JP2008089489A - Profile measuring device and method - Google Patents

Profile measuring device and method Download PDF

Info

Publication number
JP2008089489A
JP2008089489A JP2006272536A JP2006272536A JP2008089489A JP 2008089489 A JP2008089489 A JP 2008089489A JP 2006272536 A JP2006272536 A JP 2006272536A JP 2006272536 A JP2006272536 A JP 2006272536A JP 2008089489 A JP2008089489 A JP 2008089489A
Authority
JP
Japan
Prior art keywords
light
wavelength
shape measuring
shape
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006272536A
Other languages
Japanese (ja)
Inventor
Shinichi Deo
晋一 出尾
Yukihisa Yoshida
幸久 吉田
Motohisa Taguchi
元久 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006272536A priority Critical patent/JP2008089489A/en
Publication of JP2008089489A publication Critical patent/JP2008089489A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a profile measuring device with simple arrangement and adjustment of light sources and an optical system. <P>SOLUTION: This profile measuring device 10 which measures the profile of an object 100 made of a semiconductor material containing silicon has the light source 15 which emits visible light 17 with a wavelength of 400-800 nm, the light source 18 which emits near-infrared light 18 with a wavelength of 900-1200 nm, the optical system 14 in which first and second light beams are entered onto the object along one optical axis 19 in the same direction, and an image pickup element 22 which has sensitivity to two light beams 17, 18 and receives the reflection light of the light beams 17, 18. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、物の形状を測定する方法と装置に関する。特に、本発明は、部分的に異なる厚みを有する物又はデバイス、または薄肉化された部分を有する物又はデバイスの形状を光学的に測定することに好適に利用できる装置と方法に関する。   The present invention relates to a method and apparatus for measuring the shape of an object. In particular, the present invention relates to an apparatus and method that can be suitably used for optically measuring the shape of an object or device having partially different thicknesses, or an object or device having a thinned portion.

従来、物の形状を測定する装置の一つとして、特許文献1に記載の装置(半導体部品の検査装置)がある。この装置は、半導体部品の表面に照明された光(白色光)の反射光と半導体部品の他方の裏面に照明された光(赤色光)の透過光を、半導体部品の表面側に配置されたCCDセンサで検出し、このCCDセンサで検出された画像から半導体部品のガラス割れやシリコン割れを検出するものである。
特許第3506170号公報
Conventionally, as an apparatus for measuring the shape of an object, there is an apparatus described in Patent Document 1 (semiconductor component inspection apparatus). In this apparatus, the reflected light of the light (white light) illuminated on the surface of the semiconductor component and the transmitted light of the light (red light) illuminated on the other back surface of the semiconductor component are arranged on the surface side of the semiconductor component. This is detected by a CCD sensor, and glass breakage or silicon breakage of a semiconductor component is detected from an image detected by the CCD sensor.
Japanese Patent No. 3506170

しかしながら、特許文献1に開示された装置では、2つの光を出射する光源及びそれらの光学系が半導体部品の上方と下方に配置されており、そのために装置全体の設計が複雑になるという問題がある。また、光学系を調整する場合、半導体部品の上下にそれぞれ配置された光学系を調整しなければならず、調整作業が繁雑になるという問題がある。さらに、半導体部品の裏面に赤色光を透過しない金属膜が存在する場合、割れを含む形状を正しく検出できないという問題がある。   However, in the apparatus disclosed in Patent Document 1, the light source that emits two lights and the optical system thereof are arranged above and below the semiconductor component, which causes a problem that the design of the entire apparatus becomes complicated. is there. Moreover, when adjusting an optical system, the optical system respectively arrange | positioned at the upper and lower sides of a semiconductor component must be adjusted, and there exists a problem that adjustment work becomes complicated. Furthermore, when a metal film that does not transmit red light is present on the back surface of the semiconductor component, there is a problem that a shape including a crack cannot be detected correctly.

このような問題を解決するため、本発明は、シリコンを含む半導体材料からなる物の形状を測定する形状測定装置に、400nm〜800nmの波長を有する第1の光を出射する第1の光源と、900nm〜1200nmの波長を有する第2の光を出射する第2の光源と、上記物に上記第1の光と第2の光を一つの光軸に沿って同一の方向から入射する光学系と、上記第1の光と第2の光に感度を有し、上記第1の光と第2の光の上記物からの反射光を受光する受光部を備えたことを特徴とする。   In order to solve such a problem, the present invention provides a shape measuring device for measuring the shape of an object made of a semiconductor material containing silicon, and a first light source that emits first light having a wavelength of 400 nm to 800 nm. , A second light source that emits second light having a wavelength of 900 nm to 1200 nm, and an optical system in which the first light and the second light are incident on the object from the same direction along one optical axis. And a light receiving portion that is sensitive to the first light and the second light and receives reflected light from the object of the first light and the second light.

このような構成を備えた形状測定装置によれば、2つ光が同一方向から物の表面に入射されるため、光源と光学系の配置と調整が簡単である。また、物の裏面(光が入射される面の反対側にある面)に光を透過しない金属膜があっても、この金属膜に覆われた部分の形状を正しく測定できる。   According to the shape measuring apparatus having such a configuration, since the two lights are incident on the surface of the object from the same direction, the arrangement and adjustment of the light source and the optical system are simple. Even if there is a metal film that does not transmit light on the back surface of the object (the surface opposite to the surface on which light is incident), the shape of the portion covered with the metal film can be measured correctly.

以下、添付図面を参照して本発明の好適な実施形態を説明する。なお、以下の説明では、必要に応じて、特定の方向を示す用語「上」、「下」、「左」、「右」及びそれらの用語を含む別の用語を使用するが、それは図面を参照した発明の理解を容易にするためであって、それらの用語によって発明の技術的範囲が限定されるものではない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings. In the following description, the terms “up”, “down”, “left”, “right” and other terms including specific terms are used as necessary to indicate a specific direction. These terms are intended to facilitate understanding of the referenced invention and do not limit the technical scope of the invention.

実施形態1Embodiment 1

図1は、本発明に係る形状測定装置の概略構成を示す。形状測定装置10による形状測定の対象物は限定的ではないが、実施形態1及び後に説明する他の実施形態では、薄肉部分を有する半導体装置を対象物として扱う。具体的に、図1には、対象物として、圧力に応じて変形可能な薄肉部分のダイヤフラム備えた圧力センサ100が示してある。図2に示すように、センサ100は、中心軸101を囲む筒部102と、筒部102の一端を閉鎖する薄肉のダイヤフラム103を有する。ダイヤフラム103の厚さは、筒部102の内部と外部との圧力差に応じて中心軸101の方向変形できるように決められている。筒部102とダイヤフラム103は、シリコンからなる基材、例えば、単結晶シリコン基板、多結晶シリコン基板、SOI(シリコン・オン・インシュレータ)基板から選択された適当な基板をその一方の表面(下面)からエッチング加工して形成される。図2に示すように、センサ100の上面には電気配線(トレース配線)104が形成されている。配線104の材料には、例えばアルミニウムの導電性金属が使用される。   FIG. 1 shows a schematic configuration of a shape measuring apparatus according to the present invention. An object of shape measurement by the shape measuring apparatus 10 is not limited, but in the first embodiment and other embodiments described later, a semiconductor device having a thin portion is handled as an object. Specifically, FIG. 1 shows a pressure sensor 100 having a thin-walled diaphragm that can be deformed according to pressure as an object. As shown in FIG. 2, the sensor 100 includes a cylindrical portion 102 that surrounds the central axis 101 and a thin diaphragm 103 that closes one end of the cylindrical portion 102. The thickness of the diaphragm 103 is determined so that the direction of the central axis 101 can be deformed in accordance with the pressure difference between the inside and the outside of the cylindrical portion 102. The cylindrical portion 102 and the diaphragm 103 are made of a base material made of silicon, for example, a single substrate selected from a single crystal silicon substrate, a polycrystalline silicon substrate, and an SOI (silicon-on-insulator) substrate. It is formed by etching. As shown in FIG. 2, electrical wiring (trace wiring) 104 is formed on the upper surface of the sensor 100. As the material of the wiring 104, for example, an aluminum conductive metal is used.

図1を再び参照すると、形状測定装置10は、図示するように、中心軸101を上下方向に向けた状態でセンサ100を支持する基台11を有する。水平面に沿って直交する2方向(X,Y方向)と上下方向(Z方向)にセンサ100の位置を調整する駆動機構12を基台11に連結してもよい。   Referring again to FIG. 1, the shape measuring apparatus 10 includes a base 11 that supports the sensor 100 with the central axis 101 directed in the vertical direction, as illustrated. A drive mechanism 12 that adjusts the position of the sensor 100 in two directions (X and Y directions) orthogonal to the horizontal plane and in the vertical direction (Z direction) may be connected to the base 11.

形状測定装置10は、基台11に支持されたセンサ100を照明するために、基台11の上方に配置された光源ユニット13と光学系14を有する。光源ユニット13は、第1の光源15と第2の光源16を有する。第1の光源15は、約400nm〜約800nmの波長を有する第1の光の可視光17を出射する。第2の光源16は、約900nm〜約1200nmの波長を有する第2の光の近赤外光18を出射する。第1の光源15と第2の光源16は、それぞれの光源から出射された可視光17と近赤外光18が同一の光軸19に沿って移動するように調整されている。なお、図1では、可視光17と近赤外光18を区別して認識できるように、それらは光軸19からオフセットして表されている。実施形態1において、光学系14はビームスプリッタ20を有する。ビームスプリッタ20は、光源15,16から出射された可視光17と近赤外光18の進行方向、すなわち光軸19を垂直下方に変えて、図示するように基台11に支持されているセンサ100をその上方から照明するように配置されている。実施形態の光学系14は、ビームスプリッタ20と基台11の間に配置されたレンズ21を有する。レンズ21は、一枚のレンズで構成してもよいし、複数のレンズを組み合わせた組レンズであってもよい。   The shape measuring apparatus 10 includes a light source unit 13 and an optical system 14 disposed above the base 11 in order to illuminate the sensor 100 supported by the base 11. The light source unit 13 includes a first light source 15 and a second light source 16. The first light source 15 emits first visible light 17 having a wavelength of about 400 nm to about 800 nm. The second light source 16 emits near-infrared light 18 of the second light having a wavelength of about 900 nm to about 1200 nm. The first light source 15 and the second light source 16 are adjusted so that the visible light 17 and the near-infrared light 18 emitted from the respective light sources move along the same optical axis 19. In FIG. 1, the visible light 17 and the near-infrared light 18 are shown offset from the optical axis 19 so that they can be distinguished and recognized. In the first embodiment, the optical system 14 includes a beam splitter 20. The beam splitter 20 changes the traveling direction of the visible light 17 and the near-infrared light 18 emitted from the light sources 15 and 16, that is, a sensor supported by the base 11 as shown in the figure by changing the optical axis 19 vertically downward. It arrange | positions so that 100 may be illuminated from the upper direction. The optical system 14 according to the embodiment includes a lens 21 disposed between the beam splitter 20 and the base 11. The lens 21 may be composed of a single lens or a combined lens in which a plurality of lenses are combined.

形状測定装置10はまた、ビームスプリッタ20の上方に、電荷撮像素子(CCD)からなる撮像素子22を有する。実施形態では、撮像素子22は、この撮像素子22で撮像された画像を解析処理する画像処理装置23に接続されている。また、画像処理装置23は液晶表示装置などの画像表示装置24に接続されている。   The shape measuring apparatus 10 also has an image sensor 22 formed of a charge image sensor (CCD) above the beam splitter 20. In the embodiment, the image sensor 22 is connected to an image processing device 23 that analyzes an image captured by the image sensor 22. The image processing device 23 is connected to an image display device 24 such as a liquid crystal display device.

以上の構成を備えた形状測定装置10の動作を説明する。形状測定の対象物であるセンサ100は、中心軸101を上下方向に向けるとともに、ダイヤフラム103を上部に位置させた状態で、基台11の上に設置される。このとき、センサ100の全体が照明されるように、センサ100の中心軸101を形状測定装置10の光軸19にほぼ一致させることが好ましい。   The operation of the shape measuring apparatus 10 having the above configuration will be described. The sensor 100, which is an object for shape measurement, is installed on the base 11 with the central axis 101 directed in the vertical direction and the diaphragm 103 positioned at the top. At this time, it is preferable to make the central axis 101 of the sensor 100 substantially coincide with the optical axis 19 of the shape measuring apparatus 10 so that the entire sensor 100 is illuminated.

この状態で、光源ユニット13の光源15,16を起動し、可視光17と近赤外光18を出射する。光源15,16から出射された可視光17と近赤外光18は光軸19に沿ってビームスプリッタ20に入射する。ビームスプリッタ20は、可視光17と近赤外光18の光軸を垂直方向に偏向し、レンズ21を介してセンサ100に入射する。   In this state, the light sources 15 and 16 of the light source unit 13 are activated to emit visible light 17 and near infrared light 18. Visible light 17 and near infrared light 18 emitted from the light sources 15 and 16 enter the beam splitter 20 along the optical axis 19. The beam splitter 20 deflects the optical axes of the visible light 17 and the near-infrared light 18 in the vertical direction and enters the sensor 100 through the lens 21.

図2に示すように、センサ100に入射された可視光17は、センサ100を透過せず、センサ上面(雰囲気との境界面)105で反射し、その反射光17’が光軸19を上方に向けて進行する。他方、センサ100に入射された近赤外光18は、一部がセンサ上面105で反射して反射光18’となり、残りはセンサ100の内部に進入する。センサ100の内部に進入した近赤外光18は、その一部がセンサ内面(ダイヤフラム内面)106(雰囲気との境界面)で反射して反射光18''となり、上方に向けて進行する。センサ内面106を通過した残りの近赤外光18'''はセンサ100を透過する。そして、センサ100の上面105で反射した可視光17’と、センサ100の上面105で反射した近赤外光18’及びセンサ内面106で反射した近赤外光18''は、光軸19に沿い、レンズ21とビームスプリッタ20を順に透過して、撮像素子22で受光される。筒部102に進入した近赤外光18は、センサ下面(筒部下面)でその一部が反射してセンサ上方に戻るかもしれないが、筒部102の厚み(上下方向の高さ)はダイヤフラム103に比べて相当大きいことから、筒部102の内部を進行する間に減衰し、たとえ一部の近赤外光18がセンサ上面105を通過して上方に戻ることがあっても、撮像素子22で受光される光量は相当小さいものと考えられる。   As shown in FIG. 2, the visible light 17 incident on the sensor 100 does not pass through the sensor 100 but is reflected by the sensor upper surface (boundary surface with the atmosphere) 105, and the reflected light 17 ′ moves up the optical axis 19. Proceed toward. On the other hand, part of the near infrared light 18 incident on the sensor 100 is reflected by the sensor upper surface 105 to become reflected light 18 ′, and the rest enters the inside of the sensor 100. A part of the near-infrared light 18 entering the inside of the sensor 100 is reflected by the sensor inner surface (diaphragm inner surface) 106 (boundary surface with the atmosphere) to be reflected light 18 ″, and travels upward. The remaining near-infrared light 18 ′ ″ that has passed through the sensor inner surface 106 passes through the sensor 100. The visible light 17 ′ reflected by the upper surface 105 of the sensor 100, the near-infrared light 18 ′ reflected by the upper surface 105 of the sensor 100, and the near-infrared light 18 ″ reflected by the sensor inner surface 106 are reflected on the optical axis 19. Along the lens 21 and the beam splitter 20 in order, and is received by the image sensor 22. The near-infrared light 18 that has entered the tube portion 102 may partially be reflected by the lower surface of the sensor (bottom surface of the tube portion) and return to the upper side of the sensor, but the thickness (height in the vertical direction) of the tube portion 102 is Since it is considerably larger than the diaphragm 103, it is attenuated while traveling inside the cylinder portion 102, and even if some near infrared light 18 passes through the sensor upper surface 105 and returns upward, the imaging is performed. The amount of light received by the element 22 is considered to be considerably small.

図1に戻り、撮像素子22は、可視光17と近赤外光18を合成して得られる像を画像処理装置23に送信する。画像処理装置23は、内蔵されている画像処理プログラムを利用し画像を処理し、その処理した画像を必要に応じて画像表示装置24に出力して該画像表示装置24に表示する。画像表示装置24に表示された画像の一例を図3に示す。なお、画像表示装置24に表示された画像が不鮮明である場合、駆動機構12を操作して、表示される画像を鮮明にすることができる。   Returning to FIG. 1, the image sensor 22 transmits an image obtained by combining the visible light 17 and the near-infrared light 18 to the image processing device 23. The image processing device 23 processes an image using a built-in image processing program, outputs the processed image to the image display device 24 as necessary, and displays the image on the image display device 24. An example of an image displayed on the image display device 24 is shown in FIG. If the image displayed on the image display device 24 is unclear, the drive mechanism 12 can be operated to make the displayed image clear.

図3に示す画像200において、中央に表れた低濃度の四角形領域201がダイヤフラム103の平面形状を示し、四角形領域201の周囲に表れた高濃度の周辺領域202が筒部102を示す。また、周辺領域202に表れた濃淡混合領域203がセンサ上面105に形成された電気配線104を示す。この図に示すように、画像200上、センサ100の筒部102とダイヤフラム103、および電気配線104は、明らかに異なる濃度をもって表示される。その理由の一つは、上述のように、可視光17はその全部又は殆どがセンサ上面105で反射されること、また、近赤外光18はその一部がセンサ100の上面105および内面106で反射して撮像素子で受光されるが残りはセンサ100を透過して撮像素子22に受光されないこと、さらに、センサ100の内部に進入した近赤外光は透過するセンサ部分の厚みに応じて減衰すること、そして、結果的に撮像素子22で受光されるダイヤフラム像と筒部像の光量が異なることにあると考えられる。また、金属配線104は、可視光17は勿論、近赤外光18も透過し得ないことから、ダイヤフラム103や筒部102とは異なった濃度をもって表示される。   In the image 200 shown in FIG. 3, a low-density square area 201 that appears in the center indicates the planar shape of the diaphragm 103, and a high-density peripheral area 202 that appears around the square area 201 indicates the cylindrical portion 102. In addition, the light and dark mixed region 203 appearing in the peripheral region 202 shows the electric wiring 104 formed on the sensor upper surface 105. As shown in this figure, on the image 200, the cylinder portion 102, the diaphragm 103, and the electrical wiring 104 of the sensor 100 are displayed with clearly different densities. One reason for this is that, as described above, all or most of the visible light 17 is reflected by the sensor upper surface 105, and part of the near infrared light 18 is the upper surface 105 and the inner surface 106 of the sensor 100. Depending on the thickness of the sensor portion through which the near-infrared light that has entered the inside of the sensor 100 is transmitted. It is considered that the light is attenuated, and as a result, the light amount of the diaphragm image and the cylindrical portion image received by the image sensor 22 is different. Further, since the metal wiring 104 cannot transmit not only the visible light 17 but also the near-infrared light 18, the metal wiring 104 is displayed with a density different from that of the diaphragm 103 and the cylindrical portion 102.

したがって、図3に示す画像を評価することによって、センサ100におけるダイヤフラム103や電気配線104が適正な形状を有するか否か判断できる。なお、ダイヤフラム103が目的の厚みを有するときに撮像された画像の濃度(基準濃度)を画像表示装置24に表示することで、この基準濃度と実際に撮像されたダイヤフラム像の濃度を比較して、ダイヤフラム103が目的の厚みを有するか否か判断することも可能である。   Therefore, by evaluating the image shown in FIG. 3, it can be determined whether the diaphragm 103 and the electrical wiring 104 in the sensor 100 have an appropriate shape. In addition, by displaying the density (reference density) of the image captured when the diaphragm 103 has the target thickness on the image display device 24, the reference density and the density of the actually captured diaphragm image are compared. It is also possible to determine whether or not the diaphragm 103 has a target thickness.

なお、赤外光には、近赤外光、中赤外光、熱赤外光が含まれるが、中赤外光や熱赤外光を使用した場合、測定対象物の温度に関する情報が撮像素子の受光する像に含まれること、また撮像素子はそれら中赤外光や熱赤外光の波長帯域に感度を持たないことから、本発明では中赤外光や熱赤外光の使用は適当ではないと考えられる。   Infrared light includes near-infrared light, mid-infrared light, and thermal infrared light. When mid-infrared light or thermal infrared light is used, information on the temperature of the measurement object is captured. In the present invention, the use of mid-infrared light or thermal infrared light is not included in the image received by the element, and the imaging device has no sensitivity in the wavelength band of these mid-infrared light and thermal infrared light. It is considered inappropriate.

また、センサ100は図1に示す形態に限定されるものでなく、例えば、図4に示すように、筒部102の肉厚が下方に向かって次第に厚くなる形態のセンサ110や、筒部102の下面に金属膜107が形成されている形態のセンサ120も、本発明の形状測定装置の測定対象に含まれる。   Further, the sensor 100 is not limited to the form shown in FIG. 1. For example, as shown in FIG. 4, the sensor 110 having a form in which the thickness of the cylindrical part 102 gradually increases downward, or the cylindrical part 102. A sensor 120 having a metal film 107 formed on the lower surface is also included in the measurement target of the shape measuring apparatus of the present invention.

このように、従来の形状測定装置では測定対象の上下にそれぞれ光源と光学系を配置しているため、装置全体の構成が大きくなり、また複雑になるという問題があったが、上述の形状測定装置では測定対象の片側(上方)にのみ光源と光学系が配置できるので、装置を簡単かつ小型にできる。また、従来の形状測定装置では透過光として赤色光を用いているが、例えば対象がシリコンからなる物の場合、その薄肉部が相当薄くなければ赤色光は該部分を透過できず、そのために撮像した画像から形状を正確に認識できない。これに対し、上述の形状測定装置では、シリコンを透過する近赤外光を使用しているので、薄肉部が相当薄くなくても、該薄肉部の形状を他の部分の形状とは明らかに異なる態様で表示した画像を得ることができる。   As described above, in the conventional shape measuring apparatus, since the light source and the optical system are respectively arranged above and below the measurement target, there is a problem that the configuration of the entire apparatus becomes large and complicated. In the apparatus, since the light source and the optical system can be arranged only on one side (upper side) of the measurement object, the apparatus can be easily and miniaturized. In addition, in the conventional shape measuring apparatus, red light is used as transmitted light. For example, when the object is made of silicon, the red light cannot be transmitted unless the thin part is considerably thin, and imaging is therefore performed. The shape cannot be accurately recognized from the captured image. On the other hand, since the shape measuring apparatus described above uses near-infrared light that passes through silicon, the shape of the thin portion is clearly different from the shape of other portions even if the thin portion is not considerably thin. Images displayed in different modes can be obtained.

実施形態2Embodiment 2

図6は、実施形態2の形状測定装置10’を示す。図示するように、実施形態2の形状測定装置10’は、光源ユニット13とビームスプリッタ20にフィルタユニット30を備えている。フィルタユニット30は、第1の光である可視光17の光量を調整する第1のフィルタ31と、第2の光である近赤外光18の光量を調整する第2のフィルタ32と、これら第1のフィルタ31と第2のフィルタ32をそれらが光軸19を横切る位置(図示する位置)に着脱可能に保持するフィルタホルダ33を有する。   FIG. 6 shows a shape measuring apparatus 10 ′ according to the second embodiment. As illustrated, the shape measuring apparatus 10 ′ according to the second embodiment includes a filter unit 30 in the light source unit 13 and the beam splitter 20. The filter unit 30 includes a first filter 31 that adjusts the amount of visible light 17 that is first light, a second filter 32 that adjusts the amount of near-infrared light 18 that is second light, and these It has a filter holder 33 that detachably holds the first filter 31 and the second filter 32 at a position where they cross the optical axis 19 (position shown in the figure).

このような構成を備えた実施形態2の形状測定装置10’によれば、可視光17と近赤外光18の強度を別々に制御し、薄肉部分と厚肉部分(例えば、ダイヤフラム103と筒部102、または欠陥部と無欠陥部、もしくは溝部とそれ以外の部分)から得られる反射光の光量に大きな差をつけ、その結果、画像表示装置24に表示される薄肉部分と厚肉部分の画像を明らかに異なる濃度をもって表示できる。   According to the shape measuring apparatus 10 'of the second embodiment having such a configuration, the intensities of the visible light 17 and the near-infrared light 18 are separately controlled, and a thin part and a thick part (for example, the diaphragm 103 and the cylinder) Difference in the amount of reflected light obtained from the portion 102, or a defective portion and a non-defective portion, or a groove portion and other portions), and as a result, the thin portion and the thick portion displayed on the image display device 24 Images can be displayed with clearly different densities.

フィルタに要求される性能は測定対象によって異なるが、例えば、図示するダイヤフラム付センサであって、ダイヤフラムが約10μmの厚みを有すると共に該ダイヤフラムの上面にアルミニウムの電極(配線)が形成されている場合、フィルタを透過してセンサに入射される可視光と近赤外光の光強度の比率(近赤外光の光強度/可視光の光強度)が約0.8〜0.9となるようにそれぞれのフィルタが選択される。   The performance required for the filter differs depending on the object to be measured. For example, in the case of the illustrated sensor with a diaphragm, the diaphragm has a thickness of about 10 μm and an aluminum electrode (wiring) is formed on the upper surface of the diaphragm. The ratio of the light intensity of visible light and near infrared light that passes through the filter and enters the sensor (near infrared light intensity / visible light intensity) is about 0.8 to 0.9. Each filter is selected.

なお、実施形態2では、フィルタユニット30は光源ユニット13とビームスプリッタ20の間に配置されているが、ビームスプリッタ20とレンズ21の間、レンズ21と基台11の間、またはビームスプリッタ20と撮像素子22の間の任意の位置に配置することができる。また、実施形態2では、フィルタユニット30に2つのフィルタ31,32を備えているが、第1のフィルタ31を収容する第1のフィルタユニットと第2のフィルタ32を収容する第2のフィルタユニットをそれぞれ異なる場所に設置してもよい。   In the second embodiment, the filter unit 30 is disposed between the light source unit 13 and the beam splitter 20, but between the beam splitter 20 and the lens 21, between the lens 21 and the base 11, or the beam splitter 20 It can be arranged at any position between the image sensors 22. In the second embodiment, the filter unit 30 includes the two filters 31 and 32, but the first filter unit that houses the first filter 31 and the second filter unit that houses the second filter 32. May be installed in different places.

また、実施形態2では、フィルタユニット30は光源ユニット13から独立したユニットとして示してあるが、光源ユニット13に一体的に組み入れてもよい。   In the second embodiment, the filter unit 30 is shown as a unit independent of the light source unit 13, but may be integrated into the light source unit 13.

実施形態3Embodiment 3

図7は、実施形態3の形状測定装置10''を示す。図示するように、実施形態3の形状測定装置10''は、基台11の表面に、第2の光の近赤外光18を吸収する材料からなるシート状の光吸収部材40が配置されており、その上に測定対象が支持されるようにしてある。近赤外光18を吸収する材料としては、例えば、表面にカーボンブラックを塗布したシート又は板が使用できる。   FIG. 7 shows a shape measuring apparatus 10 ″ according to the third embodiment. As illustrated, in the shape measuring apparatus 10 '' of the third embodiment, a sheet-like light absorbing member 40 made of a material that absorbs the near-infrared light 18 of the second light is disposed on the surface of the base 11. The object to be measured is supported on it. As a material that absorbs the near-infrared light 18, for example, a sheet or a plate having a surface coated with carbon black can be used.

このように構成された実施形態3の形状測定装置10''によれば、測定対象を透過した近赤外光18は光吸収部材40に吸収され、それが反射光となって撮像素子22に検出されることがないので、薄肉部分と厚肉部分(例えば、ダイヤフラム103と筒部102、または欠陥部と無欠陥部、もしくは溝部とそれ以外の部分)から得られる反射光の光量に大きな差をつけ、その結果、画像表示装置24に表示される薄肉部分と厚肉部分の画像を明らかに異なる濃度をもって表示できる。   According to the shape measuring apparatus 10 '' of the third embodiment configured as described above, the near-infrared light 18 transmitted through the measurement object is absorbed by the light absorbing member 40, and the reflected light becomes reflected light on the imaging device 22. Since it is not detected, there is a large difference in the amount of reflected light obtained from the thin portion and the thick portion (for example, the diaphragm 103 and the cylindrical portion 102, or the defective portion and the non-defective portion, or the groove portion and other portions). As a result, the thin portion and thick portion images displayed on the image display device 24 can be displayed with clearly different densities.

なお、上述した複数の実施形態では、ビームスプリッタ20と基台11の間にレンズ21を設けているが、レンズ21は必ずしも必要ではない。ただし、対象物の一部領域の形状を詳細に観察する場合、その領域に光を収束させるためにレンズは有効である。   In the above-described embodiments, the lens 21 is provided between the beam splitter 20 and the base 11, but the lens 21 is not always necessary. However, when observing the shape of a partial region of the object in detail, the lens is effective for converging light in that region.

本発明に係る形状測定装置の構成を示す図。The figure which shows the structure of the shape measuring apparatus which concerns on this invention. 本発明の形状測定装置で形状を測定する圧力センサの断面図。Sectional drawing of the pressure sensor which measures a shape with the shape measuring apparatus of this invention. 本発明の形状測定装置で圧力センサの形状を測定した結果の画像を示す図。The figure which shows the image of the result of having measured the shape of the pressure sensor with the shape measuring apparatus of this invention. 測定対象物の他の形態を示す断面図。Sectional drawing which shows the other form of a measuring object. 測定対象物の他の形態を示す断面図。Sectional drawing which shows the other form of a measuring object. 実施形態2に係る形状測定装置の構成を示す図。The figure which shows the structure of the shape measuring apparatus which concerns on Embodiment 2. FIG. 実施形態3に係る形状測定装置の構成を示す図。FIG. 6 is a diagram illustrating a configuration of a shape measuring apparatus according to a third embodiment.

符号の説明Explanation of symbols

10、10’、10'':形状測定装置、11:基台、12:駆動機構、13:光源ユニット、14:光学系、15:第1の光源、16:第2の光源、17:可視光(第1の光)、18:近赤外光(第2の光)、19:光軸、20:ビームスプリッタ、21:レンズ、22:撮像素子、23:画像処理装置、24:画像表示装置、30:フィルタユニット、31:第1のフィルタ、32:第2のフィルタ、40:光吸収部材、100:圧力センサ、101:中心軸、102:筒部、103:ダイヤフラム、104:電気配線、105:センサ上面、106:センサ内面、200:画像。 10, 10 ', 10' ': shape measuring device, 11: base, 12: drive mechanism, 13: light source unit, 14: optical system, 15: first light source, 16: second light source, 17: visible Light (first light), 18: Near infrared light (second light), 19: Optical axis, 20: Beam splitter, 21: Lens, 22: Image sensor, 23: Image processing device, 24: Image display Device: 30: Filter unit, 31: First filter, 32: Second filter, 40: Light absorbing member, 100: Pressure sensor, 101: Center axis, 102: Tube portion, 103: Diaphragm, 104: Electric wiring , 105: sensor upper surface, 106: sensor inner surface, 200: image.

Claims (6)

シリコンを含む半導体材料からなる物の形状を測定する形状測定装置であって、
400nm〜800nmの波長を有する第1の光を出射する第1の光源と、
900nm〜1200nmの波長を有する第2の光を出射する第2の光源と、
上記物に上記第1の光と第2の光を一つの光軸に沿って同一の方向から入射する光学系と、
上記第1の光と第2の光に感度を有し、上記第1の光と第2の光の上記物からの反射光を受光する受光部を備えたことを特徴とする形状測定装置。
A shape measuring device for measuring the shape of an object made of a semiconductor material containing silicon,
A first light source that emits first light having a wavelength of 400 nm to 800 nm;
A second light source that emits second light having a wavelength of 900 nm to 1200 nm;
An optical system in which the first light and the second light are incident on the object from the same direction along one optical axis;
A shape measuring apparatus comprising a light receiving section that has sensitivity to the first light and the second light and receives reflected light from the object of the first light and the second light.
上記第1の光が通過する光路上に配置され、上記第1の光の強度を調整する第1の光強度調整部、上記第2の光が通過する光路上に配置され、上記第2の光の強度を調整する第2の光強度調整部、の少なくともいずれか一方を備えたことを特徴とする請求項1の形状測定装置。   A first light intensity adjusting unit arranged on an optical path through which the first light passes and adjusts an intensity of the first light; arranged on an optical path through which the second light passes; The shape measuring apparatus according to claim 1, further comprising at least one of a second light intensity adjusting unit that adjusts light intensity. 上記第1の光と第2の光が入射される物表面部分の反対側にある物表面部分に対向して上記第2の光を吸収する光吸収部材が配置されていることを特徴とする請求項1または2の形状測定装置。   A light absorbing member that absorbs the second light is disposed opposite to the object surface portion on the opposite side of the object surface portion on which the first light and the second light are incident. The shape measuring apparatus according to claim 1 or 2. シリコンを含む半導体材料からなる物の形状を測定する形状測定方法であって、
400nm〜800nmの波長を有する第1の光を出射し、
900nm〜1200nmの波長を有する第2の光を出射し、
上記物に上記第1の光と第2の光を一つの光軸に沿って同一の方向から入射し、
上記第1の光と第2の光に感度を有する受光部で、上記第1の光と第2の光の上記物からの反射光を受光することを特徴とする形状測定方法。
A shape measuring method for measuring the shape of an object made of a semiconductor material containing silicon,
Emitting a first light having a wavelength of 400 nm to 800 nm;
Emitting second light having a wavelength of 900 nm to 1200 nm;
The first light and the second light are incident on the object from the same direction along one optical axis,
A shape measuring method, wherein a light receiving unit having sensitivity to the first light and the second light receives reflected light from the object of the first light and the second light.
物の形状を計測する形状測定装置であって、
上記物に対して不透過性を有する第1の波長の第1の光を出射する第1の光源と、
上記物に対して透過性を有し且つ上記第1の波長と異なる波長の第2の波長を有する第2の光を出射する第2の光源と、
上記物に対して上記第1の光源と第2の光源から出射された第1の光と第2の光を同一方向から入射する光学系と、
上記第1の光と第2の光に感度を有し、上記物と雰囲気との境界で反射した第1の反射光と第2の反射光を受光する受光部を備えたことを特徴とする形状測定装置。
A shape measuring device for measuring the shape of an object,
A first light source that emits first light having a first wavelength that is opaque to the object;
A second light source that emits second light having a second wavelength different from the first wavelength and having transparency to the object;
An optical system that makes the first light and the second light emitted from the first light source and the second light source incident on the object from the same direction;
A light receiving portion having sensitivity to the first light and the second light and receiving the first reflected light and the second reflected light reflected at the boundary between the object and the atmosphere is provided. Shape measuring device.
物の形状を計測する形状測定方法であって、
上記物に対して不透過性を有する第1の波長の第1の光を出射し、
上記物に対して透過性を有し且つ上記第1の波長と異なる波長の第2の波長を有する第2の光を出射し、
上記物に対して上記第1の光と第2の光を同一方向から入射し、
上記物と雰囲気との境界で反射した第1の反射光と第2の反射光を受光することを特徴とする形状測定方法。
A shape measuring method for measuring the shape of an object,
Emitting first light of a first wavelength that is impervious to the object,
A second light having a second wavelength different from the first wavelength and having transparency to the object;
The first light and the second light are incident on the object from the same direction,
A shape measuring method, wherein the first reflected light and the second reflected light reflected at the boundary between the object and the atmosphere are received.
JP2006272536A 2006-10-04 2006-10-04 Profile measuring device and method Pending JP2008089489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272536A JP2008089489A (en) 2006-10-04 2006-10-04 Profile measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272536A JP2008089489A (en) 2006-10-04 2006-10-04 Profile measuring device and method

Publications (1)

Publication Number Publication Date
JP2008089489A true JP2008089489A (en) 2008-04-17

Family

ID=39373793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272536A Pending JP2008089489A (en) 2006-10-04 2006-10-04 Profile measuring device and method

Country Status (1)

Country Link
JP (1) JP2008089489A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243504A (en) * 1985-08-21 1987-02-25 Hitachi Ltd Inspecting defect of transparent thin film pattern
JPH07128030A (en) * 1993-11-08 1995-05-19 Yanmar Agricult Equip Co Ltd Visual inspection apparatus for farm product
JPH10307004A (en) * 1997-05-07 1998-11-17 Disco Abrasive Syst Ltd Recognition apparatus for object to be worked
JPH10325711A (en) * 1997-05-23 1998-12-08 Hitachi Ltd Method and apparatus for inspection as well as manufacture of semiconductor substrate
JPH11274259A (en) * 1998-03-26 1999-10-08 Hitachi Ltd Thickness measuring device and thickness controller
JP2000088566A (en) * 1998-09-02 2000-03-31 Leica Geosystems Ag Optical range finder
JP2003098120A (en) * 2001-09-26 2003-04-03 Tokyo Weld Co Ltd Visual inspection apparatus
JP2004061349A (en) * 2002-07-30 2004-02-26 Ishizuka Glass Co Ltd 3-dimensional measurement inspection method and its system
JP3506170B2 (en) * 1997-05-15 2004-03-15 オムロン株式会社 Inspection apparatus and inspection method for semiconductor parts
JP2005114587A (en) * 2003-10-08 2005-04-28 Soft Works Kk Inspection device and method of silicon wafer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243504A (en) * 1985-08-21 1987-02-25 Hitachi Ltd Inspecting defect of transparent thin film pattern
JPH07128030A (en) * 1993-11-08 1995-05-19 Yanmar Agricult Equip Co Ltd Visual inspection apparatus for farm product
JPH10307004A (en) * 1997-05-07 1998-11-17 Disco Abrasive Syst Ltd Recognition apparatus for object to be worked
JP3506170B2 (en) * 1997-05-15 2004-03-15 オムロン株式会社 Inspection apparatus and inspection method for semiconductor parts
JPH10325711A (en) * 1997-05-23 1998-12-08 Hitachi Ltd Method and apparatus for inspection as well as manufacture of semiconductor substrate
JPH11274259A (en) * 1998-03-26 1999-10-08 Hitachi Ltd Thickness measuring device and thickness controller
JP2000088566A (en) * 1998-09-02 2000-03-31 Leica Geosystems Ag Optical range finder
JP2003098120A (en) * 2001-09-26 2003-04-03 Tokyo Weld Co Ltd Visual inspection apparatus
JP2004061349A (en) * 2002-07-30 2004-02-26 Ishizuka Glass Co Ltd 3-dimensional measurement inspection method and its system
JP2005114587A (en) * 2003-10-08 2005-04-28 Soft Works Kk Inspection device and method of silicon wafer

Similar Documents

Publication Publication Date Title
JP2020025126A (en) Imaging system
KR101240564B1 (en) Optical inspection apparatus and method of inspecting using the same
TW200839227A (en) Automatic inspection system for flat panel substrate
KR101577119B1 (en) Pattern inspection apparatus and pattern inspection method
JP4104924B2 (en) Optical measuring method and apparatus
KR20190077490A (en) Method and apparatus for defect inspection on transparent substrate and method of irradiating incident light
JP2006292412A (en) Surface inspection system, surface inspection method and substrate manufacturing method
JP2009150835A (en) Optical inspection method and optical inspection device
JP5272784B2 (en) Optical inspection method and optical inspection apparatus
KR102279169B1 (en) Detection apparatus and detection method
CN212207144U (en) Apparatus for detecting surface defects on glass sheets
JP2011174817A (en) Foreign matter inspection system, exposure system, and device manufacturing method
JP2015078865A (en) Foreign substance inspection device
KR100521016B1 (en) Method and apparatus for measuring a line width
JP2017053775A (en) Apparatus for imaging inside of light-transmissive object, and inspection apparatus
JP6142996B2 (en) Via shape measuring device and via inspection device
KR101447857B1 (en) Particle inspectiing apparatus for lens module
JP2011226939A (en) Method and device for inspecting substrate
JP2005274173A (en) Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device
JP2008089489A (en) Profile measuring device and method
KR101575895B1 (en) Apparatus and method for inspecting wafer using light
JP2014107483A (en) Obirch inspection method and obirch device
JPH11258167A (en) Method and apparatus for inspection of defect in glass tube
JP2012068211A (en) Distortion inspection device for sheet member and distortion inspection method for sheet member
JP2009174957A (en) Foreign matter detection method and foreign matter detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Effective date: 20100622

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

A131 Notification of reasons for refusal

Effective date: 20100831

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110104

Free format text: JAPANESE INTERMEDIATE CODE: A02