JP2008100875A - Enamel for microwave-absorbing earthenware, and microwave-absorbing earthenware - Google Patents

Enamel for microwave-absorbing earthenware, and microwave-absorbing earthenware Download PDF

Info

Publication number
JP2008100875A
JP2008100875A JP2006285162A JP2006285162A JP2008100875A JP 2008100875 A JP2008100875 A JP 2008100875A JP 2006285162 A JP2006285162 A JP 2006285162A JP 2006285162 A JP2006285162 A JP 2006285162A JP 2008100875 A JP2008100875 A JP 2008100875A
Authority
JP
Japan
Prior art keywords
microwave
absorbing
earthenware
lithium
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006285162A
Other languages
Japanese (ja)
Inventor
Shunzo Matsuo
俊三 松尾
Masateru Tanaka
正照 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI TOKEN KK
Tanaka Chinmi KK
Original Assignee
ASAHI TOKEN KK
Tanaka Chinmi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI TOKEN KK, Tanaka Chinmi KK filed Critical ASAHI TOKEN KK
Priority to JP2006285162A priority Critical patent/JP2008100875A/en
Publication of JP2008100875A publication Critical patent/JP2008100875A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an enamel for microwave absorption which is used for a microwave-absorbing earthenware containing a lithium-iron-based complex oxide, and in the solidified layer of which applied to the microwave absorbing earthenware, no crack is generated when it is baked, and a microwave-absorbing earthenware of which the solidified enamel layer has no crack and accordingly which has no water leak. <P>SOLUTION: The microwave-absorbing earthenware is manufactured, by using a potter's clay formed by kneading 10 wt.% of magnetite containing an iron compound containing a rare earth element and 10 wt.% of petalite containing a lithium oxide with 80 wt.% of gairome clay; compacting/drying/biscuit-firing it; then applying the enamel for the microwave-absorbing earthenware having a composition of 70 wt.% of petalite, 20 wt.% of kaolin, 5 wt.% of lime stone and 5 wt.% of zinc oxide, to the biscuit-fired half-finished product, and finally firing it at a temperature of 1,200-1,300°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子レンジ等のマイクロ波を照射する加熱装置によって、陶器自体を直接に100℃前後の高温に加熱できるマイクロ波吸収陶器の為の釉薬、及び釉薬固化層にクラックが発生しないマイクロ波吸収陶器に関する。   The present invention relates to a glaze for a microwave absorbing pottery that can directly heat the pottery itself to a high temperature of about 100 ° C. by a heating device that irradiates microwaves such as a microwave oven, and a microwave that does not cause cracks in the solidified layer of the glaze It relates to absorption pottery.

本出願人は、食材・加工食品・調理品を加熱するために広く使用されている、マイクロ波を照射して水分・液体を加熱する電子レンジ等の加熱装置を用い、直接陶器自体をマイクロ波で加熱できる特殊なマイクロ波吸収陶器を開発した。その特殊陶器の技術は、特開2006−248853号公報として知られている。
このマイクロ波吸収陶器は釉薬を表面に塗布しなければ素焼状態であり、防水性がなく、水漏れを生じる。
しかしながら、このマイクロ波吸収陶器の素焼に、陶器に通常使用されている長石の多い釉薬を塗布して本焼成すると、固化した釉薬層に貫入(亀裂,クラック)が多数入ってしまい、このまま使用すると水漏れしていまい、防水性の食器・鍋・容器等としては、使用できにくいものであった。
特開2006−248853号公報
The present applicant uses a heating device such as a microwave oven that irradiates microwaves and heats moisture and liquid, which is widely used to heat foods, processed foods, and cooked products, and directly attaches the ceramics to the microwaves. Has developed a special microwave absorption pottery that can be heated in The technique of the special pottery is known as JP 2006-248853 A.
This microwave absorbing pottery is in an unglazed state unless glaze is applied to the surface, is not waterproof, and causes water leakage.
However, if this glazed ceramic pottery is coated with a feldspar that is usually used in pottery and then baked, a large number of penetrations (cracks, cracks) will enter the solidified glaze layer. It was difficult to use as a waterproof tableware, pan, container, etc.
JP 2006-248853 A

本発明が解決しようとする課題は、上記のマイクロ波吸収陶器の問題点を解消し、マイクロ波吸収陶器の釉薬として使用しても釉薬層に貫入(クラック)が生じにくいマイクロ波吸収陶器用釉薬を提供し、又同釉薬を用いたマイクロ波吸収陶器を提供する。   The problem to be solved by the present invention is to solve the problems of the above-mentioned microwave absorption ceramics, and even if used as a glaze for microwave absorption ceramics, a glaze for microwave absorption ceramics that does not easily penetrate into the glaze layer (crack) In addition, a microwave absorbing pottery using the same glaze is provided.

かかる課題を解決した本発明の構成は、
1) ペタライトを60重量%以上含有することを特徴とする、マイクロ波吸収陶器用釉薬
2) ペタライト以外の成分としてカオリンと石灰石と酸化亜鉛とを混入した、前記1)記載のマイクロ波吸収陶器用釉薬
3) リチウム−鉄系複合酸化物を含有した陶土、又は焼成によりリチウム−鉄系複合酸化物を形成する鉄化合物とリチウム化合物とを含有した陶土を成形して素焼し、同素焼の表面の一部又は全部に、前記1)又は2)記載のマイクロ波吸収陶器用釉薬を塗布して焼成して製造されるマイクロ波吸収陶器
4) 陶土中に、さらに希土類元素を含有させた、前記3)記載のマイクロ波吸収陶器
にある。
The configuration of the present invention that solves this problem is as follows.
1) A glaze for microwave-absorbing earthenware containing 60% by weight or more of petalite 2) For microwave-absorbing earthenware described in 1), wherein kaolin, limestone, and zinc oxide are mixed as components other than petalite. Glaze 3) Porcelain containing lithium-iron composite oxide, or porcelain containing iron compound and lithium compound that forms lithium-iron composite oxide by firing is molded and unglazed. Part 3 or part of the microwave absorbing earthenware produced by applying and baking the glaze for microwave absorbing earthenware described in 1) or 2) 4) The earth 3 further containing rare earth elements in the earth ) The microwave absorbing pottery described.

本発明によれば、釉薬としてペタライトが60重量%以上含有する釉薬を用いることによって、マイクロ波吸収陶器の素焼に塗布した釉薬で焼成しても、釉薬固化層に貫入(クラック)が生じることがなくなり、釉薬固化層が防水層として機能し、防水性があるマイクロ波吸収陶器として実用性あるものにできる。   According to the present invention, by using a glaze containing 60% by weight or more of petalite as a glaze, penetration (crack) may occur in the solidified layer of the glaze even when baked with the glaze applied to the unglazed ceramics of microwave absorption ceramics. The glaze solidified layer functions as a waterproof layer, and can be made practical as a waterproof microwave absorbing ceramic.

本発明のマイクロ波吸収陶器用釉薬の成分としては、ペタライトを70重量%前後にし、これにカオリンを20重量%混入し、残りに石灰石,酸化亜鉛を混入するのが好ましい。ペタライトの重量割合が60重量%より下がると貫入(亀裂,クラック)が生じるようになってくる。   As a component of the glaze for microwave absorbing ceramics of the present invention, it is preferable that petalite is about 70% by weight, kaolin is mixed with 20% by weight, and the rest is mixed with limestone and zinc oxide. When the weight ratio of petalite falls below 60% by weight, penetration (cracking, cracking) comes to occur.

本発明のマイクロ波吸収陶器の陶土としては、陶土の主原料の粘土(普通陶土)にリチウム−鉄系複合酸化物を最初から添加させた陶土を使用するか、又は焼成時にリチウム−鉄系複合酸化物を形成する鉄化合物とリチウム化合物とを混在させて添加させた陶土を使用する。この陶土には、希土類元素(Pr,Nd,Dy)を含有させ、更に炭化珪素粒子を0.5〜15質量%の割合で含有することが好ましい。   As the porcelain clay of the microwave absorbing pottery of the present invention, use is made of porcelain obtained by adding lithium-iron complex oxide from the beginning to clay (ordinary porcelain clay), which is the main raw material of porcelain clay, or at the time of firing, a lithium-iron complex Porcelain to which iron compound and lithium compound that form oxides are mixed and added is used. The porcelain earth preferably contains rare earth elements (Pr, Nd, Dy) and further contains silicon carbide particles in a proportion of 0.5 to 15% by mass.

本発明のマイクロ波吸収陶器を製造するために使用される材料としては、コージェライト,ムライト,ペタライト,チタン酸アルミニウム,アルミナ等のセラミックス粉体、あるいはこれらのセラミックスの複合粉末、さらには陶器用陶土、各種粘土鉱物が挙げられ、粒径が0.1mm以下、例えば5μm以下の粉末状で使用される。これらの材料は、焼成後にSiO2 ,Al2 3 ,TiO2 ,MgO,Li2O等の酸化物形態をとる。また、陶器材料としては、鉛,クロム,ニッケル,亜鉛,銅等の有害成分を含有しないか、含有しても焼成後にあってこれらの有害金属酸化物が陶器中に0.5質量%以下、好ましくは0.1質量%以下のものであれば使用することができる。 Materials used for producing the microwave absorbing pottery of the present invention include ceramic powders such as cordierite, mullite, petalite, aluminum titanate, alumina, etc., or composite powders of these ceramics, and also pottery clay And various clay minerals, and used in the form of a powder having a particle size of 0.1 mm or less, for example, 5 μm or less. These materials take the form of oxides such as SiO 2 , Al 2 O 3 , TiO 2 , MgO, and Li 2 O after firing. In addition, as a pottery material, it does not contain harmful components such as lead, chromium, nickel, zinc, copper, etc. or even after containing, these toxic metal oxides are 0.5% by mass or less in the pottery, Preferably, it can be used if it is 0.1% by mass or less.

焼成によりリチウム−鉄系複合酸化物を形成する材料としては、鉄成分としては市販の水酸化鉄{Fe(OH)2 ,Fe(OH)3 ,FeOOH}、酸化鉄(FeO,Fe2 3 ,Fe3 4 )、また、焼成により除去される陰イオンを含有する鉄化合物が挙げられ、また、リチウム成分としては、炭酸リチウム、塩化リチウム、フッ化リチウム、水酸化リチウム、硝酸リチウム、リン酸リチウム等が挙げられる。粉末状である場合、粒径としては0.1mm以下、例えば5μm以下のものが挙げられる。 As a material for forming a lithium-iron composite oxide by firing, as an iron component, commercially available iron hydroxide {Fe (OH) 2 , Fe (OH) 3 , FeOOH}, iron oxide (FeO, Fe 2 O 3) , Fe 3 O 4 ), and iron compounds containing anions that are removed by firing, and lithium components include lithium carbonate, lithium chloride, lithium fluoride, lithium hydroxide, lithium nitrate, phosphorus Examples include lithium acid. In the case of a powder, the particle size is 0.1 mm or less, for example, 5 μm or less.

上記の鉄化合物は焼成によりFe2 3 に、また、リチウム化合物はLi2 Oとなるので、鉄化合物とリチウム化合物は、焼成後にあってLi2 OがFe2 3 に対して、0.1〜10質量%、好ましくは1〜8質量%となるように混合されるとよい。Li2 Oの含有量が10質量%より多いと焼成体の熱膨張率が上昇したり、リチウム−鉄系複合酸化物の形成に寄与しないLi2 Oが焼成後においても残存するという問題がある。混合方法としては、粉末−粉末,粉末−溶液,溶液−溶液のいずれの形態でもよく、特に限定されない。 Since the iron compound becomes Fe 2 O 3 by firing and the lithium compound becomes Li 2 O, the iron compound and the lithium compound are after firing and Li 2 O is less than Fe 2 O 3 . It is good to mix so that it may become 1-10 mass%, Preferably it is 1-8 mass%. When the content of Li 2 O is more than 10% by mass, there is a problem that the thermal expansion coefficient of the fired body increases or Li 2 O that does not contribute to the formation of the lithium-iron-based composite oxide remains even after firing. . The mixing method may be any of powder-powder, powder-solution, and solution-solution, and is not particularly limited.

陶器材料としてペタライトを使用する場合には、ペタライトは焼成後にあってLi2 Oの形態で3〜5質量%含有するので、リチウム化合物を添加する必要はなく、鉄化合物の添加だけでよい。 When petalite is used as the pottery material, it is not necessary to add a lithium compound, and only the addition of an iron compound is necessary because the petalite is after firing and contained 3 to 5% by mass in the form of Li 2 O.

また、希土類元素(Pr,Nd,Dy)を3質量%〜5質量%含有するマグネタイト(Fe3 4 )は磁性材料廃棄物としてその有効利用が求められているが、本発明における鉄化合物原料として利用することができる。希土類元素(Pr,Nd,Dy)を含有させると、希土類元素に由来する酸化物はそれ自体マイクロ波を吸収して自己発熱性の機能を発揮するので、より、発熱性に優れるものとできる。 Further, magnetite (Fe 3 O 4 ) containing 3% by mass to 5% by mass of rare earth elements (Pr, Nd, Dy) is required to be effectively used as a magnetic material waste. Can be used as When a rare earth element (Pr, Nd, Dy) is contained, the oxide derived from the rare earth element itself absorbs microwaves and exhibits a self-heating function, so that it can be more excellent in heat generation.

また、本発明の陶土に対して、粒径範囲が0.1〜10μm、好ましくは0.5〜5μmの炭化珪素粉末を、焼成に際して0.5質量%〜15質量%、好ましくは0.5質量%〜10質量%の割合で添加し、焼成するとよい。炭化珪素としてはβ型でもよいが、α型とするとよい。粒径が0.1μm未満であると自己発熱性が低下し、10μmを超えると成形性が悪化し、また、マイクロ波吸収陶器の強度向上に資することができない。また、炭化珪素の添加量として0.5質量%より少ないと強度向上に資することができず、15質量%より多いと釉薬との接着性が低下するので好ましくない。炭化珪素は、それ自体マイクロ波を吸収して自己発熱性の機能を発揮することが知られているが、本発明においては、焼成に際して、陶器材料粒子と接する炭化珪素粒子の表面が酸化されてガラス緻密層を形成し、マイクロ波吸収陶器の強度の向上に寄与させることができる。また、炭化珪素粒子内部は未酸化状態で残るためにマイクロ波吸収性を維持させることができ、また、炭化珪素粒子の含有量を少なくすることにより、釉薬との接着性に影響を与えないものとできる。 Further, with respect to the clay of the present invention, a silicon carbide powder having a particle size range of 0.1 to 10 μm, preferably 0.5 to 5 μm, is 0.5% to 15% by mass, preferably 0.5%, upon firing. It is good to add at a ratio of 10% by mass to 10% by mass and fire. Silicon carbide may be β-type, but is preferably α-type. When the particle size is less than 0.1 μm, the self-heating property is lowered, and when it exceeds 10 μm, the moldability is deteriorated and the strength of the microwave absorbing ceramic cannot be improved. Further, if the addition amount of silicon carbide is less than 0.5% by mass, it cannot contribute to the improvement of strength, and if it is more than 15% by mass, the adhesiveness with the glaze is unfavorable. Silicon carbide is known to exhibit a self-heating function by absorbing microwaves in itself, but in the present invention, the surface of silicon carbide particles in contact with the ceramic material particles is oxidized during firing. A dense glass layer can be formed to contribute to improving the strength of the microwave absorbing ceramic. In addition, since the inside of silicon carbide particles remains in an unoxidized state, microwave absorption can be maintained, and by reducing the content of silicon carbide particles, the adhesiveness to the glaze is not affected. And can.

本発明の陶土に対する焼成によりリチウム−鉄系複合酸化物を形成する材料の配合割合は、両者とも酸化物基準で、陶器材料に対して焼成によりリチウム−鉄系複合酸化物を形成する材料を0.5質量%〜50質量%の割合、好ましくは1質量%〜40質量%とするとよい。リチウム−鉄系複合酸化物を形成する材料の配合量が50質量%より多いと、マイクロ波による急激な自己発熱と熱膨張の上昇等の問題がある。 The blending ratio of the material that forms the lithium-iron composite oxide by firing with respect to the porcelain clay of the present invention is 0% for the material that forms the lithium-iron composite oxide by firing with respect to the ceramic material. It is good to set it as the ratio of 0.5 mass%-50 mass%, Preferably it is 1 mass%-40 mass%. When the amount of the material forming the lithium-iron composite oxide is more than 50% by mass, there are problems such as rapid self-heating due to microwaves and an increase in thermal expansion.

配合物は、水、バインダー、さらに分散剤と共に十分に混合され、成形材料とされ、押し出し成形、プレス成形等により皿状,板状,パイプ状,ハニカム状,スポンジ状の成形物とされる。 The blend is sufficiently mixed with water, a binder, and a dispersing agent to form a molding material, which is formed into a dish-like, plate-like, pipe-like, honeycomb-like, or sponge-like molding by extrusion molding, press molding, or the like.

陶土の焼成温度として800〜1500℃、好ましくは1200〜1450℃とするとよく、また、焼成時間は0.5〜3時間、好ましくは1〜2時間とするとよい。 The firing temperature of the porcelain clay is 800 to 1500 ° C., preferably 1200 to 1450 ° C., and the firing time is 0.5 to 3 hours, preferably 1 to 2 hours.

また、焼成でリチウム−鉄系複合酸化物を形成するには、陶器材料にリチウム化合物と鉄化合物を混合する場合を説明したが、焼成によりリチウム−鉄系複合酸化物を形成する材料、例えば鉄化合物とリチウム化合物とを混合し、予め1000℃で仮焼し、リチウム−鉄系複合酸化物を生成させてもよく、得られたリチウム−鉄系複合酸化物は0.1mm以下の粒径に粉砕され、陶土中に配合に供されてもよい。 Moreover, in order to form a lithium-iron-based composite oxide by firing, the case where a lithium compound and an iron compound are mixed in a ceramic material has been described. However, a material that forms a lithium-iron-based composite oxide by firing, for example, iron A compound and a lithium compound may be mixed and calcined in advance at 1000 ° C. to produce a lithium-iron composite oxide. The obtained lithium-iron composite oxide has a particle size of 0.1 mm or less. It may be crushed and subjected to blending in porcelain clay.

本発明のマイクロ波吸収用陶器においては、後述するX線分析の結果から明らかなように、焼成によってLiFe5 8 ,LiFeO2 ,Li5 FeO4 等の形態のリチウム−鉄系複合酸化物が形成され、その詳細な理由は不明であるが、マイクロ波吸収性を奏するものである。また、後述する予備試験で示すように、リチウム酸化物の含有量が多くなるにつれ、その発熱量が増大する。 In the microwave absorbing pottery of the present invention, as is apparent from the results of X-ray analysis described later, lithium-iron based composite oxides in the form of LiFe 5 O 8 , LiFeO 2 , Li 5 FeO 4, etc. are obtained by firing. Although the detailed reason is unknown, it is microwave-absorbing. Further, as shown in a preliminary test described later, the amount of heat generated increases as the lithium oxide content increases.

本発明の実施例を具体的に説明する。
本実施例のマイクロ波吸収陶器用釉薬としては、下記の表1の成分配合のものを使用した。
Examples of the present invention will be specifically described.
As the glaze for microwave absorbing ceramics of the present example, those having the ingredients shown in Table 1 below were used.

Figure 2008100875
Figure 2008100875

次に、マイクロ波吸収陶土として、下記の成分配合のものを使用した。
(1)蛙目粘土・・・80重量%(普通陶土)
(2)マグネタイト・・・10重量%(希土類元素を含む鉄化合物含有)
(3)ペタライト・・・10重量%(リチウム酸化物含有)
Next, the thing of the following component mixing | blending was used as microwave absorption porcelain clay.
(1) Sasame clay: 80% by weight (ordinary porcelain)
(2) Magnetite: 10% by weight (containing iron compounds including rare earth elements)
(3) Petalite: 10% by weight (containing lithium oxide)

まず、上記マイクロ波吸収陶土を充分混練した後所定形状に成形して乾燥させ、800〜1200℃で素焼し、次に素焼した半製品に、上記表1の釉薬を塗布して、1200〜1300℃で本焼成をして製作した。   First, the above microwave absorbing porcelain is sufficiently kneaded, molded into a predetermined shape, dried, unfired at 800 to 1200 ° C., and then applied to the unglazed semi-finished product with the glaze of Table 1 above to 1200 to 1300. This was fired at ℃.

製作されたマイクロ波吸収陶器の表面の釉薬層には貫入(クラック)は認められなかった。
又、本マイクロ波吸収陶器を水・液体を入れずに電子レンジで加熱させたら、陶器表面温度は75〜95℃程に昇温した。又、この製造された製品に水・液体を入れて加熱しても高温に加熱でき、且つ水洩れは認められなかった。
No penetration (crack) was observed in the glaze layer on the surface of the manufactured microwave absorption ceramics.
Moreover, when this microwave absorption pottery was heated in a microwave oven without adding water or liquid, the pottery surface temperature rose to about 75-95 ° C. Moreover, even if water / liquid was put into this manufactured product and heated, it could be heated to a high temperature, and no water leakage was observed.

以上の様に、本発明の釉薬を用いて焼成することで、マイクロ波吸収陶器を水洩れ、液体が浸みることなく陶器自体を加熱することができるようになる。   As described above, by firing using the glaze of the present invention, the microwave absorbing pottery can be leaked and the pottery itself can be heated without being immersed in the liquid.

本発明のマイクロ波吸収陶器製品は調理用鍋、保温性のよい食器、保温性のよい保温容器として使用できる他に、水・液体を含まない物品の加熱容器としても使用でき、工業用の応用も可能である。   The microwave absorbing pottery product of the present invention can be used as a cooking pot, a tableware with good heat retention, and a heat insulation container with good heat retention, and can also be used as a heating container for articles that do not contain water or liquid. Is also possible.

Claims (4)

ペタライトを60重量%以上含有することを特徴とする、マイクロ波吸収陶器用釉薬。   A glaze for microwave absorbing ceramics, characterized by containing 60% by weight or more of petalite. ペタライト以外の成分としてカオリンと石灰石と酸化亜鉛とを混入した、請求項1記載のマイクロ波吸収陶器用釉薬。   The glaze for microwave absorption ceramics according to claim 1, wherein kaolin, limestone and zinc oxide are mixed as components other than petalite. リチウム−鉄系複合酸化物を含有した陶土、又は焼成によりリチウム−鉄系複合酸化物を形成する鉄化合物とリチウム化合物とを含有した陶土を成形して素焼し、同素焼の表面の一部又は全部に、請求項1又は2記載のマイクロ波吸収陶器用釉薬を塗布して焼成して製造されるマイクロ波吸収陶器。   Porcelain clay containing a lithium-iron composite oxide, or a ceramic clay containing an iron compound and a lithium compound that forms a lithium-iron composite oxide by firing is molded and unglazed. A microwave absorbing pottery produced by applying and baking the glaze for microwave absorbing pottery according to claim 1 or 2 to all. 陶土中に、さらに希土類元素を含有させた、請求項3記載のマイクロ波吸収陶器。   The microwave absorbing pottery according to claim 3, further comprising a rare earth element in the clay.
JP2006285162A 2006-10-19 2006-10-19 Enamel for microwave-absorbing earthenware, and microwave-absorbing earthenware Pending JP2008100875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285162A JP2008100875A (en) 2006-10-19 2006-10-19 Enamel for microwave-absorbing earthenware, and microwave-absorbing earthenware

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285162A JP2008100875A (en) 2006-10-19 2006-10-19 Enamel for microwave-absorbing earthenware, and microwave-absorbing earthenware

Publications (1)

Publication Number Publication Date
JP2008100875A true JP2008100875A (en) 2008-05-01

Family

ID=39435503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285162A Pending JP2008100875A (en) 2006-10-19 2006-10-19 Enamel for microwave-absorbing earthenware, and microwave-absorbing earthenware

Country Status (1)

Country Link
JP (1) JP2008100875A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914052B1 (en) 2009-03-17 2009-08-28 한국지질자원연구원 High energy efficiency vessel for microwave oven and drying furance
KR100937842B1 (en) 2009-06-25 2010-01-21 한국지질자원연구원 High energy efficiency vessel for microwave oven and drying furance
JP2012162404A (en) * 2011-02-03 2012-08-30 Mie Prefecture Microwave-absorbing, self-heating, heat-resistive pottery, and method for manufacturing the same
JP2015214484A (en) * 2014-03-25 2015-12-03 大塚オーミ陶業株式会社 Original material for decorative ceramic and decorative ceramic
EP2765124A3 (en) * 2013-02-06 2016-03-09 Elix Corp. Heat-emitting composition absorbing microwaves and emitting heat, transfer paper comprising same, far-infrared-emitting ceramic ware comprising same, and preparation method thereof
KR20190027363A (en) * 2019-02-25 2019-03-14 경기대학교 산학협력단 Exothermic material for microwave susceptor and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914052B1 (en) 2009-03-17 2009-08-28 한국지질자원연구원 High energy efficiency vessel for microwave oven and drying furance
KR100937842B1 (en) 2009-06-25 2010-01-21 한국지질자원연구원 High energy efficiency vessel for microwave oven and drying furance
JP2012162404A (en) * 2011-02-03 2012-08-30 Mie Prefecture Microwave-absorbing, self-heating, heat-resistive pottery, and method for manufacturing the same
EP2765124A3 (en) * 2013-02-06 2016-03-09 Elix Corp. Heat-emitting composition absorbing microwaves and emitting heat, transfer paper comprising same, far-infrared-emitting ceramic ware comprising same, and preparation method thereof
JP2015214484A (en) * 2014-03-25 2015-12-03 大塚オーミ陶業株式会社 Original material for decorative ceramic and decorative ceramic
KR20190027363A (en) * 2019-02-25 2019-03-14 경기대학교 산학협력단 Exothermic material for microwave susceptor and manufacturing method thereof
KR102144386B1 (en) * 2019-02-25 2020-08-14 경기대학교 산학협력단 Exothermic material for microwave susceptor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2008100875A (en) Enamel for microwave-absorbing earthenware, and microwave-absorbing earthenware
JP3031865B2 (en) Manufacturing method of thermal shock resistant ceramics
EP2531461B1 (en) Compounds and compositions for susceptor materials
JP4793844B2 (en) Ceramic for absorbing microwave and method for manufacturing the same
JP4878255B2 (en) Ferrite-containing ceramic body and method for producing the same
CN106699207A (en) Fired magnesia-calcium brick and preparation method thereof
CN107021776A (en) Unsetting refractory body particle
JP4273227B2 (en) Manufacturing method of microwave heating element
JP4617190B2 (en) Refractory manufacturing method
JP5716910B2 (en) Ceramics and manufacturing method thereof
JP6330877B2 (en) Method for producing cordierite castable refractories
JP6771090B2 (en) A heating cooker using a ceramic heating element and its manufacturing method
JP2006314489A (en) Heating element, structural member and container for heating equipped with the same, and production method of heating element
JP3034808B2 (en) Thermal shock resistant ceramics and manufacturing method thereof
KR101602574B1 (en) Cookware and Cookware manufacturing method for microwave oven
JP2006008427A (en) Heating element for microwave firing furnace
JP4630111B2 (en) Refractory, manufacturing method thereof, and heating furnace
WO2005095302A1 (en) Ceramic body paste, ceramic green body, ceramic structure, and methods for producing those
KR101315631B1 (en) Method for preparing heat-resistant ceramic by lithium solution penetration
JP2006327842A (en) Insulating refractory material for microwave firing furnace
JP5631463B1 (en) Baked product using eggshell and method for producing the same
JP2002249369A (en) Ceramic product including tourmaline and method for manufacturing it
KR20060094615A (en) Functional porcelain composition and porcelain using the composition
JP3931171B2 (en) Firing cured body and manufacturing method thereof
JP5824411B2 (en) Method for producing powder for microwave-absorbing heating element and method for producing microwave-absorbing heating element using the powder