JP2008104411A - Cell-culturing substrate - Google Patents

Cell-culturing substrate Download PDF

Info

Publication number
JP2008104411A
JP2008104411A JP2006290645A JP2006290645A JP2008104411A JP 2008104411 A JP2008104411 A JP 2008104411A JP 2006290645 A JP2006290645 A JP 2006290645A JP 2006290645 A JP2006290645 A JP 2006290645A JP 2008104411 A JP2008104411 A JP 2008104411A
Authority
JP
Japan
Prior art keywords
polymer
support
substrate
monomer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006290645A
Other languages
Japanese (ja)
Inventor
Katsuhisa Ozeki
勝久 大関
Riyouichi Nemori
良一 根守
Takayuki Kobayashi
貴之 小林
Koichi Kawamura
浩一 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006290645A priority Critical patent/JP2008104411A/en
Publication of JP2008104411A publication Critical patent/JP2008104411A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate enabling the culture, peeling and recovery of cells and to provide a method for producing the substrate. <P>SOLUTION: The substrate is composed of a supporting member having a surface coating layer composed of a heat-responsive polymer, wherein the average coating rate of the heat-responsive polymer is 1.0-10.0 μg/cm<SP>2</SP>and the in-plane variation coefficient of the coating rate of the polymer is ≤30%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、細胞培養に適した基板、及びその製造方法に関する。より詳細には、本発明は、細胞を培養することができ、かつ培養した細胞を培養器から剥離して細胞のみを容易に得ることが可能な細胞培養用基板、及びその製造方法に関する。   The present invention relates to a substrate suitable for cell culture and a method for producing the same. More specifically, the present invention relates to a cell culture substrate capable of culturing cells and capable of easily obtaining only cells by peeling the cultured cells from a culture vessel, and a method for producing the same.

細胞培養は生化学的な現象の理解や有用物質の産生などに用いられ、また近年、幹細胞の発見や培養技術の進歩により、再生医療を始めとする細胞を用いた治療に大きな注目が寄せられている。細胞を用いた毒性試験や薬効試験は、動物実験の代替法として大きな役割を担っており、動物愛護の観点からも今後ますます重要性が増すと考えられる。   Cell culture is used to understand biochemical phenomena and produce useful substances. In recent years, with the discovery of stem cells and the advancement of culture technology, there has been a great deal of attention in the treatment using cells such as regenerative medicine. ing. Toxicity tests and drug efficacy tests using cells play a major role as alternatives to animal experiments, and are considered to be increasingly important from the viewpoint of animal welfare.

細胞の多くは接着性を有しており、体内においてはコラーゲン、フィブロネクチン、ラミニンなどの生体高分子に接着し、増殖・分化することが知られている。同様に細胞培養においても接着性を有する細胞の多くは、培養する際に何らかの基材に接着する必要がある。従来、支持体としては表面処理したガラスあるいは高分子が用いられていた。例えばポリスチレンにγ線照射あるいはシリコーンコーティングをおこなった支持体がある。また、コラーゲンやフィブロネクチンのような生体高分子を表面に塗設した支持体も用いられる。   Many of the cells have adhesiveness, and are known to adhere to biological macromolecules such as collagen, fibronectin, laminin and proliferate / differentiate in the body. Similarly, many cells having adhesiveness in cell culture need to adhere to some kind of substrate when culturing. Conventionally, surface-treated glass or polymer has been used as a support. For example, there is a support obtained by subjecting polystyrene to γ-ray irradiation or silicone coating. In addition, a support having a surface coated with a biopolymer such as collagen or fibronectin is also used.

増殖する細胞は支持体上で培養後、一般的に別の支持体に植え継ぐ必要があり、多くの場合はタンパク質分解酵素やキレート剤が用いられている。タンパク質分解酵素は細胞表面にあるタンパク質を分解し、細胞と支持体の間の結合および細胞間の結合を切る役目を担っている。一方、タンパク質分解酵素は細胞の生存率に大きな影響を与えることが知られており、タンパク質分解酵素やキレート剤を用いずに細胞を支持体から分離する手法は細胞にダメージを与えない方法として重要である。再生医療においても同様に、体外で培養した細胞にダメージを与えずに、さらに細胞間の結合を切断しない方法で細胞又は組織化した細胞を支持体から分離し、体内に戻すことが求められており、タンパク質分解酵素を用いずに支持体から分離する方法が求められている。   Proliferating cells need to be planted on another support after culturing on the support, and proteolytic enzymes and chelating agents are often used in many cases. Proteolytic enzymes are responsible for degrading proteins on the cell surface and breaking the bonds between cells and supports and between cells. On the other hand, proteolytic enzymes are known to have a significant effect on cell viability, and the method of separating cells from the support without using proteolytic enzymes or chelating agents is important as a method that does not damage cells. It is. Similarly, in regenerative medicine, there is a demand for separating cells or organized cells from the support and returning them to the body without damaging cells cultured outside the body and further breaking the connection between cells. Therefore, there is a need for a method of separating from a support without using a proteolytic enzyme.

上記問題を解決するために、熱応答性ポリマーを高分子基板の表面に被覆した細胞培養支持体材料が特許文献1に開示されている。しかしながら、特許文献1では、細胞培養支持体材料を製造する際に電子線照射が必要で、大面積で均一な細胞培養支持体材料を得ることは困難であった。また、アクリルアミドポリマーを高分子支持体表面上に被覆する簡便な方法として、ポリエチレンテレフタレート(PET)支持体上に紫外線照射する方法が特許文献2に開示されているが、特許文献2における紫外線照射は親水化が目的であり、疎水性が好まれる細胞培養には適していなかった。   In order to solve the above problem, Patent Literature 1 discloses a cell culture support material in which a thermoresponsive polymer is coated on the surface of a polymer substrate. However, in Patent Document 1, it is difficult to obtain a uniform cell culture support material having a large area because electron beam irradiation is required when producing the cell culture support material. In addition, as a simple method for coating an acrylamide polymer on the surface of a polymer support, a method of irradiating ultraviolet rays onto a polyethylene terephthalate (PET) support is disclosed in Patent Document 2, but ultraviolet irradiation in Patent Document 2 is It was aimed at hydrophilization and was not suitable for cell culture where hydrophobicity was preferred.

特開平2−211865号公報JP-A-2-21865 特開昭63−92658号公報JP-A-63-92658

本発明は、細胞培養が可能であり、かつ剥離及び回収が可能な基板、及びその製造方法を提供することを解決すべき課題とした。特に本発明は、製造の際に電子線照射を必要とすることなく、大面積で均一な基板及びその製造方法を提供することを解決すべき課題とした。   An object of the present invention is to provide a substrate that can be cultured in a cell and that can be peeled off and collected, and a method for manufacturing the same. In particular, an object of the present invention is to provide a large-area and uniform substrate and a method for manufacturing the same without requiring electron beam irradiation during the manufacturing.

本発明者らは上記課題を解決するために鋭意検討した結果、熱応答性高分子からなる被覆層を表面に有する支持体からなる基板において、該熱応答性高分子の平均被覆量と面内変動係数を所望の範囲内に設定した基板を提供することに成功し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention have determined that the average coating amount and in-plane amount of the thermoresponsive polymer in a substrate having a support layer having a coating layer made of a thermoresponsive polymer on the surface. The present invention has been completed by successfully providing a substrate having a coefficient of variation set in a desired range.

即ち、本発明によれば、以下の発明が提供される。
(1) 熱応答性高分子からなる被覆層を表面に有する支持体からなる基板において、該熱応答性高分子の平均被覆量が1.0μg/cm2から10.0μg/cm2であり、かつ該熱応答性高分子の被覆量の面内変動係数が30%以下であることを特徴とする基板。
(2) 熱応答性高分子からなる被覆層が、波長200nm〜800nmの光照射によって固定化されたものである、(1)に記載の基板。
(3) 熱応答性高分子からなる被覆層が、該熱応答性高分子を構成するモノマーを実質的に励起しない波長の光の照射によって固定化されたものである、(2)に記載の基板。
That is, according to the present invention, the following inventions are provided.
(1) In the substrate comprising a support having on the surface a coating layer comprising a thermally responsive polymer, the average coverage of the heat responsive polymer is 10.0 [mu] g / cm 2 from 1.0 [mu] g / cm 2, And the board | substrate characterized by the in-plane variation coefficient of the coating amount of this thermoresponsive polymer being 30% or less.
(2) The substrate according to (1), wherein the coating layer made of a thermoresponsive polymer is fixed by light irradiation with a wavelength of 200 nm to 800 nm.
(3) The coating layer composed of a thermoresponsive polymer is fixed by irradiation with light having a wavelength that does not substantially excite the monomer constituting the thermoresponsive polymer. substrate.

(4) 支持体がポリエチレンテレフタレート又はその誘導体である、(1)から(3)の何れかに記載の基板。
(5) 熱応答性高分子が、N−イソプロピルアクリルアミドポリマーである、(1)から(4)の何れかに記載の基板。
(6) (1)から(5)の何れかに記載の基板からなる、細胞培養用基板。
(4) The substrate according to any one of (1) to (3), wherein the support is polyethylene terephthalate or a derivative thereof.
(5) The substrate according to any one of (1) to (4), wherein the thermoresponsive polymer is N-isopropylacrylamide polymer.
(6) A cell culture substrate comprising the substrate according to any one of (1) to (5).

(7) 支持体の表面に、熱応答性高分子からなる被覆層を、該熱応答性高分子の平均被覆量が1.0μg/cm2から10.0μg/cm2であり、かつ該熱応答性高分子の被覆量の面内変動係数が30%以下となるように設ける工程を含む、(1)から(6)の何れかに記載の基板の製造方法。
(8) モノマーを実質的に励起しない波長の光が、波長200nm〜800nmの光である、(7)に記載の方法。
(9)熱応答性高分子を構成するモノマーを支持体の表面に接触させた状態で、該モノマーを実質的に励起しない波長の光を照射することによって該モノマーを重合して支持体の表面に熱応答性高分子からなる被覆層を設ける、(7)又は(8)に記載の方法。
(7) on the surface of the support, a coating layer comprising a thermally responsive polymer, the average coverage of the heat responsive polymer is 10.0 [mu] g / cm 2 from 1.0 [mu] g / cm 2, and heat The method for producing a substrate according to any one of (1) to (6), comprising a step of providing the in-plane variation coefficient of the coating amount of the responsive polymer so as to be 30% or less.
(8) The method according to (7), wherein the light having a wavelength that does not substantially excite the monomer is light having a wavelength of 200 nm to 800 nm.
(9) The surface of the support is polymerized by irradiating light of a wavelength that does not substantially excite the monomer in a state where the monomer constituting the thermoresponsive polymer is in contact with the surface of the support. The method according to (7) or (8), wherein a coating layer made of a thermoresponsive polymer is provided on the substrate.

本発明の基板は、細胞培養に用いることができる。本発明の基板を用いて細胞を培養した場合、細胞の付着と増殖が良好であり、かつ細胞の剥離及び回収も容易に行うことができる。   The substrate of the present invention can be used for cell culture. When cells are cultured using the substrate of the present invention, cell attachment and proliferation are good, and cell detachment and recovery can be easily performed.

以下、本発明についてさらに詳細に説明する。
<支持体材料>
本発明の基板において使用される支持体としては、高分子化合物からなるプラスチックフィルムが用いることができるが、また高分子化合物をラミネートした紙、ガラス、金属などを用いることもできる。プラスチックフィルムとしては、セルロースフイルム(ニ酢酸セルロース、三酢酸セルロース、プロピオン酸セルロース、酢酸酪酸セルソース等)、ポリエステルフィルム(ポリエチレンテレフタレート、ポリトリメチレンナフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等)、ポリエチレンフィルム、ポリプロピレンフィルム、ポリ塩化ビニルフィルム、ポリエチレンナフタレートフィルム、ポリカーボネートフィルム、ポリビニルアルコールフィルム、ポリビニルアセタールフィルム等あるいはシリコーンゴムを用いることができる。
Hereinafter, the present invention will be described in more detail.
<Support material>
As the support used in the substrate of the present invention, a plastic film made of a polymer compound can be used, and paper, glass, metal and the like laminated with the polymer compound can also be used. As plastic films, cellulose films (cellulose acetate, cellulose triacetate, cellulose propionate, cellulose acetate butyrate cell source, etc.), polyester films (polyethylene terephthalate, polytrimethylene naphthalate, polyethylene naphthalate, polybutylene naphthalate, etc.), Polyethylene film, polypropylene film, polyvinyl chloride film, polyethylene naphthalate film, polycarbonate film, polyvinyl alcohol film, polyvinyl acetal film, etc., or silicone rubber can be used.

本発明の基板を製造する際には、支持体の表面に熱応答性高分子を光照射によって固定することが好ましい。従って、支持体の材料としては、より長波長まで光を吸収する材料であることが好ましい。支持体は、好ましくはポリエステルフィルムであり、特にポリエチレンテレフタレート又はその誘導体からなるフィルムが好ましい。   When producing the substrate of the present invention, it is preferable to fix the thermoresponsive polymer on the surface of the support by light irradiation. Therefore, the material for the support is preferably a material that absorbs light up to a longer wavelength. The support is preferably a polyester film, particularly preferably a film made of polyethylene terephthalate or a derivative thereof.

支持体の形状はフィルム状で支持体として十分な強度を持つことが好ましい。また、多孔質である場合も好ましく用いられる。さらに、細胞培養で常用されるウェル形状であってもよい。   The shape of the support is preferably a film and has sufficient strength as a support. Also, it is preferably used when it is porous. Further, it may have a well shape commonly used in cell culture.

<熱応答性高分子>
本発明の基板においては、支持体の表面に、熱応答性高分子からなる被覆層が存在する。本発明で用いる熱応答性高分子とは、好ましくは、温度により親疎水性が変化する化合物である。本発明で用いることができる熱応答性高分子としては、特公平6−104061号に記載のアクリルアミド誘導体からなるポリマー、ビニルエーテル誘導体からなるポリマー、特開平5−244938号、特開2000−212144、特開2000−219708、特開2000−219709号に記載の高分子化合物を用いることができる。
<Thermoresponsive polymer>
In the substrate of the present invention, a coating layer made of a thermoresponsive polymer is present on the surface of the support. The thermoresponsive polymer used in the present invention is preferably a compound whose hydrophilicity / hydrophobicity changes with temperature. Examples of the thermoresponsive polymer that can be used in the present invention include polymers composed of acrylamide derivatives, polymers composed of vinyl ether derivatives described in JP-B-6-104061, JP-A-5-244938, JP-A2000-212144, The polymer compounds described in Kai 2000-219708 and JP-A 2000-219709 can be used.

本発明で用いる熱応答性高分子は、好ましくは、支持体の吸収に対して10nm以上短波領域に吸収を示すモノマーからなる高分子化合物が好ましく、特に20nm以上短波領域に吸収を示すモノマーからなる高分子化合物が好ましい。例えば、支持体と、該支持体の吸収に対して10nm以上短波領域に吸収を示すモノマーとの組み合わせの好ましい例としては、支持体がポリエチレンテレフタレートであり、モノマーがN−イソプロピルアクリルアミドモノマーである組み合わせを挙げることができる。   The heat-responsive polymer used in the present invention is preferably a polymer compound composed of a monomer that exhibits absorption in the shortwave region of 10 nm or more with respect to the absorption of the support, particularly composed of a monomer that exhibits absorption in the shortwave region of 20 nm or more. High molecular compounds are preferred. For example, as a preferable example of a combination of a support and a monomer exhibiting absorption in a short wave region of 10 nm or more with respect to absorption of the support, a combination in which the support is polyethylene terephthalate and a monomer is N-isopropylacrylamide monomer. Can be mentioned.

<重合方法>
本発明において、熱応答性高分子からなる被覆層を、支持体の表面に設けるためには、熱応答性高分子の前駆体であるモノマーを支持体と接触させた状態で、該モノマーを実質的に励起しない波長の光を照射することによって該モノマーを重合し、これによって支持体の表面に熱応答性高分子からなる被覆層を設けることができる。モノマーを実質的に励起しない波長の光を照射する際には、例えば、200nmから可視領域(好ましくは、200nm〜800nm)の光を照射することが好ましい。例えば、光源として水銀ランプやレーザーを用いて光照射する方法が挙げられる。この際、光照射波長は、照射光が支持体のみに吸収されて、支持体を励起し、熱応答性高分子の前駆体であるモノマーには実質的に吸収されないことが好ましい。即ち、本発明においては、熱応答性高分子からなる被覆層は、該熱応答性高分子を構成するモノマーを実質的に励起しない波長の光の照射によって固定化することが好ましい。照射光が該モノマーに実質的に吸収されない(即ち、モノマーを実質的に励起しない)とは、支持体の光エネルギー吸収量に対して、モノマーの光エネルギー吸収量が20%以下であることをいう。
<Polymerization method>
In the present invention, in order to provide a coating layer made of a thermoresponsive polymer on the surface of the support, the monomer which is a precursor of the thermoresponsive polymer is substantially in contact with the support. The monomer is polymerized by irradiating with light having a wavelength that is not excited, whereby a coating layer made of a thermoresponsive polymer can be provided on the surface of the support. When irradiating light having a wavelength that does not substantially excite the monomer, for example, it is preferable to irradiate light in the 200 nm to visible region (preferably 200 nm to 800 nm). For example, a light irradiation method using a mercury lamp or a laser as a light source can be mentioned. At this time, it is preferable that the light irradiation wavelength is substantially not absorbed by the monomer that excites the support by irradiating the irradiated light only to the support, and is a precursor of the thermoresponsive polymer. That is, in the present invention, the coating layer made of a thermoresponsive polymer is preferably immobilized by irradiation with light having a wavelength that does not substantially excite the monomer constituting the thermoresponsive polymer. The phrase “irradiation light is not substantially absorbed by the monomer (that is, the monomer is not substantially excited)” means that the light energy absorption amount of the monomer is 20% or less with respect to the light energy absorption amount of the support. Say.

上記の通り、熱応答性高分子の前駆体であるモノマーは、溶液として支持体表面を被覆した状態で、光照射により重合化して、熱応答性高分子からなる被覆層として支持体表面に固定される。該モノマーは水溶液としても有機溶媒中に溶解してもよいが、環境上の観点からは水溶液が好ましい。水溶液の場合には過ヨウ素酸ナトリウムやリボフラビンのような酸素除去剤を併用するのが好ましいが、後者が特に好ましい。溶液の濃度は好ましくは0.1%から50%であり、1%から20%が特に好ましい。   As described above, the monomer that is a precursor of the thermoresponsive polymer is polymerized by light irradiation in a state where the support surface is coated as a solution, and is fixed to the support surface as a coating layer made of a thermoresponsive polymer. Is done. The monomer may be dissolved in an organic solvent as an aqueous solution, but an aqueous solution is preferable from an environmental viewpoint. In the case of an aqueous solution, it is preferable to use an oxygen scavenger such as sodium periodate or riboflavin, but the latter is particularly preferable. The concentration of the solution is preferably from 0.1% to 50%, particularly preferably from 1% to 20%.

光照射はモノマー溶液が支持体材料を被覆した状態で行なうが、モノマー被覆量は0.1mg/cm2から100mg/cm2が好ましく、1.0mg/cm2から50mg/cm2が特に好ましい。 Light irradiation is performed in a state in which the monomer solution was coated support material, the monomer coating amount is preferably 100 mg / cm 2 from 0.1 mg / cm 2, from 1.0 mg / cm 2 is 50 mg / cm 2 are particularly preferred.

また、モノマーを予め、重合してダイマーあるいはそれ以上の重合度のポリマーとして支持体を被覆後、光照射により固定化してもよい。   Alternatively, the monomer may be polymerized in advance to coat the support as a dimer or a polymer having a degree of polymerization higher than that, and then fixed by light irradiation.

<重合量>
本発明の基板は、支持体上の熱応答性高分子の平均被覆量が多すぎると、基板が温度に関わらず親水的となり、疎水性を好む細胞培養基板としては使用できない。また、支持体上の熱応答性高分子の平均被覆量が少なすぎると、細胞が培養後に剥離できない。したがって支持体上の熱応答性高分子の平均被覆量は1.0〜10.0μg/cm2であり、1.0〜6.0μg/cm2であることが好ましく、1.2〜5.0μg/cm2であることが特に好ましい。さらに、熱応答性高分子の被覆量の面内変動係数は30%以下であり、20%以下が好ましい。特に好ましくは15%以下である。
<Polymerization amount>
If the average coating amount of the thermoresponsive polymer on the support is too large, the substrate of the present invention becomes hydrophilic regardless of the temperature, and cannot be used as a cell culture substrate that favors hydrophobicity. In addition, if the average coating amount of the thermoresponsive polymer on the support is too small, the cells cannot be detached after culturing. Thus the average coverage of the heat-responsive polymer on a support is 1.0~10.0μg / cm 2, is preferably 1.0~6.0μg / cm 2, to be 1.2~5.0μg / cm 2, especially preferable. Furthermore, the in-plane variation coefficient of the coating amount of the thermoresponsive polymer is 30% or less, preferably 20% or less. Particularly preferably, it is 15% or less.

熱応答性高分子の被覆量はFTIR/ATR法によって求めることができる。すなわち、FTIR/ATR法で吸収率を測定し、予め既知の量のポリマーをキャスティングコーとした試料を参照として被覆量を測定することができる。   The coating amount of the thermoresponsive polymer can be determined by the FTIR / ATR method. That is, the absorptance is measured by the FTIR / ATR method, and the coating amount can be measured with reference to a sample in which a known amount of polymer is cast in advance as a casting coat.

被覆量の面内変動係数は、作成した熱応答性高分子を被覆した基板1cm2当りFTIR/ATR測定を10点行い、その吸収率の変動係数として求めることができる。変動係数は母集団の標準偏差の平均値に対する比で、百分率で表す。 The in-plane variation coefficient of the coating amount can be obtained as a coefficient of variation of the absorption rate by performing 10 FTIR / ATR measurements per 1 cm 2 of the substrate coated with the prepared thermoresponsive polymer. The coefficient of variation is the ratio of the population standard deviation to the mean, expressed as a percentage.

<細胞培養>
本発明の基板は、好ましくは細胞培養に用いることができる。本発明の基板を用いた培養に用いられる細胞の種類に特に限定はないが、例えば脊椎動物由来の細胞、血管内皮細胞、軟骨細胞、肝実質細胞、繊維芽細胞、小腸上皮細胞、表皮角化細胞、心筋細胞、骨芽細胞、骨髄間葉細胞、胚性幹細胞、体性幹細胞など接着性を有する細胞が挙げられる。細胞を培養する際には、通常、細胞濃度1x101〜5x105セル/平方センチで播種される。好ましくは、1x102〜1x105セル/平方センチで播種される。細胞の培養条件は、培養する細胞の種類に応じて適宜選択が可能であり、使用する培養液は例えば、D-MEM培地、MEM培地、HamF12培地,HamF10培地などが挙げられる。培養中の温度は基板上の化合物が疎水的な性質を発現する条件で行なう。培養後は、温度を低下させて、基板上の化合物をより親水的にすることで細胞を剥離することができる。剥離に際しては、国際公開WO2002/8387号公報あるいは国際公開WO2002/10349号公報に記載されているような高分子膜を利用してもよい。
<Cell culture>
The substrate of the present invention can be preferably used for cell culture. There are no particular limitations on the types of cells used for culture using the substrate of the present invention, but for example, vertebrate cells, vascular endothelial cells, chondrocytes, hepatocytes, fibroblasts, small intestinal epithelial cells, epidermal keratinization Examples thereof include cells having adhesion, such as cells, cardiomyocytes, osteoblasts, bone marrow mesenchymal cells, embryonic stem cells, and somatic stem cells. When cells are cultured, they are usually seeded at a cell concentration of 1 × 10 1 to 5 × 10 5 cells / cm 2. Preferably, it is seeded at 1 × 10 2 to 1 × 10 5 cells / cm 2 . Cell culture conditions can be appropriately selected according to the type of cell to be cultured, and examples of the culture medium to be used include D-MEM medium, MEM medium, HamF12 medium, HamF10 medium and the like. The temperature during the cultivation is performed under the condition that the compound on the substrate develops a hydrophobic property. After culturing, the cells can be detached by lowering the temperature to make the compound on the substrate more hydrophilic. For peeling, a polymer film as described in International Publication WO2002 / 8387 or International Publication WO2002 / 10349 may be used.

以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.

実施例1:
和光純薬製リボフラビン0.002%水溶液に、アルドリッチ社製のn−イソプロピルアクリルアミドを溶解して10重量%の水溶液を得た。シャーレ内に5cm角のPETフイルム(富士写真フイルム製)を浸漬し、PETフイルム上のモノマー量が20mg/cm2となるようにした。シャーレ上部より、ウシオ電機株式会社製の紫外線露光装置(光源水銀灯)を用いて光照射を行った。この際に、PETフイルム表面に照射される光の360nmでの強度分布が10%以下となるように調整した。照射時間を表1に示すように変化させることで、重合量およびPETフイルムへの固定化量を制御した。光照射後、PETフイルムをシャーレより取り出し、水洗して、モノマーおよび固定化されていないn−イソプロピルアクリルアミドを除去した。除去後自然乾燥した。
Example 1:
N-isopropylacrylamide manufactured by Aldrich was dissolved in a 0.002% aqueous solution of riboflavin manufactured by Wako Pure Chemical to obtain a 10% by weight aqueous solution. A 5 cm square PET film (manufactured by Fuji Photo Film) was immersed in the petri dish so that the amount of monomer on the PET film was 20 mg / cm 2 . Light was irradiated from above the petri dish using an ultraviolet exposure device (light source mercury lamp) manufactured by Ushio Electric Co., Ltd. At this time, the intensity distribution at 360 nm of the light irradiated on the PET film surface was adjusted to 10% or less. By changing the irradiation time as shown in Table 1, the polymerization amount and the amount immobilized on the PET film were controlled. After light irradiation, the PET film was taken out of the petri dish and washed with water to remove the monomer and non-immobilized n-isopropylacrylamide. After removal, it was naturally dried.

得られたPETシートについてFTIR/ATR法を用いて1590cm-1をベースとした1650cm-1の吸収率より求めた。予め既知の量のポリマーをキャスティングコートした試料を参照として、吸収率より固定化量を算出した。測定はGeプリズムを用いて反射角45度で行った。固定化量10μg/cm2が吸収率0.01に対応した。さらに、1cm2あたり10点測定を行い、吸収率の面内変動係数を求めた。結果を表2に示した。 The 1590 cm -1 using FTIR / ATR method the obtained PET sheet was determined from absorptance of 1650 cm -1, which is based. The immobilization amount was calculated from the absorptance with reference to a sample in which a known amount of polymer was previously cast-coated. The measurement was performed using a Ge prism at a reflection angle of 45 degrees. An immobilization amount of 10 μg / cm 2 corresponds to an absorption rate of 0.01. Furthermore, 10 points were measured per 1 cm 2 to determine the in-plane coefficient of variation of the absorption rate. The results are shown in Table 2.

表1に示すように、水銀灯からの光照射により、本発明の固定化量が少ない領域で、変動係数30%以下の被覆層を有する基板が得られた。   As shown in Table 1, a substrate having a coating layer with a coefficient of variation of 30% or less was obtained in a region where the amount of immobilization of the present invention was small by light irradiation from a mercury lamp.

実施例2:
実施例1と同様にリボフラビン0.002%水溶液にn−イソプロピルアクリルアミドを溶解して10重量%の水溶液を得た。さらに実施例2と同様にしてPETフイルムを浸漬したシャーレ上部より光照射を行ったが、光照射は表2に示すフィルターを通して行った。各フィルターの吸収スペクトルを、PETフイルムおよびモノマーの吸収とともに図1に示した。照射時間を表2に示すように変化させることで、重合量およびPETフイルムへの固定化量を制御した。光照射後、PETフイルムをシャーレより取り出し、水洗して、モノマーおよび固定化されていないn−イソプロピルアクリルアミドを除去した。除去後、自然乾燥した。
自然乾燥後、実施例1と同様にしてポリマーの固定化量および面内変動係数を求めた。測定の結果を表2に示す。
Example 2:
In the same manner as in Example 1, n-isopropylacrylamide was dissolved in a riboflavin 0.002% aqueous solution to obtain a 10% by weight aqueous solution. Further, light irradiation was performed from the upper part of the petri dish in which the PET film was immersed in the same manner as in Example 2. Light irradiation was performed through a filter shown in Table 2. The absorption spectrum of each filter is shown in FIG. 1 together with the absorption of the PET film and the monomer. By changing the irradiation time as shown in Table 2, the polymerization amount and the amount immobilized on the PET film were controlled. After light irradiation, the PET film was taken out of the petri dish and washed with water to remove the monomer and non-immobilized n-isopropylacrylamide. After removal, it was air dried.
After natural drying, the amount of immobilized polymer and the in-plane variation coefficient were determined in the same manner as in Example 1. Table 2 shows the measurement results.

表2に示すように、モノマーを励起しない光照射により固定化量の変動係数が低減できることがわかった。   As shown in Table 2, it was found that the variation coefficient of the immobilization amount can be reduced by light irradiation that does not excite the monomer.

実施例3:細胞培養
実施例1および実施例2で作成した試料1-1から1-5および2-1から2-5をUV照射により滅菌した。滅菌した試料をシャーレにいれ、10%FBSおよびペニシリンストレプトマイシンを含むMEM培地中で、試料1cm2あたりに、3×104個のマウス血管内皮細胞を播種し、37℃で3日間培養した。培養後、電顕観察により細胞の付着および増殖状況を観察した。さらに、温度を22℃に低下させて、30分後の細胞の剥離状況を観察した。実験は各試料について複数回行った。結果を表3に示した。
Example 3: Cell culture Samples 1-1 to 1-5 and 2-1 to 2-5 prepared in Example 1 and Example 2 were sterilized by UV irradiation. A sterilized sample was placed in a petri dish, and 3 × 10 4 mouse vascular endothelial cells were seeded per 1 cm 2 of the sample in MEM medium containing 10% FBS and penicillin streptomycin, and cultured at 37 ° C. for 3 days. After culture, cell attachment and growth were observed by electron microscopy. Furthermore, the temperature was lowered to 22 ° C., and the cell peeling state after 30 minutes was observed. The experiment was performed multiple times for each sample. The results are shown in Table 3.

表3に示すように、本発明の試料は細胞の付着と増殖が観測され、かつ低温にすることで剥離できることがわかった。特に、モノマーを励起しないで内で調製した試料は、付着、増殖が良好でかつほとんど全ての細胞が剥離できることがわかった。   As shown in Table 3, cell attachment and proliferation were observed in the sample of the present invention, and it was found that the sample can be detached by lowering the temperature. In particular, it was found that the sample prepared inside without exciting the monomer had good adhesion and proliferation, and almost all cells could be detached.

図1は、PET、n−イソプロピルアクリルアミドモノマーおよび使用したフィルターの吸収率を示す。FIG. 1 shows the absorbance of PET, n-isopropylacrylamide monomer and the filter used.

Claims (9)

熱応答性高分子からなる被覆層を表面に有する支持体からなる基板において、該熱応答性高分子の平均被覆量が1.0μg/cm2から10.0μg/cm2であり、かつ該熱応答性高分子の被覆量の面内変動係数が30%以下であることを特徴とする基板。 In the substrate comprising a support having thereon a coating layer of a thermally responsive polymer on the surface, the average coverage of the heat responsive polymer is 10.0 [mu] g / cm 2 from 1.0 [mu] g / cm 2, and heat A substrate characterized in that the in-plane variation coefficient of the coating amount of the responsive polymer is 30% or less. 熱応答性高分子からなる被覆層が、波長200nm〜800nmの光照射によって固定化されたものである、請求項1に記載の基板。 The substrate according to claim 1, wherein the coating layer made of a thermoresponsive polymer is fixed by light irradiation with a wavelength of 200 nm to 800 nm. 熱応答性高分子からなる被覆層が、該熱応答性高分子を構成するモノマーを実質的に励起しない波長の光の照射によって固定化されたものである、請求項2に記載の基板。 The substrate according to claim 2, wherein the coating layer made of a thermoresponsive polymer is fixed by irradiation with light having a wavelength that does not substantially excite the monomer constituting the thermoresponsive polymer. 支持体がポリエチレンテレフタレート又はその誘導体である、請求項1から3の何れかに記載の基板。 The substrate according to any one of claims 1 to 3, wherein the support is polyethylene terephthalate or a derivative thereof. 熱応答性高分子が、N−イソプロピルアクリルアミドポリマーである、請求項1から4の何れかに記載の基板。 The substrate according to any one of claims 1 to 4, wherein the thermoresponsive polymer is an N-isopropylacrylamide polymer. 請求項1から5の何れかに記載の基板からなる、細胞培養用基板。 A cell culture substrate comprising the substrate according to claim 1. 支持体の表面に、熱応答性高分子からなる被覆層を、該熱応答性高分子の平均被覆量が1.0μg/cm2から10.0μg/cm2であり、かつ該熱応答性高分子の被覆量の面内変動係数が30%以下となるように設ける工程を含む、請求項1から6の何れかに記載の基板の製造方法。 The surface of the support, a coating layer comprising a thermally responsive polymer, the average coverage of the heat responsive polymer is 10.0 [mu] g / cm 2 from 1.0 [mu] g / cm 2, and thermally responsive High The method for producing a substrate according to any one of claims 1 to 6, further comprising a step of providing an in-plane variation coefficient of a covering amount of molecules to be 30% or less. モノマーを実質的に励起しない波長の光が、波長200nm〜800nmの光である、請求項7に記載の方法。 The method according to claim 7, wherein the light having a wavelength that does not substantially excite the monomer is light having a wavelength of 200 nm to 800 nm. 熱応答性高分子を構成するモノマーを支持体の表面に接触させた状態で、該モノマーを実質的に励起しない波長の光を照射することによって該モノマーを重合して支持体の表面に熱応答性高分子からなる被覆層を設ける、請求項7又は8に記載の方法。 In a state where the monomer constituting the thermoresponsive polymer is in contact with the surface of the support, the monomer is polymerized by irradiating light of a wavelength that does not substantially excite the monomer, and the surface of the support is thermally responsive. The method according to claim 7 or 8, wherein a coating layer made of a conductive polymer is provided.
JP2006290645A 2006-10-26 2006-10-26 Cell-culturing substrate Pending JP2008104411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290645A JP2008104411A (en) 2006-10-26 2006-10-26 Cell-culturing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290645A JP2008104411A (en) 2006-10-26 2006-10-26 Cell-culturing substrate

Publications (1)

Publication Number Publication Date
JP2008104411A true JP2008104411A (en) 2008-05-08

Family

ID=39438289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290645A Pending JP2008104411A (en) 2006-10-26 2006-10-26 Cell-culturing substrate

Country Status (1)

Country Link
JP (1) JP2008104411A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015146807A (en) * 2008-10-14 2015-08-20 株式会社セルシード Temperature-responsive cell culture substrate and method for producing same
JP2015527428A (en) * 2012-06-29 2015-09-17 ポリマーズ シーアールシー リミテッドPolymers CRC Ltd. Method for modifying polymer surface
US11149249B2 (en) 2015-09-25 2021-10-19 Mitsubishi Gas Chemical Company, Inc. Base material for cell culture and cell culture method using same, cell culture container, and use as base material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015146807A (en) * 2008-10-14 2015-08-20 株式会社セルシード Temperature-responsive cell culture substrate and method for producing same
JP2015527428A (en) * 2012-06-29 2015-09-17 ポリマーズ シーアールシー リミテッドPolymers CRC Ltd. Method for modifying polymer surface
US11149249B2 (en) 2015-09-25 2021-10-19 Mitsubishi Gas Chemical Company, Inc. Base material for cell culture and cell culture method using same, cell culture container, and use as base material

Similar Documents

Publication Publication Date Title
JP5070565B2 (en) Cell culture substrate
JP2570621B2 (en) Cell culture substrate, method for producing the same, and method for forming cell array
EP2348097B1 (en) Cell pattern recovery tool
US8557583B2 (en) Cell culture support and manufacture thereof
JP2008061609A (en) Method for producing cell-culturing container and cell culturing container
JP2011101638A (en) Substrate for measuring cell migration and method for examining cell migration
JP5338609B2 (en) Cell culture method
JP2008132126A (en) Member for cell transplantation
JP5477423B2 (en) Cell culture substrate
JP2008173018A (en) Method for culturing cell and substrate for cell culture
JP2008104411A (en) Cell-culturing substrate
JP2005342112A (en) Artificial tissue body and manufacturing method thereof
JP2008104412A (en) Substrate for culturing cells
JP5329185B2 (en) Oriented controlled cell pattern recovery tool
Wang et al. Micropallet arrays with poly (ethylene glycol) walls
JP2009131241A (en) Method for forming pattern comprising multiple kinds of cells
Brynda et al. Surface modification of hydrogels based on poly (2-hydroxyethyl methacrylate) with extracellular matrix proteins
JP2011072297A (en) Cell culture substrate
JP5957850B2 (en) Method for producing cell culture vessel
US8759100B2 (en) Method of cell culture
JP5240816B2 (en) Cell adhesion control film
JPS63196272A (en) Substrate material for cell culture
JP5862211B2 (en) Method for determining washing conditions for cell culture supports
JP5648454B2 (en) Cell test container and cell test method using the same
JPH05276923A (en) Cell culture substrate and its production