JP2008088633A - Burying type form made of polymer cement mortar - Google Patents

Burying type form made of polymer cement mortar Download PDF

Info

Publication number
JP2008088633A
JP2008088633A JP2006267070A JP2006267070A JP2008088633A JP 2008088633 A JP2008088633 A JP 2008088633A JP 2006267070 A JP2006267070 A JP 2006267070A JP 2006267070 A JP2006267070 A JP 2006267070A JP 2008088633 A JP2008088633 A JP 2008088633A
Authority
JP
Japan
Prior art keywords
monomer
cement mortar
polymer cement
unsaturated carboxylic
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006267070A
Other languages
Japanese (ja)
Inventor
Keiji Omori
啓至 大森
Shisho Hayashi
志翔 林
Seisuke Nagashio
靖祐 長塩
Yuji Mitani
裕二 三谷
Yasuaki Fukuda
康昭 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2006267070A priority Critical patent/JP2008088633A/en
Publication of JP2008088633A publication Critical patent/JP2008088633A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a burying type form made of polymer cement mortar of excellent efficiency of production, capable of being released with material age of one day same as a usual concrete manufacture. <P>SOLUTION: This burying type form made of polymer cement mortar is a water-based resin dispersing element obtained by emulsification and polymerization in two stages or more of a monomer compound containing one kind of monomer or more selected from among ethylene unsaturated carboxylic acid monomer and aromatic vinyl monomer and/or (meta)acrylic acid ester monomer, and composed of the aggregate made of only the water-based resin dispersing element having a mass ratio (a-final)/(a-1) of 4-8 of the ethylene unsaturated carboxylic acid monomer (a-1) used at the first stage to the ethylene unsaturated carboxylic acid monomer (a-final) used at the final stage, early-strength Portland cement, and fine aggregate, high-performance water reducing agent, and defoaming agent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、コンクリート打設時には型枠として用い、コンクリート打設後はコンクリートが型枠と一体化して強固な合成構造となる埋設型枠に関するものである。   The present invention relates to a buried form that is used as a mold when casting concrete, and after the concrete is cast, the concrete is integrated with the mold to form a strong composite structure.

従来、壁、床、柱、梁等の構築において、現場におけるコンクリート打設時には型枠として用い、コンクリート打設後は型枠を解体することなく現場打ちコンクリートと型枠が一体化して強固な合成構造を形成するために用いられる型枠は、所謂、埋設型枠、埋込型枠、永久型枠等と称され、コンクリートの現場打ち工法と比較して、現場工事の省力化、工期短縮、品質向上等を図ることが可能であり、建築分野に限らず、橋げたやダム等の土木構造物にも適用範囲が広がりつつある。このような型枠部材としては、主としてコンクリート又は鋼材が利用されており、コンクリート製埋設型枠は、鋼製型枠と比べて、耐久性や、防錆のための維持修繕費、美観性に優れる。一方、通常強度のコンクリートは、その材料特性から部材厚さが大きくなり、型枠の重量が大となり、運搬等において大きな機械力を使用しなければならない欠点を持っている。一方、補強材として立体トラス筋を使用したり、プレストレストの導入により、ある程度の小断面で充分な強度を持たせることを可能としているが、これらにおいても、市販型枠のコンクリート圧縮強度は60〜80MPa、曲げ強度は6〜10MPa程度であり、さらに断面厚さを低減し、広幅で長尺型枠とするには部材寸法に限界がある。また、コンクリートが耐久性に優れているとはいえ、腐食作用、凍結融解作用、あるいは化学作用が厳しい環境におけるコンクリート構造物の型枠として使用するためには、例えば、海水による侵食、摩耗、凍結融解による剥離の発生等の課題が残る。   Conventionally, in the construction of walls, floors, pillars, beams, etc., it is used as a formwork when placing concrete on site, and after concrete placement, the cast-in-place concrete and formwork are integrated into a solid composite without dismantling the formwork. Formwork used to form the structure is called so-called buried formwork, embedded formwork, permanent formwork, etc. It is possible to improve quality, and the scope of application is expanding not only in the construction field but also in civil engineering structures such as bridges and dams. As such formwork members, concrete or steel materials are mainly used, and concrete buried formwork is more durable, maintenance and repair costs for rust prevention, and aesthetics than steel formwork. Excellent. On the other hand, normal-strength concrete has the disadvantage that the material thickness increases due to its material properties, the weight of the formwork increases, and a large mechanical force must be used for transportation and the like. On the other hand, it is possible to give sufficient strength with a certain small cross section by using a solid truss bar as a reinforcing material or by introducing prestressed, but also in these, the concrete compressive strength of the commercial formwork is 60- 80 MPa, bending strength is about 6 to 10 MPa, and further, there is a limit in member dimensions in order to reduce the cross-sectional thickness and make a wide and long formwork. In addition, even though concrete is excellent in durability, it can be used as a formwork for concrete structures in environments where corrosion, freezing and thawing, or chemical action is severe. Issues such as occurrence of peeling due to melting remain.

これらの課題を解決するためセメントに水性樹脂分散体を配合したモルタル組成物、いわゆるポリマーセメント組成物が、一般のセメントモルタルに比較して、強度や耐凍害性に優れているため用いられている。特許文献1にはセメント100重量部と少なくとも2段階以上の乳化重合で作られた水性エマルジョンであって、最外層の樹脂が少なくとも1種のエチレンオキシド基を有する不飽和単量体と少なくとも1種のエチレン性不飽和単量体の共重合体であることを特徴とする多段階樹脂エマルジョンを樹脂固形分で3〜40重量部とからなるポリマーセメント組成物が提案されている(特許文献1)。このポリマーセメント組成物によれば、セメントモルタルの耐水性、曲げ、圧縮強さに対する改良が記載されているが、28日間養生後の結果であり、またその後の7日間の水中浸漬により曲げ強度、圧縮強度とも大幅に低下している。   In order to solve these problems, a mortar composition in which an aqueous resin dispersion is blended with cement, a so-called polymer cement composition, is used because it is superior in strength and frost damage resistance to general cement mortar. . Patent Document 1 discloses an aqueous emulsion made by emulsion polymerization of at least two stages with 100 parts by weight of cement, wherein the outermost resin is at least one unsaturated monomer having an ethylene oxide group and at least one kind. There has been proposed a polymer cement composition comprising 3 to 40 parts by weight of a resin solid content of a multistage resin emulsion characterized by being a copolymer of ethylenically unsaturated monomers (Patent Document 1). According to this polymer cement composition, improvements to the water resistance, bending and compressive strength of cement mortar are described, but the results after curing for 28 days, and bending strength by immersion in water for 7 days thereafter, The compressive strength is also greatly reduced.

特開平8−217513号公報JP-A-8-217513

コンクリート製品では、型枠を早く外し、製品の出荷を早めるために従来より促進養生、特に、蒸気養生がよく行われている。工場の設備の中で型枠費の占める割合が大きいので、硬化促進によって型枠の回転を早くして量産化方式をとると、それだけ経済的に有利になる。特に、肉厚の薄い埋設型枠の場合、部材厚が薄ければ薄いほど、部材寸法が大きければ大きいほど、脱型時に高い曲げ強度が必要である。しかし、従来のポリマーセメントモルタルは、材齢1日で所要の曲げ強度が得られず、通常のコンクリート製品ように型枠に打設後一日で脱型することは困難であった。特に埋設型枠のように薄さを要求されるものでは十分な曲げ強度が必要とされる。したがって、本発明は、このような課題を解決することを目的とし、通常のコンクリート製品の製造のように蒸気養生が可能であり、材齢1日(脱型直後)で優れた高曲げ強度、高圧縮強度特性を有し、通常のコンクリート製品同様材齢1日で脱型可能である生産効率に優れたポリマーセメントモルタル製埋設型枠を提供することを目的とする。また、海水による侵食、酸に対する耐久性に優れたポリマーセメントモルタル製埋設型枠を提供することを目的とする。   In concrete products, accelerated curing, particularly steam curing, is often performed in order to quickly remove the formwork and accelerate the shipment of the product. Since the ratio of the mold cost in the factory equipment is large, it is economically advantageous to adopt the mass production method by speeding up the mold rotation by promoting hardening. In particular, in the case of an embedded form having a small thickness, the thinner the member thickness and the larger the member size, the higher the bending strength required for demolding. However, the conventional polymer cement mortar cannot obtain the required bending strength at the age of 1 day, and it is difficult to remove the mold in a day after being placed on a mold like a normal concrete product. In particular, a sufficient bending strength is required in a case where thinness is required such as an embedded formwork. Therefore, the present invention aims to solve such problems and is capable of steam curing as in the production of ordinary concrete products, and has excellent high bending strength at a material age of 1 day (immediately after demolding), An object of the present invention is to provide a polymer cement mortar embedment form having high compressive strength characteristics and capable of being demolded at the age of one day like ordinary concrete products and excellent in production efficiency. Another object of the present invention is to provide an embedded form made of polymer cement mortar which is excellent in erosion by seawater and durability against acid.

本発明者らは、上記課題を解決するために鋭意検討した結果、特殊な水性樹脂分散体、早強ポルトランドセメント、細骨材のみからなる骨材、高性能減水剤、消泡剤及び水とからなるポリマーセメントモルタルが、蒸気養生により材齢1日で脱型可能な所要の曲げ強度を得ることができるので通常のコンクリート製品と同様に効率的に生産できることを見出し、本発明を完成した。すなわち、エチレン性不飽和カルボン酸単量体、芳香族ビニル単量体及び/又は(メタ)アクリル酸エステル単量体から選ばれる1種以上の単量体を含む単量体組成物を乳化重合して得られる水性樹脂分散体であり、該水性樹脂分散体が2段階以上の乳化重合で得られるものであって、1段目に使用するエチレン性不飽和カルボン酸単量体(a−1)と最終段に使用するエチレン性不飽和カルボン酸単量体(a−最終)との質量比(a−最終)/(a−1)が4〜8である水性樹脂分散体と早強ポルトランドセメント、細骨材のみからなる骨材、高性能減水剤、および消泡剤とからなることを特徴とするポリマーセメントモルタル製埋設型枠(請求項1)である。   As a result of diligent studies to solve the above problems, the present inventors have found that a special aqueous resin dispersion, early strength Portland cement, an aggregate consisting of only fine aggregates, a high-performance water reducing agent, an antifoaming agent, and water It has been found that the polymer cement mortar made of can be efficiently produced in the same manner as a normal concrete product because it can obtain the required bending strength that can be demolded at a material age of 1 day by steam curing. That is, an emulsion polymerization of a monomer composition containing one or more monomers selected from ethylenically unsaturated carboxylic acid monomers, aromatic vinyl monomers and / or (meth) acrylic acid ester monomers. An aqueous resin dispersion obtained by emulsion polymerization in two or more stages, and an ethylenically unsaturated carboxylic acid monomer (a-1) used in the first stage ) And the ethylenically unsaturated carboxylic acid monomer (a-final) used in the final stage (a-final) / (a-1) is an aqueous resin dispersion having a weight ratio of 4 to 8 and early strong Portland cement A polymer cement mortar embedding formwork (claim 1) characterized by comprising an aggregate composed of only a fine aggregate, a fine aggregate, a high-performance water reducing agent, and an antifoaming agent.

そして、前記水性樹脂分散体(固形分)とセメントの質量比が5〜22%以下であることを特徴とする請求項1記載のポリマーセメントモルタル製埋設型枠である(請求項2)。   The mass ratio of the aqueous resin dispersion (solid content) to the cement is 5 to 22% or less. The embedded polymer mold mortar form according to claim 1 (Claim 2).

本発明によれば、通常のコンクリート製品同様一日で脱型可能であり、効率的に生産できる。また、曲げ強度に優れ、通常のコンクリート製埋設型枠よりも薄くでき、したがって軽量な埋設型枠を提供できる。さらに、耐久性に優れる埋設型枠を提供できる。   According to the present invention, it can be demolded in a day like a normal concrete product and can be produced efficiently. Moreover, it is excellent in bending strength, can be made thinner than a normal concrete embedment formwork, and thus can provide a light embedment formwork. Furthermore, an embedded formwork having excellent durability can be provided.

以下、本発明のポリマーセメントモルタル製埋設型枠およびその製造方法について説明する。   The polymer cement mortar embedding form of the present invention and the manufacturing method thereof will be described below.

本発明において用いられる結合材は、早強ポルトランドセメントが特に好ましい。早強ポルトランドセメントを用いることにより、蒸気養生によって一日で脱型可能な、優れた曲げ強度特性を得ることができる。   The binder used in the present invention is particularly preferably early-strength Portland cement. By using early-strength Portland cement, it is possible to obtain excellent bending strength characteristics that can be removed in a day by steam curing.

本発明に用いられる骨材は、細骨材のみである。該細骨材は、特に限定されるものではなく、通常コンクリート製品に使用される細骨材であれば良い。例えば、静岡県小笠産陸砂(表乾密度2.60g/cm)が例示される。 Aggregates used in the present invention are only fine aggregates. The fine aggregate is not particularly limited as long as it is a fine aggregate usually used in concrete products. For example, land sand produced in Ogasa, Shizuoka Prefecture (surface dry density 2.60 g / cm 3 ) is exemplified.

本発明に用いられる水性樹脂分散体は、エチレン性不飽和カルボン酸単量体としては例えば、アクリル酸、メタクリル酸、マレイン酸のモノエステル、フマル酸のモノエステル、イタコン酸のモノエステルなどのエチレン性不飽和モノカルボン酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和ジカルボン酸が挙げられる。好ましくはアクリル酸、メタクリル酸、イタコン酸から選ばれる1種以上のエチレン性不飽和カルボン酸である。
本発明の水性樹脂分散体で用いられる芳香族ビニル単量体としては、例えばスチレン、ビニルトルエン、α-メチルスチレンなどが挙げられる。好ましくはスチレンである。
The aqueous resin dispersion used in the present invention includes, for example, ethylene such as acrylic acid, methacrylic acid, maleic acid monoester, fumaric acid monoester, itaconic acid monoester as the ethylenically unsaturated carboxylic acid monomer. And ethylenically unsaturated dicarboxylic acids such as an unsaturated monocarboxylic acid, itaconic acid, fumaric acid and maleic acid. One or more ethylenically unsaturated carboxylic acids selected from acrylic acid, methacrylic acid and itaconic acid are preferred.
Examples of the aromatic vinyl monomer used in the aqueous resin dispersion of the present invention include styrene, vinyl toluene, α-methyl styrene and the like. Styrene is preferred.

また、(メタ)アクリル酸エステル単量体としては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、イソプロピルアクリレート、ブチルアクリレート、イソブチルアクリレート、n-ヘキシルアクリレート、シクロヘキシルアクリレート、2-エチルヘキシルアクリレート、ラウリルアクリレート、ベンジルアクリレート、フェニルアクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、イソプロピルアクリレート、ブチルメタクリレート、イソブチルメタクリレート、n-ヘキシルメタクリレート、シクロヘキシルメタクリレート、2-エチルヘキシルメタクリレート、ラウリルメタクリレート、ベンジルメタクリレート、フェニルメタクリレート等が挙げられる。好ましくは、ブチルアクリレート、2-エチルヘキシルアクリレート、メチルメタクリレート、ブチルメタクリレート、シクロヘキシルメタクリレートである。   Examples of the (meth) acrylic acid ester monomer include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, isobutyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, Examples include benzyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl acrylate, butyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, benzyl methacrylate, and phenyl methacrylate. Preferred are butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, butyl methacrylate, and cyclohexyl methacrylate.

本発明に使用される水性樹脂分散体は通常の乳化重合法によって得られる。乳化重合の方法に関しては特に制限はなく、従来公知の方法を用いることができる。すなわち、水性媒体中で単量体組成物、界面活性剤、ラジカル重合開始剤および必要に応じて用いられる連鎖移動剤等の他の添加剤成分などを基本組成成分とする分散系において、単量体組成物を重合する方法である。乳化重合に際しては、供給する単量体組成物の組成を二段階以上とすることが好ましい。二段階以上にすることにより、セメントモルタル硬化物の曲げ・圧縮強さが改善される。ここでいう単量体組成物の組成を二段階以上の供給とは、単量体組成物の1段目を重合した後、次いでさらに単量体組成物を供給し2段目の重合するものであり、これを繰り返すものである。本発明での単量体組成物の供給は、2または3段階が好ましく、さらに好ましくは2段階である。 The aqueous resin dispersion used in the present invention is obtained by a usual emulsion polymerization method. There is no restriction | limiting in particular regarding the method of emulsion polymerization, A conventionally well-known method can be used. That is, in a dispersion system containing a monomer composition, a surfactant, a radical polymerization initiator and other additive components such as a chain transfer agent used as necessary in an aqueous medium, A method for polymerizing a body composition. In the emulsion polymerization, the composition of the monomer composition to be supplied is preferably two or more. By using two or more steps, the bending and compressive strength of the cured cement mortar is improved. The supply of the monomer composition in two stages or more means that the first stage of the monomer composition is polymerized, and then the monomer composition is further supplied to perform the second stage polymerization. And repeat this. The supply of the monomer composition in the present invention is preferably two or three stages, more preferably two stages.

本発明に使用される水性樹脂分散体の好ましい粒子径は50〜400nmであり、さらに好ましくは100〜200nmである。粒子径が400nm以上になると、セメント粒子間の充填効果やボールベアリング効果が低減されるため、本発明の目的である高強度ポリマーセメントモルタルをつくる観点から適用されない。   The preferable particle diameter of the aqueous resin dispersion used in the present invention is 50 to 400 nm, and more preferably 100 to 200 nm. When the particle diameter is 400 nm or more, the filling effect between the cement particles and the ball bearing effect are reduced, so that it is not applied from the viewpoint of producing the high-strength polymer cement mortar which is the object of the present invention.

また、本発明に使用される水性樹脂分散体の固形分としては、30〜70質量%であることが好ましく、さらに好ましくは45〜70質量%である。固形分が30質量%より小さいと、水性樹脂分散体に含まれる水量と細骨材に付着する表面水量だけで、ポリマーセメントモルタルの単位水量を上回る恐れがあるため、現実的ではない。   Moreover, as solid content of the aqueous resin dispersion used for this invention, it is preferable that it is 30-70 mass%, More preferably, it is 45-70 mass%. If the solid content is less than 30% by mass, the amount of water contained in the aqueous resin dispersion and the amount of surface water adhering to the fine aggregate may exceed the unit water amount of the polymer cement mortar, which is not realistic.

水性樹脂分散体の配合量は、セメント100質量部に対して固形分換算で5〜22質量部が好ましく、8〜14質量部がより好ましい。水性樹脂分散体の配合量がセメント100質量部に対して固形分換算で5質量部未満では、流動性が低下し、曲げ強度が低下するので、好ましくない。一方、水性樹脂分散体の配合量がセメント100質量部に対して固形分換算で22質量部を超えると、水性樹脂分散体の補強効果による曲げ強度の増加分よりも、セメント硬化体の占める量の減少による曲げ強度の低下分のほうが大きくなるため、ポリマーセメントモルタル複合体としての曲げ強度が低下し始める。 5-22 mass parts is preferable at solid content conversion with respect to 100 mass parts of cement, and, as for the compounding quantity of an aqueous resin dispersion, 8-14 mass parts is more preferable. If the amount of the aqueous resin dispersion is less than 5 parts by mass in terms of solid content with respect to 100 parts by mass of cement, the fluidity is lowered and the bending strength is lowered, which is not preferable. On the other hand, when the compounding amount of the aqueous resin dispersion exceeds 22 parts by mass in terms of solid content with respect to 100 parts by mass of cement, the amount occupied by the hardened cement body rather than the increase in bending strength due to the reinforcing effect of the aqueous resin dispersion Since the decrease in the bending strength due to the decrease in the bending strength increases, the bending strength of the polymer cement mortar composite begins to decrease.

本発明に使用される高性能減水剤としては、通常コンクリートに用いられるAEでない高性能減水剤であれば何でもよいが、減水効果の高いものが望ましい。例えば、ポリカルボン酸エーテル系高性能減水剤が例示される。   The high-performance water reducing agent used in the present invention may be any high-performance water reducing agent that is not an AE usually used for concrete, but a high water reducing effect is desirable. For example, a polycarboxylic acid ether type high performance water reducing agent is exemplified.

本発明に使用される消泡剤としては、シリコーン系エマルジョンや特殊非イオン界面活性剤が例示される。一般に、セメントモルタル中にセメント混和用ポリマーエマルジョンを混入して攪拌すると著しく発泡し、必要以上の空気連行を伴うため、緻密な高強度ポリマーセメントモルタル硬化体をつくるには、適当な消泡剤を添加する必要がある。消泡剤の添加方法としては、予めポリマーエマルジョンの製造時に添加してもよく、ポリマーエマルジョンの製造時に添加せずポリマーセメントモルタル練り混ぜ時に添加してもよく、また、ポリマーエマルジョンの製造時に一部添加し、ポリマーセメントモルタル練り混ぜ時にさらに添加することもできる。   Examples of the antifoaming agent used in the present invention include silicone-based emulsions and special nonionic surfactants. In general, mixing a cement emulsion with a cement emulsion into a cement mortar causes significant foaming and air entrainment more than necessary, so an appropriate antifoaming agent should be used to produce a dense hardened polymer cement mortar. It is necessary to add. As a method of adding the antifoaming agent, it may be added in advance during the production of the polymer emulsion, may not be added during the production of the polymer emulsion, and may be added during the mixing of the polymer cement mortar. It can be added and further added when kneading the polymer cement mortar.

消泡剤の配合量は、セメント100質量部に対して0.2〜2質量部が好ましい。消泡剤の配合量がセメント100質量部に対して0.2質量部未満では、ポリマーセメントモルタルの連行気泡を十分に消すことができず、その結果、曲げ強度が低下するので、好ましくない。一方、消泡剤の配合量がセメント100質量部に対して2質量部以上になると、連行気泡の大部分がすでに消されているため、あまり効果がなく、不経済になる。 As for the compounding quantity of an antifoamer, 0.2-2 mass parts is preferable with respect to 100 mass parts of cement. If the blending amount of the antifoaming agent is less than 0.2 parts by mass with respect to 100 parts by mass of the cement, the entrained bubbles in the polymer cement mortar cannot be sufficiently erased, and as a result, the bending strength is lowered. On the other hand, when the blending amount of the antifoaming agent is 2 parts by mass or more with respect to 100 parts by mass of cement, since most of the entrained bubbles have already been erased, there is not much effect and it becomes uneconomic.

次に、製造方法について説明する。
製造方法は、特に限定されるものではなく、通常のコンクリート製埋設型枠を製造する方法に準ずれば良い。
すなわち、各材料を計量し、先ずセメントと細骨材とをミキサーに投入・攪拌(空練り)し、更に水性樹脂分散体、水、減水剤、消泡剤を加えて練り混ぜる。そして該混練物を鉄筋を配置した所定の型枠に充填し、該混練物のフレッシュ性状によって無振動締固め、振動締固めの何れかを行い、蒸気養生後、脱型してポリマーセメントモルタル製埋設型枠を製造する。
蒸気養生の方法としては、通常の一般的方法に従えば良く、例えば、前置2時間、昇温速度20℃/時、65℃で3時間保持、その後自然放冷する方法が例示される。
尚、本発明のポリマーセメントモルタル製埋設型枠の養生方法としては、蒸気養生以外の養生方法でも製造できるが、材令1日で脱型可能な曲げ強度を得るためには蒸気養生が良い。
Next, a manufacturing method will be described.
The production method is not particularly limited, and may be in accordance with a method for producing an ordinary concrete embedded formwork.
That is, each material is weighed, and cement and fine aggregate are first put into a mixer and stirred (empty kneading), and further, an aqueous resin dispersion, water, a water reducing agent, and an antifoaming agent are added and kneaded. Then, the kneaded product is filled in a predetermined mold with reinforcing bars, and is subjected to either vibrationless compaction or vibration compaction according to the fresh properties of the kneaded product. After steam curing, the mold is removed and polymer cement mortar is used. Manufacture buried formwork.
As a method of steam curing, a normal general method may be followed, for example, a method of 2 hours in front, a temperature rising rate of 20 ° C./hour, holding at 65 ° C. for 3 hours, and then naturally cooling.
In addition, as a curing method of the polymer mold mortar embedding formwork of the present invention, a curing method other than steam curing can be manufactured, but steam curing is preferable in order to obtain bending strength that can be removed in one day.

(試験1)
本発明の実施例として本発明に係るポリマーセメントモルタルを用いる供試体を以下の材料を使用し、表1の割合で配合して以下のように製造した。
セメント:早強ポルトランドセメント
細骨材:静岡県小笠郡浜岡町産陸砂(表乾密度2.60g/cm、FM2.75)
本発明の水性樹脂分散体:(固形分50%)
高性能減水剤:ポリカルボン酸エーテル系高性能減水剤
消泡剤:特殊非イオン界面活性剤
水:水道水
(Test 1)
As examples of the present invention, specimens using the polymer cement mortar according to the present invention were prepared as follows by using the following materials and blending them in the ratios shown in Table 1.
Cement: Hayashi Portland cement Fine aggregate: Land sand from Hamaoka-cho, Ogasa-gun, Shizuoka (surface dry density 2.60 g / cm 3 , FM 2.75)
Aqueous resin dispersion of the present invention: (solid content 50%)
High performance water reducing agent: Polycarboxylic acid ether type high performance water reducing agent Antifoaming agent: Special nonionic surfactant Water: Tap water

表1の割合で配合したポリマーセメントモルタルを容量2立方メートルの2軸ミキサーを使用して練り混ぜ量1立方メートルで練り混ぜを行い、型枠に充填後、型枠振動機で微振動締固めを行い成型した。その後、一次養生として蒸気養生を行い、その条件は20℃で前置き2時間とし、20℃/時で昇温させ、65℃で3時間保持し、その後自然放冷させ、24時間で脱型した。その後、二次養生として20℃相対湿度80%の気中養生を所定材齢まで行った(実施例1)。また、実施例2は二次養生として所定材齢まで水中養生を行った。   The polymer cement mortar blended at the ratio shown in Table 1 is kneaded at a mixing volume of 1 cubic meter using a 2-axis mixer with a capacity of 2 cubic meters. After filling into the mold, fine vibration compaction is performed with the mold vibrator. Molded. Thereafter, steam curing was performed as a primary curing, and the conditions were 20 ° C. for 2 hours in advance, the temperature was raised at 20 ° C./hour, held at 65 ° C. for 3 hours, then allowed to cool naturally, and demolded in 24 hours. . Thereafter, air curing at 20 ° C. and a relative humidity of 80% was performed as a secondary curing until a predetermined age (Example 1). Moreover, Example 2 performed underwater curing to a predetermined age as a secondary curing.

また、比較例として表1に記載の配合及び前述の養生方法で製造した各供試体を用いて曲げ強度試験(JIS A 1171-2000)、圧縮強度試験(JIS A
1108-1999)を行った。その各種試験結果を表1に示す。
In addition, as a comparative example, the bending strength test (JIS A 1171-2000) and the compressive strength test (JIS A) were performed using the specimens manufactured by the blending described in Table 1 and the curing method described above.
1108-1999). The various test results are shown in Table 1.

表1の結果より、本発明に係るポリマーセメントモルタル製供試体(実施例1及び2)は、蒸気養生によって材齢1日で曲げ強度13N/mm以上であるのに対し、市販されている代表的なポリマー、ポリアクリル酸エステルエマルション(比較例1)、エチレン酢酸ビニルエマルション(比較例2)、スチレンブタジジェンゴムラテックス(比較例3)を使用し、蒸気養生したものは10N/mm以下の曲げ強度しか得られなかった。また、本発明に使用する水性樹脂分散体と普通ポルトランドセメントを使用し、蒸気養生を行った比較例4では、材齢1日の曲げ強度が8.5N/mmしか得られず、コンクリートを型枠に打設後1日で脱型するのは困難である。さらに、蒸気養生ではなく、通常の常温で養生した場合には(比較例5)、材齢1日では十分な強度が得られず測定不可能だった。実施例2については、一次養生後、二次養生として水中養生をおこなった。表1の結果から、本発明に係るポリマーセメントモルタル製のものは水中で劣化せず、耐水性に優れることがわかった。 From the results of Table 1, the polymer cement mortar specimens according to the present invention (Examples 1 and 2) are commercially available, while the bending strength is 13 N / mm 2 or more at a material age of 1 day by steam curing. A typical polymer, polyacrylic acid ester emulsion (Comparative Example 1), ethylene vinyl acetate emulsion (Comparative Example 2), and styrene butadiene rubber latex (Comparative Example 3) were steam-cured and 10 N / mm 2 Only the following bending strength was obtained. In Comparative Example 4 in which the aqueous resin dispersion used in the present invention and ordinary Portland cement were used and steam curing was performed, a bending strength of only 8.5 N / mm 2 per day was obtained. It is difficult to remove the mold in one day after placing it on the formwork. Furthermore, when it was not steam-cured but cured at normal room temperature (Comparative Example 5), sufficient strength could not be obtained at one day of age, and measurement was impossible. About Example 2, underwater curing was performed as secondary curing after primary curing. From the results of Table 1, it was found that those made of polymer cement mortar according to the present invention did not deteriorate in water and were excellent in water resistance.

(試験2)
前記実施例1及び比較例6で製造した各供試体を用いて耐酸性試験を行った。耐酸性試験は、浸漬する供試体容積の3倍で濃度5%、20℃塩酸溶液に、供試体相互の間隔及び試験槽の底から距離を3cm以上あけるようにして供試体を28日間完全に浸漬した。その後、試験液から取り出し、水道水で洗浄し、清潔な湿布で拭い、速やかに圧縮強度試験(JIS A 1108−1999)を行った。なお、試験液は、1週間ごとに完全に交換するものとした。その結果を表2に示す。
(Test 2)
An acid resistance test was performed using each of the specimens manufactured in Example 1 and Comparative Example 6. In the acid resistance test, the test specimens were completely removed for 28 days in a hydrochloric acid solution at a concentration of 5% and 20 ° C, 3 times the volume of the specimens to be immersed, with a distance of 3 cm or more between the specimens and the distance from the bottom of the test tank. Soaked. Thereafter, the test liquid was taken out, washed with tap water, wiped with a clean compress, and a compressive strength test (JIS A 1108-1999) was immediately conducted. The test solution was completely replaced every week. The results are shown in Table 2.

表2から濃度5%の塩酸中に28日間浸漬した供試体の圧縮強度残存率は、本発明のポリマーセメントモルタルを用いる供試体(実施例1)が73.3%であるのに対し、普通コンクリート製供試体(比較例6)が36.8%である。本発明のポリマーセメントモルタル製埋設型枠は、普通コンクリート製品より極めて優れた耐酸性を有することがわかる。 From Table 2, the compressive strength remaining rate of the specimen immersed in hydrochloric acid at a concentration of 5% for 28 days is 73.3% for the specimen using the polymer cement mortar of the present invention (Example 1). The specimen made of concrete (Comparative Example 6) is 36.8%. It can be seen that the polymer mold mortar embedded form according to the present invention has much better acid resistance than ordinary concrete products.

以上詳細に説明したように、本発明のポリマーセメントモルタル製埋設型枠は、水硬性結合材として早強ポルトランドセメントを使用した場合、大部分のコンクリート製品と同様に蒸気養生によってコンクリート打設後1日で高い曲げ強度が得られるので脱型が可能であり、効率的に生産でき、また、耐水性、耐酸性等の耐久性に優れる。



As explained in detail above, the polymer cement mortar embedding form of the present invention, when using early-strength Portland cement as a hydraulic binder, is the same as that of most concrete products after the concrete is cast by steam curing. Since high bending strength can be obtained in a day, it can be removed from the mold, can be produced efficiently, and has excellent durability such as water resistance and acid resistance.



Claims (2)

エチレン性不飽和カルボン酸単量体、芳香族ビニル単量体及び/又は(メタ)アクリル酸エステル単量体から選ばれる1種以上の単量体を含む単量体組成物を乳化重合して得られる水性樹脂分散体であり、該水性樹脂分散体が2段階以上の乳化重合で得られるものであって、1段目に使用するエチレン性不飽和カルボン酸単量体(a−1)と最終段に使用するエチレン性不飽和カルボン酸単量体(a−最終)との質量比(a−最終)/(a−1)が4〜8である水性樹脂分散体と早強ポルトランドセメント、細骨材のみからなる骨材、高性能減水剤、および消泡剤とからなることを特徴とするポリマーセメントモルタル製埋設型枠。   Emulsion polymerization of a monomer composition containing one or more monomers selected from ethylenically unsaturated carboxylic acid monomers, aromatic vinyl monomers and / or (meth) acrylic acid ester monomers An aqueous resin dispersion obtained, the aqueous resin dispersion obtained by emulsion polymerization in two or more stages, and an ethylenically unsaturated carboxylic acid monomer (a-1) used in the first stage; An aqueous resin dispersion in which the mass ratio (a-final) / (a-1) to the ethylenically unsaturated carboxylic acid monomer (a-final) used in the final stage is 4 to 8, and early strong Portland cement; An embedded form made of polymer cement mortar, comprising an aggregate composed only of fine aggregates, a high-performance water reducing agent, and an antifoaming agent. 前記水性樹脂分散体(固形分)とセメントの質量比が5〜22%であることを特徴とする請求項1記載のポリマーセメントモルタル製埋設型枠。 The embedded mold made of polymer cement mortar according to claim 1, wherein a mass ratio of the aqueous resin dispersion (solid content) to cement is 5 to 22%.
JP2006267070A 2006-09-29 2006-09-29 Burying type form made of polymer cement mortar Pending JP2008088633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267070A JP2008088633A (en) 2006-09-29 2006-09-29 Burying type form made of polymer cement mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267070A JP2008088633A (en) 2006-09-29 2006-09-29 Burying type form made of polymer cement mortar

Publications (1)

Publication Number Publication Date
JP2008088633A true JP2008088633A (en) 2008-04-17

Family

ID=39373069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267070A Pending JP2008088633A (en) 2006-09-29 2006-09-29 Burying type form made of polymer cement mortar

Country Status (1)

Country Link
JP (1) JP2008088633A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7652632B2 (en) 2004-08-18 2010-01-26 Ruckus Wireless, Inc. Multiband omnidirectional planar antenna apparatus with selectable elements
US7669232B2 (en) 2006-04-24 2010-02-23 Ruckus Wireless, Inc. Dynamic authentication in secured wireless networks
US7696946B2 (en) 2004-08-18 2010-04-13 Ruckus Wireless, Inc. Reducing stray capacitance in antenna element switching
US7877113B2 (en) 2004-08-18 2011-01-25 Ruckus Wireless, Inc. Transmission parameter control for an antenna apparatus with selectable elements
US7933628B2 (en) 2004-08-18 2011-04-26 Ruckus Wireless, Inc. Transmission and reception parameter control
US7965252B2 (en) 2004-08-18 2011-06-21 Ruckus Wireless, Inc. Dual polarization antenna array with increased wireless coverage
US8009644B2 (en) 2005-12-01 2011-08-30 Ruckus Wireless, Inc. On-demand services by wireless base station virtualization
US8031129B2 (en) 2004-08-18 2011-10-04 Ruckus Wireless, Inc. Dual band dual polarization antenna array
US8217843B2 (en) 2009-03-13 2012-07-10 Ruckus Wireless, Inc. Adjustment of radiation patterns utilizing a position sensor
US8355343B2 (en) 2008-01-11 2013-01-15 Ruckus Wireless, Inc. Determining associations in a mesh network
US8619662B2 (en) 2004-11-05 2013-12-31 Ruckus Wireless, Inc. Unicast to multicast conversion
US8634402B2 (en) 2004-11-05 2014-01-21 Ruckus Wireless, Inc. Distributed access point for IP based communications
US8638708B2 (en) 2004-11-05 2014-01-28 Ruckus Wireless, Inc. MAC based mapping in IP based communications
US8670725B2 (en) 2006-08-18 2014-03-11 Ruckus Wireless, Inc. Closed-loop automatic channel selection
US8686905B2 (en) 2007-01-08 2014-04-01 Ruckus Wireless, Inc. Pattern shaping of RF emission patterns
US8698675B2 (en) 2009-05-12 2014-04-15 Ruckus Wireless, Inc. Mountable antenna elements for dual band antenna
US8756668B2 (en) 2012-02-09 2014-06-17 Ruckus Wireless, Inc. Dynamic PSK for hotspots
US8824357B2 (en) 2004-11-05 2014-09-02 Ruckus Wireless, Inc. Throughput enhancement by acknowledgment suppression
US8836606B2 (en) 2005-06-24 2014-09-16 Ruckus Wireless, Inc. Coverage antenna apparatus with selectable horizontal and vertical polarization elements
US9019165B2 (en) 2004-08-18 2015-04-28 Ruckus Wireless, Inc. Antenna with selectable elements for use in wireless communications
US9071583B2 (en) 2006-04-24 2015-06-30 Ruckus Wireless, Inc. Provisioned configuration for automatic wireless connection
US9077071B2 (en) 2004-08-18 2015-07-07 Ruckus Wireless, Inc. Antenna with polarization diversity
US9092610B2 (en) 2012-04-04 2015-07-28 Ruckus Wireless, Inc. Key assignment for a brand
US9271327B2 (en) 2007-07-28 2016-02-23 Ruckus Wireless, Inc. Wireless network throughput enhancement through channel aware scheduling
US9344161B2 (en) 2004-12-09 2016-05-17 Ruckus Wireless, Inc. Coverage enhancement using dynamic antennas and virtual access points
US9379456B2 (en) 2004-11-22 2016-06-28 Ruckus Wireless, Inc. Antenna array
US9407012B2 (en) 2010-09-21 2016-08-02 Ruckus Wireless, Inc. Antenna with dual polarization and mountable antenna elements
US9570799B2 (en) 2012-09-07 2017-02-14 Ruckus Wireless, Inc. Multiband monopole antenna apparatus with ground plane aperture
US9577346B2 (en) 2005-06-24 2017-02-21 Ruckus Wireless, Inc. Vertical multiple-input multiple-output wireless antennas
US9634403B2 (en) 2012-02-14 2017-04-25 Ruckus Wireless, Inc. Radio frequency emission pattern shaping
US9769655B2 (en) 2006-04-24 2017-09-19 Ruckus Wireless, Inc. Sharing security keys with headless devices
US9792188B2 (en) 2011-05-01 2017-10-17 Ruckus Wireless, Inc. Remote cable access point reset
US9979626B2 (en) 2009-11-16 2018-05-22 Ruckus Wireless, Inc. Establishing a mesh network with wired and wireless links
US9999087B2 (en) 2009-11-16 2018-06-12 Ruckus Wireless, Inc. Determining role assignment in a hybrid mesh network
US10186750B2 (en) 2012-02-14 2019-01-22 Arris Enterprises Llc Radio frequency antenna array with spacing element
US10230161B2 (en) 2013-03-15 2019-03-12 Arris Enterprises Llc Low-band reflector for dual band directional antenna

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8583183B2 (en) 2004-08-18 2013-11-12 Ruckus Wireless, Inc. Transmission and reception parameter control
US8031129B2 (en) 2004-08-18 2011-10-04 Ruckus Wireless, Inc. Dual band dual polarization antenna array
US8594734B2 (en) 2004-08-18 2013-11-26 Ruckus Wireless, Inc. Transmission and reception parameter control
US9837711B2 (en) 2004-08-18 2017-12-05 Ruckus Wireless, Inc. Antenna with selectable elements for use in wireless communications
US7877113B2 (en) 2004-08-18 2011-01-25 Ruckus Wireless, Inc. Transmission parameter control for an antenna apparatus with selectable elements
US7899497B2 (en) 2004-08-18 2011-03-01 Ruckus Wireless, Inc. System and method for transmission parameter control for an antenna apparatus with selectable elements
US7933628B2 (en) 2004-08-18 2011-04-26 Ruckus Wireless, Inc. Transmission and reception parameter control
US7965252B2 (en) 2004-08-18 2011-06-21 Ruckus Wireless, Inc. Dual polarization antenna array with increased wireless coverage
US8860629B2 (en) 2004-08-18 2014-10-14 Ruckus Wireless, Inc. Dual band dual polarization antenna array
US9153876B2 (en) 2004-08-18 2015-10-06 Ruckus Wireless, Inc. Transmission and reception parameter control
US9077071B2 (en) 2004-08-18 2015-07-07 Ruckus Wireless, Inc. Antenna with polarization diversity
US7652632B2 (en) 2004-08-18 2010-01-26 Ruckus Wireless, Inc. Multiband omnidirectional planar antenna apparatus with selectable elements
US8314749B2 (en) 2004-08-18 2012-11-20 Ruckus Wireless, Inc. Dual band dual polarization antenna array
US9484638B2 (en) 2004-08-18 2016-11-01 Ruckus Wireless, Inc. Transmission and reception parameter control
US7696946B2 (en) 2004-08-18 2010-04-13 Ruckus Wireless, Inc. Reducing stray capacitance in antenna element switching
US9019165B2 (en) 2004-08-18 2015-04-28 Ruckus Wireless, Inc. Antenna with selectable elements for use in wireless communications
US10181655B2 (en) 2004-08-18 2019-01-15 Arris Enterprises Llc Antenna with polarization diversity
US9794758B2 (en) 2004-11-05 2017-10-17 Ruckus Wireless, Inc. Increasing reliable data throughput in a wireless network
US9066152B2 (en) 2004-11-05 2015-06-23 Ruckus Wireless, Inc. Distributed access point for IP based communications
US8634402B2 (en) 2004-11-05 2014-01-21 Ruckus Wireless, Inc. Distributed access point for IP based communications
US8638708B2 (en) 2004-11-05 2014-01-28 Ruckus Wireless, Inc. MAC based mapping in IP based communications
US9019886B2 (en) 2004-11-05 2015-04-28 Ruckus Wireless, Inc. Unicast to multicast conversion
US9240868B2 (en) 2004-11-05 2016-01-19 Ruckus Wireless, Inc. Increasing reliable data throughput in a wireless network
US8619662B2 (en) 2004-11-05 2013-12-31 Ruckus Wireless, Inc. Unicast to multicast conversion
US9661475B2 (en) 2004-11-05 2017-05-23 Ruckus Wireless, Inc. Distributed access point for IP based communications
US9071942B2 (en) 2004-11-05 2015-06-30 Ruckus Wireless, Inc. MAC based mapping in IP based communications
US8824357B2 (en) 2004-11-05 2014-09-02 Ruckus Wireless, Inc. Throughput enhancement by acknowledgment suppression
US9379456B2 (en) 2004-11-22 2016-06-28 Ruckus Wireless, Inc. Antenna array
US9093758B2 (en) 2004-12-09 2015-07-28 Ruckus Wireless, Inc. Coverage antenna apparatus with selectable horizontal and vertical polarization elements
US9344161B2 (en) 2004-12-09 2016-05-17 Ruckus Wireless, Inc. Coverage enhancement using dynamic antennas and virtual access points
US9270029B2 (en) 2005-01-21 2016-02-23 Ruckus Wireless, Inc. Pattern shaping of RF emission patterns
US9577346B2 (en) 2005-06-24 2017-02-21 Ruckus Wireless, Inc. Vertical multiple-input multiple-output wireless antennas
US8836606B2 (en) 2005-06-24 2014-09-16 Ruckus Wireless, Inc. Coverage antenna apparatus with selectable horizontal and vertical polarization elements
US8923265B2 (en) 2005-12-01 2014-12-30 Ruckus Wireless, Inc. On-demand services by wireless base station virtualization
US9313798B2 (en) 2005-12-01 2016-04-12 Ruckus Wireless, Inc. On-demand services by wireless base station virtualization
US8009644B2 (en) 2005-12-01 2011-08-30 Ruckus Wireless, Inc. On-demand services by wireless base station virtualization
US8605697B2 (en) 2005-12-01 2013-12-10 Ruckus Wireless, Inc. On-demand services by wireless base station virtualization
US8272036B2 (en) 2006-04-24 2012-09-18 Ruckus Wireless, Inc. Dynamic authentication in secured wireless networks
US7669232B2 (en) 2006-04-24 2010-02-23 Ruckus Wireless, Inc. Dynamic authentication in secured wireless networks
US9131378B2 (en) 2006-04-24 2015-09-08 Ruckus Wireless, Inc. Dynamic authentication in secured wireless networks
US7788703B2 (en) 2006-04-24 2010-08-31 Ruckus Wireless, Inc. Dynamic authentication in secured wireless networks
US9769655B2 (en) 2006-04-24 2017-09-19 Ruckus Wireless, Inc. Sharing security keys with headless devices
US9071583B2 (en) 2006-04-24 2015-06-30 Ruckus Wireless, Inc. Provisioned configuration for automatic wireless connection
US8607315B2 (en) 2006-04-24 2013-12-10 Ruckus Wireless, Inc. Dynamic authentication in secured wireless networks
US8670725B2 (en) 2006-08-18 2014-03-11 Ruckus Wireless, Inc. Closed-loop automatic channel selection
US9780813B2 (en) 2006-08-18 2017-10-03 Ruckus Wireless, Inc. Closed-loop automatic channel selection
US8686905B2 (en) 2007-01-08 2014-04-01 Ruckus Wireless, Inc. Pattern shaping of RF emission patterns
US9271327B2 (en) 2007-07-28 2016-02-23 Ruckus Wireless, Inc. Wireless network throughput enhancement through channel aware scheduling
US8355343B2 (en) 2008-01-11 2013-01-15 Ruckus Wireless, Inc. Determining associations in a mesh network
US8780760B2 (en) 2008-01-11 2014-07-15 Ruckus Wireless, Inc. Determining associations in a mesh network
US8723741B2 (en) 2009-03-13 2014-05-13 Ruckus Wireless, Inc. Adjustment of radiation patterns utilizing a position sensor
US8217843B2 (en) 2009-03-13 2012-07-10 Ruckus Wireless, Inc. Adjustment of radiation patterns utilizing a position sensor
US9419344B2 (en) 2009-05-12 2016-08-16 Ruckus Wireless, Inc. Mountable antenna elements for dual band antenna
US8698675B2 (en) 2009-05-12 2014-04-15 Ruckus Wireless, Inc. Mountable antenna elements for dual band antenna
US10224621B2 (en) 2009-05-12 2019-03-05 Arris Enterprises Llc Mountable antenna elements for dual band antenna
US9979626B2 (en) 2009-11-16 2018-05-22 Ruckus Wireless, Inc. Establishing a mesh network with wired and wireless links
US9999087B2 (en) 2009-11-16 2018-06-12 Ruckus Wireless, Inc. Determining role assignment in a hybrid mesh network
US9407012B2 (en) 2010-09-21 2016-08-02 Ruckus Wireless, Inc. Antenna with dual polarization and mountable antenna elements
US9792188B2 (en) 2011-05-01 2017-10-17 Ruckus Wireless, Inc. Remote cable access point reset
US9596605B2 (en) 2012-02-09 2017-03-14 Ruckus Wireless, Inc. Dynamic PSK for hotspots
US9226146B2 (en) 2012-02-09 2015-12-29 Ruckus Wireless, Inc. Dynamic PSK for hotspots
US8756668B2 (en) 2012-02-09 2014-06-17 Ruckus Wireless, Inc. Dynamic PSK for hotspots
US9634403B2 (en) 2012-02-14 2017-04-25 Ruckus Wireless, Inc. Radio frequency emission pattern shaping
US10186750B2 (en) 2012-02-14 2019-01-22 Arris Enterprises Llc Radio frequency antenna array with spacing element
US10734737B2 (en) 2012-02-14 2020-08-04 Arris Enterprises Llc Radio frequency emission pattern shaping
US10182350B2 (en) 2012-04-04 2019-01-15 Arris Enterprises Llc Key assignment for a brand
US9092610B2 (en) 2012-04-04 2015-07-28 Ruckus Wireless, Inc. Key assignment for a brand
US9570799B2 (en) 2012-09-07 2017-02-14 Ruckus Wireless, Inc. Multiband monopole antenna apparatus with ground plane aperture
US10230161B2 (en) 2013-03-15 2019-03-12 Arris Enterprises Llc Low-band reflector for dual band directional antenna

Similar Documents

Publication Publication Date Title
JP2008088633A (en) Burying type form made of polymer cement mortar
Madandoust et al. An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene
JP2007076955A (en) Centrifugal force concrete product and its manufacturing method
KR101514741B1 (en) Cement concrete composition and manufacture method of concrete block using the said
JP2009132557A (en) Admixture for polymer cement grout
JP6404021B2 (en) Fast-hardening polymer cement mortar composition for repair and reinforcement, and repair and reinforcement method using the same
JP2007210842A (en) Drying shrinkage-reducing agent and cement hardened product using it
JP4809575B2 (en) Cement composition for civil engineering structure and concrete product using the same
JP2007022872A (en) Water-permeable concrete member
JP3641326B2 (en) Grout composition
JP7271185B2 (en) Construction method of members
JP2006069854A (en) Plasticizing additive for mortar and method of producing mortar using the same
JP2008087978A (en) Acid-resistant concrete product
JP4926387B2 (en) Cured polymer cement mortar
JP2002080261A (en) High fluid concrete and concrete secondary product
JP6713347B2 (en) Cement board and manufacturing method thereof
JP2006037611A (en) Polymer cement mortar manhole
JP2009298624A (en) Ultra-high-strength concrete composition and its manufacturing method
JP2007270470A (en) Construction method for repairing/reinforcing concrete structure
KR101590124B1 (en) Pc box culvert concrete composition unnecessary for steam aging and manufacturing method for pc box culvert using the same
JP5632108B2 (en) Hydraulic composition
JP2014025319A (en) Pavement concrete and manufacturing method for the same
JP4762654B2 (en) Crack prevention method
JP5149489B2 (en) Acid resistant composition
JP4745629B2 (en) Method of bonding members for cured polymer cement mortar and cured polymer cement mortar