shaft 93 and connected to the transmission shaft 93, is an output element of the speed reduction mechanism 94 via the clutch C2, the output gear shaft 99a, the output gear 99, and the like. It is connected to the drive shaft 60. Thus, under the second speed change state, the sun gear 41 of the power distribution and integration mechanism 40 serves as an output element, and the motor MG1 connected to the sun gear 41 functions as an electric motor and the ring gear 42 serving as a reaction force element. It becomes possible to drive and control the motors MG1 and MG2 so that the connected motor MG2 functions as a generator. At this time, the power distribution and integration mechanism 40 distributes the power from the engine 22 input via the carrier 44 to the sun gear 41 side and the ring gear 42 side according to the gear ratio ρ, The power from the motor MG1 functioning as an electric motor is integrated and output to the sun gear 41 side. Hereinafter, a mode in which the motor MG2 functions as a generator and the motor MG1 functions as an electric motor will be referred to as a “second torque conversion mode”. FIG. 10 shows an example of a collinear diagram showing the relationship between the rotational speed and torque in each element of the power distribution and integration mechanism 40 and each element of the reduction gear mechanism 50 in the second torque conversion mode. The reference numerals in FIG. 10 are the same as those in FIG. Under the second torque conversion mode, the power from the engine 22 is torque-converted by the power distribution and integration mechanism 40 and the motors MG1 and MG2 and output to the sun gear 41, thereby controlling the rotational speed of the motor MG2. The ratio between the rotational speed of the engine 22 and the rotational speed of the sun gear 41 as an output element can be continuously and continuously changed. Then, the power output to the sun gear 41 (first motor shaft 45) is shifted and transmitted at the gear ratio of the second connecting gear train composed of the drive gear 47 and the second driven gear 92, as shown in FIG. In addition to being transmitted to the shaft 93, the speed is changed (decelerated) at a speed ratio (ρx / (1 + ρx)) based on the gear ratio ρx of the speed reduction mechanism 94 and then output to the drive shaft 60.

図4に示す状態すなわち変速機90が第2変速状態にあると共にトルク変換モードが第2トルク変換モードである状態でハイブリッド自動車20の車速Vが高まると、やがて伝達軸93に連結されていない第1ギヤ軸91a(第1従動ギヤ91)の回転数と出力ギヤ軸99a(出力ギヤ99)の回転数とが概ね一致するようになる(図5参照)。これにより、クラッチC2をMポジションに設定してキャリア軸98aのドグと出力ギヤ軸99aのドグと第1ギヤ軸91aの第2ドグとを連結し、第2連結ギヤ列、クラッチC1、伝達軸93、キャリア98,出力ギヤ99等を介して動力分配統合機構40のサンギヤ41を駆動軸60に連結すると共に、第1連結ギヤ列、第1ギヤ軸91a、クラッチC2、出力ギヤ99等を介して動力分配統合機構40のリングギヤ42を駆動軸60に連結することが可能となる。そして、変速機90のクラッチC2をMポジションに設定すると共にクラッチC1をLポジションに設定した状態でモータMG1およびMG2に対するトルク指令を値0に設定すれば、図5に示すように、モータMG1およびMG2は力行および回生の何れをも実行せずに空転し、エンジン22からの動力(トルク)は、電気エネルギへの変換を伴うことなく固定された(一定の)変速比(第2変速状態の変速比と後述の第3変速状態の変速比との間の値)で機械的(直接)に駆動軸60へと伝達されることになる。以下、このように、クラッチC2により第1ギヤ軸91a(リングギヤ42)とキャリア軸98a(サンギヤ41)との双方を伝達軸93に連結するようなモードも「同時係合モード」といい、特に、図5に示す状態を「2−3速同時係合状態」という。   When the vehicle speed V of the hybrid vehicle 20 increases in the state shown in FIG. 4, that is, in the state where the transmission 90 is in the second shift state and the torque conversion mode is the second torque conversion mode, the transmission shaft 93 that is not connected to the transmission shaft 93 is eventually reached. The rotational speed of the first gear shaft 91a (first driven gear 91) and the rotational speed of the output gear shaft 99a (output gear 99) are substantially matched (see FIG. 5). As a result, the clutch C2 is set to the M position, the dog of the carrier shaft 98a, the dog of the output gear shaft 99a, and the second dog of the first gear shaft 91a are connected, and the second connecting gear train, the clutch C1, the transmission shaft 93, the sun gear 41 of the power distribution and integration mechanism 40 is connected to the drive shaft 60 through the carrier 98, the output gear 99, and the like, and the first connection gear train, the first gear shaft 91a, the clutch C2, the output gear 99, and the like. Thus, the ring gear 42 of the power distribution and integration mechanism 40 can be connected to the drive shaft 60. Then, if the torque command for the motors MG1 and MG2 is set to 0 with the clutch C2 of the transmission 90 set to the M position and the clutch C1 set to the L position, as shown in FIG. The MG2 idles without executing both power running and regeneration, and the power (torque) from the engine 22 is fixed (constant) without any conversion to electric energy (in the second speed change state). It is mechanically (directly) transmitted to the drive shaft 60 at a value between the speed ratio and the speed ratio in the third speed change state described later. Hereinafter, a mode in which both the first gear shaft 91a (ring gear 42) and the carrier shaft 98a (sun gear 41) are connected to the transmission shaft 93 by the clutch C2 is also referred to as “simultaneous engagement mode”. The state shown in FIG. 5 is referred to as “the 2-3rd speed simultaneous engagement state”.

図5に示す2−3速同時係合状態のもとでは、第1ギヤ軸91aとキャリア軸98aと出力ギヤ軸99aとの回転数が一致していることから、変速機90のクラッチC2のクラッチポジションをMポジションからLポジションに容易に切り替えて、キャリア軸98aと出力ギヤ軸99aとの連結を解除することができる。以下、このようにクラッチC1がLポジションに設定されると共にクラッチC2がLポジションに設定される状態を変速機90の第3変速状態(3速)という(図6)。このような第3変速状態のもとでは、動力分配統合機構40の第1要素たるリングギヤ42が第1連結ギヤ列(第1従動ギヤ91)や第1ギヤ軸91a、クラッチC2、出力ギヤ軸99a、出力ギヤ99等を介して駆動軸60に連結される。従って、この場合には、動力分配統合機構40のリングギヤ42が出力要素となると共にサンギヤ41が反力要素となってトルク変換モードが上記第1トルク変換モードとなり、図6に示すように、モータMG1の回転数を制御することにより、エンジン22の回転数と出力要素たるリングギヤ42に機械的に連結(直結)された駆動軸60の回転数との比を無段階かつ連続的に変化させることができる。   Under the 2-3 speed simultaneous engagement state shown in FIG. 5, since the rotation speeds of the first gear shaft 91a, the carrier shaft 98a, and the output gear shaft 99a are the same, the clutch C2 of the transmission 90 is The clutch position can be easily switched from the M position to the L position, and the connection between the carrier shaft 98a and the output gear shaft 99a can be released. Hereinafter, a state in which the clutch C1 is set to the L position and the clutch C2 is set to the L position in this way is referred to as a third speed change state (third speed) of the transmission 90 (FIG. 6). Under such a third speed change state, the ring gear 42 as the first element of the power distribution and integration mechanism 40 is connected to the first connecting gear train (first driven gear 91), the first gear shaft 91a, the clutch C2, and the output gear shaft. 99a and the output shaft 99 are connected to the drive shaft 60. Therefore, in this case, the ring gear 42 of the power distribution and integration mechanism 40 serves as an output element, and the sun gear 41 serves as a reaction force element, and the torque conversion mode becomes the first torque conversion mode. As shown in FIG. By controlling the rotational speed of the MG1, the ratio between the rotational speed of the engine 22 and the rotational speed of the drive shaft 60 mechanically connected (directly connected) to the ring gear 42, which is an output element, can be continuously changed. Can do.

図6に示す状態すなわち変速機90が第3変速状態にあると共にトルク変換モードが第1トルク変換モードである状態で車速Vが高まると、やがてモータMG1、第1モータ軸45および動力分配統合機構40の第2要素たるサンギヤ41の回転数が値0に近づくことになる。これにより、クラッチC0のクラッチポジションをそれまでのMポジションからLポジションへと切り替えて、図7に示すように、第1モータ軸45(モータMG1)およびサンギヤ41を回転不能に固定することが可能となる。そして、変速機90のクラッチC2により第1ギヤ軸91aを出力ギヤ軸99aに接続したままクラッチC0により第1モータ軸45やサンギヤ41を回転不能に固定した状態でモータMG1およびMG2に対するトルク指令を値0に設定すれば、モータMG1およびMG2は、力行および回生の何れをも実行せずに空転し、エンジン22からの動力(トルク)は、電気エネルギへの変換を伴うことなく、固定された(一定の)変速比(第3変速状態の変速比よりも増速側の値)で変速された上で駆動軸60へと直接伝達されることになる。以下、このように、変速機90のクラッチC2により第1ギヤ軸91aを出力ギヤ軸99aに接続したままクラッチC0により第1モータ軸45やサンギヤ41を回転不能に固定するモードも「同時係合モード」といい、特に、図7に示す状態を「3速固定状態」という。なお、変速機90の変速比をシフトダウン方向に変化させる場合には、基本的に上記説明と逆の手順を実行すればよい。   When the vehicle speed V increases in the state shown in FIG. 6, that is, in the state where the transmission 90 is in the third speed change state and the torque conversion mode is the first torque conversion mode, the motor MG1, the first motor shaft 45, and the power distribution and integration mechanism eventually. The rotational speed of the sun gear 41, which is the second element of 40, approaches the value 0. As a result, the clutch position of the clutch C0 is switched from the previous M position to the L position, and the first motor shaft 45 (motor MG1) and the sun gear 41 can be fixed to be non-rotatable as shown in FIG. It becomes. Then, the torque command for the motors MG1 and MG2 is issued with the first motor shaft 45 and the sun gear 41 being non-rotatably fixed by the clutch C0 while the first gear shaft 91a is connected to the output gear shaft 99a by the clutch C2 of the transmission 90. If the value is set to 0, the motors MG1 and MG2 are idling without performing both power running and regeneration, and the power (torque) from the engine 22 is fixed without being converted into electric energy. After being shifted at a (constant) speed ratio (a value on the speed increasing side with respect to the speed ratio in the third speed change state), it is directly transmitted to the drive shaft 60. Hereinafter, the mode in which the first motor shaft 45 and the sun gear 41 are fixed to be non-rotatable by the clutch C0 while the first gear shaft 91a is connected to the output gear shaft 99a by the clutch C2 of the transmission 90 is also referred to as “simultaneous engagement”. In particular, the state shown in FIG. 7 is referred to as a “3-speed fixed state”. Note that when changing the gear ratio of the transmission 90 in the shift-down direction, a procedure reverse to the above description may be basically executed.

このように、実施例のハイブリッド自動車20では、変速機90の第1〜第3変速状態の切り換え(変速比の変更)に伴って第1トルク変換モードと第2トルク変換モードとが交互に切り換えられるので、特に電動機として機能するモータMG2またはMG1の回転数Nm2またはNm1が高まったときに、発電機として機能するモータMG1またはMG2の回転数Nm1またはNm2が負の値にならないようにすることができる。従って、ハイブリッド自動車20では、第1トルク変換モードのもとで、モータMG1の回転数が負になることに伴いリングギヤ42に出力される動力の一部を用いてモータMG2が発電すると共にモータMG2により発電された電力をモータMG1が消費して動力を出力するという動力循環や、第2トルク変換モードのもとで、モータMG2の回転数が負になることに伴いサンギヤ41に出力される動力の一部を用いてモータMG1が発電すると共にモータMG1により発電された電力をモータMG2が消費して動力を出力するという動力循環の発生を抑制することが可能となり、より広範な運転領域において動力の伝達効率を向上させることができる。また、このような動力循環の抑制に伴いモータMG1,MG2の最高回転数を抑えることができるので、それによりモータMG1,MG2を小型化することも可能となる。更に、上述の同時係合モードのもとでハイブリッド自動車20を走行させれば、1−2速同時係合状態、2−3速同時係合状態および3速固定状態のそれぞれに固有の変速比でエンジン22からの動力を機械的(直接)に駆動軸60へと伝達することができるので、電気エネルギへの変換を伴うことなくエンジン22から駆動軸60に動力を機械的に出力する機会を増やして、より広範な運転領域において動力の伝達効率をより一層向上させることができる。一般に、エンジンと2体の電動機と遊星歯車機構のような動力分配統合機構とを用いた動力出力装置では、エンジンと駆動軸との間の減速比が比較的大きいときにエンジンの動力が電気エネルギにより多く変換されるので動力の伝達効率が悪化すると共にモータMG1,MG2の発熱を招く傾向にあることから、上述の同時係合モードは、特にエンジン22と駆動軸60との間の減速比が比較的大きい場合に特に有利なものとなる。更に、実施例のハイブリッド自動車20では、変速機90の変速状態を変更する際に、第1トルク変換モードと第2トルク変換モードとの間で一旦同時係合モードが実行されることから、変速状態の変更時におけるいわゆるトルク抜けを生じることはなく、変速状態の変更すなわち第1トルク変換モードと第2トルク変換モードとの切り換えを極めてスムースかつショック無く実行することが可能となる。   As described above, in the hybrid vehicle 20 of the embodiment, the first torque conversion mode and the second torque conversion mode are alternately switched in accordance with the switching of the first to third shift states of the transmission 90 (change of the gear ratio). Therefore, especially when the rotational speed Nm2 or Nm1 of the motor MG2 or MG1 functioning as an electric motor increases, the rotational speed Nm1 or Nm2 of the motor MG1 or MG2 functioning as a generator is prevented from becoming a negative value. it can. Therefore, in the hybrid vehicle 20, the motor MG2 generates power and uses the motor MG2 using a part of the power output to the ring gear 42 when the rotational speed of the motor MG1 becomes negative under the first torque conversion mode. The power output to the sun gear 41 when the rotational speed of the motor MG2 becomes negative under the power circulation in which the motor MG1 consumes the electric power generated by the motor MG1 to output the power and the second torque conversion mode. It is possible to suppress the generation of power circulation in which the motor MG1 generates power using a part of the motor MG1 and the motor MG2 consumes the electric power generated by the motor MG1 and outputs power. The transmission efficiency can be improved. Moreover, since the maximum number of rotations of the motors MG1 and MG2 can be suppressed along with such suppression of power circulation, the motors MG1 and MG2 can be downsized. Furthermore, if the hybrid vehicle 20 is driven under the above-described simultaneous engagement mode, the transmission ratios specific to the first-second simultaneous engagement state, the second-third simultaneous engagement state, and the third-speed fixed state, respectively. Since the power from the engine 22 can be mechanically (directly) transmitted to the drive shaft 60, the opportunity to mechanically output the power from the engine 22 to the drive shaft 60 without conversion to electric energy is provided. As a result, the power transmission efficiency can be further improved in a wider operating range. In general, in a power output device using an engine, two electric motors, and a power distribution and integration mechanism such as a planetary gear mechanism, the engine power is converted into electric energy when the reduction ratio between the engine and the drive shaft is relatively large. Since the power transmission efficiency deteriorates and the motors MG1 and MG2 tend to generate heat, the simultaneous engagement mode particularly has a reduction ratio between the engine 22 and the drive shaft 60. This is particularly advantageous when it is relatively large. Furthermore, in the hybrid vehicle 20 of the embodiment, when the shift state of the transmission 90 is changed, the simultaneous engagement mode is once executed between the first torque conversion mode and the second torque conversion mode. There is no so-called torque loss when the state is changed, and the change of the shift state, that is, the switching between the first torque conversion mode and the second torque conversion mode can be performed extremely smoothly and without shock.

続いて、図8および図11等を参照しながら、エンジン22を停止させた状態でバッテリ35からの電力を用いてモータMG1やモータMG2に動力を出力させ、それによりハイブリッド自動車20を走行させるモータ走行モードの概要について説明する。実施例のハイブリッド自動車20において、モータ走行モードは、クラッチC0をMポジションに設定してモータMG1を動力分配統合機構40のサンギヤ41に接続したままモータMG1およびMG2の何れか一方に動力を出力させるクラッチ係合1モータ走行モードと、クラッチC0をRポジションに設定してモータMG1と動力分配統合機構40のサンギヤ41との接続を解除した状態でモータMG1およびMG2の何れか一方に動力を出力させるクラッチ解放1モータ走行モードと、クラッチC0をRポジションに設定した状態でモータMG1およびMG2の双方からの動力を利用できるようにする2モータ走行モードとに大別される。   Subsequently, with reference to FIGS. 8 and 11 and the like, the motor MG1 and the motor MG2 output power using the electric power from the battery 35 in a state where the engine 22 is stopped, thereby causing the hybrid vehicle 20 to travel. An outline of the travel mode will be described. In the hybrid vehicle 20 of the embodiment, the motor travel mode is such that the clutch C0 is set to the M position and the motor MG1 is output to one of the motors MG1 and MG2 while the motor MG1 is connected to the sun gear 41 of the power distribution and integration mechanism 40. Power is output to one of the motors MG1 and MG2 with the clutch engagement 1 motor running mode and with the clutch C0 set to the R position and the motor MG1 and the sun gear 41 of the power distribution and integration mechanism 40 disconnected. It is roughly divided into a clutch release 1 motor travel mode and a 2 motor travel mode in which power from both the motors MG1 and MG2 can be used with the clutch C0 set to the R position.

クラッチ係合1モータ走行モードを実行する際には、クラッチC0をMポジションに設定した状態で図8に示すようにクラッチC1およびC2のクラッチポジションを設定することにより変速機90を第1または第3変速状態に設定してモータMG2のみに動力を出力させるか、クラッチC0をMポジションに設定した状態で図8に示すようにクラッチC1およびC2のクラッチポジションを設定することにより変速機90を第2変速状態に設定してモータMG1のみに動力を出力させる。かかるクラッチ係合1モータ走行モードのもとでは、クラッチC0により動力分配統合機構40のサンギヤ41と第1モータ軸45とが接続されていることから、動力を出力していないモータMG1またはMG2は、動力を出力しているモータMG2またはMG1に連れ回されて空転することになる(図11における破線参照)。また、クラッチ解放1モータ走行モードを実行する際には、クラッチC0をRポジションに設定した状態で図8に示すようにクラッチC1およびC2のクラッチポジションを設定することにより変速機90を第1または第3変速状態に設定してモータMG2のみに動力を出力させるか、クラッチC0をRポジションに設定した状態で図8に示すようにクラッチC1およびC2のクラッチポジションを設定することにより変速機90を第2変速状態に設定してモータMG1のみに動力を出力させる。かかるクラッチ解放1モータ走行モードのもとでは、図11において一点鎖線および二点鎖線で示すように、クラッチC0がRポジションに設定されてサンギヤ41と第1モータ軸45(モータMG1)との接続が解除されることから、動力分配統合機構40の機能により停止されたエンジン22のクランクシャフト26の連れ回しが回避されると共に、クラッチC2またはC1のクラッチポジションの設定状態により停止しているモータMG1またはMG2の連れ回しが回避され、それにより動力の伝達効率の低下を抑制することができる。更に、2モータ走行モードを実行する際には、クラッチC0をRポジションに設定すると共に図8に示すようにクラッチC1およびC2のクラッチポジションを設定することにより変速機90を上述の1−2速同時係合状態または2−3速同時係合状態に設定した上でモータMG1およびMG2の少なくとも何れか一方を駆動制御する。これにより、エンジン22の連れ回しを回避しながらモータMG1およびMG2の双方から動力を出力させ、モータ走行モードのもとで大きな動力を駆動軸60に伝達することができるので、いわゆる坂道発進を良好に実行したり、モータ走行時におけるトーイング性能等を良好に確保したりすることが可能となる。   When the clutch engagement 1-motor running mode is executed, the transmission 90 is set to the first or first position by setting the clutch positions of the clutches C1 and C2 as shown in FIG. 8 with the clutch C0 set to the M position. The transmission 90 is set to the third shift state so that only the motor MG2 outputs power or the clutch positions of the clutches C1 and C2 are set as shown in FIG. 8 with the clutch C0 set to the M position. The two-speed state is set and power is output only to the motor MG1. Under the clutch engagement 1 motor traveling mode, the sun gear 41 of the power distribution and integration mechanism 40 and the first motor shaft 45 are connected by the clutch C0, so that the motor MG1 or MG2 not outputting power is Then, the motor MG2 or MG1 that outputs power is idled to rotate idly (see the broken line in FIG. 11). Further, when the clutch release 1 motor running mode is executed, the transmission 90 is set to the first or second position by setting the clutch positions of the clutches C1 and C2 as shown in FIG. 8 with the clutch C0 set to the R position. The transmission 90 is set by setting the third shift state to output power only to the motor MG2 or setting the clutch positions of the clutches C1 and C2 as shown in FIG. 8 with the clutch C0 set to the R position. The second shift state is set and power is output only to the motor MG1. Under the clutch release 1 motor running mode, as shown by the one-dot chain line and the two-dot chain line in FIG. 11, the clutch C0 is set to the R position and the sun gear 41 is connected to the first motor shaft 45 (motor MG1). Therefore, the rotation of the crankshaft 26 of the engine 22 stopped by the function of the power distribution and integration mechanism 40 is avoided, and the motor MG1 stopped according to the clutch position setting state of the clutch C2 or C1. Alternatively, the accompanying rotation of MG2 can be avoided, thereby suppressing a reduction in power transmission efficiency. Further, when the two-motor travel mode is executed, the clutch C0 is set to the R position and the clutch positions of the clutches C1 and C2 are set as shown in FIG. After setting the simultaneous engagement state or the 2-3rd speed simultaneous engagement state, drive control of at least one of the motors MG1 and MG2 is performed. As a result, power can be output from both the motors MG1 and MG2 while avoiding the rotation of the engine 22, and a large amount of power can be transmitted to the drive shaft 60 under the motor travel mode, so that so-called hill starting is good. It is possible to carry out the operation and to ensure good towing performance and the like when the motor is running.

そして、実施例のハイブリッド自動車20では、クラッチ解放1モータ走行モードが選択されると、動力を効率よく駆動軸60に伝達すべく変速機90の変速状態(変速比)を容易に変更することができる。例えば、クラッチ解放1モータ走行モードのもとで、変速機90を第1変速状態に設定すると共にモータMG2にのみ動力を出力させているときに、第2従動ギヤ92が第1従動ギヤ91と回転同期するようにモータMG1の回転数Nm1を調整し、変速機90のクラッチC1のクラッチポジションをRポジションからMポジションに切り替えれば、上述の1−2速同時係合状態すなわち2モータ走行モードへと移行することができる。そして、この状態でクラッチC1のクラッチポジションをMポジションからLポジションに切り替えると共にモータMG1のみに動力を出力させれば、上述の第2変速状態のもとでモータMG1により出力される動力を駆動軸60に伝達することが可能となる。また、クラッチ解放1モータ走行モードのもとで、変速機90を第2変速状態に設定すると共にモータMG1にのみ動力を出力させているときに、第1ギヤ軸91aが出力ギヤ軸99aと回転同期するようにモータMG2の回転数Nm2を調整し、変速機90のクラッチC2のクラッチポジションをRポジションからMポジションに切り替えれば、上述の2−3速同時係合状態すなわち2モータ走行モードへと移行することができる。そして、この状態でクラッチC2のクラッチポジションをMポジションからLポジションに切り替えると共にモータMG2のみに動力を出力させれば、上述の第3変速状態のもとでモータMG2により出力される動力を駆動軸60に伝達することが可能となる。この結果、実施例のハイブリッド自動車20では、モータ走行モードのもとでも、変速機90を用いてリングギヤ42やサンギヤ41の回転数を変速してトルクを増幅等することができるので、モータMG1,MG2に要求される最大トルクを低下させることが可能となり、モータMG1,MG2の小型化を図ることができる。また、このようなモータ走行中における変速機90の変速状態(変速比)の変更に際しても、一旦変速機90の同時係合状態すなわち2モータ走行モードが実行されることから、変速状態の変更時におけるいわゆるトルク抜けを生じることはなく、変速状態の変更を極めてスムースかつショック無く実行することが可能となる。なお、これらのモータ走行モードのもとで要求駆動力が高まったり、バッテリ35の残容量SOCが低下したりしたような場合には、変速機90の変速状態に応じて動力を出力しないことになるモータMG1またはMG2によるエンジン22のクランキングを実行し、それによりエンジン22を始動させる。   In the hybrid vehicle 20 of the embodiment, when the clutch release 1-motor running mode is selected, the speed change state (speed ratio) of the transmission 90 can be easily changed to efficiently transmit power to the drive shaft 60. it can. For example, when the transmission 90 is set to the first shift state and power is output only to the motor MG2 under the clutch disengagement 1 motor travel mode, the second driven gear 92 and the first driven gear 91 are If the rotational speed Nm1 of the motor MG1 is adjusted so as to synchronize with rotation, and the clutch position of the clutch C1 of the transmission 90 is switched from the R position to the M position, the above-described 1-2 speed simultaneous engagement state, that is, the two-motor traveling mode is set. And can be migrated. In this state, if the clutch position of the clutch C1 is switched from the M position to the L position and power is output only to the motor MG1, the power output by the motor MG1 under the above-described second shift state is used as the drive shaft. 60 can be transmitted. Further, when the transmission 90 is set to the second shift state and power is output only to the motor MG1 under the clutch release 1 motor running mode, the first gear shaft 91a rotates with the output gear shaft 99a. If the rotational speed Nm2 of the motor MG2 is adjusted so as to synchronize and the clutch position of the clutch C2 of the transmission 90 is switched from the R position to the M position, the above-described 2-3 speed simultaneous engagement state, that is, the two-motor traveling mode is achieved. Can be migrated. In this state, if the clutch position of the clutch C2 is switched from the M position to the L position and power is output only to the motor MG2, the power output by the motor MG2 under the third shift state described above is driven to the drive shaft. 60 can be transmitted. As a result, in the hybrid vehicle 20 of the embodiment, even in the motor travel mode, the rotational speed of the ring gear 42 and the sun gear 41 can be changed using the transmission 90 to amplify the torque, so that the motor MG1, The maximum torque required for MG2 can be reduced, and the motors MG1 and MG2 can be downsized. In addition, when the transmission state (transmission ratio) of the transmission 90 is changed during such motor traveling, the simultaneous engagement state of the transmission 90, that is, the two-motor traveling mode is once executed. Therefore, the shift state can be changed very smoothly and without shock. In the case where the required driving force is increased or the remaining capacity SOC of the battery 35 is decreased under these motor travel modes, power is not output according to the shift state of the transmission 90. The cranking of the engine 22 by the motor MG1 or MG2 is executed, and the engine 22 is thereby started.

以上説明したように、実施例のハイブリッド自動車20は、クランクシャフト26や第1モータ軸45、第2モータ軸55と概ね平行に延在する伝達軸93と、この伝達軸93に動力分配統合機構40の第1要素たるリングギヤ42と第2要素たるサンギヤ41とを選択的に連結可能な第1連結手段としての第1連結ギヤ列、第2連結ギヤ列およびクラッチC1と、伝達軸93に接続される入力要素たるサンギヤ95と出力要素たるキャリア98とを有すると共に伝達軸93からの動力を所定の変速比で変速してキャリア98から出力可能な変速機構としての減速機構94と、減速機構94のキャリア98と動力分配統合機構の第1および第2要素の少なくとも何れか一方とを駆動軸60に選択的に連結可能な第2連結手段してのクラッチC2とを含む変速機90を備える。   As described above, the hybrid vehicle 20 of the embodiment includes the transmission shaft 93 extending substantially parallel to the crankshaft 26, the first motor shaft 45, and the second motor shaft 55, and a power distribution integration mechanism on the transmission shaft 93. The first connecting gear train, the second connecting gear train and the clutch C1 as first connecting means capable of selectively connecting the ring gear 42 as the first element 40 and the sun gear 41 as the second element are connected to the transmission shaft 93. A speed reduction mechanism 94 as a speed change mechanism that has a sun gear 95 that is an input element and a carrier 98 that is an output element, and that is capable of shifting the power from the transmission shaft 93 at a predetermined speed ratio and outputting it from the carrier 98. Clutch C as a second coupling means capable of selectively coupling the carrier 98 and at least one of the first and second elements of the power distribution and integration mechanism to the drive shaft 60. It includes a transmission 90 which includes and.

これにより、実施例のハイブリッド自動車20では、変速機90のクラッチC1等により動力分配統合機構40のリングギヤ42およびサンギヤ41の何れか一方を伝達軸93に連結した状態で、クラッチC2や出力ギヤ軸99a、出力ギヤ99等により減速機構94のキャリア98を駆動軸60に連結すれば、動力分配統合機構40のリングギヤ42またはサンギヤ41からの動力を減速機構94により減速した上で駆動軸60に出力することができる。更に、変速機90の第1ギヤ軸91aやクラッチC2、出力ギヤ軸99a、出力ギヤ99等により動力分配統合機構40のリングギヤ42を駆動軸60に連結すれば、リングギヤ42からの動力を駆動軸60に機械的に直接出力することができる。従って、変速機90を備えたハイブリッド自動車20では、動力分配統合機構40からの動力を複数段階に変速して駆動軸60に出力することが可能となる。そして、変速機90のクラッチC1等により動力分配統合機構40のリングギヤ42が伝達軸93に連結されるとき、あるいはクラッチC2により動力分配統合機構40のリングギヤ42が駆動軸60に連結されるときには、出力要素となるリングギヤ42に接続されるモータMG2を電動機として機能させ、かつ反力要素となるサンギヤ41に接続されるモータMG1を発電機として機能させることが可能となる。また、変速機90のクラッチC1により動力分配統合機構40のサンギヤ41が伝達軸93に連結されるときには、出力要素となるサンギヤ41に接続されるモータMG1を電動機として機能させ、かつ反力要素となるリングギヤ42に接続されるモータMG2を発電機として機能させることが可能となる。これにより、ハイブリッド自動車20では、クラッチC1およびC2のクラッチポジションの切り替えを適宜実行することにより、特に電動機として機能するモータMG2またはMG1の回転数Nm2またはNm1が高まったときに、発電機として機能するモータMG1またはMG2の回転数Nm1またはNm2が負の値にならないようにして、いわゆる動力循環の発生を抑制することができる。この結果、ハイブリッド自動車20では、より広範な運転領域において動力の伝達効率を良好に向上させることが可能となり、燃費と走行性能とを良好に向上させることができる。   Accordingly, in the hybrid vehicle 20 of the embodiment, the clutch C2 and the output gear shaft are connected in a state where either the ring gear 42 or the sun gear 41 of the power distribution and integration mechanism 40 is connected to the transmission shaft 93 by the clutch C1 or the like of the transmission 90. If the carrier 98 of the speed reduction mechanism 94 is connected to the drive shaft 60 by the output gear 99 or the like 99a, the power from the ring gear 42 or the sun gear 41 of the power distribution and integration mechanism 40 is decelerated by the speed reduction mechanism 94 and output to the drive shaft 60. can do. Further, if the ring gear 42 of the power distribution and integration mechanism 40 is connected to the drive shaft 60 by the first gear shaft 91a of the transmission 90, the clutch C2, the output gear shaft 99a, the output gear 99, etc., the power from the ring gear 42 is driven to the drive shaft. 60 can be output directly mechanically. Therefore, in the hybrid vehicle 20 including the transmission 90, the power from the power distribution and integration mechanism 40 can be shifted in a plurality of stages and output to the drive shaft 60. When the ring gear 42 of the power distribution and integration mechanism 40 is connected to the transmission shaft 93 by the clutch C1 and the like of the transmission 90, or when the ring gear 42 of the power distribution and integration mechanism 40 is connected to the drive shaft 60 by the clutch C2, The motor MG2 connected to the ring gear 42 serving as the output element can function as an electric motor, and the motor MG1 connected to the sun gear 41 serving as the reaction force element can function as a generator. When the sun gear 41 of the power distribution and integration mechanism 40 is coupled to the transmission shaft 93 by the clutch C1 of the transmission 90, the motor MG1 connected to the sun gear 41 serving as the output element functions as an electric motor, and the reaction force element It becomes possible to cause the motor MG2 connected to the ring gear 42 to function as a generator. As a result, the hybrid vehicle 20 functions as a power generator when the rotational speed Nm2 or Nm1 of the motor MG2 or MG1 that functions as an electric motor is increased by appropriately switching the clutch positions of the clutches C1 and C2. Generation of so-called power circulation can be suppressed by preventing the rotation speed Nm1 or Nm2 of the motor MG1 or MG2 from becoming a negative value. As a result, in the hybrid vehicle 20, it is possible to improve the power transmission efficiency in a wider driving range, and it is possible to improve the fuel consumption and the driving performance.

また、上述の変速機90を用いれば、エンジン22、モータMG1,MG2、および動力分配統合機構40とを概ね同軸に配置しても、これらの要素により構成される動力出力装置の軸方向(車幅方向)寸法の増加を抑制することができる。すなわち、変速機90を用いることにより、2組の平行軸式ギヤ列すなわち第1連結ギヤ列および第2連結ギヤ列により動力分配統合機構40の第1要素たるリングギヤ42および第2要素たるサンギヤ41の少なくとも何れか一方を伝達軸93に連結することが可能となる。そして、実施例のようにクラッチC0を設けたとしても第1連結ギヤ列と第2連結ギヤ列との間隔は比較的狭くとることができる。そして、上述の変速機90を用いれば、第1連結ギヤ列の第1従動ギヤ91、第2連結ギヤ列の第2従動ギヤ92、減速機構94、クラッチC1,クラッチC2、出力ギヤ99および出力ギヤ軸99a等は何れも伝達軸93の周りにそれと同軸に配置することができることから、エンジン22、モータMG1,MG2、動力分配統合機構40および変速機90等を備える動力出力装置を2軸式のものとして構成可能となる。従って、エンジン22、モータMG1,MG2および動力分配統合機構40を概ね同軸に配置しても、動力出力装置の車幅方向寸法の増加を抑制することができる。これにより、動力出力装置をコンパクトで搭載性に優れて主に前輪63a,63bを駆動して走行するハイブリッド自動車20に好適なものとすることができる。   Further, if the transmission 90 described above is used, even if the engine 22, the motors MG1 and MG2, and the power distribution and integration mechanism 40 are arranged substantially coaxially, the axial direction of the power output device constituted by these elements (the vehicle An increase in the dimension in the width direction can be suppressed. That is, by using the transmission 90, the ring gear 42 as the first element of the power distribution and integration mechanism 40 and the sun gear 41 as the second element are constituted by two sets of parallel shaft gear trains, that is, the first connection gear train and the second connection gear train. At least one of these can be connected to the transmission shaft 93. And even if it provides clutch C0 like an Example, the space | interval of a 1st connection gear train and a 2nd connection gear train can be taken comparatively narrowly. If the above-described transmission 90 is used, the first driven gear 91 of the first connection gear train, the second driven gear 92 of the second connection gear train, the reduction mechanism 94, the clutch C1, the clutch C2, the output gear 99, and the output Since any of the gear shafts 99a and the like can be arranged around the transmission shaft 93 coaxially therewith, a power output device including the engine 22, the motors MG1 and MG2, the power distribution and integration mechanism 40, the transmission 90, and the like is a two-shaft type. Can be configured. Therefore, even if the engine 22, the motors MG1 and MG2, and the power distribution and integration mechanism 40 are arranged substantially coaxially, an increase in the vehicle width direction dimension of the power output device can be suppressed. As a result, the power output device can be made compact and suitable for the hybrid vehicle 20 that travels mainly by driving the front wheels 63a and 63b with excellent mountability.

更に、変速機90は、動力分配統合機構40のリングギヤ42に常時連結される平行軸式の第1連結ギヤ列(リングギヤ42の外歯および第1従動ギヤ91)と、クラッチC0がMポジションにあるときにはサンギヤ41に常時連結される平行軸式の第2連結ギヤ列(駆動ギヤ47及び第2従動ギヤ92)と、第1連結ギヤ列と伝達軸93とが連結される第1要素連結状態(Rポジション)と第2連結ギヤ列と伝達軸93とが連結される第2要素連結状態(Lポジション)とを選択的に切り替え可能なクラッチC0とを含むものである。このように2組の平行軸式の第1および第2連結ギヤ列とクラッチC0とにより変速機90の第1連結手段を構成すれば、伝達軸93の軸方向における第1連結手段の寸法増加すなわち第1連結ギヤ列と第2連結ギヤ列との間隔の増加を抑制しながら動力分配統合機構40のリングギヤ42とサンギヤ41とを伝達軸93に選択的に連結することが可能となる。また、平行軸式の第1または第2連結ギヤ列を介して動力分配統合機構40のリングギヤ42またはサンギヤ41を伝達軸93に連結すれば、リングギヤ41またはサンギヤ41と伝達軸93との間の変速比を自在に設定することが可能となる。これにより、変速機90の変速比設定の自由度を大きくして動力の伝達効率のより一層の向上を図ることができる。なお、上記実施例では、動力分配統合機構40のリングギヤ42に外歯を形成してリングギヤ42自体が第1連結ギヤ列を構成するようにしているが、これに限られるものではない。すなわち、リングギヤ42に外歯を形成する代わりに、駆動ギヤ47と同様のギヤをリングギヤ42に接続して当該ギヤを第1従動ギヤと噛合させて第1連結ギヤ列を構成してもよい。そして、変速機90の変速機構を伝達軸93からサンギヤ95に入力された動力を所定の減速比で減速してキャリア98から出力可能な3要素式遊星歯車機構である減速機構94とすれば、変速機90をよりコンパクトに構成することが可能となる。ただし、変速機90の減速機構94は、互いに異なる歯数をもった第1サンギヤおよび第2サンギヤと、第1サンギヤと噛合する第1ピニオンギヤと第2サンギヤと噛合する第2ピニオンギヤとを連結してなる段付ギヤを少なくとも1つ保持するキャリアとを含む遊星歯車機構であってもよい。このような段付ギヤを含む遊星歯車機構を減速機構94として用いれば、より大きな減速比を設定する際にピニオンギヤの回転数が高まりがちなシングルピニオン式遊星歯車機構を有する変速機に比べて、より大きな減速比を容易に設定することが可能となる。   Further, the transmission 90 includes a parallel shaft type first connection gear train (the outer teeth of the ring gear 42 and the first driven gear 91) that is always connected to the ring gear 42 of the power distribution and integration mechanism 40, and the clutch C0 in the M position. In some cases, the first element connection state in which the parallel shaft type second connection gear train (drive gear 47 and second driven gear 92) always connected to the sun gear 41 and the first connection gear train and the transmission shaft 93 are connected. This includes a clutch C0 that can selectively switch between the (R position), the second coupling gear train, and the second element coupling state (L position) in which the transmission shaft 93 is coupled. Thus, if the first coupling means of the transmission 90 is constituted by the two sets of parallel shaft type first and second coupling gear trains and the clutch C0, the size of the first coupling means in the axial direction of the transmission shaft 93 is increased. That is, the ring gear 42 and the sun gear 41 of the power distribution and integration mechanism 40 can be selectively connected to the transmission shaft 93 while suppressing an increase in the distance between the first connection gear train and the second connection gear train. If the ring gear 42 or the sun gear 41 of the power distribution and integration mechanism 40 is connected to the transmission shaft 93 via the parallel shaft type first or second connection gear train, the ring gear 41 or the sun gear 41 and the transmission shaft 93 are connected. The gear ratio can be set freely. As a result, the degree of freedom in setting the gear ratio of the transmission 90 can be increased, and the power transmission efficiency can be further improved. In the above-described embodiment, external teeth are formed on the ring gear 42 of the power distribution and integration mechanism 40 so that the ring gear 42 itself constitutes the first connection gear train. However, the present invention is not limited to this. That is, instead of forming external teeth on the ring gear 42, a gear similar to the drive gear 47 may be connected to the ring gear 42 and meshed with the first driven gear to form the first connecting gear train. Then, if the speed change mechanism of the transmission 90 is a reduction mechanism 94 that is a three-element planetary gear mechanism capable of reducing the power input from the transmission shaft 93 to the sun gear 95 at a predetermined reduction ratio and outputting it from the carrier 98, The transmission 90 can be configured more compactly. However, the speed reduction mechanism 94 of the transmission 90 connects a first sun gear and a second sun gear having different numbers of teeth, a first pinion gear meshing with the first sun gear, and a second pinion gear meshing with the second sun gear. And a planetary gear mechanism including a carrier that holds at least one stepped gear. If a planetary gear mechanism including such a stepped gear is used as the speed reduction mechanism 94, compared to a transmission having a single pinion type planetary gear mechanism that tends to increase the rotation speed of the pinion gear when setting a larger reduction ratio, A larger reduction ratio can be easily set.

また、変速機90のクラッチC1は、第1要素連結状態(Rポジション)と第2要素連結状態(Lポジション)と第1連結ギヤ列および第2連結ギヤ列の双方が伝達軸93に連結される両要素連結状態(Mポジション)とを選択的に切り替え可能である。従って、クラッチC1をMポジションすなわち両要素連結状態に設定すれば、上述のようにエンジン22からの動力を固定された変速比で機械的(直接)に駆動軸60へと伝達することが可能となる。更に、変速機90のクラッチC2は、減速機構94のキャリア98が出力ギヤ99等を介して駆動軸60に連結される減速機構−駆動軸連結状態(Rポジション)と、動力分配統合機構40のリングギヤ42が第1連結ギヤ列、第1ギヤ軸91a、出力ギヤ99等を介して駆動軸60に連結される直結状態(Lポジション)と、減速機構94のキャリア98と動力分配統合機構40のリングギヤ42とが駆動軸60に連結される同時連結状態(Mポジション)とを選択的に切り替え可能である。従って、クラッチC2をMポジションすなわち同時連結状態に設定しても、エンジン22からの動力を固定された変速比で機械的(直接)に駆動軸へと伝達することが可能となる。加えて、ハイブリッド自動車20に設けられているクラッチC0は、モータMG1の回転軸たる第1モータ軸45を回転不能に固定可能なものである。従って、上述のようにモータMG2に接続される動力分配統合機構40のリングギヤ42が変速機90のクラッチC2によって駆動軸60に連結されているときに第1モータ軸45をクラッチC0により回転不能に固定しても、エンジン22からの動力を固定された変速比で機械的(直接)に駆動軸60へと伝達することができる。この結果、ハイブリッド自動車20では、より一層広範な運転領域において動力の伝達効率を良好に向上させることが可能となる。なお、上述のような固定手段は、変速機による最小変速比が設定されるときに動力分配統合機構の反力要素となる要素(実施例ではサンギヤ41)の回転を固定するものであればよく、変速機の構成によっては、モータMG2の第2モータ軸55あるいはリングギヤ42を固定するものとされてもよい。また、固定手段の機能をクラッチC0にもたせる代わりに、クラッチC0とは別に第1モータ軸45(サンギヤ41)あるいは第2モータ軸55(リングギヤ42)を固定するブレーキを採用してもよい。   Further, the clutch C1 of the transmission 90 is connected to the transmission shaft 93 in both the first element coupled state (R position), the second element coupled state (L position), and the first coupled gear train and the second coupled gear train. Both element connection states (M positions) can be selectively switched. Accordingly, if the clutch C1 is set to the M position, that is, the two elements are connected, the power from the engine 22 can be mechanically (directly) transmitted to the drive shaft 60 at a fixed gear ratio as described above. Become. Further, the clutch C2 of the transmission 90 includes a reduction mechanism-drive shaft connection state (R position) in which the carrier 98 of the reduction mechanism 94 is connected to the drive shaft 60 via the output gear 99 and the like, and the power distribution integration mechanism 40. A direct connection state (L position) in which the ring gear 42 is connected to the drive shaft 60 via the first connection gear train, the first gear shaft 91a, the output gear 99, etc., and the carrier 98 of the speed reduction mechanism 94 and the power distribution integration mechanism 40 The simultaneous connection state (M position) in which the ring gear 42 is connected to the drive shaft 60 can be selectively switched. Therefore, even if the clutch C2 is set to the M position, that is, the simultaneous connection state, the power from the engine 22 can be mechanically (directly) transmitted to the drive shaft at a fixed gear ratio. In addition, the clutch C0 provided in the hybrid vehicle 20 can fix the first motor shaft 45, which is the rotation shaft of the motor MG1, in a non-rotatable manner. Therefore, as described above, when the ring gear 42 of the power distribution and integration mechanism 40 connected to the motor MG2 is connected to the drive shaft 60 by the clutch C2 of the transmission 90, the first motor shaft 45 cannot be rotated by the clutch C0. Even if fixed, the power from the engine 22 can be mechanically (directly) transmitted to the drive shaft 60 at a fixed gear ratio. As a result, in the hybrid vehicle 20, the power transmission efficiency can be improved satisfactorily in a wider driving range. The fixing means as described above may be any means that fixes the rotation of the element (the sun gear 41 in the embodiment) that becomes the reaction force element of the power distribution and integration mechanism when the minimum speed ratio by the transmission is set. Depending on the configuration of the transmission, the second motor shaft 55 or the ring gear 42 of the motor MG2 may be fixed. Instead of giving the function of the fixing means to the clutch C0, a brake for fixing the first motor shaft 45 (sun gear 41) or the second motor shaft 55 (ring gear 42) may be employed separately from the clutch C0.

そして、実施例のハイブリッド自動車20は、サンギヤ軸41aと第1モータ軸45、すなわち、サンギヤ41とモータMG1との接続および当該接続の解除を実行するクラッチC0を備えている。これにより、ハイブリッド自動車20では、クラッチC0によるサンギヤ軸41aと第1モータ軸45との接続を解除すれば、動力分配統合機構40の機能によりエンジン22を実質的にモータMG1,MG2や変速機90から切り離すことが可能となる。従って、ハイブリッド自動車20では、クラッチC0をRポジションに設定すると共にエンジン22を停止させれば、モータMG1およびMG2の少なくとも何れかからの動力を変速機90の変速状態(変速比)の変更を伴って駆動軸60に効率よく伝達することができる。この結果、ハイブリッド自動車20では、モータMG1およびMG2に要求される最大トルクを低下させることが可能となり、モータMG1およびMG2のより一層の小型化を図ることができる。ただし、クラッチC0は、サンギヤ41とモータMG1との接続および当該接続の解除を実行するものに限られない。すなわち、クラッチC0は、リングギヤ42(第1要素)と第2モータ軸55(モータMG2)との接続および当該接続の解除を実行するものであってもよく、エンジン22のクランクシャフト26とキャリア44(第3要素)との接続および当該接続の解除を実行するものであってもよい。   The hybrid vehicle 20 according to the embodiment includes the sun gear shaft 41a and the first motor shaft 45, that is, the clutch C0 that executes connection between the sun gear 41 and the motor MG1 and release of the connection. Thereby, in the hybrid vehicle 20, if the connection between the sun gear shaft 41a and the first motor shaft 45 by the clutch C0 is released, the function of the power distribution and integration mechanism 40 causes the engine 22 to be substantially driven by the motors MG1 and MG2 and the transmission 90. It becomes possible to separate from. Therefore, in the hybrid vehicle 20, if the clutch C0 is set to the R position and the engine 22 is stopped, the power from at least one of the motors MG1 and MG2 is accompanied by a change in the speed change state (speed ratio) of the transmission 90. Thus, it can be efficiently transmitted to the drive shaft 60. As a result, in hybrid vehicle 20, the maximum torque required for motors MG1 and MG2 can be reduced, and further miniaturization of motors MG1 and MG2 can be achieved. However, the clutch C0 is not limited to the one that executes the connection between the sun gear 41 and the motor MG1 and the release of the connection. That is, the clutch C0 may execute connection between the ring gear 42 (first element) and the second motor shaft 55 (motor MG2) and release of the connection, and the crankshaft 26 and the carrier 44 of the engine 22 may be executed. Connection with (third element) and cancellation of the connection may be executed.

また、上述のように、実施例のハイブリッド自動車20は、ギヤ比ρが値0.5未満とされるシングルピニオン式遊星歯車機構である動力分配統合機構40を備えているが、このような諸元の動力分配統合機構40においては、サンギヤ41に比べてリングギヤ42に対するエンジン22からのトルクの分配比率が大きくなる。従って、実施例のように、リングギヤ42とモータMG2との間に減速ギヤ機構50を配置することにより、モータMG2の小型化とその動力損失の低減化を図ることが可能となる。また、この場合には、減速ギヤ機構50の減速比ρrを動力分配統合機構40のギヤ比ρ近傍の値とすれば、モータMG1およびMG2の諸元を概ね同一のものとすることが可能となるので、ハイブリッド自動車20や動力出力装置の生産性を向上させると共にコストの低減化を図ることができる。   Further, as described above, the hybrid vehicle 20 of the embodiment includes the power distribution and integration mechanism 40 that is a single pinion type planetary gear mechanism in which the gear ratio ρ is less than 0.5. In the original power distribution and integration mechanism 40, the torque distribution ratio from the engine 22 to the ring gear 42 is larger than that of the sun gear 41. Therefore, by arranging the reduction gear mechanism 50 between the ring gear 42 and the motor MG2 as in the embodiment, it is possible to reduce the size of the motor MG2 and reduce its power loss. In this case, if the reduction ratio ρr of the reduction gear mechanism 50 is set to a value in the vicinity of the gear ratio ρ of the power distribution and integration mechanism 40, the specifications of the motors MG1 and MG2 can be made substantially the same. Therefore, the productivity of the hybrid vehicle 20 and the power output device can be improved and the cost can be reduced.

図12は、変形例に係るハイブリッド自動車20Aの概略構成図である。同図に示すハイブリッド自動車20Aでは、シングルピニオン式遊星歯車機構である動力分配統合機構40に代えて、外歯歯車のサンギヤ11と、このサンギヤ11と同心円上に配置される内歯歯車のリングギヤ12と、互いに噛合すると共に一方がサンギヤ11と他方がリングギヤ12と噛合する2つのピニオンギヤ13,14の組を自転かつ公転自在に少なくとも1組保持するキャリア15とを含むダブルピニオン式遊星歯車機構である動力分配統合機構10が採用されている。この変形例において、動力分配統合機構10は、そのギヤ比ρ(サンギヤ11の歯数をリングギヤ12の歯数で除した値)がρ<0.5となるように構成されている。そして、動力分配統合機構の第2要素たるサンギヤ11には、当該サンギヤ11からエンジン22とは反対側に延びるサンギヤ軸11a、クラッチC0および第1モータ軸45を介して第2電動機としてのモータMG1(ロータ)が接続され、第1要素たるキャリア15には、動力分配統合機構10とエンジン22との間に配置される減速ギヤ機構50および中空の第2モータ軸55を介してモータMG2(中空のロータ)が接続されている。また、第3要素たるリングギヤ12には、第2モータ軸55およびモータMG2を通って延びるリングギヤ軸12aおよびダンパ28を介してエンジン22のクランクシャフト26が接続されている。更に、この変形例では、第1従動ギヤ91と共に第1連結ギヤ列を構成する外歯歯車16がキャリア15に対して固定されている。   FIG. 12 is a schematic configuration diagram of a hybrid vehicle 20A according to a modification. In the hybrid vehicle 20A shown in the figure, instead of the power distribution and integration mechanism 40, which is a single pinion planetary gear mechanism, an external gear sun gear 11 and an internal gear ring gear 12 arranged concentrically with the sun gear 11 are shown. And a carrier 15 for holding at least one set of two pinion gears 13 and 14 that mesh with each other and one of which is a sun gear 11 and the other meshes with a ring gear 12 to rotate and revolve. A power distribution and integration mechanism 10 is employed. In this modification, the power distribution and integration mechanism 10 is configured such that the gear ratio ρ (the value obtained by dividing the number of teeth of the sun gear 11 by the number of teeth of the ring gear 12) is ρ <0.5. The sun gear 11 as the second element of the power distribution and integration mechanism includes a motor MG1 as a second electric motor via a sun gear shaft 11a extending from the sun gear 11 to the opposite side of the engine 22, a clutch C0, and the first motor shaft 45. (Rotor) is connected to the carrier 15 as the first element, and the motor MG2 (hollow) is connected to the carrier 15 via the reduction gear mechanism 50 and the hollow second motor shaft 55 arranged between the power distribution and integration mechanism 10 and the engine 22. Rotor) is connected. In addition, the crankshaft 26 of the engine 22 is connected to the ring gear 12 as the third element via a ring gear shaft 12a and a damper 28 extending through the second motor shaft 55 and the motor MG2. Furthermore, in this modification, the external gear 16 that constitutes the first connection gear train together with the first driven gear 91 is fixed to the carrier 15.

このような動力分配統合機構10を備えたハイブリッド自動車20Aにおいても、上述のハイブリッド自動車20と同様の作用効果を得ることができる。また、ギヤ比ρが値0.5未満とされるダブルピニオン式遊星歯車機構である動力分配統合機構10を採用した場合、サンギヤ11に比べてキャリア15に対するエンジン22からのトルクの分配比率が大きくなる。従って、図12の例のように、キャリア15とモータMG2との間に減速ギヤ機構50を配置することにより、モータMG2の小型化とその動力損失の低減化を図ることが可能となる。また、この場合には、動力分配統合機構10のギヤ比をρとしたときに、減速ギヤ機構50の減速比ρrをρ/(1−ρ)近傍の値とすれば、モータMG1およびMG2の諸元を概ね同一のものとすることが可能となるので、ハイブリッド自動車20や動力出力装置の生産性を向上させると共にコストの低減化を図ることができる。ただし、ダブルピニオン式遊星歯車機構である動力分配統合機構10は、そのギヤ比がρ>0.5となるように構成されてもよく、この場合、減速ギヤ機構50は、その減速比が(1−ρ)/ρ近傍の値となるように構成されると共に、サンギヤ11とモータMG1またはMG2との間に配置されるとよい。   Also in the hybrid vehicle 20 </ b> A provided with such a power distribution and integration mechanism 10, the same operational effects as those of the hybrid vehicle 20 described above can be obtained. Further, when the power distribution and integration mechanism 10 that is a double pinion planetary gear mechanism having a gear ratio ρ less than 0.5 is adopted, the torque distribution ratio from the engine 22 to the carrier 15 is larger than that of the sun gear 11. Become. Therefore, as in the example of FIG. 12, by arranging the reduction gear mechanism 50 between the carrier 15 and the motor MG2, the motor MG2 can be downsized and its power loss can be reduced. In this case, if the gear ratio of the power distribution and integration mechanism 10 is ρ, and the reduction ratio ρr of the reduction gear mechanism 50 is a value in the vicinity of ρ / (1-ρ), the motors MG1 and MG2 Since the specifications can be made substantially the same, the productivity of the hybrid vehicle 20 and the power output device can be improved and the cost can be reduced. However, the power distribution and integration mechanism 10 that is a double pinion planetary gear mechanism may be configured such that the gear ratio satisfies ρ> 0.5. In this case, the reduction gear mechanism 50 has a reduction ratio of ( 1−ρ) / ρ is preferably set to a value in the vicinity of the sun gear 11 and the sun gear 11 and the motor MG1 or MG2.

図13は、他の変形例に係るハイブリッド自動車20Bの概略構成図である。同図に示すハイブリッド自動車20Bでは、上述のハイブリッド自動車20のクラッチC0の機能をそれぞれ油圧式のアクチュエータ88により駆動されるクラッチC0′とブレーキB0とに分担させている。また、ハイブリッド自動車20Bは、上述のクラッチC1の機能をそれぞれ油圧式のアクチュエータ88により駆動されるクラッチC1aおよびC1bとに分担させると共にクラッチC2の機能をそれぞれ油圧式のアクチュエータ88により駆動されるクラッチC2aおよびC2bとに分担させた変速機90Bを備えている。すなわち、変形例のハイブリッド自動車20Bでは、クラッチC0′を駆動することにより動力分配統合機構40のサンギヤ41と第1モータ軸45(モータMG1)との接続および当該接続の解除を実行することが可能となり、ブレーキB0を駆動することによりモータMG1の回転軸たる第1モータ軸45を回転不能に固定することが可能となる。また、変速機90BのクラッチC1aを繋ぐことにより第1連結ギヤ列や第1ギヤ軸91aを介して動力分配統合機構40の第1要素たるリングギヤ42と伝達軸93とが連結される第1要素連結状態を実現可能となり、クラッチC1bを繋ぐことにより第2連結ギヤ列や第2ギヤ軸92aを介して動力分配統合機構40の第2要素たるサンギヤ41と伝達軸93とが連結される第2要素連結状態を実現可能となり、クラッチC1aおよびC1bの双方を繋ぐことにより第1ギヤ軸91aと第2ギヤ軸92aとの双方すなわち動力分配統合機構40のリングギヤ42とサンギヤ41との双方が伝達軸93(減速機構94)に連結される両要素連結状態を実現可能となる。更に、変速機90BのクラッチC2aを繋ぐことによりキャリア軸98aすなわち減速機構94が出力ギヤ軸99aや出力ギヤ99等を介して駆動軸60に連結される減速機構−駆動軸連結状態を実現可能となり、クラッチC2bを繋ぐことにより動力分配統合機構40のリングギヤ42が第1連結ギヤ列、第1ギヤ軸91a、出力ギヤ軸99a、出力ギヤ99等を介して駆動軸60に連結される直結状態を実現可能となり、クラッチC2aおよびC2bの双方を繋ぐことによりキャリア軸98a(減速機構94)と第1ギヤ軸91aとの双方が出力ギヤ軸99aや出力ギヤ99等を介して駆動軸60に連結される同時連結状態を実現可能となる。図14にハイブリッド自動車20Bの走行時におけるクラッチC0′、ブレーキB0、変速機90BのクラッチC1a,C1b,C2a,C2bのクラッチポジション等の設定状態を示す。このように、油圧式のクラッチC0′およびブレーキB0と、油圧式のクラッチC1a,C1b,C2a,C2bを含む変速機90Bとを備えたハイブリッド自動車20Bにおいても、上述のハイブリッド自動車20,20Aと同様の作用効果を得ることができる。   FIG. 13 is a schematic configuration diagram of a hybrid vehicle 20B according to another modification. In the hybrid vehicle 20B shown in the figure, the function of the clutch C0 of the hybrid vehicle 20 described above is shared by the clutch C0 'and the brake B0, which are driven by a hydraulic actuator 88, respectively. Further, the hybrid vehicle 20B shares the function of the clutch C1 with the clutches C1a and C1b driven by the hydraulic actuator 88, and the clutch C2a driven by the hydraulic actuator 88 with the function of the clutch C2. And a transmission 90B shared with C2b. That is, in the hybrid vehicle 20B of the modified example, it is possible to connect and release the connection between the sun gear 41 of the power distribution and integration mechanism 40 and the first motor shaft 45 (motor MG1) by driving the clutch C0 ′. Thus, by driving the brake B0, the first motor shaft 45, which is the rotation shaft of the motor MG1, can be fixed in a non-rotatable manner. Further, by connecting the clutch C1a of the transmission 90B, the first element in which the ring gear 42 as the first element of the power distribution and integration mechanism 40 and the transmission shaft 93 are connected via the first connecting gear train and the first gear shaft 91a. The connected state can be realized, and the transmission gear 93 is connected to the sun gear 41 as the second element of the power distribution and integration mechanism 40 via the second connection gear train and the second gear shaft 92a by connecting the clutch C1b. By connecting both the clutches C1a and C1b, both the first gear shaft 91a and the second gear shaft 92a, that is, both the ring gear 42 and the sun gear 41 of the power distribution and integration mechanism 40 are connected to the transmission shaft. Both element connection states connected to 93 (deceleration mechanism 94) can be realized. Further, by connecting the clutch C2a of the transmission 90B, it is possible to realize a reduction mechanism-drive shaft connection state in which the carrier shaft 98a, that is, the reduction mechanism 94 is connected to the drive shaft 60 via the output gear shaft 99a, the output gear 99, and the like. By connecting the clutch C2b, the ring gear 42 of the power distribution and integration mechanism 40 is connected directly to the drive shaft 60 via the first connection gear train, the first gear shaft 91a, the output gear shaft 99a, the output gear 99, and the like. By connecting both the clutches C2a and C2b, both the carrier shaft 98a (reduction mechanism 94) and the first gear shaft 91a are coupled to the drive shaft 60 via the output gear shaft 99a, the output gear 99, and the like. Simultaneous connection state can be realized. FIG. 14 shows the setting states of the clutch positions of the clutch C0 ′, the brake B0, the clutches C1a, C1b, C2a, and C2b of the transmission 90B when the hybrid vehicle 20B is traveling. As described above, the hybrid vehicle 20B including the hydraulic clutch C0 ′ and the brake B0 and the transmission 90B including the hydraulic clutches C1a, C1b, C2a, and C2b is similar to the above-described hybrid vehicles 20 and 20A. The effect of this can be obtained.

なお、上述のハイブリッド自動車20,20A,20Bにおいて、サンギヤ41とモータMG1との接続および当該接続の解除を実行する機構や、第1モータ軸45(サンギヤ41)または第2モータ軸55(リングギヤ42)を固定する機構、減速ギヤ機構50の何れかまたはすべてを省略してもよい。また、上述のハイブリッド自動車20,20A,20Bは、何れも前輪駆動ベースの4輪駆動車両として構成されてもよい。更に、上記実施例においては、動力出力装置をハイブリッド自動車20,20A,20Bに搭載されるものとして説明したが、本発明による動力出力装置は、自動車以外の車両や船舶、航空機などの移動体に搭載されるものであってもよく、建設設備などの固定設備に組み込まれるものであってもよい。   In the hybrid vehicles 20, 20A, 20B described above, a mechanism for connecting and releasing the sun gear 41 and the motor MG1, or the first motor shaft 45 (sun gear 41) or the second motor shaft 55 (ring gear 42). ) Or a reduction gear mechanism 50 may be omitted or omitted. Further, any of the above-described hybrid vehicles 20, 20A, 20B may be configured as a four-wheel drive vehicle based on a front wheel drive. Furthermore, in the said Example, although demonstrated that the power output device was mounted in the hybrid vehicles 20, 20A, 20B, the power output device by this invention is mobile vehicles, such as vehicles other than a motor vehicle, a ship, and an aircraft. It may be mounted, or may be incorporated in a fixed facility such as a construction facility.

以上、実施例を用いて本発明の実施の形態について説明したが、本発明は上記実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、様々な変更をなし得ることはいうまでもない。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention. Needless to say.

本発明の実施例に係るハイブリッド自動車20の概略構成図である。1 is a schematic configuration diagram of a hybrid vehicle 20 according to an embodiment of the present invention. 実施例のハイブリッド自動車20をエンジン22の運転を伴って走行させる場合に車速変化に応じて変速機90の変速比をシフトアップ方向に変化させていくときの動力分配統合機構40および変速機90の主たる要素の回転数やトルクの関係を例示する説明図である。When the hybrid vehicle 20 of the embodiment is driven with the operation of the engine 22, the power distribution and integration mechanism 40 and the transmission 90 of the transmission 90 when the gear ratio of the transmission 90 is changed in the upshift direction according to the change in the vehicle speed. It is explanatory drawing which illustrates the relationship between the rotation speed and torque of a main element. 図2と同様の説明図である。It is explanatory drawing similar to FIG. 図2と同様の説明図である。It is explanatory drawing similar to FIG. 図2と同様の説明図である。It is explanatory drawing similar to FIG. 図2と同様の説明図である。It is explanatory drawing similar to FIG. 図2と同様の説明図である。It is explanatory drawing similar to FIG. 実施例のハイブリッド自動車20の走行時におけるクラッチC0や変速機90のクラッチC1およびC2のクラッチポジションの設定状態を示す図表である。It is a graph which shows the setting state of the clutch position of the clutch C0 and the clutches C1 and C2 of the transmission 90 at the time of driving | running | working of the hybrid vehicle 20 of an Example. モータMG1が発電機として機能すると共にモータMG2が電動機として機能するときの動力分配統合機構40の各要素と減速ギヤ機構50の各要素とにおける回転数やトルクの関係を表す共線図の一例を示す説明図である。An example of a collinear diagram showing the relationship between the rotational speed and torque in each element of the power distribution and integration mechanism 40 and each element of the reduction gear mechanism 50 when the motor MG1 functions as a generator and the motor MG2 functions as an electric motor. It is explanatory drawing shown. モータMG2が発電機として機能すると共にモータMG1が電動機として機能するときの動力分配統合機構40の各要素と減速ギヤ機構50の各要素とにおける回転数やトルクの関係を表す共線図の一例を示す説明図である。An example of a collinear diagram showing the relationship between the rotational speed and torque in each element of the power distribution and integration mechanism 40 and each element of the reduction gear mechanism 50 when the motor MG2 functions as a generator and the motor MG1 functions as an electric motor. It is explanatory drawing shown. 実施例のハイブリッド自動車20におけるモータ走行モードを説明するための説明図である。It is explanatory drawing for demonstrating the motor driving mode in the hybrid vehicle 20 of an Example. 変形例のハイブリッド自動車20Aの概略構成図である。It is a schematic block diagram of the hybrid vehicle 20A of a modification. 変形例のハイブリッド自動車20Bの概略構成図である。It is a schematic block diagram of the hybrid vehicle 20B of the modification. 変形例のハイブリッド自動車20Bの走行時におけるクラッチC0′、ブレーキB0、変速機90BのクラッチC1a,C1b,C2a,C2bのクラッチポジション等の設定状態を示す図表である。10 is a chart showing a setting state of a clutch position of a clutch C0 ′, a brake B0, and clutches C1a, C1b, C2a, and C2b of a transmission 90B when the hybrid vehicle 20B according to a modification is running.

符号の説明Explanation of symbols

20,20A,20B ハイブリッド自動車、22 エンジン、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、28 ダンパ、30 モータ用電子制御ユニット(モータECU)、31,32 インバータ、33,34 回転位置検出センサ、35 バッテリ、36 バッテリ用電子制御ユニット(バッテリECU)、37 温度センサ、39 電力ライン、40,10 動力分配統合機構、41,11、51、95 サンギヤ、41a,11a サンギヤ軸、42,12,52,96 リングギヤ、12a リングギヤ軸、43,13,14,53,97 ピニオンギヤ、44,15,54,98 キャリア、16 外歯歯車、44a,98a キャリア軸、45 第1モータ軸、46 固定用ドグ、47 駆動ギヤ、50 減速ギヤ機構、55 第2モータ軸、60 駆動軸、61 ギヤ機構、62 デファレンシャルギヤ、63a,63b 前輪、70 ハイブリッド用電子制御ユニット(ハイブリッドECU)、72 CPU、74 ROM、76 RAM、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、87 車速センサ、88,100,101,102 アクチュエータ、90,90B 変速機、91 第1従動ギヤ、91a 第1ギヤ軸、92 第2従動ギヤ、92a 第2ギヤ軸、93 伝達軸、94 減速機構、99 出力ギヤ、99a 出力ギヤ軸、B0 ブレーキ、C0,C1,C2,C1a,C1b,C2a,C2b クラッチ、MG1,MG2 モータ。   20, 20A, 20B Hybrid vehicle, 22 engine, 24 engine electronic control unit (engine ECU), 26 crankshaft, 28 damper, 30 motor electronic control unit (motor ECU), 31, 32 inverter, 33, 34 rotational position Detection sensor, 35 battery, 36 battery electronic control unit (battery ECU), 37 temperature sensor, 39 power line, 40, 10 power distribution integration mechanism, 41, 11, 51, 95 sun gear, 41a, 11a sun gear shaft, 42, 12, 52, 96 Ring gear, 12a Ring gear shaft, 43, 13, 14, 53, 97 Pinion gear, 44, 15, 54, 98 Carrier, 16 External gear, 44a, 98a Carrier shaft, 45 First motor shaft, 46 Fixed Dog, 47 drive gear, 0 reduction gear mechanism, 55 second motor shaft, 60 drive shaft, 61 gear mechanism, 62 differential gear, 63a, 63b front wheel, 70 electronic control unit for hybrid (hybrid ECU), 72 CPU, 74 ROM, 76 RAM, 80 ignition Switch, 81 shift lever, 82 shift position sensor, 83 accelerator pedal, 84 accelerator pedal position sensor, 85 brake pedal, 86 brake pedal position sensor, 87 vehicle speed sensor, 88, 100, 101, 102 actuator, 90, 90B transmission, 91 1st driven gear, 91a 1st gear shaft, 92 2nd driven gear, 92a 2nd gear shaft, 93 transmission shaft, 94 reduction mechanism, 99 output gear, 99a output gear shaft, B0 brake, C0, C1, C2 C1a, C1b, C2a, C2b clutch, MG1, MG2 motor.

Claims (15)

駆動軸に動力を出力する動力出力装置であって、
内燃機関と、
動力を入出力可能な第1電動機と、
動力を入出力可能な第2電動機と、
前記第1電動機の回転軸に接続される第1要素と前記第2電動機の回転軸に接続される第2要素と前記内燃機関の機関軸に接続される第3要素とを含むと共にこれら3つの要素が互いに差動回転できるように構成された動力分配統合機構と、
伝達軸と、この伝達軸に前記動力分配統合機構の前記第1要素と前記第2要素とを選択的に連結可能な第1連結手段と、前記伝達軸に接続される入力要素と出力要素とを有すると共に前記伝達軸からの動力を所定の変速比で変速して前記出力要素から出力可能な変速機構と、前記変速機構の前記出力要素と前記動力分配統合機構の前記第1および第2要素の少なくとも何れか一方とを前記駆動軸に選択的に連結可能な第2連結手段とを含む変速伝達手段と、
を備える動力出力装置。
A power output device that outputs power to a drive shaft,
An internal combustion engine;
A first electric motor capable of inputting and outputting power;
A second electric motor capable of inputting and outputting power;
A first element connected to the rotating shaft of the first electric motor, a second element connected to the rotating shaft of the second electric motor, and a third element connected to the engine shaft of the internal combustion engine. A power distribution and integration mechanism configured to allow the elements to differentially rotate relative to each other;
A transmission shaft; first coupling means capable of selectively coupling the first element and the second element of the power distribution and integration mechanism to the transmission shaft; an input element and an output element connected to the transmission shaft; And a transmission mechanism capable of shifting the power from the transmission shaft at a predetermined transmission ratio and outputting it from the output element, the output element of the transmission mechanism, and the first and second elements of the power distribution and integration mechanism Shift transmission means including second connection means capable of selectively connecting at least one of the drive shaft and the drive shaft;
A power output device comprising:
前記変速伝達手段の前記伝達軸は前記第1および第2電動機の回転軸と概ね平行に延在し、前記第1および第2電動機は前記内燃機関と概ね同軸に配置され、前記動力分配統合機構は前記第1電動機と前記第2電動機との間に両電動機と概ね同軸に配置される請求項1に記載の動力出力装置。   The transmission shaft of the shift transmission means extends substantially parallel to the rotation shafts of the first and second electric motors, the first and second electric motors are arranged substantially coaxially with the internal combustion engine, and the power distribution and integration mechanism The power output device according to claim 1, wherein the power output device is disposed between the first motor and the second motor and substantially coaxial with both motors. 前記変速伝達手段の前記第1連結手段は、前記第1要素に連結される第1平行軸式ギヤ列と、前記第2要素に連結される第2平行軸式ギヤ列と、前記第1平行軸式ギヤ列と前記伝達軸とが連結される第1要素連結状態と前記第2平行軸式ギヤ列と前記伝達軸とが連結される第2要素連結状態とを選択的に切り替え可能な切替手段とを含む請求項1または2に記載の動力出力装置。   The first connection means of the speed change transmission means includes a first parallel-shaft gear train connected to the first element, a second parallel-shaft gear train connected to the second element, and the first parallel Switching capable of selectively switching between a first element coupling state in which the shaft gear train and the transmission shaft are coupled and a second element coupling state in which the second parallel shaft gear train and the transmission shaft are coupled. The power output apparatus according to claim 1 or 2, comprising means. 前記第1連結手段の前記切替手段は、前記第1要素連結状態と前記第2要素連結状態と前記第1平行軸式ギヤ列および前記第2平行軸式ギヤ列の双方が前記伝達軸に連結される両要素連結状態とを選択的に切り替え可能である請求項3に記載の動力出力装置。   The switching means of the first connecting means is configured such that both the first element connected state, the second element connected state, the first parallel shaft type gear train and the second parallel shaft type gear train are connected to the transmission shaft. The power output apparatus according to claim 3, wherein the two element connected states can be selectively switched. 前記変速伝達手段の前記第2連結手段は、前記変速機構の前記出力要素と前記駆動軸とが連結される変速機構−駆動軸連結状態と、前記動力分配統合機構の前記第1および第2要素の何れか一方と前記駆動軸とが連結される直結状態と、前記変速機構の前記出力要素と前記動力分配統合機構の前記第1および第2要素の何れか一方とが前記駆動軸に連結される同時連結状態とを選択的に切り替え可能である請求項1から4の何れかに記載の動力出力装置。   The second connecting means of the speed change transmission means includes a speed change mechanism-drive shaft connection state in which the output element of the speed change mechanism and the drive shaft are connected, and the first and second elements of the power distribution and integration mechanism. Any one of the first and second elements of the power distribution and integration mechanism is connected to the drive shaft, and the output element of the speed change mechanism and the first and second elements of the power distribution and integration mechanism are connected to the drive shaft. The power output device according to any one of claims 1 to 4, wherein the simultaneous connection state can be selectively switched. 前記第1電動機の回転軸と前記第2電動機の回転軸との何れか一方を回転不能に固定可能な固定手段を更に備える請求項1から5の何れかに記載の動力出力装置。   The power output apparatus according to any one of claims 1 to 5, further comprising a fixing unit capable of fixing any one of the rotating shaft of the first motor and the rotating shaft of the second motor to be non-rotatable. 前記第1電動機と前記第1要素との接続および該接続の解除と、前記第2電動機と前記第2要素との接続および該接続の解除と、前記内燃機関と前記第3要素との接続および該接続の解除との何れかを実行可能な接続断接手段を更に備える請求項1から6の何れかに記載の動力出力装置。   Connection between the first motor and the first element and release of the connection; connection between the second motor and the second element; release of the connection; connection between the internal combustion engine and the third element; The power output apparatus according to any one of claims 1 to 6, further comprising connection / disconnection means capable of executing either of the release of the connection. 前記変速伝達手段の前記変速機構は、前記伝達軸から前記入力要素に入力された動力を所定の減速比で減速して前記出力要素から出力可能な減速機構である請求項1から7の何れかに記載の動力出力装置。   The speed change mechanism of the speed change transmission means is a speed reduction mechanism capable of decelerating the power input from the transmission shaft to the input element at a predetermined reduction ratio and outputting the power from the output element. The power output device described in 1. 前記変速伝達手段の前記変速機構は、3要素式遊星歯車機構である請求項1から8の何れかに記載の動力出力装置。   The power output apparatus according to any one of claims 1 to 8, wherein the speed change mechanism of the speed change transmission means is a three-element planetary gear mechanism. 前記動力分配統合機構の前記第1および第2要素のうちの前記機関軸に接続される前記第3要素からより大きなトルクが入力される一方は、前記第1電動機または前記第2電動機の回転軸の回転を減速する減速手段を介して前記第1電動機または前記第2電動機に接続される請求項1から9の何れかに記載の動力出力装置。   One of the first and second elements of the power distribution and integration mechanism to which a larger torque is input from the third element connected to the engine shaft is the rotation shaft of the first motor or the second motor. The power output device according to any one of claims 1 to 9, wherein the power output device is connected to the first electric motor or the second electric motor via a decelerating unit that decelerates the rotation of the motor. 請求項10に記載の動力出力装置において、
前記動力分配統合機構は、サンギヤと、リングギヤと、前記サンギヤおよび前記リングギヤの双方と噛合するピニオンギヤを少なくとも1つ保持するキャリアとを含むシングルピニオン式遊星歯車機構であり、前記第1要素は前記サンギヤおよび前記リングギヤの何れか一方であると共に前記第2要素は前記サンギヤおよび前記リングギヤの他方であり、前記第3要素は前記キャリアであり、
前記サンギヤの歯数を前記リングギヤの歯数で除した値である前記動力分配統合機構のギヤ比をρとしたときに、前記減速手段は、減速比がρ近傍の値となるように構成されると共に前記第1または第2電動機と前記リングギヤとの間に配置される動力出力装置。
The power output apparatus according to claim 10,
The power distribution and integration mechanism is a single pinion type planetary gear mechanism including a sun gear, a ring gear, and a carrier that holds at least one pinion gear that meshes with both the sun gear and the ring gear, and the first element is the sun gear. And the second element is the other of the sun gear and the ring gear, and the third element is the carrier.
When the gear ratio of the power distribution and integration mechanism, which is a value obtained by dividing the number of teeth of the sun gear by the number of teeth of the ring gear, is ρ, the reduction means is configured so that the reduction ratio becomes a value in the vicinity of ρ. And a power output device disposed between the first or second electric motor and the ring gear.
請求項10に記載の動力出力装置において、
前記動力分配統合機構は、サンギヤと、リングギヤと、互いに噛合すると共に一方が前記サンギヤと他方が前記リングギヤと噛合する2つのピニオンギヤの組を少なくとも1組保持するキャリアとを含むダブルピニオン式遊星歯車機構であり、前記第1要素は前記サンギヤおよび前記キャリアの何れか一方であると共に前記第2要素は前記サンギヤおよび前記キャリアの他方であり、前記第3要素は前記リングギヤである動力出力装置。
The power output apparatus according to claim 10,
The power distribution and integration mechanism includes a sun gear, a ring gear, and a double pinion planetary gear mechanism that includes a carrier that holds at least one set of two pinion gears that mesh with each other and one meshes with the sun gear and the other with the ring gear. The first element is one of the sun gear and the carrier, the second element is the other of the sun gear and the carrier, and the third element is the ring gear.
請求項12に記載の動力出力装置において、
前記動力分配統合機構は、前記サンギヤの歯数を前記リングギヤの歯数で除した値である該動力分配統合機構のギヤ比をρとしたときに、ρ<0.5となるように構成され、前記減速手段は、減速比がρ/(1−ρ)近傍の値となるように構成されると共に前記第1電動機または前記第2電動機と前記キャリアとの間に配置される動力出力装置。
The power output device according to claim 12,
The power distribution and integration mechanism is configured such that ρ <0.5, where ρ is a gear ratio of the power distribution and integration mechanism, which is a value obtained by dividing the number of teeth of the sun gear by the number of teeth of the ring gear. The speed reduction means is configured to have a speed reduction ratio in the vicinity of ρ / (1−ρ) and is arranged between the first motor or the second motor and the carrier.
請求項12に記載の動力出力装置において、
前記動力分配統合機構は、前記サンギヤの歯数を前記リングギヤの歯数で除した値である該動力分配統合機構のギヤ比をρとしたときに、ρ>0.5となるように構成され、前記減速手段は、減速比が(1−ρ)/ρ近傍の値となるように構成されると共に前記第1電動機または前記第2電動機と前記サンギヤとの間に配置される動力出力装置。
The power output device according to claim 12,
The power distribution and integration mechanism is configured such that ρ> 0.5 when the gear ratio of the power distribution and integration mechanism, which is a value obtained by dividing the number of teeth of the sun gear by the number of teeth of the ring gear, is ρ. The power reduction device is configured such that the speed reduction ratio is a value in the vicinity of (1-ρ) / ρ, and is disposed between the first motor or the second motor and the sun gear.
請求項1から14の何れかに記載の動力出力装置を備え、前記駆動軸からの動力により駆動される駆動輪を含むハイブリッド自動車。   A hybrid vehicle comprising the power output device according to claim 1 and including drive wheels driven by power from the drive shaft.
JP2006288667A 2006-10-24 2006-10-24 Power output device and hybrid vehicle Expired - Fee Related JP4140647B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006288667A JP4140647B2 (en) 2006-10-24 2006-10-24 Power output device and hybrid vehicle
DE112007002558.1T DE112007002558B4 (en) 2006-10-24 2007-10-19 Power output device and hybrid vehicle
US12/445,321 US8056659B2 (en) 2006-10-24 2007-10-19 Power output apparatus and hybrid vehicle
CN2007800376319A CN101522452B (en) 2006-10-24 2007-10-19 Power output device, and hybrid automobile
PCT/JP2007/070439 WO2008050684A1 (en) 2006-10-24 2007-10-19 Power output device, and hybrid automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006288667A JP4140647B2 (en) 2006-10-24 2006-10-24 Power output device and hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2008105495A true JP2008105495A (en) 2008-05-08
JP4140647B2 JP4140647B2 (en) 2008-08-27

Family

ID=39324483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006288667A Expired - Fee Related JP4140647B2 (en) 2006-10-24 2006-10-24 Power output device and hybrid vehicle

Country Status (5)

Country Link
US (1) US8056659B2 (en)
JP (1) JP4140647B2 (en)
CN (1) CN101522452B (en)
DE (1) DE112007002558B4 (en)
WO (1) WO2008050684A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114631A1 (en) * 2012-02-03 2013-08-08 トヨタ自動車株式会社 Vehicle drive device
CN103347765A (en) * 2010-09-15 2013-10-09 克莱斯勒集团有限责任公司 Multi-mode drive unit
JP2014104969A (en) * 2012-11-26 2014-06-09 Hyundai Motor Company Co Ltd Power transmission system for hybrid vehicle
JP2014104970A (en) * 2012-11-28 2014-06-09 Hyundai Motor Company Co Ltd Power transmission system for hybrid vehicle
JP2015016739A (en) * 2013-07-10 2015-01-29 日野自動車株式会社 Drive unit for hybrid vehicle
CN110230670A (en) * 2019-07-11 2019-09-13 广西玉柴机器股份有限公司 Bi-motor universe self shifter transmission system in parallel
JP2021520311A (en) * 2018-04-04 2021-08-19 アー・ファウ・エル・コマーシャル・ドライヴライン・ウント・トラクター・エンジニアリング・ゲー・エム・ベー・ハーAvl Commercial Driveline & Tractor Engineering Gmbh Transmission equipment for hybrid vehicles and methods for driving hybrid vehicles
KR102676602B1 (en) * 2018-04-04 2024-06-19 아베엘 리스트 게엠베하 Transmission device for motor vehicles and method of operating hybrid vehicles

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7377876B2 (en) * 2004-10-29 2008-05-27 Tai-Her Yang Split serial-parallel hybrid dual-power drive system
JP4229156B2 (en) * 2006-09-06 2009-02-25 トヨタ自動車株式会社 Power output device and hybrid vehicle
WO2012169410A1 (en) * 2011-06-07 2012-12-13 アイシン・エィ・ダブリュ株式会社 Drive device for vehicle
JP5699227B2 (en) * 2011-12-01 2015-04-08 本田技研工業株式会社 Power transmission device
KR101684500B1 (en) * 2011-12-06 2016-12-09 현대자동차 주식회사 Method for controlling enging of hybrid electric vehicle
DE102012206147A1 (en) * 2012-04-16 2013-10-17 Robert Bosch Gmbh Method and device for operating a drive device of a vehicle
SE536640C2 (en) * 2012-06-27 2014-04-22 Scania Cv Ab Process for controlling a vehicle's drive system, drive system, computer program, computer software product and vehicle
SE536641C2 (en) * 2012-06-27 2014-04-22 Scania Cv Ab Process for controlling a vehicle's drive system, drive system, computer program, computer software product and vehicle
SE536663C2 (en) * 2012-06-27 2014-05-06 Scania Cv Ab Procedure for braking a vehicle
SE1350768A1 (en) 2012-06-27 2013-12-28 Scania Cv Ab Procedure for driving a vehicle
SE1251373A1 (en) * 2012-12-04 2014-06-05 BAE Systems Hägglunds Aktiebolag Apparatus and method for distributing electrical energy
KR101427959B1 (en) 2012-12-12 2014-08-11 현대자동차 주식회사 Power transmission system of hybrid electric vehicle
US9770969B2 (en) * 2013-03-27 2017-09-26 Scania Cv Ab Hybrid powertrain with a gearbox and method to control the hybrid drivetrain
SE1350393A1 (en) 2013-03-27 2014-09-28 Scania Cv Ab Gearbox, vehicles with such gearbox, method for controlling such gearbox, computer program for controlling such gearbox, and a computer software product comprising program code
SE1350394A1 (en) 2013-03-27 2014-09-28 Scania Cv Ab Gearbox, vehicles with such gearbox, method for controlling such gearbox, computer program for controlling such gearbox, and a computer software product comprising program code
CN103231647B (en) * 2013-05-16 2016-06-08 哈尔滨耦合动力工程技术中心有限公司 Coaxial-type hybrid connected structure hybrid power system for automobile and the mixed method of magnetic couple
KR101459918B1 (en) * 2013-06-14 2014-11-07 현대자동차주식회사 Automated manual transmission for vehicle
CN103921665B (en) * 2014-04-01 2016-03-30 中国第一汽车股份有限公司 A kind of range extended electric vehicle power system
JP2015227712A (en) * 2014-06-02 2015-12-17 トヨタ自動車株式会社 Vehicle drive system
CN106461029A (en) * 2014-06-09 2017-02-22 舍弗勒技术股份两合公司 Accessories drives system including a transmission driven motor generator unit
TW201607792A (en) * 2014-08-29 2016-03-01 Kwang Yang Motor Co Coupling structure of dynamic and power supply for multipurpose vehicle
KR101637685B1 (en) * 2014-09-29 2016-07-08 현대자동차주식회사 Amt hybrid transmission
KR101584013B1 (en) 2014-11-25 2016-01-20 현대자동차주식회사 Powertrain for hybrid vehicle
KR101637743B1 (en) 2014-11-25 2016-07-21 현대자동차주식회사 Powertrain for hybrid vehicle
KR101584012B1 (en) * 2014-11-25 2016-01-11 현대자동차주식회사 Powertrain for hybrid vehicle
JP2016150675A (en) * 2015-02-18 2016-08-22 トヨタ自動車株式会社 Hybrid vehicle
JP6287887B2 (en) * 2015-02-18 2018-03-07 トヨタ自動車株式会社 Hybrid vehicle
DE102016108552B4 (en) * 2016-05-09 2023-09-14 Hofer Powertrain Innovation Gmbh Hybrid drive train with a power-split transmission, a central shaft coaxially comprising two shafts and a power flow connector with several switching positions, as well as the associated switching method that can be carried out under load
CN107599820A (en) * 2017-10-24 2018-01-19 广西玉柴机器股份有限公司 Hybrid drive train
CN108071756B (en) * 2018-01-19 2024-03-29 武城县绿舟新能源电动车研发有限公司 Series-parallel type mixer
EP3854617A4 (en) * 2018-09-21 2022-05-18 Schaeffler Technologies AG & Co. KG Hybrid power transmission and hybrid power vehicle
CN113442713B (en) * 2020-03-25 2023-08-08 宇通客车股份有限公司 Two-gear shifting mechanism, two-gear power system and gear shifting control method of two-gear power system
CN111845317B (en) * 2020-07-29 2022-07-19 重庆青山工业有限责任公司 Hybrid power system
CN113022227B (en) * 2021-04-27 2022-06-07 吉林大学 Multi-mode double-motor coupling electric drive axle

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2967103B2 (en) * 1993-05-24 1999-10-25 株式会社エクォス・リサーチ Hybrid vehicle
US5558589A (en) * 1995-07-20 1996-09-24 General Motors Corporation Two-mode, compound-split, electro-mechanical vehicular transmission
US6155364A (en) * 1996-02-21 2000-12-05 Toyota Jidosha Kabushiki Kaisha Hybrid drive system wherein planetary gear mechanism is disposed radially inwardly of stator coil of motor/generator
US5669842A (en) 1996-04-29 1997-09-23 General Motors Corporation Hybrid power transmission with power take-off apparatus
JP3050125B2 (en) * 1996-05-20 2000-06-12 トヨタ自動車株式会社 Power output device and control method of power output device
JP3211751B2 (en) * 1997-03-24 2001-09-25 トヨタ自動車株式会社 Power output device and control method thereof
JPH11280512A (en) * 1998-03-30 1999-10-12 Nissan Motor Co Ltd Hybrid vehicle
JP3668830B2 (en) * 1998-08-28 2005-07-06 トヨタ自動車株式会社 Power transmission device and hybrid vehicle using the same
US6656082B1 (en) * 1999-10-12 2003-12-02 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method of controlling the same
EP1270301A3 (en) * 2001-06-19 2007-02-21 Hitachi, Ltd. Power transmission apparatus for automobile
DE10133919A1 (en) 2001-07-12 2003-01-23 Bayerische Motoren Werke Ag Electromechanical gear
US6551208B1 (en) * 2001-10-18 2003-04-22 General Motors Corporation Three-mode, compound-split, electrically-variable transmission
DE10158536C5 (en) * 2001-11-29 2015-12-17 Daimler Ag Automotive drive
JP3585121B2 (en) * 2002-02-20 2004-11-04 トヨタ自動車株式会社 Power output device and automobile equipped with the same
JP4013905B2 (en) * 2003-05-21 2007-11-28 トヨタ自動車株式会社 POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND AUTOMOBILE
US7108087B2 (en) * 2003-06-12 2006-09-19 Honda Motor Co., Ltd. Power transmitting apparatus for hybrid vehicle
JP2005125876A (en) 2003-10-22 2005-05-19 Toyota Motor Corp Hybrid vehicle driving device
JP4228954B2 (en) * 2003-11-06 2009-02-25 トヨタ自動車株式会社 Hybrid vehicle drive system
US7204222B2 (en) * 2004-02-17 2007-04-17 Toyota Jidosha Kabushiki Kaisha Drive system and automobile
US7264071B2 (en) * 2004-05-12 2007-09-04 General Motors Corporation Hybrid powertrain
JP4039416B2 (en) * 2004-10-06 2008-01-30 トヨタ自動車株式会社 Hybrid vehicle and control method thereof
JP4474293B2 (en) * 2005-01-31 2010-06-02 トヨタ自動車株式会社 Hybrid vehicle and control method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103347765A (en) * 2010-09-15 2013-10-09 克莱斯勒集团有限责任公司 Multi-mode drive unit
CN103347765B (en) * 2010-09-15 2016-01-20 克莱斯勒集团有限责任公司 Multi-mode drive unit
WO2013114631A1 (en) * 2012-02-03 2013-08-08 トヨタ自動車株式会社 Vehicle drive device
US9493062B2 (en) 2012-02-03 2016-11-15 Toyota Jidosha Kabushiki Kaisha Vehicle drive device
JP2014104969A (en) * 2012-11-26 2014-06-09 Hyundai Motor Company Co Ltd Power transmission system for hybrid vehicle
JP2014104970A (en) * 2012-11-28 2014-06-09 Hyundai Motor Company Co Ltd Power transmission system for hybrid vehicle
JP2015016739A (en) * 2013-07-10 2015-01-29 日野自動車株式会社 Drive unit for hybrid vehicle
JP2021520311A (en) * 2018-04-04 2021-08-19 アー・ファウ・エル・コマーシャル・ドライヴライン・ウント・トラクター・エンジニアリング・ゲー・エム・ベー・ハーAvl Commercial Driveline & Tractor Engineering Gmbh Transmission equipment for hybrid vehicles and methods for driving hybrid vehicles
JP7441793B2 (en) 2018-04-04 2024-03-01 アー・ファウ・エル・リスト・ゲー・エム・ベー・ハー Transmission device for hybrid vehicle and method for driving hybrid vehicle
KR102676602B1 (en) * 2018-04-04 2024-06-19 아베엘 리스트 게엠베하 Transmission device for motor vehicles and method of operating hybrid vehicles
CN110230670A (en) * 2019-07-11 2019-09-13 广西玉柴机器股份有限公司 Bi-motor universe self shifter transmission system in parallel
CN110230670B (en) * 2019-07-11 2024-02-27 广西玉柴机器股份有限公司 Parallel double-motor universal automatic gear shifting transmission system

Also Published As

Publication number Publication date
WO2008050684A1 (en) 2008-05-02
DE112007002558B4 (en) 2014-10-16
DE112007002558T5 (en) 2009-08-27
CN101522452A (en) 2009-09-02
US20100044128A1 (en) 2010-02-25
JP4140647B2 (en) 2008-08-27
CN101522452B (en) 2012-06-20
US8056659B2 (en) 2011-11-15

Similar Documents

Publication Publication Date Title
JP4140647B2 (en) Power output device and hybrid vehicle
JP4222407B2 (en) Power output device and hybrid vehicle
JP4222406B2 (en) Power output device and hybrid vehicle
JP4229156B2 (en) Power output device and hybrid vehicle
JP4293268B2 (en) Power output apparatus and hybrid vehicle equipped with the same
JP4007403B1 (en) Power output device and hybrid vehicle
JP4229175B2 (en) Power output device, automobile equipped with the same, and method for controlling power output device
JP4229174B2 (en) Power output device, automobile equipped with the same, and method for controlling power output device
JP4450017B2 (en) Power output apparatus and hybrid vehicle equipped with the same
JP4229173B2 (en) Power output device, automobile equipped with the same, and method for controlling power output device
JP4240091B2 (en) Power output device and hybrid vehicle
JP4222414B2 (en) POWER OUTPUT DEVICE, HYBRID VEHICLE HAVING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
JP4063310B1 (en) POWER OUTPUT DEVICE, HYBRID VEHICLE HAVING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
JP2008141810A (en) Power output device, automobile with the same, and method for controlling power output device
JP4229172B2 (en) CONNECTION DEVICE, POWER OUTPUT DEVICE EQUIPPED WITH THE SAME, AND HYBRID CAR
JP2010006139A (en) Hybrid driving device
JP2008256075A (en) Power transmission device
JP4179211B2 (en) Hybrid vehicle drive system
JP4384152B2 (en) Power output device and hybrid vehicle
JP4285579B2 (en) Power output device and hybrid vehicle
JP2009051263A (en) Power output device
JP4130899B2 (en) Hybrid drive device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees