JP2008090209A - Focal position adjusting method for exposure apparatus - Google Patents

Focal position adjusting method for exposure apparatus Download PDF

Info

Publication number
JP2008090209A
JP2008090209A JP2006273689A JP2006273689A JP2008090209A JP 2008090209 A JP2008090209 A JP 2008090209A JP 2006273689 A JP2006273689 A JP 2006273689A JP 2006273689 A JP2006273689 A JP 2006273689A JP 2008090209 A JP2008090209 A JP 2008090209A
Authority
JP
Japan
Prior art keywords
focal position
support member
regression line
exposed
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006273689A
Other languages
Japanese (ja)
Other versions
JP5061567B2 (en
Inventor
Koji Suenaga
幸治 末永
Satoru Kato
悟 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2006273689A priority Critical patent/JP5061567B2/en
Publication of JP2008090209A publication Critical patent/JP2008090209A/en
Application granted granted Critical
Publication of JP5061567B2 publication Critical patent/JP5061567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • B41J2/451Special optical means therefor, e.g. lenses, mirrors, focusing means

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a focal position adjusting method for an exposure apparatus that reduces unevenness in density of an imaging apparatus occurring due to variation in focal position in LED head. <P>SOLUTION: A regression line P is derived from MTF data S in which focal position for each LED array is obtained and correction of MTF data S<SB>1</SB>and the regression line P are carried out so that slope and segment of the regression line P is "0" (after correction; MTF data S<SB>2</SB>and a regression line Q). Then, distance OS segment with the regression line Q is calculated by calculating a central value (M) for the MTF data S<SB>2</SB>after correction, distance H<SB>1</SB>and H<SB>2</SB>from a bottom surface of a substrate supporting part to a tip of an adjusting pin from the bottom face of the substrate holder of the LED head is calculated and the position of the tip of the adjusting pin is adjusted. Thus, no great unevenness in density occurs in an image forming apparatus. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、特に、発光素子アレイと結像素子レンズアレイとを備えた露光装置の焦点位置調整方法   The present invention particularly relates to a method for adjusting a focal position of an exposure apparatus including a light emitting element array and an imaging element lens array.

従来より、複写機やプリンタ等の画像形成装置では、露光装置によって感光体を画像に応じて露光することにより静電潜像を形成し、該静電潜像をトナー現像することにより感光体上に形成されたトナー像を被転写媒体に転写することで画像を形成している。   2. Description of the Related Art Conventionally, in an image forming apparatus such as a copying machine or a printer, an electrostatic latent image is formed by exposing a photosensitive member according to an image by an exposure device, and the electrostatic latent image is developed on the photosensitive member by toner development. An image is formed by transferring the toner image formed on the toner image to a transfer medium.

感光体に静電潜像を形成するための光源としては、従来からLD(Laser Diode)が用いられてきたが、近年ではLED(Light Emitting Diode)素子などの発光素子を各画素に対応して一列に配置した発光素子アレイと、各発光素子から出力された光を感光体表面に結像させるようセルフォックレンズなどの結像レンズを配置した結像素子レンズアレイとを備える露光装置が用いられている。   As a light source for forming an electrostatic latent image on a photoconductor, an LD (Laser Diode) has been used in the past. In recent years, a light emitting element such as an LED (Light Emitting Diode) element is associated with each pixel. An exposure apparatus including a light emitting element array arranged in a row and an image forming element lens array in which an image forming lens such as a SELFOC lens is formed so as to image light output from each light emitting element on the surface of the photosensitive member is used. ing.

このような露光装置を用いた画像形成装置では、発光素子アレイの各LED素子を画像データに基づいて駆動させ、画像データに基づく光を出力し、結像レンズによって出力された光を感光体表面に結像させることにより、感光体を画像データに基づいて露光すると共に、感光体と露光装置とを相対移動させる(この移動方向を「副走査方向」という)ことにより、露光位置を移動させて感光体上に画像を形成する。   In the image forming apparatus using such an exposure apparatus, each LED element of the light emitting element array is driven based on the image data, the light based on the image data is output, and the light output by the imaging lens is transmitted to the surface of the photoreceptor. In this way, the photosensitive member is exposed based on the image data, and the photosensitive member and the exposure device are moved relative to each other (this moving direction is referred to as “sub-scanning direction”), thereby moving the exposure position. An image is formed on the photoreceptor.

しかしながら、かかる露光装置を備える画像装置では、複数の発光素子を搭載するLED素子毎の性能のばらつきや、各発光素子のばらつき、結像素子レンズアレイの屈折率分布のばらつき、レンズの配列乱れ、発光素子アレイと結像素子レンズアレイの組み立て誤差、LED素子の焦点位置や発光光量のばらつきなどにより、濃度ムラが発生しやすい。この濃度ムラは画質低下の原因となる。
このため、特許文献1では、焦点位置で印字した後、LEDヘッドを平行移動させて再び印字を実施し、パターンより感光体とのずれ量を計算し焦点を調整する方法が開示されているが、LEDヘッドの位置をずらして複数枚印字出力する必要があり、時間がかかり生産性が悪い。
However, in an image apparatus equipped with such an exposure apparatus, performance variations among LED elements equipped with a plurality of light emitting elements, variations in each light emitting element, variations in the refractive index distribution of the imaging element lens array, lens arrangement disorder, Density unevenness is likely to occur due to assembly errors between the light emitting element array and the imaging element lens array, variations in the focus position of the LED elements and the amount of emitted light. This density unevenness causes a reduction in image quality.
For this reason, Patent Document 1 discloses a method in which, after printing at the focal position, the LED head is moved in parallel, printing is performed again, the amount of deviation from the photoconductor is calculated from the pattern, and the focus is adjusted. Therefore, it is necessary to shift the position of the LED head to print out a plurality of sheets, which takes time and productivity is poor.

また、特許文献2では、LED基板あるいはレンズを弾性変形させる手段により焦点位置を調整する方法が開示されているが、レンズの変形方向が一方向しかできないため、全体でロバスト性の高い位置合わせを行うことは困難である。   Further, Patent Document 2 discloses a method of adjusting the focal position by means of elastically deforming the LED substrate or the lens. However, since the lens can be deformed only in one direction, alignment with high robustness as a whole is possible. It is difficult to do.

さらに、特許文献3は、長さの異なる位置決め部材を選択してLEDヘッドを位置決めする方法が開示されているが、多くの位置決め部材が必要であり、LEDヘッドの構成が複雑になる。また位置決め部材のばらつきにより焦点位置を精確に調整することは困難である。
また、特許文献4は、光プリントヘッド(LEDヘッドに相当)に偏心カムを当接させ、偏心カムの軸を回転させることで光プリントヘッドの焦点位置を調整しているが、偏心カムを回転させる機構が別途必要となり光プリントヘッドのサイズが大きくなってしまうという課題を持っている。
特開昭62−166372号公報 特開平9−1857号公報 特開2003−11414号公報 特開2003−285471号公報
Further, Patent Document 3 discloses a method for positioning an LED head by selecting positioning members having different lengths, but many positioning members are required, and the configuration of the LED head becomes complicated. In addition, it is difficult to accurately adjust the focal position due to variations in positioning members.
In Patent Document 4, an eccentric cam is brought into contact with an optical print head (corresponding to an LED head), and the focal position of the optical print head is adjusted by rotating the shaft of the eccentric cam. A separate mechanism is required, and the size of the optical print head increases.
JP-A-62-166372 JP-A-9-1857 JP 2003-11414 A JP 2003-285471 A

本発明は上記事実を考慮し、LEDヘッドの焦点位置のバラツキにより生じる画像装置の濃度ムラを小さくすることができる露光装置の焦点位置調整方法を得ることを目的とする。   SUMMARY OF THE INVENTION In consideration of the above facts, an object of the present invention is to provide a method for adjusting the focal position of an exposure apparatus that can reduce density unevenness in an image apparatus caused by variation in the focal position of an LED head.

上記目的を達成するために、請求項1に記載の発明は、露光装置の焦点位置調整方法において、複数の発光素子が列状に並んで配置された基板と、前記発光素子が発光した光を被露光体に結像させる結像素子と、前記基板及び前記結像素子の少なくとも一方を支持する支持部材と、前記支持部材を前記被露光体に対して接離させる方向へ移動させる焦点位置調整手段と、を備え、各前記発光素子の焦点位置を求めた座標上の焦点位置データから回帰直線を求め、該回帰直線の傾きを0にしたとき、回帰直線上にある発光素子の焦点位置が前記被露光体の表面となるように前記焦点位置調整手段で支持部材の位置を調整する。   In order to achieve the above object, according to a first aspect of the present invention, there is provided a focus position adjusting method for an exposure apparatus, comprising: a substrate on which a plurality of light emitting elements are arranged in a line; and light emitted by the light emitting elements. An imaging element that forms an image on an object to be exposed, a support member that supports at least one of the substrate and the imaging element, and a focal position adjustment that moves the support member in a direction in which the object is in contact with or separated from the object to be exposed A regression line is obtained from the focal position data on the coordinates where the focal position of each light emitting element is obtained, and when the slope of the regression line is set to 0, the focal position of the light emitting element on the regression line is The position of the support member is adjusted by the focal position adjusting means so as to be the surface of the object to be exposed.

請求項1に記載の発明では、複数の発光素子が列状に並んで配置された基板、及び発光素子が発光した光を被露光体に結像させる結像素子の少なくとも一方は、支持部材によって支持される。そして、結像素子を被露光体に対して接離させる方向へ移動させる焦点位置調整手段によって発光素子の焦点位置を調整する。   According to the first aspect of the present invention, at least one of the substrate on which the plurality of light emitting elements are arranged in a line and the imaging element that forms an image of the light emitted from the light emitting elements on the object to be exposed is provided by the support member. Supported. Then, the focal position of the light emitting element is adjusted by the focal position adjusting means for moving the imaging element in the direction in which the imaging element is moved toward and away from the object to be exposed.

複数配列された発光素子の焦点位置にはバラツキが生じるため、各発光素子の焦点位置を求めた座標上の焦点位置データから回帰直線を求め、該回帰直線の傾きを0にしたとき、回帰直線上にある発光素子の焦点位置が被露光体の表面となるように、焦点位置調整手段で結像素子の位置を調整する。これにより、発光素子の焦点位置は被露光体の表面となり、発光素子の焦点位置のバラツキにより生じる画像装置の濃度ムラを小さくすることができる。   Since the focal positions of a plurality of light emitting elements arranged vary, a regression line is obtained from the focal position data on the coordinates where the focal positions of the respective light emitting elements are obtained, and the regression line is obtained when the slope of the regression line is zero. The position of the imaging element is adjusted by the focal position adjusting means so that the focal position of the light emitting element located above becomes the surface of the object to be exposed. As a result, the focal position of the light emitting element becomes the surface of the object to be exposed, and density unevenness of the image device caused by variation in the focal position of the light emitting element can be reduced.

ここで、焦点位置調整手段を支持部材に形成し、支持部材自体に支持部材の位置を調整する調整機能を形成させることで、支持部材に複雑な位置調整装置を設ける必要もなく、支持部材が大きくなることもない。   Here, the focus position adjusting means is formed on the support member, and the support member itself is provided with an adjustment function for adjusting the position of the support member, so that it is not necessary to provide a complicated position adjustment device on the support member. It won't grow.

請求項2に記載の発明は、請求項1に記載の露光装置の焦点位置調整方法において、前記回帰直線の傾きを0にしたときの前記焦点位置データの最大値及び最小値から該焦点位置データの中央値を算出し、該中央値と前記回帰直線とのずれ量から前記支持部材の調整量を補正することを特徴とする。   According to a second aspect of the present invention, in the focal position adjustment method of the exposure apparatus according to the first aspect, the focal position data is determined from the maximum value and the minimum value of the focal position data when the slope of the regression line is set to zero. Is calculated, and the adjustment amount of the support member is corrected from the amount of deviation between the median value and the regression line.

回帰直線自体が焦点位置データのバラツキの中心にない場合もあるため、請求項1で求めた回帰直線による支持部材の位置調整では、発光素子の焦点位置のズレ量が却って大きくなってしまう場合もある。このため、請求項2に記載の発明では、焦点位置データの中央値と回帰直線とのずれ量分を加算或いは除算して、支持部材の位置を調整することで、画像装置において大きな濃度ムラが生じないようにすることができる。   Since the regression line itself may not be at the center of the variation in the focal position data, the positional adjustment of the support member based on the regression line obtained in claim 1 may cause the focal position shift amount of the light emitting element to increase. is there. For this reason, in the invention described in claim 2, large density unevenness is caused in the image device by adjusting the position of the support member by adding or dividing the deviation amount between the median value of the focal position data and the regression line. It can be prevented from occurring.

請求項3に記載の発明は、請求項1又は2に記載の露光装置の焦点位置調整方法において、前記焦点位置調整手段が、前記結像素子を前記被露光体に対して接離させる方向に沿って前記支持部材に形成された第1ネジ孔と、前記第1ネジ孔にねじ込み可能に設けられ、前記被露光体を支持する本体側フレームに先端部が当接して被露光体に対して前記支持部材を接離させる調整ピンと、前記第1ネジ孔と直交する方向に形成され、該第1ネジ孔と繋がる第2ネジ孔と、前記第2ネジ孔へねじ込まれ、前記調整ピンの側面を押圧して該調整ピンを固定する固定ネジと、を含んで構成されたことを特徴とする。   According to a third aspect of the present invention, in the method for adjusting the focal position of the exposure apparatus according to the first or second aspect, the focal position adjusting unit moves the imaging element in or away from the object to be exposed. Along the first screw hole formed in the support member and the first screw hole so as to be able to be screwed into, and the tip end portion comes into contact with the main body side frame that supports the object to be exposed. An adjustment pin that contacts and separates the support member, a second screw hole that is formed in a direction orthogonal to the first screw hole, is connected to the first screw hole, and is screwed into the second screw hole. And a fixing screw for fixing the adjustment pin by pressing the pin.

請求項3に記載の発明では、結像素子を被露光体に対して接離させる方向に沿って支持部材には第1ネジ孔を形成し、該第1ネジ孔に調整ピンをねじ込み可能としている。この調整ピンの先端部が被露光体を支持する本体側フレームに当接し、第1ネジ孔にねじ込み量によって、支持部材を被露光体に対して接離させる。また、支持部材には、第1ネジ孔と直交する方向に、該第1ネジ孔と繋がる第2ネジ孔を形成し、該第2ネジ孔へ固定ネジをねじ込むことで、調整ピンの側面を押圧して該調整ピンを固定するようにしている。   According to a third aspect of the present invention, a first screw hole is formed in the support member along a direction in which the imaging element is brought into contact with and separated from the object to be exposed, and an adjustment pin can be screwed into the first screw hole. Yes. The tip of the adjustment pin comes into contact with the main body side frame that supports the object to be exposed, and the support member is brought into contact with and separated from the object to be exposed by being screwed into the first screw hole. Further, the support member is formed with a second screw hole connected to the first screw hole in a direction orthogonal to the first screw hole, and the fixing screw is screwed into the second screw hole so that the side surface of the adjustment pin is The adjustment pin is fixed by pressing.

このように、調整ピンのねじ込み量によって発光素子の位置を調整することができるため、調整が容易である。また、複雑な機構を用いないため、コストが安い。   As described above, since the position of the light emitting element can be adjusted by the screwing amount of the adjustment pin, the adjustment is easy. Further, since no complicated mechanism is used, the cost is low.

請求項4に記載の発明は、請求項1〜3の何れか1項に記載の露光装置の焦点位置調整方法において、前記焦点位置は、前記被露光体上での前記発光素子の濃度の変調伝達関数による最大値として求められることを特徴とする。   According to a fourth aspect of the present invention, in the method for adjusting a focal position of an exposure apparatus according to any one of the first to third aspects, the focal position is a modulation of the density of the light emitting element on the object to be exposed. It is obtained as a maximum value by a transfer function.

請求項5に記載の発明は、請求項1〜3の何れか1項に記載の露光装置の焦点位置調整方法において、前記焦点位置は、前記被露光体上での前記発光素子のビーム径の最小値として求められることを特徴とする。   According to a fifth aspect of the present invention, in the method for adjusting a focal position of an exposure apparatus according to any one of the first to third aspects, the focal position is a beam diameter of the light emitting element on the object to be exposed. It is obtained as a minimum value.

請求項6に記載の発明は、露光装置の焦点位置調整方法において、複数の発光素子が列状に並んで配置された基板と、前記発光素子が発光した光を被露光体に結像させる結像素子と、前記基板及び前記結像素子の少なくとも一方を支持する支持部材と、前記支持部材を前記被露光体に対して接離させる方向へ移動させる焦点位置調整手段と、を備え、各前記発光素子の焦点位置を求めた座標上の焦点位置データから回帰直線を求め、該回帰直線の傾き及び前記回帰直線と前記被露光体との距離との関係の少なくとも一方に基づいて、前記焦点位置調整手段で支持部材の位置を調整する。   According to a sixth aspect of the present invention, in the method for adjusting a focal position of an exposure apparatus, a substrate on which a plurality of light emitting elements are arranged in a line and a light emitted from the light emitting elements are imaged on an object to be exposed. An image element; a support member that supports at least one of the substrate and the imaging element; and a focus position adjusting unit that moves the support member in a direction in which the support member is moved toward and away from the object to be exposed. A regression line is obtained from the focal position data on the coordinates where the focal position of the light emitting element is obtained, and the focal position is based on at least one of the inclination of the regression line and the relationship between the regression line and the distance between the exposure object and the object. The position of the support member is adjusted by the adjusting means.

請求項6に記載の発明では、複数の発光素子が列状に並んで配置された基板、及び発光素子が発光した光を被露光体に結像させる結像素子の少なくとも一方が支持部材によって支持される。そして、結像素子を被露光体に対して接離させる方向へ移動させる焦点位置調整手段によって発光素子の焦点位置を調整する。   According to the sixth aspect of the present invention, at least one of the substrate on which the plurality of light emitting elements are arranged in a row and the imaging element that forms an image of light emitted from the light emitting elements on the object to be exposed is supported by the support member. Is done. Then, the focal position of the light emitting element is adjusted by the focal position adjusting means for moving the imaging element in the direction in which the imaging element is moved toward and away from the object to be exposed.

つまり、各発光素子の焦点位置を求めた座標上の焦点位置データから回帰直線を求め、該回帰直線の傾き及び回帰直線と被露光体との距離との関係の少なくとも一方に基づいて、焦点位置調整手段で支持部材の位置を調整することで、発光素子の焦点位置を被露光体の表面に設定することができ、発光素子の焦点位置のバラツキにより生じる画像装置の濃度ムラを小さくすることができる。   That is, a regression line is obtained from the focal position data on the coordinates where the focal position of each light emitting element is obtained, and the focal position is determined based on at least one of the inclination of the regression line and the relationship between the regression line and the distance between the exposure line and the object to be exposed. By adjusting the position of the support member with the adjusting means, the focal position of the light emitting element can be set on the surface of the object to be exposed, and the density unevenness of the image device caused by the variation in the focal position of the light emitting element can be reduced. it can.

以上説明したように本発明によれば、発光素子の焦点位置のバラツキにより生じる画像装置の濃度ムラを小さくすることができる。   As described above, according to the present invention, it is possible to reduce the density unevenness of the image device caused by the variation in the focal position of the light emitting element.

本発明の実施の形態に係る露光装置としてのLEDヘッドについて説明する。   An LED head as an exposure apparatus according to an embodiment of the present invention will be described.

図1に示すように、電子写真方式によって記録用紙などの記録媒体に画像を形成する画像形成装置10に、LEDヘッド100が用いられている。   As shown in FIG. 1, an LED head 100 is used in an image forming apparatus 10 that forms an image on a recording medium such as recording paper by an electrophotographic method.

画像形成装置10は、像担持体としてのドラム型の電子写真感光体、即ち、感光体ドラム12が、軸心Gを回転中心に回転可能に支持されている。矢印K方向に回転する感光体ドラム12の表面は帯電装置14によって帯電する。帯電した感光体ドラム12は、露光装置としてのLEDヘッド100が発光する画像情報に応じた光で露光されることで、静電潜像が形成される。この静電潜像は現像装置16によって現像され、感光体ドラム12上にトナー像が形成される。   In the image forming apparatus 10, a drum-type electrophotographic photosensitive member as an image carrier, that is, a photosensitive drum 12, is supported so as to be rotatable about an axis G. The surface of the photosensitive drum 12 rotating in the arrow K direction is charged by the charging device 14. The charged photosensitive drum 12 is exposed to light corresponding to image information emitted from the LED head 100 as an exposure device, whereby an electrostatic latent image is formed. This electrostatic latent image is developed by the developing device 16 to form a toner image on the photosensitive drum 12.

用紙トレイ(図示略)に収容されていた記録用紙が用紙搬送経路Pに沿って搬送されると、前述した感光体ドラム12に形成されたトナー像が、転写装置18によって、搬送されてきた記録用紙に転写される。トナー像が転写された記録用紙は、定着装置(図示略)に搬送されトナー像が定着された後、装置外に排出される。また、転写されずに残った残留トナーは、クリーニング装置20で除去され、除電装置22で除電される。   When the recording paper stored in the paper tray (not shown) is transported along the paper transport path P, the toner image formed on the photosensitive drum 12 described above is transported by the transfer device 18. Transferred to paper. The recording sheet on which the toner image has been transferred is conveyed to a fixing device (not shown), and after the toner image is fixed, the recording paper is discharged out of the device. Residual toner remaining without being transferred is removed by the cleaning device 20 and discharged by the charge removing device 22.

図1と図2とに示すように、LEDヘッド100は、全体が四角柱形状を成し、その長手方向は感光体ドラム12の軸心Gと同方向である。また、LEDヘッド100は、金属からなる支持部材102を備え、この支持部材102は断面が四角形状の基板支持部104を備えている。   As shown in FIGS. 1 and 2, the entire LED head 100 has a quadrangular prism shape, and the longitudinal direction thereof is the same as the axis G of the photosensitive drum 12. Further, the LED head 100 includes a support member 102 made of a metal, and the support member 102 includes a substrate support portion 104 having a quadrangular cross section.

この基板支持部104の上面104Aには、第一基板150が取り付けられており、第一基板150の上面には、発光素子としてのLEDアレイ152が長手方向(感光体ドラム12の軸心G方向)に並んで実装されている。   A first substrate 150 is attached to the upper surface 104A of the substrate support portion 104, and an LED array 152 as a light emitting element is disposed on the upper surface of the first substrate 150 in the longitudinal direction (in the direction of the axis G of the photosensitive drum 12). ) Are mounted side by side.

ここで、LEDアレイ152は、PNPN構造発光サイリスタを有し、シフトレジスタの機能をLEDアレイ152自体が有している、いわゆる、自己走査型LED(SLED:Self−scanning LED)アレイである。この自己走査型LEDアレイは、接続される信号線の本数を自己走査型でないLEDアレイより大幅に少なくすることが可能になる。よって、第一基板150を小型化できる。   Here, the LED array 152 is a so-called self-scanning LED (SLED) array that has a light emitting thyristor having a PNPN structure and the LED array 152 itself has a shift register function. This self-scanning LED array can significantly reduce the number of signal lines to be connected as compared to a non-self-scanning LED array. Therefore, the first substrate 150 can be reduced in size.

また、基板支持部104の上面104Aの反対側の下面104Bには、第二基板170が取り付けられており、第二基板170の両面には、各種電子部品176(図3参照、コンデンサや抵抗)等が実装されている。また、第二基板170の下面には、第一基板150に実装されているLEDアレイ152を駆動する駆動素子172と、外部と電気的に接続するコネクタ174と、が実装されている。なお、第二基板170の幅(長手方向と直交する方向、感光体ドラム12の回転軸G方向と直交する方向)は、第一基板150より幅広である(図1参照)。   A second substrate 170 is attached to the lower surface 104B opposite to the upper surface 104A of the substrate support portion 104, and various electronic components 176 (see FIG. 3, capacitors and resistors) are attached to both surfaces of the second substrate 170. Etc. are implemented. A driving element 172 that drives the LED array 152 mounted on the first substrate 150 and a connector 174 that is electrically connected to the outside are mounted on the lower surface of the second substrate 170. Note that the width of the second substrate 170 (the direction orthogonal to the longitudinal direction, the direction orthogonal to the rotation axis G direction of the photosensitive drum 12) is wider than that of the first substrate 150 (see FIG. 1).

この第一基板150と第二基板170とは、フレキシブル配線基板190で電気的に接続されており、フレキシブル配線基板190は、熱圧着、若しくは異方性導電膜の熱圧着で、第一基板150及び第二基板170と共に外側の面に接続されている。なお、LEDアレイ152は、自己走査型LEDアレイであり、接続される信号線の本数は自己走査型でないLEDアレイより大幅に少ないので、フレキシブル配線基板190も幅狭にできる。   The first substrate 150 and the second substrate 170 are electrically connected by a flexible wiring substrate 190. The flexible wiring substrate 190 is formed by thermocompression bonding or thermocompression bonding of an anisotropic conductive film. And it is connected to the outer surface together with the second substrate 170. Note that the LED array 152 is a self-scanning LED array, and the number of signal lines to be connected is significantly smaller than that of a non-self-scanning LED array. Therefore, the flexible wiring board 190 can also be narrowed.

一方、図3に示すように、基板支持部104の下面104Bには、各種電子部品176(コンデンサや抵抗)が収まる凹部104Cが形成されている。しかし、駆動素子172が実装されている領域には凹部104Cは形成していない。よって、第二基板170の上面の、駆動素子172が実装されている領域は、支持部材102の基板支持部104の下面104Bが面接触しており、熱伝導性が良く、放熱効果が高い。   On the other hand, as shown in FIG. 3, a recess 104 </ b> C in which various electronic components 176 (capacitors and resistors) are accommodated is formed on the lower surface 104 </ b> B of the substrate support portion 104. However, the recess 104C is not formed in the region where the drive element 172 is mounted. Therefore, in the area where the driving element 172 is mounted on the upper surface of the second substrate 170, the lower surface 104B of the substrate support portion 104 of the support member 102 is in surface contact, and the thermal conductivity is good and the heat dissipation effect is high.

また、図1、図2に示すように、結像素子支持部106が、基板支持部104の上面104Aから感光体ドラム12(図1参照)に向かって延びている。この結像素子支持部106には、LEDアレイ152が発光した光を感光体ドラム12に結像させる分布屈折率レンズ、いわゆる、セルフォックレンズ90A(「セルフォック」は、日本板硝子(株)の登録商標)を備えるレンズアレイ90が取り付けられている。そして、基板支持部104の上面104Aには、図1と図2とに想像線(二点破線)で示すように、第一基板150が露出しないように、樹脂製のカバー108も取り付けられている。   As shown in FIGS. 1 and 2, the imaging element support portion 106 extends from the upper surface 104 </ b> A of the substrate support portion 104 toward the photosensitive drum 12 (see FIG. 1). The imaging element support unit 106 has a distributed refractive index lens for imaging the light emitted from the LED array 152 onto the photosensitive drum 12, so-called Selfoc lens 90A ("Selfoc" is registered by Nippon Sheet Glass Co., Ltd.). A lens array 90 is attached. A resin cover 108 is also attached to the upper surface 104A of the substrate support portion 104 so that the first substrate 150 is not exposed, as shown by an imaginary line (a two-dot broken line) in FIGS. Yes.

図2及び図4に示すように、支持部材102の基板支持部104の、第一基板150が取り付けられている長手方向の両外側には、挿通孔110,111が上下に貫通しており、基板支持部104の下面104B側にはネジ孔部110A,111Aが形成されている。挿通孔110,111内へは、調整ピン112,113が挿通可能となっており、調整ピン112,113の基部には、ネジ部112A,113Aが形成され、ネジ孔部110A,111Aにねじ込み可能となっている。   As shown in FIGS. 2 and 4, insertion holes 110 and 111 penetrate vertically on both outer sides of the substrate support portion 104 of the support member 102 in the longitudinal direction to which the first substrate 150 is attached. Screw hole portions 110 </ b> A and 111 </ b> A are formed on the lower surface 104 </ b> B side of the substrate support portion 104. The adjustment pins 112 and 113 can be inserted into the insertion holes 110 and 111, and screw portions 112A and 113A are formed at the bases of the adjustment pins 112 and 113, and can be screwed into the screw hole portions 110A and 111A. It has become.

更に、支持部材102の基板支持部104の側面には、挿通孔110,111と直交する方向にネジ孔120,121が形成されており、ネジ孔120,121の先端は挿通孔110,111と繋がっている。そして、このネジ孔120,121にはセットスクリュー122,123がねじ込まれている。   Furthermore, screw holes 120 and 121 are formed on the side surface of the substrate support portion 104 of the support member 102 in a direction orthogonal to the insertion holes 110 and 111, and the tips of the screw holes 120 and 121 are connected to the insertion holes 110 and 111. It is connected. And set screw 122,123 is screwed in this screw hole 120,121.

図4に示すように、調整ピン112,113が、基板支持部104の上面104Aから突出した状態で、セットスクリュー122,123を締め込んでいくことで、セットスクリュー122,123の先端が調整ピン112,113の側面を押圧し、調整ピン112,113が固定される。   As shown in FIG. 4, by tightening the set screws 122 and 123 with the adjustment pins 112 and 113 protruding from the upper surface 104 </ b> A of the substrate support portion 104, the tips of the set screws 122 and 123 are adjusted. The side surfaces of 112 and 113 are pressed, and the adjustment pins 112 and 113 are fixed.

ここで、図3に示すように、支持部材102は付勢バネ24により感光体ドラム12(図1参照)側に付勢されており、固定された調整ピン112,113の先端が、画像形成装置10に設けられた位置決め部26に当たることで、感光体ドラム12とLEDヘッド100との間隔が決まる。   Here, as shown in FIG. 3, the support member 102 is urged toward the photosensitive drum 12 (see FIG. 1) by the urging spring 24, and the tips of the fixed adjustment pins 112 and 113 are used for image formation. A distance between the photosensitive drum 12 and the LED head 100 is determined by hitting the positioning unit 26 provided in the apparatus 10.

つまり、基板支持部104の上面104Aから突出する調整ピン112,113の突出量M,M(LEDヘッド100の基板支持部104の下面104Bを基準にするとH,H)を調整することで、感光体ドラム12とLEDヘッド100との間隔を調整して、LEDヘッド100の焦点位置を調整することができる。 That is, the protruding amounts M 1 and M 2 of the adjustment pins 112 and 113 protruding from the upper surface 104A of the substrate support portion 104 (H 1 and H 2 with reference to the lower surface 104B of the substrate support portion 104 of the LED head 100) are adjusted. Thus, the focal position of the LED head 100 can be adjusted by adjusting the distance between the photosensitive drum 12 and the LED head 100.

次に、LEDヘッド100の基板支持部104の下面104Bから調整ピン112,113の先端までの距離H,Hを調整する調整方法(LEDヘッド100の焦点位置の調整方法)について説明する。 Next, an adjustment method (an adjustment method of the focal position of the LED head 100) for adjusting the distances H 1 and H 2 from the lower surface 104B of the substrate support portion 104 of the LED head 100 to the tips of the adjustment pins 112 and 113 will be described.

まず、図5のステップ100において、図6に示すように、基板支持部104の下面104Bから測定した、LEDヘッド100の各LEDアレイ152の発光位置に対するMTF(白黒の線幅のチャートを撮影し、そのチャート像のコントラストがどれだけ減少したか、その比率を示すものであり、いわゆる変調伝達関数のこと)による最大焦点位置を求める(最大焦点位置データ(以下、「MTFデータS」という)。そして、ステップ102において、各LEDアレイ152のMTFデータSを読み込む。   First, in step 100 of FIG. 5, as shown in FIG. 6, an MTF (black and white line width chart) is measured with respect to the light emission position of each LED array 152 of the LED head 100 measured from the lower surface 104 </ b> B of the substrate support unit 104. The ratio of how much the contrast of the chart image has decreased is shown, and the maximum focal position based on the so-called modulation transfer function is obtained (maximum focal position data (hereinafter referred to as “MTF data S”). In step 102, the MTF data S of each LED array 152 is read.

次に、ステップ104において、調整ピン112を通る線と感光体ドラム12の表面位置の交わる点を原点とする座標系に、読み込んだMTFデータSを図7に示すようにプロットし(MTFデータS)、最小二乗法により回帰直線Pを求める(Z=aX+b)。そして、ステップ106において、この回帰直線Pにより調整ピン112,113の位置におけるずれ量hおよびhを算出する。これにより、h=b(X=0)、h=aR+b(X=R)が求められる。 Next, in step 104, the read MTF data S is plotted as shown in FIG. 7 on the coordinate system having the origin at the point where the line passing through the adjustment pin 112 and the surface position of the photosensitive drum 12 intersect (MTF data S). 1 ) A regression line P is obtained by the least square method (Z = aX + b). In step 106, the deviation amounts h 1 and h 2 at the positions of the adjustment pins 112 and 113 are calculated from the regression line P. Accordingly, h 1 = b (X = 0) and h 2 = aR + b (X = R) are obtained.

次に、ステップ108において、この回帰直線Pの傾きおよび切片が「0」となるように、MTFデータSおよび回帰直線Pの補正を行う(図8に示すように、補正後をMTFデータS、回帰直線Qとする)。次に、ステップ110において、補正した後のMTFデータSの最大値(Max)及び最小値(Min)からMTFデータSの中央値(M)を算出する(M=(Max+Min)/2)。 Next, in step 108, so that the slope and intercept of the regression line P becomes "0", the correction of MTF data S 1 and regression line P (as shown in FIG. 8, a corrected MTF data S 2 and the regression line Q). Next, in step 110, calculates the maximum value of the MTF data S 2 after the correction (Max) and the minimum value (Min) from the median of the MTF data S 2 (M) (M = (Max + Min) / 2) .

そして、ステップ112において、補正した後のMTFデータSの最小値(Min)とZ=0との距離(N)を算出し、ステップ114で、回帰直線Qが中央値(M)と一致するように移動させるときの距離OS(OS=M−N)を算出する(図8参照)。 Then, in step 112, calculates a distance of the minimum value of MTF data S 2 after the correction and (Min) and Z = 0 (N), in step 114, the regression line Q coincides with the median (M) The distance OS (OS = M−N) when moving in this way is calculated (see FIG. 8).

次に、ステップ116において、調整ピン112,113の先端と移動後の回帰直線Qまでの距離がLEDアレイ152の焦点位置となるように、LEDヘッド100の基板支持部104の下面104Bから調整ピン112,113の先端までの距離H,H(図3参照)を算出する。 Next, in step 116, so that the distance to the regression line to Q 1 after moving the tip of the adjusting pin 112, 113 is the focal point of the LED array 152, the adjustment from the lower surface 104B of the substrate supporting portion 104 of the LED head 100 The distances H 1 and H 2 (see FIG. 3) to the tips of the pins 112 and 113 are calculated.

=H’+h=(Q)+(OS)−(P)+h ・・・(式1)
=H’+h=(Q)+(OS)−(P)+h・・・(式2)
ここで、Pは調整ピン112,113の先端からLEDアレイ152の焦点位置までの距離であり、いわゆる設計値である。
H 1 = H 1 ′ + h 1 = (Q) + (OS) − (P) + h 1 (Expression 1)
H 2 = H 2 ′ + h 2 = (Q) + (OS) − (P) + h 2 (Formula 2)
Here, P is the distance from the tips of the adjustment pins 112 and 113 to the focal position of the LED array 152, which is a so-called design value.

次に、ステップ118において、調整ピン112,113を回転させ、LEDヘッド100の基板支持部104の下面104Bから調整ピン112,113の先端までの距離が、それぞれH,Hとなるようにする。そして、ステップ120で、図5に示すセットスクリュー122,123を締め込み、調整ピン112,113の側面を押圧し、調整ピン112,113を固定する。以上のような調整により、LEDアレイ152の焦点を感光体ドラム12表面に合わせることができる。 Next, in step 118, the adjustment pins 112 and 113 are rotated so that the distances from the lower surface 104B of the substrate support portion 104 of the LED head 100 to the tips of the adjustment pins 112 and 113 become H 1 and H 2 , respectively. To do. In step 120, the set screws 122 and 123 shown in FIG. 5 are tightened, the side surfaces of the adjustment pins 112 and 113 are pressed, and the adjustment pins 112 and 113 are fixed. Through the adjustment as described above, the focus of the LED array 152 can be adjusted to the surface of the photosensitive drum 12.

なお、セットスクリュー122,123に、緩み防止用のネジ止め剤としての接着剤を塗布しておいた方が、調整ピン112,113の位置が固定後ずれにくくなるので好適である。また、接着剤としては、空気が遮断されると硬化する嫌気性接着剤が適している。   In addition, it is preferable to apply an adhesive as a screwing agent for preventing looseness to the set screws 122 and 123 because the positions of the adjustment pins 112 and 113 are less likely to shift after being fixed. Moreover, as an adhesive agent, the anaerobic adhesive agent which hardens | cures when air is interrupted | blocked is suitable.

つぎに、本実施形態の作用について説明する。   Next, the operation of this embodiment will be described.

図5に示すように、LEDヘッド100の基板支持部104の下面104Bから調整ピン112,113の先端までの距離H,Hを調整することで、感光体ドラム12とLEDヘッド100との間隔を調整できるようにしているが、LEDヘッド100自体にネジ孔部110A,111Aを形成し、該ネジ孔部110A,111Aへ調整ピン112,113をねじ込むことで、LEDヘッド100の位置が調整できるようにしている。 As shown in FIG. 5, by adjusting the distances H 1 and H 2 from the lower surface 104B of the substrate support portion 104 of the LED head 100 to the tips of the adjustment pins 112 and 113, the photosensitive drum 12 and the LED head 100 can be adjusted. Although the interval can be adjusted, the screw head portions 110A and 111A are formed in the LED head 100 itself, and the adjustment pins 112 and 113 are screwed into the screw hole portions 110A and 111A, thereby adjusting the position of the LED head 100. I can do it.

このように、LEDヘッド100の位置を調整する調整機能をLEDヘッド100自体に形成することで、LEDヘッド100に複雑な位置調整装置を設ける必要もなく、LEDヘッド100が大きくなることもない。また、調整ピン112,113のねじ込み量によってLEDヘッド100の位置を調整することができるため、調整が容易である。また、複雑な機構を用いないため、コストが安い。   In this way, by forming an adjustment function for adjusting the position of the LED head 100 in the LED head 100 itself, it is not necessary to provide a complicated position adjusting device in the LED head 100, and the LED head 100 does not become large. Further, since the position of the LED head 100 can be adjusted by the screwing amounts of the adjustment pins 112 and 113, the adjustment is easy. Further, since no complicated mechanism is used, the cost is low.

次に、複数配列されたLEDアレイ152の焦点位置にはバラツキが生じるため、本形態では、まず、各LEDアレイ152の焦点位置を求めたMTFデータSから座標上に回帰直線Pを求め、この回帰直線Pの傾きおよび切片が「0」となるように、MTFデータSおよび回帰直線Pの補正を行う(補正後;MTFデータS及び回帰直線Q)。 Next, since the focal positions of the plurality of arrayed LED arrays 152 vary, in this embodiment, first, a regression line P is obtained on the coordinates from the MTF data S obtained for the focal positions of the LED arrays 152. as the slope and intercept of the regression line P becomes "0", the correction of MTF data S 1 and regression line P (corrected; MTF data S 2 and regression line Q).

そして、補正した後のMTFデータSの中央値(M)を算出して、回帰直線Qとの距離OS分を算出し、LEDヘッド100の基板支持部104の下面104Bから調整ピン112,113の先端までの距離H,Hを算出する。このLEDヘッド100の基板支持部104の下面104Bから調整ピン112,113の先端までの距離が、それぞれH,Hとなるように調整ピン112,113の先端の位置を調整する。 Then, the median value (M) of the corrected MTF data S 2 is calculated, the distance OS from the regression line Q is calculated, and the adjustment pins 112, 113 from the lower surface 104 B of the substrate support 104 of the LED head 100. The distances H 1 and H 2 to the tip of are calculated. The positions of the tips of the adjustment pins 112 and 113 are adjusted so that the distances from the lower surface 104B of the substrate support portion 104 of the LED head 100 to the tips of the adjustment pins 112 and 113 are H 1 and H 2 , respectively.

ここで、図8に示すように、回帰直線Q自体がMTFデータSのバラツキの中心にない場合もあるため、MTFデータSの中央値(M)と回帰直線Qとの距離OS分を加算或いは除算して、LEDヘッド100の位置を調整するようにすることで、画像形成装置10において大きな濃度ムラが生じないようにすることができる。つまり、ロバスト性の高い焦点位置調整が可能となる。 Here, as shown in FIG. 8, since the regression line Q itself is also not in the center of the variation of MTF data S 2, the distance OS component median MTF data S 2 (M) and the regression line Q By adjusting the position of the LED head 100 by adding or dividing, it is possible to prevent large density unevenness from occurring in the image forming apparatus 10. That is, it is possible to adjust the focal position with high robustness.

なお、MTFデータSのバラツキによっては、MTFデータSの中央値(M)と回帰直線Qとの距離OS分の補正は必ずしも必要ではない。 Depending on the variations in the MTF data S 2, the correction distances OS partial median MTF data S 2 (M) and the regression line Q is not necessarily required.

そして、このような、図5に示すアルゴリズムを画像装置の制御ソフトに組み込むことにより、自動化が容易になり生産性を向上させることが可能である。   Then, by incorporating the algorithm shown in FIG. 5 in the control software of the image apparatus, automation can be facilitated and productivity can be improved.

なお、本形態では、焦点位置として、感光体ドラム12上でのLEDアレイ152の濃度の変調伝達関数による最大値を測定したが、LEDアレイ152の焦点位置を測定することができればよいため、感光体ドラム12上でのLEDアレイ152のビーム径の最小値を測定しても良い。   In this embodiment, the maximum value by the modulation transfer function of the density of the LED array 152 on the photosensitive drum 12 is measured as the focal position. However, it is sufficient that the focal position of the LED array 152 can be measured. The minimum value of the beam diameter of the LED array 152 on the body drum 12 may be measured.

また、本発明は上記の実施形態に限定されない。例えば、上記実施形態では、被露光体はドラム状の感光体ドラム12であったが、ベルト状のベルト感光体であっても良い。   Further, the present invention is not limited to the above embodiment. For example, in the above embodiment, the object to be exposed is the drum-shaped photosensitive drum 12, but it may be a belt-shaped belt photosensitive member.

本発明の実施形態に係るLEDヘッドを備える画像形成装置の要部を模式的に示す図である。It is a figure which shows typically the principal part of an image forming apparatus provided with the LED head which concerns on embodiment of this invention. 本発明の実施形態に係るLEDヘッドを模式的に示す斜視図である。It is a perspective view which shows typically the LED head which concerns on embodiment of this invention. 本発明の実施形態に係るLEDヘッドを模式的に示す正面図である。It is a front view which shows typically the LED head which concerns on embodiment of this invention. 本発明の実施形態に係るLEDヘッドの断面図である。It is sectional drawing of the LED head which concerns on embodiment of this invention. 本発明の実施形態に係るLEDヘッドの焦点位置を調整する調整方法を示すフローチャートである。It is a flowchart which shows the adjustment method which adjusts the focus position of the LED head which concerns on embodiment of this invention. LEDヘッドの焦点位置データを説明する図である。It is a figure explaining the focal position data of a LED head. LEDヘッドの焦点位置データを補正する方法を説明する説明図である。It is explanatory drawing explaining the method to correct | amend the focus position data of a LED head. LEDヘッドの焦点位置データを補正する方法を説明する説明図である。It is explanatory drawing explaining the method to correct | amend the focus position data of a LED head.

符号の説明Explanation of symbols

10 画像形成装置
90 レンズアレイ(結像素子)
100 LEDヘッド(露光装置)
102 支持部材
104 基板支持部(支持部材)
110A 第1ネジ孔部(焦点位置調整手段)
111A 第1ネジ孔部(焦点位置調整手段)
112 調整ピン(焦点位置調整手段)
113 調整ピン(焦点位置調整手段)
120A 第2ネジ孔(焦点位置調整手段)
121A 第2ネジ孔(焦点位置調整手段)
122 セットスクリュー(固定ネジ、焦点位置調整手段)
123 セットスクリュー(固定ネジ、焦点位置調整手段)
150 第一基板(基板)
152 LEDアレイ(発光素子)
P 回帰直線
Q 回帰直線
回帰直線
S MTFデータ(焦点位置データ)
MTFデータ(焦点位置データ)
MTFデータ(焦点位置データ)
10 Image forming apparatus 90 Lens array (imaging element)
100 LED head (exposure device)
102 Support member 104 Substrate support part (support member)
110A First screw hole (focal position adjusting means)
111A First screw hole (focal position adjusting means)
112 Adjustment pin (focal position adjustment means)
113 Adjustment pin (Focus position adjustment means)
120A Second screw hole (focal position adjusting means)
121A Second screw hole (focal position adjusting means)
122 set screw (fixing screw, focus position adjusting means)
123 set screw (fixing screw, focus position adjusting means)
150 First substrate (substrate)
152 LED array (light emitting device)
P regression line Q regression line Q 1 regression line S MTF data (focus position data)
S 1 MTF data (focus position data)
S 2 MTF data (focus position data)

Claims (6)

複数の発光素子が列状に並んで配置された基板と、
前記発光素子が発光した光を被露光体に結像させる結像素子と、
前記基板及び前記結像素子の少なくとも一方を支持する支持部材と、
前記支持部材を前記被露光体に対して接離させる方向へ移動させる焦点位置調整手段と、
を備え、
各前記発光素子の焦点位置を求めた座標上の焦点位置データから回帰直線を求め、該回帰直線の傾きを0にしたとき、回帰直線上にある発光素子の焦点位置が前記被露光体の表面となるように前記焦点位置調整手段で支持部材の位置を調整する露光装置の焦点位置調整方法。
A substrate on which a plurality of light emitting elements are arranged in a line;
An imaging element that forms an image of the light emitted from the light emitting element on an object to be exposed;
A support member that supports at least one of the substrate and the imaging element;
A focus position adjusting means for moving the support member in a direction in which the support member is moved toward and away from the object to be exposed;
With
When a regression line is obtained from the focal position data on the coordinates for obtaining the focal position of each light emitting element, and the slope of the regression line is set to 0, the focal position of the light emitting element on the regression line is the surface of the object to be exposed. The focus position adjusting method of the exposure apparatus, wherein the position of the support member is adjusted by the focus position adjusting means.
前記回帰直線の傾きを0にしたときの前記焦点位置データの最大値及び最小値から該焦点位置データの中央値を算出し、該中央値と前記回帰直線とのずれ量から前記支持部材の調整量を補正することを特徴とする請求項1に記載の露光装置の焦点位置調整方法。   The median value of the focal position data is calculated from the maximum value and the minimum value of the focal position data when the slope of the regression line is set to 0, and the adjustment of the support member is performed from the amount of deviation between the median value and the regression line. 2. The focus position adjusting method for an exposure apparatus according to claim 1, wherein the amount is corrected. 前記焦点位置調整手段が、
前記結像素子を前記被露光体に対して接離させる方向に沿って前記支持部材に形成された第1ネジ孔と、
前記第1ネジ孔にねじ込み可能に設けられ、前記被露光体を支持する本体側フレームに先端部が当接して被露光体に対して前記支持部材を接離させる調整ピンと、
前記第1ネジ孔と直交する方向に形成され、該第1ネジ孔と繋がる第2ネジ孔と、
前記第2ネジ孔へねじ込まれ、前記調整ピンの側面を押圧して該調整ピンを固定する固定ネジと、
を含んで構成されたことを特徴とする請求項1又は2に記載の露光装置の焦点位置調整方法。
The focal position adjusting means is
A first screw hole formed in the support member along a direction in which the imaging element is moved toward and away from the object to be exposed;
An adjustment pin which is provided so as to be screwable into the first screw hole, and whose tip is in contact with a main body side frame which supports the object to be exposed, and which makes the support member contact and separate from the object to be exposed;
A second screw hole formed in a direction orthogonal to the first screw hole and connected to the first screw hole;
A fixing screw that is screwed into the second screw hole and presses a side surface of the adjustment pin to fix the adjustment pin;
The method of adjusting a focal position of an exposure apparatus according to claim 1 or 2, wherein the focal position adjustment method is an exposure apparatus.
前記焦点位置は、前記被露光体上での前記発光素子の濃度の変調伝達関数による最大値として求められることを特徴とする請求項1〜3の何れか1項に記載の露光装置の焦点位置調整方法。   The focal position of the exposure apparatus according to claim 1, wherein the focal position is obtained as a maximum value by a modulation transfer function of the density of the light emitting element on the object to be exposed. Adjustment method. 前記焦点位置は、前記被露光体上での前記発光素子のビーム径の最小値として求められることを特徴とする請求項1〜3の何れか1項に記載の露光装置の焦点位置調整方法。   4. The method of adjusting the focal position of an exposure apparatus according to claim 1, wherein the focal position is obtained as a minimum value of a beam diameter of the light emitting element on the object to be exposed. 複数の発光素子が列状に並んで配置された基板と、
前記発光素子が発光した光を被露光体に結像させる結像素子と、
前記基板及び前記結像素子の少なくとも一方を支持する支持部材と、
前記支持部材を前記被露光体に対して接離させる方向へ移動させる焦点位置調整手段と、
を備え、
各前記発光素子の焦点位置を求めた座標上の焦点位置データから回帰直線を求め、該回帰直線の傾き及び前記回帰直線と前記被露光体との距離との関係の少なくとも一方に基づいて、前記焦点位置調整手段で支持部材の位置を調整する露光装置の焦点位置調整方法。
A substrate on which a plurality of light emitting elements are arranged in a line;
An imaging element that forms an image of the light emitted from the light emitting element on an object to be exposed;
A support member that supports at least one of the substrate and the imaging element;
A focus position adjusting means for moving the support member in a direction in which the support member is moved toward and away from the object to be exposed;
With
Obtaining a regression line from the focal position data on the coordinates for determining the focal position of each light emitting element, based on at least one of the inclination of the regression line and the relationship between the regression line and the distance between the exposed body and the object A method for adjusting a focal position of an exposure apparatus, wherein the position of a support member is adjusted by a focal position adjusting means.
JP2006273689A 2006-10-05 2006-10-05 Method for adjusting focal position of exposure apparatus Active JP5061567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006273689A JP5061567B2 (en) 2006-10-05 2006-10-05 Method for adjusting focal position of exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006273689A JP5061567B2 (en) 2006-10-05 2006-10-05 Method for adjusting focal position of exposure apparatus

Publications (2)

Publication Number Publication Date
JP2008090209A true JP2008090209A (en) 2008-04-17
JP5061567B2 JP5061567B2 (en) 2012-10-31

Family

ID=39374388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006273689A Active JP5061567B2 (en) 2006-10-05 2006-10-05 Method for adjusting focal position of exposure apparatus

Country Status (1)

Country Link
JP (1) JP5061567B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059928A (en) * 2011-09-14 2013-04-04 Ricoh Co Ltd Optical print head and image forming apparatus
JP2013228604A (en) * 2012-04-26 2013-11-07 Brother Ind Ltd Manufacturing method of image forming apparatus
JP2016122785A (en) * 2014-12-25 2016-07-07 古河電気工業株式会社 Optical unit, fixing structure for optical unit and semiconductor laser module
JP2017177650A (en) * 2016-03-31 2017-10-05 株式会社沖データ Optical print head, image forming apparatus, and method for manufacturing optical print head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951409A (en) * 1995-08-09 1997-02-18 Fuji Xerox Co Ltd Method and device for adjusting focus of image reader
JPH11168606A (en) * 1997-12-05 1999-06-22 Canon Inc Image reader
JP2003011414A (en) * 2001-06-28 2003-01-15 Oki Data Corp Method and device for positioning optical print head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951409A (en) * 1995-08-09 1997-02-18 Fuji Xerox Co Ltd Method and device for adjusting focus of image reader
JPH11168606A (en) * 1997-12-05 1999-06-22 Canon Inc Image reader
JP2003011414A (en) * 2001-06-28 2003-01-15 Oki Data Corp Method and device for positioning optical print head

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059928A (en) * 2011-09-14 2013-04-04 Ricoh Co Ltd Optical print head and image forming apparatus
JP2013228604A (en) * 2012-04-26 2013-11-07 Brother Ind Ltd Manufacturing method of image forming apparatus
JP2016122785A (en) * 2014-12-25 2016-07-07 古河電気工業株式会社 Optical unit, fixing structure for optical unit and semiconductor laser module
US10944236B2 (en) 2014-12-25 2021-03-09 Furukawa Electric Co., Ltd. Optical unit, fixing mechanism for optical unit, and semiconductor laser module
JP2017177650A (en) * 2016-03-31 2017-10-05 株式会社沖データ Optical print head, image forming apparatus, and method for manufacturing optical print head

Also Published As

Publication number Publication date
JP5061567B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
US7505059B2 (en) Line head, image forming apparatus incorporating the same, and method of adjusting position of the same
US7417659B2 (en) Exposure device, LED print head, and image forming apparatus having the exposure device and the LED print head
EP2147798B1 (en) Exposure device and method for producing the same
US7808520B2 (en) Exposure device, light emitting diode head, and image forming apparatus
JP5061567B2 (en) Method for adjusting focal position of exposure apparatus
JP5149860B2 (en) Light source unit, light source device, optical scanning device, and image forming apparatus
JP5874259B2 (en) Optical print head and image forming apparatus
JP2010240858A (en) Exposure head, exposure head control method, and image forming apparatus
JP2003202516A (en) Image forming apparatus
JP5692512B2 (en) Image forming apparatus, optical print head, and process cartridge
US10015352B2 (en) Exposure device having a plurality of first and second light emitting elements, LED head as the exposure device, image forming apparatus including the exposure device, and image reading apparatus
JP5163671B2 (en) LIGHTING DEVICE, IMAGE READING DEVICE, AND IMAGE FORMING DEVICE
JP2009196345A (en) Line head and image forming apparatus
JP2004098390A (en) Image forming apparatus
JP6969284B2 (en) Exposure equipment and image forming equipment
JP2018077297A (en) Image formation device
JP2010052390A (en) Exposure head, method of controlling exposure head, and image forming device
JP2005059300A (en) Image forming apparatus and print head
JP2005131835A (en) Optical print head, process cartridge, and image forming apparatus
JP4591135B2 (en) Exposure apparatus and image forming apparatus
JP2007076074A (en) Line head and image forming apparatus using the same
JP6127677B2 (en) Optical print head and image forming apparatus
JP2010125780A (en) Exposure head and image forming apparatus
JP2010134099A (en) Lens array, exposure head, and image forming apparatus
JP2010131816A (en) Imaging optical apparatus, exposure head, image forming apparatus, and method for manufacturing imaging optical apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5061567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350