JP2008099461A - Power controller and rolling stock using the same - Google Patents

Power controller and rolling stock using the same Download PDF

Info

Publication number
JP2008099461A
JP2008099461A JP2006279400A JP2006279400A JP2008099461A JP 2008099461 A JP2008099461 A JP 2008099461A JP 2006279400 A JP2006279400 A JP 2006279400A JP 2006279400 A JP2006279400 A JP 2006279400A JP 2008099461 A JP2008099461 A JP 2008099461A
Authority
JP
Japan
Prior art keywords
charge
discharge
power
limit value
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006279400A
Other languages
Japanese (ja)
Inventor
Yutaka Sato
裕 佐藤
Tsutomu Miyauchi
努 宮内
Seiji Ishida
誠司 石田
Eiichi Toyoda
豊田  瑛一
Motomi Shimada
嶋田  基巳
Masahiro Nagasu
正浩 長洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Mito Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Mito Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Mito Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2006279400A priority Critical patent/JP2008099461A/en
Publication of JP2008099461A publication Critical patent/JP2008099461A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power controller which outputs stable energy at all times, regardless of the temperature, deterioration, or partial faults by a power accumulating means. <P>SOLUTION: The power controller detects its capacity drop, when the capacity of the accumulating means drops due to the increase in the temperature or the internal resistance or the faults, etc. of a certain accumulating means, by the state detection means of the accumulating means. Then, when the capacity drops, the controller sets the utilization range of the charging rate to be wide. As a result, constant charging and discharging of energy becomes possible at all times, irrespective of the state of the accumulating means. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、充放電可能な蓄電手段を備えた電源制御装置及びそれを用いた鉄道車両に関する。   The present invention relates to a power supply control device including a chargeable / dischargeable power storage means and a railway vehicle using the same.

近年の環境保護のため、様々な分野で省エネ化が図られている。鉄道は交通手段の中では比較的環境負荷が低いが、架線の無い区間をディーゼルエンジンで走行するディーゼル鉄道車両について特に省エネ化が求められている。   In order to protect the environment in recent years, energy saving has been achieved in various fields. Railways have a relatively low environmental impact among transportation means, but energy saving is particularly required for diesel railway vehicles that run on sections without overhead lines using diesel engines.

ディーゼル鉄道車両を省エネ化する従来技術として特許文献1がある。この技術では、エンジンで発電し、インバータでモータを駆動する車両において、車両に蓄電手段を設ける。そして制動時のエネルギーを回生し、そのエネルギーを蓄電手段に貯蔵し、加速時に用いる。また蓄電手段が状況に応じて車両を運行するのに必要なエネルギーを充放電するため、エンジンは効率のよい一定回転で運転することが可能となる。   There is Patent Document 1 as a conventional technique for energy saving diesel railway vehicles. In this technique, in a vehicle that generates power with an engine and drives a motor with an inverter, the vehicle is provided with power storage means. Then, the energy at the time of braking is regenerated, the energy is stored in the power storage means, and used during acceleration. In addition, since the power storage means charges and discharges energy necessary for operating the vehicle according to the situation, the engine can be operated at an efficient constant rotation.

特開2006−74998号公報JP 2006-49998 A

特許文献1と同様の技術として、近年実用化されているエンジンと蓄電手段を用いたハイブリット自動車がある。自動車と比較すると、鉄道は一度の加減速の時間が長く、また質量が重いという特徴がある。このため上記の従来技術における蓄電手段は、より大きなエネルギー供給能力が要求される。また鉄道は定時運行が強く求められており、蓄電手段は長期の使用期間にわたり安定したエネルギー供給能力が求められている。   As a technique similar to Patent Document 1, there is a hybrid vehicle using an engine and power storage means that has been put into practical use in recent years. Compared to automobiles, railways are characterized by a long acceleration / deceleration time and heavy mass. For this reason, the power storage means in the above prior art is required to have a larger energy supply capability. Railways are also strongly required to operate on a regular basis, and power storage means are required to have a stable energy supply capacity over a long period of use.

ところが蓄電装置はその温度や劣化状態により供給できるエネルギー量が変動する。また複数の蓄電手段を用いて大容量化を図った場合に、長期の使用期間中において、一部に故障が発生しエネルギーの供給能力が低下することが起こりうる。   However, the amount of energy that can be supplied to the power storage device varies depending on its temperature and deterioration state. Further, when the capacity is increased by using a plurality of power storage means, it is possible that a failure occurs in part during a long period of use and the energy supply capability is reduced.

本発明の目的は、蓄電手段の温度や劣化あるいは一部の故障によらず、エネルギー供給能力を一定に保つ電源制御装置を提供することである。   An object of the present invention is to provide a power supply control device that keeps the energy supply capability constant regardless of the temperature, deterioration, or partial failure of the power storage means.

本発明は、上記課題を解決するために、蓄電手段の充電及び放電を制御する電源制御装置であって、蓄電手段の状態情報を検知する状態検知手段と、状態検知手段で検知された状態情報に基づいて、蓄電手段の充電率を所定の制限範囲内に抑える充電上限値及び放電下限値を設定する充放電制限手段と、蓄電手段の充電率信号及び運転台からの運転指令値を入力し、充放電信号と、運転指令値と、充電上限値及び放電下限値とに基づいて蓄電手段の充放電指令を生成し、充放電指令を出力する充放電制御手段と、を有する構成とする。   In order to solve the above problems, the present invention is a power supply control device that controls charging and discharging of power storage means, and includes state detection means for detecting state information of the power storage means, and state information detected by the state detection means. Charge / discharge limiting means for setting a charging upper limit value and a discharge lower limit value that suppress the charging rate of the power storage means within a predetermined limit range, a charge rate signal of the power storage means, and an operation command value from the cab. And a charge / discharge control means for generating a charge / discharge command for the power storage means based on the charge / discharge signal, the operation command value, the charge upper limit value and the discharge lower limit value, and outputting the charge / discharge command.

また、エンジンと、交流電力を生成する発電機と、発電機から出力された交流電力を直流電力に変換し、直流電力を出力するコンバータと、コンバータから出力された直流電力に基づいてモータを駆動するインバータと、コンバータからの直流電力を充電し、またはインバータへ蓄積された直流電力を放電する蓄積手段と、蓄電手段の状態情報を検知する状態検知手段と、状態検知手段で検知された状態情報に基づいて、蓄電手段の充電率を所定の制限範囲内に抑える充電上限値及び放電下限値を設定する充放電制限手段と、蓄電手段の充電率信号及び運転台からの運転指令値を入力し、充放電信号と、運転指令値と、充電上限値及び放電下限値とに基づいて蓄電手段の充放電指令を生成し、充放電指令を出力する充放電制御手段と、を有する電源制御装置と、を有し、エンジンとコンバータとインバータは、電源制御装置からの充放電指令と前記運転台からの運転指令信号に基づいて動作される鉄道車両の構成とする。   In addition, an engine, a generator that generates AC power, a converter that converts AC power output from the generator into DC power and outputs DC power, and a motor that is driven based on the DC power output from the converter Inverter, charging means for charging DC power from the converter, or discharging means for discharging DC power stored in the inverter, state detecting means for detecting state information of the storage means, and state information detected by the state detecting means Charge / discharge limiting means for setting a charging upper limit value and a discharge lower limit value that suppress the charging rate of the power storage means within a predetermined limit range, a charge rate signal of the power storage means, and an operation command value from the cab. A charge / discharge control means for generating a charge / discharge command for the power storage means based on the charge / discharge signal, the operation command value, the charge upper limit value and the discharge lower limit value, and outputting the charge / discharge command. Has a power supply control device, the engine and the converter and the inverter, the structure of the railway vehicle is operated on the basis of the charge and discharge command from the power control unit to the operation command signal from the cab.

蓄電手段の温度や劣化あるいは一部の故障によらず、エネルギー供給能力を一定に保つ電源制御装置を提供できる。   It is possible to provide a power supply control device that keeps the energy supply capability constant regardless of the temperature, deterioration, or partial failure of the power storage means.

以下図面を用いて各実施例を説明する。   Embodiments will be described below with reference to the drawings.

図1は、電源制御装置の機能ブロック図である。   FIG. 1 is a functional block diagram of the power supply control device.

電源制御装置101は、接続される蓄電手段(蓄電池)の充電及び放電を制御するものであり、状態検知部102と充放電制限部103と充放電制御部104から構成される。電源制御装置101に入力される入力信号は、蓄電池から検知された状態情報である蓄電池温度信号111と蓄電池充電率信号112、運転台からの運転指令信号113であり、電源制御装置101から出力される出力信号は蓄電池の充放電指令信号121である。   The power supply control device 101 controls charging and discharging of a connected power storage unit (storage battery), and includes a state detection unit 102, a charge / discharge restriction unit 103, and a charge / discharge control unit 104. The input signals input to the power supply control device 101 are a storage battery temperature signal 111 and a storage battery charge rate signal 112, which are state information detected from the storage battery, and an operation command signal 113 from the cab, and are output from the power supply control device 101. The output signal is a storage battery charge / discharge command signal 121.

状態検知部102は、蓄電池に取り付けられたセンサで検知された蓄電池の状態情報である蓄電池温度信号111を読み込み、蓄電池の温度情報を充放電制限部103に出力する。充放電制限部103は、状態検知部102で検知された状態情報である蓄電池の温度情報に基づいて、蓄電池の充電率を所定の制限範囲に抑える制限値(充電上限値,放電下限値)を設定し、充放電制御部104に出力する。充放電制御部104は、運転指令信号
113と蓄電池充電率信号112と充放電制限部103で設定された制限値(充電上限値,放電下限値)に基づいて、充電率の制限値を超えない範囲で、蓄電池の充放電指令信号121を生成し、出力する。このような構成によって、蓄電池の温度状態によらず、エネルギー供給能力を一定に保つことができる効果を達成できる。なお動作の詳細は後述する。
The state detection unit 102 reads a storage battery temperature signal 111 that is state information of a storage battery detected by a sensor attached to the storage battery, and outputs the storage battery temperature information to the charge / discharge restriction unit 103. Based on the temperature information of the storage battery, which is the state information detected by the state detection unit 102, the charge / discharge limiting unit 103 sets the limit values (charging upper limit value, discharging lower limit value) that suppress the charging rate of the storage battery within a predetermined limit range. Set and output to the charge / discharge control unit 104. The charge / discharge control unit 104 does not exceed the limit value of the charge rate based on the operation command signal 113, the storage battery charge rate signal 112, and the limit values (charge upper limit value, discharge lower limit value) set by the charge / discharge limit unit 103. The storage battery charge / discharge command signal 121 is generated and output within the range. With such a configuration, it is possible to achieve an effect that the energy supply capability can be kept constant regardless of the temperature state of the storage battery. Details of the operation will be described later.

図2に、ハイブリッド鉄道車両の構成図を示す。   FIG. 2 shows a configuration diagram of the hybrid railway vehicle.

本実施例において、鉄動車両201の動力系統はシリーズハイブリッド構成とした。エンジン203の動力は、発電機204で交流電力に変換され、さらにコンバータ205により交流電力を直流電力に変換される。コンバータ205から出力された直流電力によって、コンバータ205に接続されたインンバータ207がモータ208を駆動することで車両が走行する。コンバータ205は、蓄電池206にも接続され、必要に応じて蓄電池から直流電力(エネルギー)を放電あるいは蓄電池に直流電力を給電して充電する。これにより、回生エネルギーの吸収や、エンジンの効率的な運転が可能となる。   In this embodiment, the power system of the iron vehicle 201 has a series hybrid configuration. The power of the engine 203 is converted into AC power by the generator 204, and the AC power is further converted into DC power by the converter 205. The vehicle travels when the inverter 208 connected to the converter 205 drives the motor 208 by the DC power output from the converter 205. The converter 205 is also connected to the storage battery 206, and discharges DC power (energy) from the storage battery or feeds DC power to the storage battery as necessary to charge. As a result, regenerative energy can be absorbed and the engine can be operated efficiently.

エンジン203,コンバータ205,インバータ207は、運転台202からの運転指令信号と電源制御装置101からの充放電指令に基づいて動作する。インバータ207は、運転台202からの運転指令信号に従い、所望の列車駆動力が得られるようにモータを駆動する。エンジン203は、インバータが必要とするエネルギーに蓄電池の充放電エネルギーを加味したエネルギーを出力する。コンバータ205はエンジン出力と同等のエネルギーを出力する。   Engine 203, converter 205, and inverter 207 operate based on an operation command signal from cab 202 and a charge / discharge command from power supply control device 101. The inverter 207 drives the motor according to the operation command signal from the cab 202 so that a desired train driving force can be obtained. The engine 203 outputs energy obtained by adding charge / discharge energy of the storage battery to energy required by the inverter. Converter 205 outputs energy equivalent to the engine output.

エンジンと蓄電手段を用いるハイブリッドの構成には、上記のシリーズ構成以外にもエンジンの駆動力とモータの駆動力が平行して車輪に伝わるパラレル,シリーズとパラレルを組み合わせたシリーズパラレル等がある。本発明は蓄電手段からのエネルギーを常に安定して取り出すための電源制御装置に関するものであり、エンジンと蓄電手段の構成方法にかかわらず適用可能である。   In addition to the series configuration described above, the hybrid configuration using the engine and the power storage means includes a parallel configuration in which the driving force of the engine and the driving force of the motor are transmitted in parallel to the wheels, and a series parallel configuration in which the series and parallel are combined. The present invention relates to a power supply control device for constantly and stably extracting energy from power storage means, and can be applied regardless of the configuration method of the engine and the power storage means.

また本実施例では蓄電手段として蓄電池を用いたが、本発明は蓄電手段の状態を検知して充電率の制限を変更するものであり、電気2重層キャパシタ,燃料電池等の蓄電手段でも同様の効果が得られる。   In this embodiment, a storage battery is used as the power storage means. However, the present invention detects the state of the power storage means and changes the limit of the charging rate. The same applies to power storage means such as an electric double layer capacitor and a fuel cell. An effect is obtained.

図3は蓄電池の充放電制御動作表である。図1における充放電制御部104は、この表に従い充放電を制御する。   FIG. 3 is a charge / discharge control operation table of the storage battery. The charge / discharge control unit 104 in FIG. 1 controls charge / discharge according to this table.

一般に蓄電池は、使用する充電率の範囲が広いほど寿命が短くなる。また充放電率を極端に高くしたり、低くしたりすると蓄電池が極度に劣化することがある。このため本実施例では、充放電率に制限を設け充放電を制御する。   In general, the life of a storage battery is shortened as the range of the charging rate used increases. Further, if the charge / discharge rate is extremely increased or decreased, the storage battery may be extremely deteriorated. For this reason, in a present Example, a charge / discharge rate is restrict | limited and charging / discharging is controlled.

加速時には、充電率が放電下限より大きければ電力を放電する充放電指令を充放電制御部104が出力し、エンジンによる車両の加速をアシストする。また充電率が放電下限を下回ると充放電を停止する充放電指令を充放電制御部104が出力し、それ以上充電率が下がらないようにする。   At the time of acceleration, if the charging rate is larger than the lower limit of discharge, the charge / discharge control unit 104 outputs a charge / discharge command for discharging electric power to assist the acceleration of the vehicle by the engine. Further, when the charging rate falls below the lower limit of discharging, the charging / discharging control unit 104 outputs a charging / discharging command for stopping charging / discharging so that the charging rate does not decrease any more.

惰行時には、放電下限と充電上限の間に充電率の目標値を設定し、充電率が目標値以下では充電する充放電指令を充放電制御部104が出力し、目標値以上では停止する充放電指令を充放電制御部104が出力する。通常惰行後には減速するため、充電率目標値は回生によるエネルギー吸収量を考慮して停止時にほぼ充電上限程度になるように設定する。これにより再度の加速時に十分なエネルギーを放出できるようになる。   During coasting, a charging rate target value is set between the lower discharge limit and the upper charging limit. When the charging rate is equal to or lower than the target value, the charging / discharging control unit 104 outputs a charging / discharging command. The charge / discharge control unit 104 outputs a command. Since the vehicle decelerates after normal coasting, the charging rate target value is set to be approximately the upper limit of charging at the time of stopping in consideration of the amount of energy absorbed by regeneration. As a result, sufficient energy can be released during the second acceleration.

減速時には、充電率が充電上限より小さければ、回生エネルギーを充電する充放電指令を充放電制御部104が出力する。充電率が充電上限を超えた場合、充電を停止する充放電指令を充放電制御部104が出力し、それ以上充電率が上昇しないようにする。   At the time of deceleration, if the charging rate is smaller than the charging upper limit, the charging / discharging control unit 104 outputs a charging / discharging command for charging the regenerative energy. When the charge rate exceeds the charge upper limit, the charge / discharge control unit 104 outputs a charge / discharge command for stopping the charge so that the charge rate does not increase any more.

充電上限と放電下限は、図1の充放電制限部103が蓄電池の温度を基に設定するが、その詳細を述べる前に、蓄電池の充電率及び蓄電池容量と温度の関係について説明する。図4に蓄電池の充電率と蓄電池電圧の関係を示す。蓄電池の充電率を求める手法は、電圧によるものや電流を積算するもの等様々な手法が提案されている。本実施例では、充電率の検出手法に係わるものではなく、ここでは簡単さから電圧による手法を用いた。蓄電池の電圧は充電率が大きいほど高くなるため、蓄電池の電圧を測定すれば、図4から充電率を求めることが出来る。   The charge upper limit and the discharge lower limit are set based on the temperature of the storage battery by the charge / discharge restriction unit 103 in FIG. 1. Before describing the details, the relationship between the charge rate of the storage battery, the storage battery capacity, and the temperature will be described. FIG. 4 shows the relationship between the charging rate of the storage battery and the storage battery voltage. Various methods have been proposed for obtaining the charging rate of a storage battery, such as a method using voltage or a method of integrating current. In this embodiment, the method is not related to the method of detecting the charging rate, and a method using voltage is used here for simplicity. Since the voltage of the storage battery increases as the charging rate increases, the charging rate can be obtained from FIG. 4 by measuring the voltage of the storage battery.

図5には、蓄電池の容量と電池電圧の関係を示す。横軸の蓄電池容量は充電率100%の状態から放電した場合の容量を示している。図は温度が異なる場合の容量を示しており、電池の内部の特性により低温では高温に比べて容量が低下する。図の縦軸は先に述べたように充電率に対応している。例えば2本の線の右端はそれぞれの温度における充電率0%に相当するが、電圧値は同一である。このため図3を用いて説明した制御において充放電率の制限を固定値とすると、温度により充放電可能な容量が低下してしまう。充放電可能な容量の低下は、計画通りの車両運行の妨げとなるが、本発明はこれを防止することが可能である。   FIG. 5 shows the relationship between the capacity of the storage battery and the battery voltage. The storage battery capacity on the horizontal axis indicates the capacity when discharged from a state where the charging rate is 100%. The figure shows the capacity when the temperature is different, and the capacity decreases at a low temperature compared to the high temperature due to the internal characteristics of the battery. The vertical axis in the figure corresponds to the charging rate as described above. For example, the right ends of the two lines correspond to a charging rate of 0% at the respective temperatures, but the voltage values are the same. For this reason, if the limit of the charge / discharge rate is set to a fixed value in the control described with reference to FIG. 3, the chargeable / dischargeable capacity is lowered depending on the temperature. Although a decrease in chargeable / dischargeable capacity hinders vehicle operation as planned, the present invention can prevent this.

図6には、蓄電池の温度と容量の関係を示す。図5を用いて説明したように蓄電池の容量は温度と共に低下する。   FIG. 6 shows the relationship between the storage battery temperature and capacity. As described with reference to FIG. 5, the capacity of the storage battery decreases with temperature.

図7は、蓄電池の温度と充放電制限値の関係を示す。図1における充放電制限部103はこの図を基に、入力された温度情報から充放電制限値(充電上限,放電下限)を出力する。本実施例では温度を3つの領域に分割し、それぞれの領域ごとに制限値を変えた。各領域は便宜上、常温,低温,極低温と名付ける。充電上限と放電下限の間が、使用する充電率の範囲となる。それぞれの温度域における充電率制限値は、充電率の使用範囲が、図6に示した各温度における容量に反比例するように設定するとよい。これにより温度によらず一定のエネルギーの充放電が可能となる。   FIG. 7 shows the relationship between the temperature of the storage battery and the charge / discharge limit value. The charge / discharge limiting unit 103 in FIG. 1 outputs charge / discharge limit values (charge upper limit, discharge lower limit) from the input temperature information based on this figure. In this embodiment, the temperature is divided into three regions, and the limit value is changed for each region. For convenience, each region is named normal temperature, low temperature, and extremely low temperature. The range of the charging rate to be used is between the upper limit of charging and the lower limit of discharging. The charge rate limit value in each temperature range may be set so that the use range of the charge rate is inversely proportional to the capacity at each temperature shown in FIG. This makes it possible to charge and discharge with constant energy regardless of the temperature.

本実施例では温度領域は3分割としたが、細かく分割するほど温度による充放電可能エネルギーの変動が抑えられる。この充放電制限部では、このように充電率と温度の関係が示されたテーブル等を予め記憶させておけば、適宜温度情報に応じた制限値を出力できる。   In this embodiment, the temperature region is divided into three parts. However, as the temperature region is divided finely, fluctuations in chargeable / dischargeable energy due to temperature are suppressed. In this charge / discharge limiting unit, if a table or the like indicating the relationship between the charging rate and the temperature is stored in advance, a limit value corresponding to the temperature information can be output as appropriate.

図8には鉄道車両の走行時における各部の動作波形を示す。この図は駅間走行時の動作波形を示しており、時刻t0に出発してt1まで加速、その後惰行、時刻t3からt4まで減速し停車した場合を示している。充電率の図は常温時を実線、低温時を破線で示している。それ以外の速度,エンジン出力,蓄電池出力の波形は常温時と低温時とも同じである。   FIG. 8 shows operation waveforms of the respective parts when the railway vehicle is running. This figure shows an operation waveform when traveling between stations, and shows a case where the vehicle departs from time t0, accelerates to t1, then coasts, decelerates from time t3 to t4, and stops. The charging rate diagram is shown by a solid line at normal temperature and a broken line at low temperature. The other waveforms of speed, engine output, and battery output are the same at both normal and low temperatures.

まず常温時の動作について説明する。鉄道車両が加速している間は、蓄電池を放電し、エンジン出力をアシストしている。このとき充電率は時間とともに低下していく。時刻
t1で惰行を始めると、蓄電池は充電を開始し、加速時に低下した充電率が徐々に回復する。このときエンジンは低出力で運転し蓄電池が吸収するエネルギーを供給する。時刻
t2において、蓄電池の充電率が図3を用いて説明した目標値に達したため充電を停止する。このとき同時にエンジン出力も停止する。時刻t3において鉄道車両が減速を開始すると、蓄電池は充電を開始し、回生エネルギーを吸収する。減速中はエンジンからのエネルギー供給が不要なため、エンジン出力は停止する。時刻t4には鉄道車両が停止し、蓄電池の充電率は出発時刻であるt0の値に回復している。これにより次の駅間も同様に走行可能である。
First, the operation at normal temperature will be described. While the railway vehicle is accelerating, the storage battery is discharged to assist engine output. At this time, the charging rate decreases with time. When coasting is started at time t1, the storage battery starts to be charged, and the charging rate that has decreased during acceleration gradually recovers. At this time, the engine is operated at a low output and supplies energy absorbed by the storage battery. At time t2, charging is stopped because the charging rate of the storage battery has reached the target value described with reference to FIG. At the same time, the engine output is also stopped. When the railway vehicle starts to decelerate at time t3, the storage battery starts charging and absorbs regenerative energy. During deceleration, the engine output stops because energy supply from the engine is unnecessary. The railway vehicle stops at time t4, and the storage battery charging rate has recovered to the value of t0, which is the departure time. As a result, the next station can be driven in the same manner.

以上の動作において、電池容量はあらかじめ計画された走行パターンに応じて必要な容量としているため、走行中に充電率が充電上限や放電下限に到達することはなく、必要なエネルギーの放出あるいは吸収が可能となっている。   In the above operations, the battery capacity is set to the required capacity according to the planned driving pattern, so that the charging rate does not reach the upper limit of charging or the lower limit of discharging during driving and the required energy is released or absorbed. It is possible.

また本実施例では、加速時にアシストするエネルギーに比べて、回生するエネルギーが小さくなっている。このため惰行時には両者の差に相当するエネルギーを充電し、停止時に必要な充電量を確保している。加速時にアシストするエネルギーと回生エネルギーが同等の場合惰行時の発電は不要である。   In this embodiment, the regenerative energy is smaller than the energy that assists during acceleration. For this reason, energy corresponding to the difference between the two is charged during coasting, and a necessary charge amount is ensured when stopping. When the energy to assist at the time of acceleration is equal to the regenerative energy, power generation during coasting is unnecessary.

次に低温時の動作について説明する。蓄電池の容量が低下しているため、加速時には充電量が常温時より早く減少していく。これにより充電率は常温時の放電下限を下回る。しかし本発明では低温を検知し放電下限を引き下げているため、蓄電池からのアシストが停止することなく、常温時と同等の加速が可能となっている。惰行時には常温時と同様に充電するが、充電率の目標値は低温時の動作に合わせて変更する。この例では、常温時より低い値としている。減速時には常温時と同じ回生エネルギーを吸収するために、加速時と同様に充電率は早く変化する。そして常温時の充電上限を超えるが、充電上限を温度に応じて引き上げており、充電が停止することなく、必要なエネルギーを吸収可能である。   Next, the operation at a low temperature will be described. Since the capacity of the storage battery is decreasing, the amount of charge decreases at the time of acceleration faster than at normal temperature. As a result, the charge rate falls below the lower limit of discharge at room temperature. However, in the present invention, the low temperature is detected and the lower limit of discharge is lowered, so that the acceleration from the storage battery can be accelerated without stopping the assist from the storage battery. During coasting, charging is performed in the same way as at normal temperature, but the target value of the charging rate is changed according to the operation at low temperature. In this example, the value is lower than that at room temperature. When decelerating, the same regenerative energy as that at normal temperature is absorbed, so that the charging rate changes quickly as in acceleration. And although it exceeds the charge upper limit at the normal temperature, the charge upper limit is raised according to the temperature, and the necessary energy can be absorbed without stopping the charge.

なお極低温時の波形は省略するが、充放電の制限値の変更により、まったく同様の動作が可能である。   Although the waveform at an extremely low temperature is omitted, the same operation can be performed by changing the limit value of charge / discharge.

このように本発明では、温度による蓄電池容量の変化に合わせて、充電率の制限値を変更する。これにより、温度による蓄電池容量の低下が起きても、充放電が停止することなく、常に同様の充放電が可能である。その結果、車両走行も温度にかかわらず常に一定とすることが可能である。   Thus, in the present invention, the limit value of the charging rate is changed in accordance with the change in the storage battery capacity due to the temperature. Thereby, even if the storage battery capacity is reduced due to temperature, the same charging / discharging is always possible without stopping the charging / discharging. As a result, it is possible to keep the vehicle traveling constant regardless of the temperature.

図9に本発明の第2の実施例における電源制御装置の機能ブロック図を示す。   FIG. 9 shows a functional block diagram of the power supply control device in the second embodiment of the present invention.

第1の実施例と異なり、本実施例の状態検知部133は蓄電池の内部抵抗が示された蓄電池内部抵抗信号132を入力し、蓄電池の内部抵抗を検知する。そして蓄電池の内部抵抗に応じて充放電制限部103が、蓄電池の充電率の制限値(充電上限,放電下限)を出力する。なお、蓄電池の内部抵抗は、蓄電池が複数ある場合、個々の蓄電池の内部抵抗でも良いし、複数の蓄電池の全内部抵抗の合計、または複数の蓄電池の内部抵抗の平均値でも良い。電源制御装置131の他の部分や、鉄道車両の構成、及び充放電の制御方法等は、本発明の第1の実施例と同様である。   Unlike the first embodiment, the state detector 133 of this embodiment receives a storage battery internal resistance signal 132 indicating the internal resistance of the storage battery, and detects the internal resistance of the storage battery. And according to the internal resistance of a storage battery, the charging / discharging restriction | limiting part 103 outputs the limit value (charging upper limit, discharge lower limit) of the charging rate of a storage battery. In addition, when there are a plurality of storage batteries, the internal resistance of the storage battery may be the internal resistance of each storage battery, the sum of all the internal resistances of the plurality of storage batteries, or the average value of the internal resistances of the plurality of storage batteries. Other parts of the power supply control device 131, the configuration of the railway vehicle, the charge / discharge control method, and the like are the same as in the first embodiment of the present invention.

図10に蓄電池の等価回路モデル500を示す。蓄電池は内部抵抗501と理想電源
502で表すことが出来る。一般に蓄電池が劣化や低温により容量が低下すると、内部抵抗501が増加する傾向がある。
FIG. 10 shows an equivalent circuit model 500 of the storage battery. A storage battery can be represented by an internal resistance 501 and an ideal power source 502. Generally, when the capacity of a storage battery decreases due to deterioration or low temperature, the internal resistance 501 tends to increase.

図11に蓄電池の内部抵抗と容量の関係を示す。初期の状態から劣化が進むにつれて内部抵抗が増加し、それに伴い蓄電池容量も低下する。蓄電池の劣化でなく、蓄電池の温度の低下時も同様の特性を示す。   FIG. 11 shows the relationship between the internal resistance and capacity of the storage battery. As the deterioration progresses from the initial state, the internal resistance increases, and accordingly, the storage battery capacity also decreases. Similar characteristics are exhibited not only when the storage battery is deteriorated but also when the temperature of the storage battery is lowered.

図12には蓄電池の内部抵抗と充放電制限値の関係を示す。ここでは内部抵抗を3つの領域A,B,Cに分割し、抵抗が大きいほど充電上限と放電下限の間の使用範囲が広くなるように設定している。各抵抗領域の充電率制限値は、充電率の使用範囲が、その抵抗領域における容量に反比例するように設定するとよい。これにより蓄電池の抵抗増加によらず一定のエネルギーの充放電が可能となる。   FIG. 12 shows the relationship between the internal resistance of the storage battery and the charge / discharge limit value. Here, the internal resistance is divided into three regions A, B, and C, and the range of use between the upper limit of charging and the lower limit of discharging is set wider as the resistance increases. The charge rate limit value of each resistance region may be set so that the use range of the charge rate is inversely proportional to the capacity in the resistance region. This makes it possible to charge and discharge with constant energy regardless of the increase in resistance of the storage battery.

図13に本発明の第3の実施例における電源制御装置の機能ブロック図を示す。   FIG. 13 shows a functional block diagram of a power supply control apparatus according to the third embodiment of the present invention.

第1の実施例と異なり、本実施例の状態検知部143は蓄電池開放信号142を入力とし、複数の蓄電池から構成された蓄電池モジュールの故障状態を検知する。そして蓄電池の故障状態に応じて充放電制限部103が、蓄電池の充電率の制限値(充電上限,放電下限)を出力する。電源制御装置141の他の部分や、鉄道車両の構成、及び充放電の制御方法等は、本発明の第1の実施例と同様である。   Unlike the first embodiment, the state detection unit 143 of the present embodiment receives the storage battery open signal 142 as an input and detects a failure state of a storage battery module composed of a plurality of storage batteries. And according to the failure state of the storage battery, the charge / discharge limiting unit 103 outputs a limit value (charge upper limit, discharge lower limit) of the charge rate of the storage battery. Other parts of the power supply control device 141, the configuration of the railway vehicle, the charge / discharge control method, and the like are the same as those of the first embodiment of the present invention.

図14に複数の蓄電池を組み合わせた蓄電池モジュールの構成を示す。ここでは5直列5並列の25個の蓄電池511〜515,521〜525,531〜535,541〜
545,551〜555で蓄電池モジュールを構成している。直列に接続された蓄電池の組それぞれに直列したスイッチ561〜565を設置している。通常スイッチ561〜
565はすべてオン状態とし、すべての蓄電池511〜515,521〜525,531〜535,541〜545,551〜555が充放電可能とする。蓄電池に異常が発生すると該当する列のスイッチ561〜565をオフしその列を開放し、健全な電池により充放電を継続可能とする。例えば、蓄電池514が故障したとすると対応するスイッチ561をオフする。これにより蓄電池モジュール全体が停止することなく、一部の蓄電池のみで継続的に動作が可能となる。但し開放した蓄電池の数に応じて、蓄電池モジュール全体の容量が低下する。なお、状態検知部143で検知される蓄電池開放信号142は、この蓄電池の組に設けられたスイッチが開放した数(オフ状態の数)、またはスイッチのオン状態の数、または故障した蓄電池の数が示された信号である。また、上記実施例ではスイッチを蓄電池の組に対して1つ設けた構成としたが、コスト及び設置面積を考えなければ個々の蓄電池にスイッチを設けても良い。また5直列5並列の25個の蓄電池としたが、これに限ったものではない。
FIG. 14 shows a configuration of a storage battery module in which a plurality of storage batteries are combined. Here, 25 storage batteries 511 to 515, 521 to 525, 531 to 535, and 541 to 5 in 5 series and 5 in parallel are provided.
The storage battery module is comprised by 545,551-555. Switches 561 to 565 in series are installed in each set of storage batteries connected in series. Normal switch 561-
565 are all turned on, and all the storage batteries 511 to 515, 521 to 525, 531 to 535, 541 to 545, 551 to 555 can be charged and discharged. When an abnormality occurs in the storage battery, the switches 561 to 565 in the corresponding row are turned off, the row is opened, and charging and discharging can be continued with a healthy battery. For example, if the storage battery 514 fails, the corresponding switch 561 is turned off. Thereby, it becomes possible to operate continuously with only some of the storage batteries without stopping the entire storage battery module. However, the capacity of the entire storage battery module decreases according to the number of storage batteries opened. Note that the storage battery open signal 142 detected by the state detection unit 143 is the number of switches provided in the set of storage batteries opened (number of OFF states), the number of ON states of the switches, or the number of failed storage batteries. Is the indicated signal. In the above embodiment, one switch is provided for each set of storage batteries. However, a switch may be provided for each storage battery in consideration of cost and installation area. Moreover, although it was set as 25 storage batteries of 5 series 5 parallel, it is not restricted to this.

図15には蓄電池モジュールの蓄電池開放数と充電率制限値の関係を示す。横軸は開放した蓄電池の列数であり、開放数が多い程充電上限と放電下限の間の使用範囲が広くなるように設定している。各開放数の充電率の制限値は、開放していない蓄電池の数に反比例するように設定するとよい。このようなテーブルを持つことで、状態検知部で入力された蓄電池開放数(故障した蓄電池の数,開放されたスイッチの数など)に対して、最適な充電上限と放電下限を出力できる。これにより蓄電池モジュール内の一部の蓄電池を開放しても開放前と同量のエネルギーの充放電が可能となる。   FIG. 15 shows the relationship between the number of opened storage batteries of the storage battery module and the charge rate limit value. The horizontal axis represents the number of open storage batteries, and the range of use between the upper limit of charge and the lower limit of discharge is set wider as the number of opened batteries increases. The limit value of the charging rate for each open number may be set to be inversely proportional to the number of storage batteries that are not open. By having such a table, it is possible to output the optimum charge upper limit and discharge lower limit with respect to the number of opened storage batteries (number of failed storage batteries, number of opened switches, etc.) input by the state detection unit. Thereby, even if some storage batteries in the storage battery module are opened, it is possible to charge and discharge the same amount of energy as before opening.

本発明に係る電源制御装置の一実施例を示した機能ブロック図である。It is the functional block diagram which showed one Example of the power supply control apparatus which concerns on this invention. 本発明に係る電源制御装置を搭載したハイブリッド鉄道車両の一実施例を示した図である。It is the figure which showed one Example of the hybrid railway vehicle carrying the power supply control device which concerns on this invention. 本発明の蓄電池の充放電制御動作を説明する図である。It is a figure explaining charging / discharging control operation | movement of the storage battery of this invention. 本発明の蓄電池の充電率と蓄電池電圧の関係を示した図である。It is the figure which showed the relationship between the charging rate of the storage battery of this invention, and storage battery voltage. 本発明の蓄電池の容量と電池電圧の関係を示した図である。It is the figure which showed the relationship between the capacity | capacitance of the storage battery of this invention, and battery voltage. 本発明の蓄電池の温度と容量の関係を示した図である。It is the figure which showed the relationship between the temperature and the capacity | capacitance of the storage battery of this invention. 本発明の蓄電池の温度と充電率制限値の関係を示した図である。It is the figure which showed the relationship between the temperature of the storage battery of this invention, and a charging rate limiting value. 本発明の鉄道車両の走行時における各部の動作波形を示した図である。It is the figure which showed the operation | movement waveform of each part at the time of driving | running | working of the railway vehicle of this invention. 本発明に係る電源制御装置の他の実施例を示した機能ブロック図である。It is the functional block diagram which showed the other Example of the power supply control apparatus which concerns on this invention. 本発明の蓄電池の等価回路モデルを示した図である。It is the figure which showed the equivalent circuit model of the storage battery of this invention. 本発明の蓄電池の内部抵抗と容量の関係を示した図である。It is the figure which showed the relationship between the internal resistance and capacity | capacitance of the storage battery of this invention. 本発明の蓄電池の内部抵抗と充電率制限値の関係を示した図である。It is the figure which showed the relationship between the internal resistance of the storage battery of this invention, and a charging rate limiting value. 本発明に係る電源制御装置の他の実施例を示した機能ブロック図である。It is the functional block diagram which showed the other Example of the power supply control apparatus which concerns on this invention. 本発明の複数の蓄電池を組み合わせた蓄電池モジュールの一例を示した図である。It is the figure which showed an example of the storage battery module which combined the some storage battery of this invention. 本発明に蓄電池モジュールの蓄電池開放数と充電率制限値の関係を示した図である。It is the figure which showed the relationship between the storage battery open | release number of a storage battery module, and a charging rate limit value in this invention.

符号の説明Explanation of symbols

101,131,141 電源制御装置
102,133,144 状態検知部
103 充放電制限部
104 充放電制御部
111 蓄電池温度信号
112 蓄電池充電率信号
113 運転指令信号
121 充放電指令信号
132 蓄電池内部抵抗信号
142 蓄電池開放数信号
201 鉄道車両
202 運転台
203 エンジン
204 発電機
205 コンバータ
206 蓄電池
207 インバータ
208 モータ
500 等価回路モデル
501 内部抵抗
502 理想電源
511〜515,521〜525,531〜535,541〜545,551〜555 蓄電池
561〜565 スイッチ
101, 131, 141 Power supply control device 102, 133, 144 State detection unit 103 Charge / discharge limiting unit 104 Charge / discharge control unit 111 Storage battery temperature signal 112 Storage battery charge rate signal 113 Operation command signal 121 Charge / discharge command signal 132 Storage battery internal resistance signal 142 Storage battery open signal 201 Rail vehicle 202 Driver's cab 203 Engine 204 Generator 205 Converter 206 Storage battery 207 Inverter 208 Motor 500 Equivalent circuit model 501 Internal resistance 502 Ideal power supply 511 to 515, 521 to 525, 531 to 535, 541 to 545, 551 ~ 555 Storage battery 561 ~ 565 Switch

Claims (16)

蓄電手段の充電及び放電を制御する電源制御装置であって、
前記蓄電手段の状態情報を検知する状態検知手段と、
前記状態検知手段で検知された前記状態情報に基づいて、前記蓄電手段の充電率を所定の制限範囲内に抑える充電上限値及び放電下限値を設定する充放電制限手段と、
前記蓄電手段の充電率信号及び運転台からの運転指令値を入力し、前記充放電信号と、前記運転指令値と、前記充電上限値及び放電下限値とに基づいて前記蓄電手段の充放電指令を生成し、前記充放電指令を出力する充放電制御手段と、
を有する電源制御装置。
A power supply control device for controlling charging and discharging of the storage means,
State detecting means for detecting state information of the power storage means;
Based on the state information detected by the state detection unit, a charge / discharge limiting unit that sets a charge upper limit value and a discharge lower limit value that suppress the charge rate of the power storage unit within a predetermined limit range; and
The charge rate signal of the power storage means and the operation command value from the cab are input, and the charge / discharge command of the power storage means is based on the charge / discharge signal, the operation command value, and the charge upper limit value and the discharge lower limit value. And charge / discharge control means for outputting the charge / discharge command,
A power supply control device.
請求項1記載の電源制御装置であって、
前記状態検知手段は、前記蓄電手段の温度を検知する電源制御装置。
The power supply control device according to claim 1,
The state detection unit is a power supply control device that detects a temperature of the power storage unit.
請求項1記載の電源制御装置であって、
前記状態検知手段は、前記蓄電手段の内部抵抗を検知する電源制御装置。
The power supply control device according to claim 1,
The state detection unit is a power supply control device that detects an internal resistance of the power storage unit.
請求項1記載の電源制御装置であって、
前記蓄電手段は、複数の蓄電池を有し、
前記状態検知手段は、複数の蓄電池のうち故障した蓄電池の数を検出する電源制御装置。
The power supply control device according to claim 1,
The power storage means has a plurality of storage batteries,
The state detection means is a power supply control device that detects the number of failed storage batteries among a plurality of storage batteries.
請求項1記載の電源制御装置であって、
前記充放電制御手段は、加速時には前記充電率信号が、前記放電下限値より大きい場合、電力を放電する充放電指令を出力し、前記充電率信号が、前記放電下限値より小さい場合、電力の充放電を停止する充放電指令を出力する電源制御装置。
The power supply control device according to claim 1,
The charge / discharge control means outputs a charge / discharge command for discharging power when the charge rate signal is larger than the discharge lower limit value during acceleration, and when the charge rate signal is smaller than the discharge lower limit value, A power supply control device that outputs a charge / discharge command for stopping charge / discharge.
請求項1記載の電源制御装置であって、
前記充放電制御手段は、減速時には前記充電率信号が、前記充電上限値より小さい場合、回生エネルギーを充電する充放電指令を出力し、前記充電率信号が、前記充電上限値より大きい場合、電力の充放電を停止する充放電指令を出力する電源制御装置。
The power supply control device according to claim 1,
The charge / discharge control means outputs a charge / discharge command for charging regenerative energy when the charge rate signal is smaller than the charge upper limit value during deceleration, and when the charge rate signal is greater than the charge upper limit value, The power supply control apparatus which outputs the charging / discharging instruction | command which stops charging / discharging.
請求項1記載の電源制御装置であって、
前記充放電制御手段は、惰行時には前記充電率信号が、前記放電下限値と前記充電上限値間で予め定められた目標値より小さい場合、電力を充電する充放電指令を出力し、前記充電率信号が、前記目標値より大きい場合、電力の充放電を停止する充放電指令を出力する電源制御装置。
The power supply control device according to claim 1,
The charge / discharge control means outputs a charge / discharge command for charging power when the charging rate signal is smaller than a predetermined target value between the discharge lower limit value and the charge upper limit value during coasting, and the charge rate A power supply control device that outputs a charge / discharge command for stopping charge / discharge of power when the signal is larger than the target value.
エンジンと、
交流電力を生成する発電機と、
前記発電機から出力された前記交流電力を直流電力に変換し、前記直流電力を出力するコンバータと、
前記コンバータから出力された前記直流電力に基づいてモータを駆動するインバータと、
前記コンバータからの前記直流電力を充電し、または前記インバータへ蓄積された直流電力を放電する蓄積手段と、
前記蓄電手段の状態情報を検知する状態検知手段と、前記状態検知手段で検知された前記状態情報に基づいて、前記蓄電手段の充電率を所定の制限範囲内に抑える充電上限値及び放電下限値を設定する充放電制限手段と、前記蓄電手段の充電率信号及び運転台(202)からの運転指令値を入力し、前記充放電信号と、前記運転指令値と、前記充電上限値及び放電下限値とに基づいて前記蓄電手段の充放電指令を生成し、前記充放電指令を出力する充放電制御手段と、を有する電源制御装置と、を有し、
前記エンジンと、前記コンバータと、前記インバータは、前記電源制御装置からの充放電指令と前記運転台からの運転指令信号に基づいて動作される鉄道車両。
Engine,
A generator for generating AC power;
A converter that converts the AC power output from the generator into DC power and outputs the DC power;
An inverter that drives a motor based on the DC power output from the converter;
Storage means for charging the DC power from the converter or discharging DC power stored in the inverter;
Based on the state information detected by the state detection means and the state information detected by the state detection means, a charge upper limit value and a discharge lower limit value that suppress the charge rate of the power storage means within a predetermined limit range The charge / discharge limiting means for setting, the charge rate signal of the power storage means and the operation command value from the cab (202) are input, the charge / discharge signal, the operation command value, the charge upper limit value and the discharge lower limit A charge / discharge control means for generating a charge / discharge command for the power storage means based on the value and outputting the charge / discharge command, and a power supply control device comprising:
The engine, the converter, and the inverter are operated on the basis of a charge / discharge command from the power supply control device and an operation command signal from the cab.
請求項8記載の鉄道車両であって、
前記状態検知手段は、前記蓄電手段の温度を検知する鉄道車両。
The railway vehicle according to claim 8,
The state detection means is a railway vehicle that detects the temperature of the power storage means.
請求項8記載の鉄道車両であって、
前記状態検知手段は、前記蓄電手段の内部抵抗を検知する鉄道車両。
The railway vehicle according to claim 8,
The state detection means is a railway vehicle that detects an internal resistance of the power storage means.
請求項8記載の鉄道車両であって、
前記蓄電手段は、複数の蓄電池を有し、
前記状態検知手段は、複数の蓄電池のうち故障した蓄電池の数を検出する鉄道車両。
The railway vehicle according to claim 8,
The power storage means has a plurality of storage batteries,
The state detection means is a railway vehicle that detects the number of failed storage batteries among a plurality of storage batteries.
請求項11記載の鉄道車両であって、
前記蓄電手段は、前記複数の蓄電池の各々を直列に接続された蓄電池モジュールを複数有し、
前記複数の蓄電池モジュールの各々には、蓄電池からの電力の充放電を切り換えるスイッチを有する鉄道車両。
The railway vehicle according to claim 11,
The power storage means includes a plurality of storage battery modules in which the plurality of storage batteries are connected in series,
Each of the plurality of storage battery modules has a switch for switching charging / discharging of electric power from the storage battery.
請求項8記載の鉄道車両であって、
前記蓄電手段は、蓄電池,電気2重層キャパシタ,燃料電池のいずれかである鉄道車両。
The railway vehicle according to claim 8,
The electric storage means is a railway vehicle that is one of a storage battery, an electric double layer capacitor, and a fuel cell.
請求項8記載の鉄道車両であって、
前記電源制御装置の充放電制御手段は、加速時には前記充電率信号が、前記放電下限値より大きい場合、電力を放電する充放電指令を出力し、前記充電率信号が、前記放電下限値より小さい場合、電力の充放電を停止する充放電指令を出力する鉄道車両。
The railway vehicle according to claim 8,
The charge / discharge control means of the power supply control device outputs a charge / discharge command for discharging power when the charge rate signal is larger than the discharge lower limit value during acceleration, and the charge rate signal is smaller than the discharge lower limit value. If this is the case, the railway vehicle outputs a charge / discharge command for stopping the charge / discharge of the power.
請求項8記載の鉄道車両であって、
前記電源制御装置の充放電制御手段は、減速時には前記充電率信号が、前記充電上限値より小さい場合、回生エネルギーを充電する充放電指令を出力し、前記充電率信号が、前記充電上限値より大きい場合、電力の充放電を停止する充放電指令を出力する鉄道車両。
The railway vehicle according to claim 8,
The charge / discharge control means of the power supply control device outputs a charge / discharge command for charging regenerative energy when the charge rate signal is smaller than the charge upper limit value during deceleration, and the charge rate signal is more than the charge upper limit value. If large, a railway vehicle that outputs a charge / discharge command to stop charging / discharging of power.
請求項8記載の鉄道車両であって、
前記電源制御装置の充放電制御手段は、惰行時には前記充電率信号が、前記放電下限値と前記充電上限値間で予め定められた目標値より小さい場合、電力を充電する充放電指令を出力し、前記充電率信号が、前記目標値より大きい場合、電力の充放電を停止する充放電指令を出力する鉄道車両。
The railway vehicle according to claim 8,
The charge / discharge control means of the power supply control device outputs a charge / discharge command for charging electric power when the charging rate signal is smaller than a predetermined target value between the discharge lower limit value and the charge upper limit value during coasting. When the charge rate signal is larger than the target value, the railway vehicle outputs a charge / discharge command for stopping charge / discharge of electric power.
JP2006279400A 2006-10-13 2006-10-13 Power controller and rolling stock using the same Pending JP2008099461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006279400A JP2008099461A (en) 2006-10-13 2006-10-13 Power controller and rolling stock using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006279400A JP2008099461A (en) 2006-10-13 2006-10-13 Power controller and rolling stock using the same

Publications (1)

Publication Number Publication Date
JP2008099461A true JP2008099461A (en) 2008-04-24

Family

ID=39381708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006279400A Pending JP2008099461A (en) 2006-10-13 2006-10-13 Power controller and rolling stock using the same

Country Status (1)

Country Link
JP (1) JP2008099461A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028963A (en) * 2008-07-17 2010-02-04 Honda Motor Co Ltd Electric vehicle system
JP2011019328A (en) * 2009-07-08 2011-01-27 Toshiba Corp Energy storage device system and method of restricting output in energy storage device
WO2011021266A1 (en) * 2009-08-17 2011-02-24 三菱電機株式会社 Power converter for propulsion of electric car
WO2011142022A1 (en) * 2010-05-14 2011-11-17 トヨタ自動車株式会社 Hybrid vehicle control device and hybrid vehicle
JP4846064B2 (en) * 2009-08-17 2011-12-28 三菱電機株式会社 Electric vehicle propulsion power converter
KR101183751B1 (en) * 2009-09-10 2012-09-17 가부시키가이샤 히다치 엔지니어링 서비스 Power storage device of power generation system and operation method thereof
JP2017189062A (en) * 2016-04-08 2017-10-12 株式会社日立製作所 Railway vehicle
CN111703443A (en) * 2020-05-29 2020-09-25 中车株洲电力机车有限公司 Hybrid locomotive and energy balance control method and system thereof
WO2021010288A1 (en) * 2019-07-12 2021-01-21 川崎重工業株式会社 Synchronous generator control device and electricity supply system provided with same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217406A (en) * 1993-01-18 1994-08-05 Toshiba Corp Driver for electric automobile
JP2000175306A (en) * 1998-12-07 2000-06-23 Honda Motor Co Ltd Controller of hybrid vehicle
JP2002252931A (en) * 2000-12-13 2002-09-06 Hyundai Motor Co Ltd Charging control method of battery for electric vehicle
JP2004134129A (en) * 2002-10-08 2004-04-30 Honda Motor Co Ltd Charge/discharge control device of storage battery
JP2005153841A (en) * 2003-11-20 2005-06-16 Sofutoronikusu Kk Battery circuit of electric motor
JP2005160269A (en) * 2003-11-28 2005-06-16 Equos Research Co Ltd Drive controller and hybrid vehicle
JP2005269825A (en) * 2004-03-19 2005-09-29 Yanmar Co Ltd Hybrid system
JP2006074998A (en) * 2005-11-07 2006-03-16 Hitachi Ltd Rolling stock
JP2006222087A (en) * 2003-02-14 2006-08-24 Hitachi Ltd Secondary battery device for hybrid rail vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217406A (en) * 1993-01-18 1994-08-05 Toshiba Corp Driver for electric automobile
JP2000175306A (en) * 1998-12-07 2000-06-23 Honda Motor Co Ltd Controller of hybrid vehicle
JP2002252931A (en) * 2000-12-13 2002-09-06 Hyundai Motor Co Ltd Charging control method of battery for electric vehicle
JP2004134129A (en) * 2002-10-08 2004-04-30 Honda Motor Co Ltd Charge/discharge control device of storage battery
JP2006222087A (en) * 2003-02-14 2006-08-24 Hitachi Ltd Secondary battery device for hybrid rail vehicle
JP2005153841A (en) * 2003-11-20 2005-06-16 Sofutoronikusu Kk Battery circuit of electric motor
JP2005160269A (en) * 2003-11-28 2005-06-16 Equos Research Co Ltd Drive controller and hybrid vehicle
JP2005269825A (en) * 2004-03-19 2005-09-29 Yanmar Co Ltd Hybrid system
JP2006074998A (en) * 2005-11-07 2006-03-16 Hitachi Ltd Rolling stock

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028963A (en) * 2008-07-17 2010-02-04 Honda Motor Co Ltd Electric vehicle system
JP2011019328A (en) * 2009-07-08 2011-01-27 Toshiba Corp Energy storage device system and method of restricting output in energy storage device
EP2468562A4 (en) * 2009-08-17 2016-12-28 Mitsubishi Electric Corp Electric-vehicle propulsion power-conversion device
RU2509001C2 (en) * 2009-08-17 2014-03-10 Мицубиси Электрик Корпорейшн Power converter with motor for automotive engine
WO2011021266A1 (en) * 2009-08-17 2011-02-24 三菱電機株式会社 Power converter for propulsion of electric car
JP4846064B2 (en) * 2009-08-17 2011-12-28 三菱電機株式会社 Electric vehicle propulsion power converter
WO2011021443A1 (en) * 2009-08-17 2011-02-24 三菱電機株式会社 Electric-vehicle propulsion power-conversion device
US9013135B2 (en) 2009-08-17 2015-04-21 Mitsubishi Electric Corporation Power converting apparatus for electric motor vehicle propulsion
JPWO2011021443A1 (en) * 2009-08-17 2013-01-17 三菱電機株式会社 Electric vehicle propulsion power converter
KR101183751B1 (en) * 2009-09-10 2012-09-17 가부시키가이샤 히다치 엔지니어링 서비스 Power storage device of power generation system and operation method thereof
US8575886B2 (en) 2009-09-10 2013-11-05 Hitachi Engineering & Services Co., Ltd. Power storage apparatus of power generation system and operating method of power storage apparatus
JP5042369B2 (en) * 2009-09-10 2012-10-03 株式会社日立エンジニアリング・アンド・サービス Power storage device for power generation system and method of operating power storage device
WO2011142022A1 (en) * 2010-05-14 2011-11-17 トヨタ自動車株式会社 Hybrid vehicle control device and hybrid vehicle
JP2017189062A (en) * 2016-04-08 2017-10-12 株式会社日立製作所 Railway vehicle
WO2021010288A1 (en) * 2019-07-12 2021-01-21 川崎重工業株式会社 Synchronous generator control device and electricity supply system provided with same
CN111703443A (en) * 2020-05-29 2020-09-25 中车株洲电力机车有限公司 Hybrid locomotive and energy balance control method and system thereof
CN111703443B (en) * 2020-05-29 2021-03-26 中车株洲电力机车有限公司 Hybrid locomotive and energy balance control method and system thereof

Similar Documents

Publication Publication Date Title
JP2008099461A (en) Power controller and rolling stock using the same
JP4574643B2 (en) Battery-powered railway train
JP4929689B2 (en) Control method of hybrid vehicle and prime mover
JP4417949B2 (en) Railway vehicle drive system
JP2006087299A (en) Electric vehicle controller
WO2011021266A1 (en) Power converter for propulsion of electric car
JP2008054408A (en) Driver of rail vehicle
JP5119229B2 (en) Vehicle control device
JP3795803B2 (en) Electric vehicle control device
JP2005162076A (en) Method and device for controlling regenerative power absorption for electric railroad, and control device for power converter
EP2636556A1 (en) Train car system control device
JP2009254069A (en) Method and device for controlling railway vehicle
JP4830448B2 (en) Vehicle drive system
US9948217B2 (en) Synchronous energy source switching controller and method of operation thereof
JP2018083574A (en) Travel control device for vehicle
JP2008054387A (en) Controller of electric vehicle
JP2010119176A (en) On-vehicle power supply apparatus
WO2013088522A1 (en) Generator control device for hybrid vehicle
KR101836643B1 (en) Mild hybrid system of vehicle
KR100579298B1 (en) Auxiliary battery charge control method for environment car
JP4768320B2 (en) Control device for hybrid vehicle
KR100981305B1 (en) Regeneration energy storage system of electric railway vehicles
JP2008079436A (en) Power supply control unit
JP2002369304A (en) Controller electric rolling stock
JP4670827B2 (en) Vehicle control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104