JP2008088493A - Silver plated metallic member and method of manufacturing the same - Google Patents

Silver plated metallic member and method of manufacturing the same Download PDF

Info

Publication number
JP2008088493A
JP2008088493A JP2006269374A JP2006269374A JP2008088493A JP 2008088493 A JP2008088493 A JP 2008088493A JP 2006269374 A JP2006269374 A JP 2006269374A JP 2006269374 A JP2006269374 A JP 2006269374A JP 2008088493 A JP2008088493 A JP 2008088493A
Authority
JP
Japan
Prior art keywords
silver
silver plating
plating
current density
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006269374A
Other languages
Japanese (ja)
Other versions
JP4887533B2 (en
Inventor
Masafumi Ogata
雅史 尾形
Yoji Iiboshi
洋史 飯干
Yukio Hiraoka
幸雄 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2006269374A priority Critical patent/JP4887533B2/en
Publication of JP2008088493A publication Critical patent/JP2008088493A/en
Application granted granted Critical
Publication of JP4887533B2 publication Critical patent/JP4887533B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silver plated metallic member, which has both excellent wire bonding property and resin adhesiveness , and also is excellent in corrosion resistance and wear resistance, by using a simple and sure process adaptable for downsizing an electronic component. <P>SOLUTION: The metallic member has a silver plated structure formed from an under layer comprising a silver plated film having at least 0.2 μm average film thickness and an upper layer of a silver plated layer formed on the silver plated film and having ≥0.5 μm, preferably 0.5-1.5 μm average crystalline particle diameter on the surface and 10-40 μm surface roughness Rmax. The upper layer comprises an island shaped or dendritic silver deposited part deposited on the surface of the silver plated film of the under layer and a silver plated film formed to cover the silver deposited part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ワイヤーボンディング性および樹脂接着性を兼備し、さらに耐食性、耐摩耗性を改善した銀めっき金属部材およびその製造法に関する。   The present invention relates to a silver-plated metal member having both wire bonding properties and resin adhesive properties, and further improved corrosion resistance and wear resistance, and a method for producing the same.

電子部品の小型化や複雑形状化により、金属部材内でのワイヤーボンディング性が要求されるエリアと樹脂接着性が要求されるエリアとが近接するようになった。
ワイヤーボンディング性を満たすためには、ワイヤーと被ボンディング部との実効接触面積を大きくするために一般的には被ボンディング部の表面が平滑な方が良い。例えば特許文献1では、多層銅めっき層を形成した樹脂成形品において最上層の銅めっき層のめっき粗さRmaxは10μm以下であることが望ましいとされている。
Due to the downsizing and complicated shape of electronic components, the area that requires wire bonding within a metal member and the area that requires resin adhesion have come close to each other.
In order to satisfy the wire bonding property, it is generally better that the surface of the bonded portion is smooth in order to increase the effective contact area between the wire and the bonded portion. For example, in Patent Document 1, in a resin molded product in which a multilayer copper plating layer is formed, the plating roughness R max of the uppermost copper plating layer is desirably 10 μm or less.

一方、樹脂密着性に関しては、アンカー効果による密着力向上を目的として被ボンディング部の表面は粗い方が良い。このため、ワイヤーボンディングするエリアと樹脂接着するエリアとの表面処理法を変える必要がある。今後、電子部品の小型化がさらに進み、上記それぞれのエリアが狭くなり、近づいていくに従い、エリア精度の高い処理が必要となり、コストアップにつながる。   On the other hand, regarding the resin adhesion, the surface of the bonded portion should be rough for the purpose of improving the adhesion due to the anchor effect. For this reason, it is necessary to change the surface treatment method between the area for wire bonding and the area for resin bonding. In the future, electronic components will be further miniaturized, and each area will become narrower. As the area gets closer, processing with high area accuracy will be required, leading to an increase in cost.

特許文献2には、銀めっき表面に薄い銅皮膜層を設けて樹脂接着性とワイヤーボンディング性を両立させる方法が開示されている。この方法は金属の種類によって樹脂接着性が変化することを利用したもので、銀よりも樹脂接着性に優れる銅を最表面に薄く存在させることで樹脂接着性を向上させている。ワイヤーボンディング性に関しては銀めっき上の銅皮膜の厚さが非常に薄いため、劣化への影響はないとのことである。しかし、この処理法では新たに銅皮膜を形成させる工程が必要となる。   Patent Document 2 discloses a method in which a thin copper film layer is provided on a silver plating surface to achieve both resin adhesion and wire bonding. This method utilizes the fact that the resin adhesiveness changes depending on the type of metal, and improves the resin adhesiveness by making copper, which is more excellent in resin adhesiveness than silver, exist thinly on the outermost surface. Regarding the wire bonding property, the thickness of the copper film on the silver plating is very thin, so there is no influence on the deterioration. However, this treatment method requires a new step of forming a copper film.

特許文献3には、リードフレーム部材に施したパラジウムまたはパラジウム合金めっき上に金または銀めっきを施し、樹脂接着性が要求されるエリアのみ熱処理してパラジウムと金または銀の混合層を形成させる方法が開示されている。混合層においては樹脂接着性が向上し、熱処理を施していない部分はワイヤーボンディング性が維持される。しかし、この手法を小型の電子部材に適用するのは現実的ではない。なぜなら、金属は熱伝導性が良好であるため、所望の局所部分のみに熱処理を施すことは困難だからである。   Patent Document 3 discloses a method in which gold or silver is plated on palladium or palladium alloy plating applied to a lead frame member, and heat treatment is performed only in an area where resin adhesion is required to form a mixed layer of palladium and gold or silver. Is disclosed. In the mixed layer, the resin adhesiveness is improved, and the wire bonding property is maintained in the portion not subjected to the heat treatment. However, it is not realistic to apply this method to a small electronic member. This is because it is difficult to heat-treat only a desired local portion because metal has good thermal conductivity.

特許第3529215号公報Japanese Patent No. 3529215 特開平10−335558号公報JP-A-10-335558 特開平11−040722号公報JP 11-040722 A

本発明は、電子部品の小型化に対応できる簡便・確実な手法を用いて、優れたワイヤーボンディング性と樹脂接着性を兼備しかつ耐食性と耐摩耗性にも優れた銀めっき金属部材を提供することを目的とする。   The present invention provides a silver-plated metal member that has both excellent wire bonding and resin adhesion, and excellent corrosion resistance and wear resistance, using a simple and reliable method that can cope with downsizing of electronic components. For the purpose.

発明者らは詳細な検討の結果、銀めっきを最表面に持つ金属部材において、最表面の銀結晶の結晶粒径を大きくすることでワイヤーボンディング性が改善され、銀めっき表面の凹凸をある範囲内で大きくすることでアンカー効果により樹脂接着性が改善されることを見出した。さらに、ある程度の厚さを有する平滑な銀めっき膜を下層として存在させることによって耐食性と耐摩耗性が顕著に改善されることを見出した。   As a result of detailed investigations, the metal bonding member having silver plating on the outermost surface has improved the wire bonding property by increasing the crystal grain size of the silver crystal on the outermost surface, and has a certain range of irregularities on the surface of the silver plating. It has been found that the resin adhesion is improved by the anchor effect by increasing the size inside. Furthermore, it has been found that the presence of a smooth silver plating film having a certain thickness as a lower layer significantly improves the corrosion resistance and wear resistance.

すなわち本発明では、少なくとも0.2μmの平均膜厚を有する銀めっき膜からなる下層と、前記銀めっき膜の表面上に形成された銀めっき層であって表面の平均結晶粒径が0.5μm以上好ましくは0.5〜1.5μm、表面粗さRmaxが10〜40μmである上層とで構成される銀めっき構造を最表面に持つ金属部材が提供される。前記上層は、例えば下層の銀めっき膜の表面上に析出させた島状または樹枝状の銀析出部と、さらにその上を覆うように形成させた銀めっき膜からなる銀めっき層である。 That is, in the present invention, there are a lower layer made of a silver plating film having an average film thickness of at least 0.2 μm, and a silver plating layer formed on the surface of the silver plating film, and the average crystal grain size of the surface is 0.5 μm. more preferably 0.5 to 1.5 [mu] m, the metal member having a silver plating structure composed of an upper layer is a surface roughness R max is 10~40μm the outermost surface is provided. The upper layer is a silver plating layer comprising, for example, island-like or dendritic silver-deposited portions deposited on the surface of the lower silver-plated film, and a silver-plated film formed so as to cover it.

このような銀めっき金属部材の製造法として、金属表面に、少なくとも0.2μmの平均膜厚を有し、表面粗さRaが0.5μm以下である銀めっき膜を形成させる第1電気めっき工程、前記銀めっき膜の表面上に第1電気めっき工程より大きい電流密度で島状または樹枝状の銀析出部を形成させる第2電気めっき工程、さらにその上に第2電気めっき工程より小さい電流密度で銀めっき膜を形成させることにより最表面の平均結晶粒径を0.5μm以上好ましくは0.5〜1.5μmとし、かつ表面粗さRmaxを10〜40μmに制御する第3電気めっき工程を有する製造法が提供される。より具体的には、例えば第1電気めっき工程では電流密度15A/dm2未満で銀めっきを行い、第2電気めっき工程では電流密度20A/dm2以上で銀めっきを行い、第3電気めっき工程では電流密度15A/dm2未満で銀めっきを行う条件が採用できる。 As a method for producing such a silver-plated metal member, a first electroplating step of forming a silver plating film having an average film thickness of at least 0.2 μm and a surface roughness Ra of 0.5 μm or less on a metal surface A second electroplating step for forming island-like or dendritic silver deposits on the surface of the silver plating film at a higher current density than the first electroplating step, and a lower current density on the second electroplating step. A third electroplating step of controlling the surface roughness R max to 10 to 40 μm by forming a silver plating film with a mean particle diameter of the outermost surface of 0.5 μm or more, preferably 0.5 to 1.5 μm. A manufacturing method is provided. More specifically, for example, silver plating is performed at a current density of less than 15 A / dm 2 in the first electroplating step, silver plating is performed at a current density of 20 A / dm 2 or more in the second electroplating step, and third electroplating step. Then, conditions for performing silver plating at a current density of less than 15 A / dm 2 can be employed.

本発明によれば、ワイヤーボンディング性と樹脂接着性を両立させ、さらに耐食性および耐摩耗性を向上させた銀めっき金属部材が提供可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the silver plating metal member which made wire bonding property and resin adhesiveness compatible, and also improved corrosion resistance and abrasion resistance.

発明者らは、銀めっき金属部材のワイヤーボンディング性と樹脂接着性を改善させるために、詳細な実験を重ねてきた。その結果、銀めっきの表面における結晶粒径がワイヤーボンディング性に大きく影響すること、および銀めっき表面の表面粗さRmaxが樹脂接着性に大きく影響することを突き止めた。 The inventors have repeated detailed experiments in order to improve the wire bonding property and the resin adhesion property of the silver-plated metal member. As a result, it was found that the crystal grain size on the surface of the silver plating has a great influence on the wire bonding property, and that the surface roughness R max on the surface of the silver plating has a great influence on the resin adhesion.

図1に、平均結晶粒径とワイヤーボンディング性の関係を示すデータを例示する。これは、金属基材として銅材を使用し、後述の実施例1に示すような条件で前処理、ニッケルめっき、銀ストライクめっき、および銀めっきを順次施した多くの実験例のデータをプロットしたものである。ただし、これらの実験例は表面の平均結晶粒径の影響を把握することを趣旨としたものであることから、下層を形成するための第1電気めっき工程は省略してある。第2電気めっき工程および第3電気めっき工程の通電時間を調整することで種々の平均結晶粒径にコントロールした。ワイヤーボンディング性の評価は、ワイヤーボンダー(WEST BOND製5400−45G ウェッジ−ウェッジ型ボンダー)を用い、ボンディング条件を、金ワイヤーΦ25μm使用、荷重80g、温度120℃、超音波出力800mW、時間70msecとし、ボンディング強度をハイソル製簡易型プルテスターWPT300を用いて測定することによって行った。平均結晶粒径は実施例に記載の方法で求めた。   FIG. 1 illustrates data showing the relationship between the average crystal grain size and the wire bonding property. This plots data of many experimental examples in which a copper material was used as a metal substrate, and pretreatment, nickel plating, silver strike plating, and silver plating were sequentially performed under the conditions shown in Example 1 described later. Is. However, since these experimental examples are intended to grasp the influence of the average crystal grain size on the surface, the first electroplating step for forming the lower layer is omitted. Various average crystal grain sizes were controlled by adjusting the energization time of the second electroplating step and the third electroplating step. Evaluation of wire bonding property uses wire bonder (5400-45G wedge-wedge type bonder made by WEST BOND), and bonding conditions are gold wire Φ25 μm use, load 80 g, temperature 120 ° C., ultrasonic output 800 mW, time 70 msec, The bonding strength was measured by using a high-sol simple type pull tester WPT300. The average crystal grain size was determined by the method described in the examples.

図1に見られるように、銀めっき表面の平均結晶粒径が0.5μmより小さいときは、ワイヤーボンディング性が低下してしまう。したがって、優れたワイヤーボンディング性を安定して確保するためには、平均結晶粒径を0.5μm以上となるように管理する必要がある。なお、平均結晶粒径が1.5μmを超えて大きくなってもワイヤーボンディング性は維持されるが、この場合、表面粗度Rmaxを安定して40μm以下に制御することが難しくなり、後述の図2に示すように樹脂接着性が低下しやすい。このため、銀めっき表面の平均結晶粒径は0.5〜1.5μmとすることがより好ましい。 As seen in FIG. 1, when the average crystal grain size on the surface of the silver plating is smaller than 0.5 μm, the wire bonding property is lowered. Therefore, in order to stably ensure excellent wire bonding properties, it is necessary to manage the average crystal grain size to be 0.5 μm or more. Although the wire bonding property is maintained even when the average crystal grain size exceeds 1.5 μm, in this case, it becomes difficult to stably control the surface roughness R max to 40 μm or less, which will be described later. As shown in FIG. 2, the resin adhesiveness tends to be lowered. For this reason, the average crystal grain size on the surface of the silver plating is more preferably 0.5 to 1.5 μm.

図2に、表面粗さRmaxと樹脂接着性の関係を示すデータを例示する。これも、金属基材として銅材を使用し、後述の実施例1に示すような条件で前処理、ニッケルめっき、銀ストライクめっき、および銀めっきを順次施した多くの実験例のデータをプロットしたものである。ただし、これらの実験例は表面粗さの影響を把握することを趣旨としたものであることから、下層を形成するための第1電気めっき工程は省略してある。第2電気めっき工程および第3電気めっき工程の電流密度および通電時間を調整することで種々の表面粗さにコントロールした。評価方法は実施例に記載のとおりである。 FIG. 2 illustrates data indicating the relationship between the surface roughness R max and the resin adhesiveness. This also plots data of many experimental examples in which a copper material was used as a metal substrate and pretreatment, nickel plating, silver strike plating, and silver plating were sequentially performed under the conditions shown in Example 1 described later. Is. However, since these experimental examples are intended to grasp the influence of the surface roughness, the first electroplating step for forming the lower layer is omitted. Various surface roughnesses were controlled by adjusting the current density and energization time in the second and third electroplating steps. The evaluation method is as described in the examples.

図2に見られるように、銀めっき表面のRmaxが10μm未満の場合、および40μmを超える場合には、いずれも樹脂接着性が低下する。したがって、優れた樹脂密着性を維持するためには銀めっき表面のRmaxを10〜40μmに制御することが重要である。 As can be seen in FIG. 2, the resin adhesiveness decreases when the R max of the silver plating surface is less than 10 μm and when it exceeds 40 μm. Therefore, in order to maintain excellent resin adhesion, it is important to control the R max of the silver plating surface to 10 to 40 μm.

本発明では、上記のように表面の平均結晶粒径とRmaxが調整された銀めっき層(上層)を最表面に有するものが対象となるが、その上層の下には、少なくとも0.2μmの平均膜厚を有する銀めっき膜からなる下層が存在している必要がある。この下層は、銀めっき金属部材の耐食性と耐摩耗性とを改善させる機能を有する。耐食性の向上は、ピンホールの少ない平滑な下層の形成によってもたらされる効果だと考えられる。また耐摩耗性の向上に関しては、下層が、下地(例えばニッケルめっき層)と上層銀めっき層との間の緩衝材として機能していることが1つの要因になっているのではないかと推察される。平均膜厚が0.2μm未満だと、これらの特性を安定して十分に発揮せることが難しくなる。下層の銀めっき膜厚の上限は特に制限されないが、過度に厚い銀めっきは経済性を損なうので例えば下層は平均膜厚2μm以下の範囲とすればよい。また、この銀めっき膜は表面ができるだけ平滑であることが望ましい。具体的には表面粗さRaが0.5μm以下であるように成膜されていることが望ましい。それより表面粗さが大きいと、耐食性、耐摩耗性が低下しやすい。 In the present invention, an object having the silver plating layer (upper layer) whose surface average crystal grain size and R max are adjusted as described above is the target, but under the upper layer is at least 0.2 μm. It is necessary that a lower layer made of a silver plating film having an average film thickness of 5 mm is present. This lower layer has a function of improving the corrosion resistance and wear resistance of the silver-plated metal member. The improvement in corrosion resistance is considered to be an effect brought about by the formation of a smooth lower layer with few pinholes. Regarding the improvement of wear resistance, it is assumed that the lower layer functions as a buffer material between the base (for example, nickel plating layer) and the upper silver plating layer, which is one factor. The When the average film thickness is less than 0.2 μm, it becomes difficult to stably and sufficiently exhibit these characteristics. The upper limit of the silver plating film thickness of the lower layer is not particularly limited, but excessively thick silver plating impairs the economy, and therefore, for example, the lower layer may have an average film thickness of 2 μm or less. Further, it is desirable that the surface of this silver plating film be as smooth as possible. Specifically, it is desirable to form the film so that the surface roughness Ra is 0.5 μm or less. If the surface roughness is larger than that, the corrosion resistance and wear resistance are likely to decrease.

銀めっきを施すための金属基材としては、材質に特に制限はなく、種々の金属材料が採用できる。電子部品用であれば、銅、銅合金、ニッケル合金等が好適な対象となる。上記の下層と上層からなる銀めっき構造を最表面に形成するための下地処理を、金属基材の種類に応じて適宜実施することが好ましい。例えば、下地にはニッケルめっきや銅めっきを施すことができる。また、上記銀めっき構造の直下には、置換析出防止を目的として銀ストライクめっき(例えば平均膜厚は0.05μm以下)を施すことができる。   There is no restriction | limiting in particular as a metal base material for performing silver plating, A various metal material is employable. For electronic parts, copper, copper alloy, nickel alloy, etc. are suitable targets. It is preferable to appropriately perform the base treatment for forming the silver plating structure composed of the lower layer and the upper layer on the outermost surface according to the type of the metal substrate. For example, nickel plating or copper plating can be applied to the base. Further, silver strike plating (for example, the average film thickness is 0.05 μm or less) can be performed immediately below the silver plating structure for the purpose of preventing displacement precipitation.

上記の下層および上層からなる銀めっき構造は、例えば同じ電気銀めっき浴中で順次電流密度を変化させることによって形成させることができる。
下層を構成する銀めっき膜を形成するための工程を本明細書では「第1電気めっき工程」と呼ぶ。第1電気めっき工程では、15A/dm2未満の電流密度により、できるだけ均一に成膜することが望ましい。10A/dm2以下で行うことがより好ましい。ただし、あまり電流密度が低いと必要な平均膜厚0.2μm以上を確保するための時間が長くなり不経済である。このため1A/dm2以上で行うことが望ましい。
The silver plating structure which consists of said lower layer and upper layer can be formed by changing a current density sequentially, for example in the same electrosilver plating bath.
In the present specification, a process for forming the silver plating film constituting the lower layer is referred to as a “first electroplating process”. In the first electroplating step, it is desirable to form the film as uniformly as possible with a current density of less than 15 A / dm 2 . It is more preferable to carry out at 10 A / dm 2 or less. However, if the current density is too low, it takes a long time to secure the required average film thickness of 0.2 μm or more, which is uneconomical. For this reason, it is desirable to carry out at 1 A / dm 2 or more.

次いで、電流密度を第1電気めっき工程よりも上昇させ、下層の銀めっき膜の表面上に不均一な銀の析出を生じさせる。この工程を「第2電気めっき工程」と呼ぶ。第2電気めっき工程では、平滑な銀めっき膜が成膜される条件ではなく、不均一な銀の析出が生じるような大電流密度で銀の電解析出を行う。このとき、銀は島状に析出し、次第に樹枝状に成長していく。このような島状または樹枝状の析出形態を「粒子状」と言うこともある。この粒子状の銀析出部は続く第3電気めっき工程での銀析出サイトとなり、銀めっき表面の結晶粒径を増大させる機能を有する。第2電気めっき工程での電流密度は20A/dm2以上とすることが望ましい。液温等の条件にもよるが、通常、20〜60A/dm2の範囲で設定することができる。電解時間は数秒以内の短時間とすればよい。あまり長時間になると樹枝状の銀析出部が過度に発達し、最終的に所望の表面粗さが実現できなくなる。 Next, the current density is increased as compared with the first electroplating step, and non-uniform silver deposition is caused on the surface of the underlying silver plating film. This process is referred to as a “second electroplating process”. In the second electroplating step, electrolytic deposition of silver is performed at a high current density that causes non-uniform silver deposition, not conditions for forming a smooth silver plating film. At this time, silver precipitates in an island shape and gradually grows in a dendritic shape. Such an island-like or dendritic precipitation form is sometimes referred to as “particulate”. This particulate silver deposition portion becomes a silver deposition site in the subsequent third electroplating step, and has a function of increasing the crystal grain size of the silver plating surface. The current density in the second electroplating step is preferably 20 A / dm 2 or more. Although it depends on conditions such as the liquid temperature, it can usually be set in the range of 20 to 60 A / dm2. The electrolysis time may be a short time within several seconds. If the time is too long, the dendritic silver deposits develop excessively, and finally the desired surface roughness cannot be realized.

その後、再び電流密度を低下させて、銀めっき膜を形成させる。この工程を「第3電気めっき工程」と呼ぶ。ここで成膜される銀めっき膜は、前記島状または樹枝状の銀析出部とともに上層を構成する。その成膜過程では、島状または樹枝状の銀析出部を核として結晶成長する。第3電気めっき工程の電流密度は、第1電気めっき工程と同様、15A/dm2未満とすることが望ましく、1〜10A/dm2で設定することがより好ましい。 Thereafter, the current density is lowered again to form a silver plating film. This process is referred to as a “third electroplating process”. The silver plating film formed here constitutes an upper layer together with the island-like or dendritic silver deposits. In the film formation process, crystals grow with the island-like or dendritic silver deposits as nuclei. As in the first electroplating step, the current density in the third electroplating step is preferably less than 15 A / dm 2, and more preferably set at 1 to 10 A / dm 2 .

《実施例1》
縦50mm、横50mm、厚さ0.3mmの銅材を金属基板として、これに常法により脱脂および活性化処理(併せて前処理と言う)を施した後、電気めっき法を用いてニッケルを所定の厚さに成膜し、その上に電気めっき法で銀ストライクめっきを施した。銀ストライクめっきは、この後に行われる銀めっきの置換析出を防ぐ目的で施されるものであり、銀濃度の低い浴中で短時間通電し薄い皮膜を形成するものである。さらにその上に電気めっき法で銀めっきを、まず低電流密度、次に高電流密度、さらに低電流密度で所定の厚さに成膜して銀めっき金属部材を作製た。得られた銀めっき金属部材について、ワイヤーボンディング性、樹脂接着性、耐食性、耐摩耗性を評価した。以下に前処理と各めっきの条件および評価方法を示す。
Example 1
A copper material having a length of 50 mm, a width of 50 mm, and a thickness of 0.3 mm was used as a metal substrate, and this was subjected to degreasing and activation treatment (also referred to as pretreatment) by an ordinary method, and then nickel was electroplated. A film having a predetermined thickness was formed, and silver strike plating was performed thereon by electroplating. Silver strike plating is performed for the purpose of preventing substitution deposition of silver plating performed thereafter, and forms a thin film by energizing for a short time in a bath having a low silver concentration. Furthermore, silver plating was formed thereon by electroplating, and first a low current density, then a high current density, and then a predetermined current with a low current density to form a silver plated metal member. About the obtained silver plating metal member, wire-bonding property, resin adhesiveness, corrosion resistance, and abrasion resistance were evaluated. The pretreatment, the conditions for each plating and the evaluation method are shown below.

〔前処理〕
まず、銅金属基板およびSUS(ステンレス鋼)板をアルカリ脱脂液中に浸漬し、銅金属基板をマイナス極、SUS板をプラス極として電圧5Vを加えて2分間保持した後、銅金属基板を脱脂液から取り出して純水で洗浄した。次いで5%濃度の硫酸水溶液中に30秒間浸漬した後、硫酸水溶液から取り出して再び純水で洗浄した。
〔Preprocessing〕
First, immerse the copper metal substrate and SUS (stainless steel) plate in an alkaline degreasing solution, hold the copper metal substrate with the negative electrode and the SUS plate with the positive electrode, and hold the voltage for 5 minutes, and then degrease the copper metal substrate. The product was taken out from the solution and washed with pure water. Next, after dipping in a 5% strength aqueous sulfuric acid solution for 30 seconds, the product was taken out from the sulfuric acid aqueous solution and washed again with pure water.

〔ニッケルめっき〕
スルファミン酸ニッケル(350g/L)、塩化ニッケル(10g/L)、ホウ酸(30g/L)および光沢剤(レベリング剤)からなるめっき浴中に前記のような前処理を行った銅金属基板とニッケル電極板とを浸漬して、銅金属基板をマイナス極、ニッケル電極板をプラス極に接続し、電流密度を5.0A/dm2に設定し、銅金属基板上に平均膜厚が1.0μmになるまでニッケルをめっきした。めっき操作中、スターラーを300rpmで回転させながらめっき浴を撹拌し、浴温を50℃に保持した。
〔Nickel plating〕
A copper metal substrate that has been pretreated as described above in a plating bath comprising nickel sulfamate (350 g / L), nickel chloride (10 g / L), boric acid (30 g / L), and a brightener (leveling agent); The nickel electrode plate is immersed, the copper metal substrate is connected to the negative electrode, the nickel electrode plate is connected to the positive electrode, the current density is set to 5.0 A / dm 2 , and the average film thickness is 1. Nickel was plated to 0 μm. During the plating operation, the plating bath was stirred while rotating the stirrer at 300 rpm, and the bath temperature was maintained at 50 ° C.

〔銀ストライクめっき〕
シアン化銀カリウム(3g/L)、およびシアン化カリウム(90g/L)からなるめっき浴中にニッケルめっき後の銅金属基板と白金でコーティングされたチタン電極板とを浸漬して、銅金属基板をマイナス極、電極板をプラス極に接続し、電流密度を4.0A/dm2に設定し、10秒間通電して銀ストライクめっきを施した。めっき操作中、スターラーを300rpmで回転させながらめっき浴を撹拌し、浴温を25℃に保持した。
[Silver strike plating]
The copper metal substrate after nickel plating and the titanium electrode plate coated with platinum are immersed in a plating bath composed of silver potassium cyanide (3 g / L) and potassium cyanide (90 g / L), and the copper metal substrate is minus. The electrode and the electrode plate were connected to the positive electrode, the current density was set to 4.0 A / dm 2 , and silver strike plating was performed by energizing for 10 seconds. During the plating operation, the plating bath was stirred while rotating the stirrer at 300 rpm, and the bath temperature was kept at 25 ° C.

〔銀めっき〕
シアン化銀カリウム(150g/L)、およびシアン化カリウム(90g/L)からなるめっき浴中に銀ストライクめっき後の銅金属基板と銀電極板とを浸漬して、銅金属基板をマイナス極、銀電極板をプラス極に接続した。この状態で、まず、電流密度5A/dm2で16秒間通電した(第1電気めっき工程)。次に、電流密度40A/dm2で3秒間通電した(第2電気めっき工程)。その後、電流密度5A/dm2で16秒間通電した(第3電気めっき工程)。これら、第1〜第3の電気めっき工程の間、スターラーを300rpmで回転させながらめっき浴を撹拌し、浴温を25℃に保持した。
[Silver plating]
The copper metal substrate after silver strike plating and the silver electrode plate are immersed in a plating bath composed of silver potassium cyanide (150 g / L) and potassium cyanide (90 g / L), and the copper metal substrate is a negative electrode and a silver electrode. The plate was connected to the positive pole. In this state, first, a current was applied at a current density of 5 A / dm 2 for 16 seconds (first electroplating step). Next, electricity was supplied for 3 seconds at a current density of 40 A / dm 2 (second electroplating step). Thereafter, current was supplied for 16 seconds at a current density of 5 A / dm 2 (third electroplating step). During these first to third electroplating steps, the plating bath was stirred while rotating the stirrer at 300 rpm, and the bath temperature was maintained at 25 ° C.

〔平均結晶粒径〕
このような手順で得られた銀めっき金属部材について、銀めっきの最表面に露呈している結晶の平均結晶粒径を調べた。すなわち、銀めっきの表面を倍率1万倍でSEM観察し、得られた画像を画像処理することにより個々の結晶の平面面積を求め、その平均値から、結晶が円形であるとした場合の直径値を算出する方法で平均結晶粒径を求めた。5個の異なる視野による測定結果の平均値を当該試料の平均結晶粒径として採用した。
その結果、実施例1の平均結晶粒径は0.59μmであった。
[Average crystal grain size]
About the silver plating metal member obtained by such a procedure, the average crystal grain diameter of the crystal | crystallization exposed on the outermost surface of silver plating was investigated. That is, the surface of the silver plating was observed with an SEM at a magnification of 10,000 times, and the image obtained was subjected to image processing to determine the plane area of each crystal. From the average value, the diameter when the crystal was assumed to be circular The average crystal grain size was determined by the method of calculating the value. The average value of the measurement results from five different visual fields was adopted as the average crystal grain size of the sample.
As a result, the average crystal grain size of Example 1 was 0.59 μm.

〔下層のRa〕
上記銀めっきの第1電気めっき工程を終了した時点のサンプルについて、表面粗さを測定し、下層である銀めっき膜表面のRaを求めた。その結果、実施例1の下層のRaは0.12μmであった。
[Ra of the lower layer]
About the sample at the time of complete | finishing the 1st electroplating process of the said silver plating, surface roughness was measured and Ra of the silver plating film surface which is a lower layer was calculated | required. As a result, the lower layer Ra of Example 1 was 0.12 μm.

〔上層のRmax
得られた銀めっき金属部材の表面粗さを測定し、上層のRmaxを求めた。その結果、実施例1の上層のRmaxは20.1μmであった。
[R max of upper layer]
The surface roughness of the obtained silver-plated metal member was measured to determine the upper layer of R max. As a result, R max of the upper layer of Example 1 was 20.1 μm.

〔ワイヤーボンディング性〕
ワイヤーボンダー(WEST−BOND製 MODEL7476Dマニュアルウエッジボンダー)を用い、ボンディング条件を、金ワイヤーΦ25μm使用、荷重25g、温度120℃、超音波出力300mW、時間40msecとし、ボンディング強度をハイマックス製UP−2デジタル表示式マニュアルワイヤーボンドプルテスターを用いて測定することによって評価した。結果を表1に示す(以下の各例において同じ)。
[Wire bonding properties]
Using wire bonder (MODEL 7476D manual wedge bonder manufactured by WEST-BOND), bonding conditions are gold wire Φ25μm, load 25g, temperature 120 ° C, ultrasonic output 300mW, time 40msec, bonding strength UP-2 digital made by Himax It evaluated by measuring using a display type manual wire bond pull tester. The results are shown in Table 1 (same in the following examples).

〔樹脂接着性〕
巴川製紙所製のエポキシ系樹脂性接着シートTLF−Y20の上下両面に2枚の供試片を張り合わせた後、この2枚を上下に引っ張り、樹脂性接着シートから剥がれたときの力を測定することによって評価した。結果を表1に示す(以下の各例において同じ)。
(Resin adhesion)
After attaching two test pieces to the upper and lower surfaces of the epoxy resin adhesive sheet TLF-Y20 manufactured by Yodogawa Paper Mill, the two pieces are pulled up and down to measure the force when peeled off from the resin adhesive sheet. Was evaluated by The results are shown in Table 1 (same in the following examples).

〔耐食性〕
JIS H8502に準拠した中性塩水噴霧試験を行い、ピンホール密度を測定して評価した。試験期間を7日間とし、n=3で試験を行い、平均値を採用した。結果を表1に示す(以下の各例において同じ)。
[Corrosion resistance]
A neutral salt spray test based on JIS H8502 was conducted, and the pinhole density was measured and evaluated. The test period was 7 days, the test was performed at n = 3, and the average value was adopted. The results are shown in Table 1 (same in the following examples).

〔耐摩耗性〕
山崎精機研究所製電気接点シミュレータCRS−1を用い、測定条件は荷重50g、摺動速度50mm/min、摺動距離1000μm、摺動回数50000回、圧子Agリベット、電流10mA、開放電圧100mVで行った。接触抵抗が上昇した時点で削れたと判断した。結果を表1に示す(以下の各例において同じ)。
(Abrasion resistance)
Using an electrical contact simulator CRS-1 manufactured by Yamazaki Seiki Laboratories, the measurement conditions were a load of 50 g, a sliding speed of 50 mm / min, a sliding distance of 1000 μm, a sliding frequency of 50000 times, an indenter Ag rivet, a current of 10 mA, and an open voltage of 100 mV. It was. Judgment was made when the contact resistance increased. The results are shown in Table 1 (same in the following examples).

《比較例1》
実施例1の銀めっきにおいて、第3電気めっき工程を実施しなかった以外、実施例1と同一条件とした。すなわち40A/dm2の第2電気めっき工程を終了した時点の銀めっき金属部材を試料として特性を調べた。
<< Comparative Example 1 >>
In the silver plating of Example 1, it was set as the same conditions as Example 1 except not having implemented the 3rd electroplating process. That is, the characteristics were examined using a silver-plated metal member as a sample when the second electroplating step of 40 A / dm 2 was completed.

《比較例2》
実施例1の銀めっきにおいて、第2電気めっき工程を実施しなかった以外、実施例1と同一条件とした。すなわち5A/dm2の電気めっきのみで成膜した銀めっき金属部材を試料として特性を調べた。
<< Comparative Example 2 >>
In the silver plating of Example 1, it was set as the same conditions as Example 1 except not having implemented the 2nd electroplating process. That is, the characteristics were examined using a silver-plated metal member formed only by electroplating at 5 A / dm 2 as a sample.

《比較例3》
実施例1の銀めっきにおいて、第1電気めっき工程を実施しなかった以外、実施例1と同一条件とした。
<< Comparative Example 3 >>
In the silver plating of Example 1, it was set as the same conditions as Example 1 except not having implemented the 1st electroplating process.

《比較例4》
実施例1の銀めっきにおいて、第1電気めっき工程を実施せず、かつ第2電気めっき工程では通電時間を3秒から6秒に変更した以外、実施例1と同一条件とした。
<< Comparative Example 4 >>
In the silver plating of Example 1, the same conditions as in Example 1 were used except that the first electroplating step was not performed and the energization time was changed from 3 seconds to 6 seconds in the second electroplating step.

《比較例5》
実施例1の銀めっきにおいて、第1電気めっき工程を実施せず、かつ第3電気めっき工程では通電時間を16秒から32秒に変更した以外、実施例1と同一条件とした。
<< Comparative Example 5 >>
In the silver plating of Example 1, the same conditions as in Example 1 were used except that the first electroplating step was not performed and the energization time was changed from 16 seconds to 32 seconds in the third electroplating step.

《比較例6》
実施例1の銀めっきにおいて、第1電気めっき工程の電流密度を5A/dm2から20A/dm2に、通電時間を16秒から5秒に変更した以外、実施例1と同一条件とした。
<< Comparative Example 6 >>
In the silver plating of Example 1, the same conditions as in Example 1 were applied except that the current density in the first electroplating step was changed from 5 A / dm 2 to 20 A / dm 2 and the energization time was changed from 16 seconds to 5 seconds.

Figure 2008088493
Figure 2008088493

表1中に記載される「銀めっきトータル膜厚」は第1〜第3電気めっき工程で形成したトータルの銀めっき平均膜厚(通電条件から算出される値)である。
表1に見られるように、実施例1のものは平滑な下層銀めっき膜を形成し、かつ本発明で規定する最表面の平均結晶粒径および表面粗さRmaxに調整したことにより、ワイヤーボンディング性、樹脂接着性、耐食性、耐摩耗性の全てにおいて良好な結果が得られら。
"Silver plating total film thickness" described in Table 1 is the total silver plating average film thickness (value calculated from the energization conditions) formed in the first to third electroplating processes.
As can be seen from Table 1, in Example 1, a smooth lower layer silver plating film was formed and adjusted to the average crystal grain size and surface roughness R max of the outermost surface defined in the present invention. Good results are obtained in all of bondability, resin adhesion, corrosion resistance, and wear resistance.

これに対し、比較例1は最表層に銀めっき膜が成膜されていないことによりワイヤーボンディング性を発揮できなかった。比較例2は第2電気めっき工程で島状または樹枝状の銀析出部を形成しなかったことにより表面粗さRmaxが低く、アンカー効果のある表面が得られなかったので樹脂接着性に劣った。比較例3〜5は下層を形成しなかったので耐食性および耐摩耗性に劣った。比較例6は第1電気めっき工程での電流密度が高すぎたことにより下層表面のRaが0.5μmを超えて大きくなり、結果的にピンホールの低減や緩衝材としての効果が十分に得られなかったことが考えられ、耐食性および耐摩耗性に劣った。 On the other hand, Comparative Example 1 could not exhibit wire bonding properties because the silver plating film was not formed on the outermost layer. In Comparative Example 2, since the island-like or dendritic silver deposits were not formed in the second electroplating step, the surface roughness R max was low, and the surface having an anchor effect was not obtained, so the resin adhesion was poor. It was. Since Comparative Examples 3-5 did not form a lower layer, they were inferior in corrosion resistance and wear resistance. In Comparative Example 6, the current density in the first electroplating process was too high, and Ra on the lower layer surface increased beyond 0.5 μm, resulting in sufficient pinhole reduction and buffering effect. The corrosion resistance and wear resistance were inferior.

銀めっき表面の平均結晶粒径とワイヤーボンディング性の関係を示すグラフ。The graph which shows the relationship between the average crystal grain diameter of the silver plating surface, and wire bonding property. 銀めっき表面のRmaxと樹脂接着性の関係を示すグラフ。The graph which shows the relationship between Rmax of a silver plating surface, and resin adhesiveness.

Claims (4)

少なくとも0.2μmの平均膜厚を有する銀めっき膜からなる下層と、前記銀めっき膜の表面上に形成された銀めっき層であって表面の平均結晶粒径が0.5μm以上、表面粗さRmaxが10〜40μmである上層とで構成される銀めっき構造を最表面に持つ金属部材。 A lower layer composed of a silver plating film having an average film thickness of at least 0.2 μm, and a silver plating layer formed on the surface of the silver plating film, the surface having an average crystal grain size of 0.5 μm or more and a surface roughness A metal member having a silver plating structure on the outermost surface composed of an upper layer having R max of 10 to 40 μm. 前記上層は、下層の銀めっき膜の表面上に析出させた島状または樹枝状の銀析出部と、さらにその上を覆うように形成させた銀めっき膜からなる銀めっき層である請求項1に記載の銀めっき構造を最表面に持つ金属部材。   The upper layer is a silver plating layer comprising an island-like or dendritic silver precipitation portion deposited on the surface of a lower silver plating film, and a silver plating film formed so as to cover the upper portion. The metal member which has the silver plating structure of description on the outermost surface. 金属表面に、少なくとも0.2μmの平均膜厚を有し、表面粗さRaが0.5μm以下である銀めっき膜を形成させる第1電気めっき工程、前記銀めっき膜の表面上に第1電気めっき工程より大きい電流密度で島状または樹枝状の銀析出部を形成させる第2電気めっき工程、さらにその上に第2電気めっき工程より小さい電流密度で銀めっき膜を形成させることにより最表面の平均結晶粒径を0.5μm以上、かつ表面粗さRmaxを10〜40μmとする第3電気めっき工程を有する、銀めっき金属部材の製造法。 A first electroplating step in which a silver plating film having an average film thickness of at least 0.2 μm and a surface roughness Ra of 0.5 μm or less is formed on a metal surface; A second electroplating step for forming island-like or dendritic silver deposits at a current density greater than the plating step, and further forming a silver plating film thereon with a lower current density than the second electroplating step. A method for producing a silver-plated metal member, comprising a third electroplating step in which an average crystal grain size is 0.5 μm or more and a surface roughness R max is 10 to 40 μm. 第1電気めっき工程では電流密度15A/dm2未満で銀めっきを行い、第2電気めっき工程では電流密度20A/dm2以上で銀めっきを行い、第3電気めっき工程では電流密度15A/dm2未満で銀めっきを行う請求項3に記載の銀めっき金属部材の製造法。 Silver plating is performed at a current density of less than 15 A / dm 2 in the first electroplating process, silver plating is performed at a current density of 20 A / dm 2 or more in the second electroplating process, and current density of 15 A / dm 2 is performed in the third electroplating process. The method for producing a silver-plated metal member according to claim 3, wherein the silver plating is performed with less than 5%.
JP2006269374A 2006-09-29 2006-09-29 Silver plated metal member and manufacturing method thereof Active JP4887533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006269374A JP4887533B2 (en) 2006-09-29 2006-09-29 Silver plated metal member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006269374A JP4887533B2 (en) 2006-09-29 2006-09-29 Silver plated metal member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008088493A true JP2008088493A (en) 2008-04-17
JP4887533B2 JP4887533B2 (en) 2012-02-29

Family

ID=39372952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006269374A Active JP4887533B2 (en) 2006-09-29 2006-09-29 Silver plated metal member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4887533B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222617A (en) * 2009-03-23 2010-10-07 Kumamoto Univ Silver plated material and production method of the same
JP2010287741A (en) * 2009-06-11 2010-12-24 Nagasaki Univ Lead frame and method of manufacturing the same, and semiconductor device
WO2011099574A1 (en) * 2010-02-12 2011-08-18 古河電気工業株式会社 Silver-coated composite material for movable contact component, method for producing same, and movable contact component
JP2013036072A (en) * 2011-08-05 2013-02-21 Furukawa Electric Co Ltd:The Coated composite material for moving contact part, moving contact part, switch, and method for production thereof
JP2015229791A (en) * 2014-06-05 2015-12-21 Jx日鉱日石金属株式会社 Metal material for electronic part and connector terminal, connector and electronic part using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140884A (en) * 1981-02-23 1982-08-31 Sumitomo Electric Ind Ltd Plating method for silver
JPS6314890A (en) * 1986-07-05 1988-01-22 Nippon Steel Corp Decorative galvanized steel sheet and its production
JPH1140722A (en) * 1997-07-15 1999-02-12 Mitsui High Tec Inc Manufacture of lead frame for semiconductor device
JPH11274177A (en) * 1998-03-25 1999-10-08 Toppan Printing Co Ltd Lead frame and its manufacture
JP2002299538A (en) * 2001-03-30 2002-10-11 Dainippon Printing Co Ltd Lead frame and semiconductor package using the same
JP2003027279A (en) * 2001-07-12 2003-01-29 Mitsui High Tec Inc Plating method for lead frame
JP2004339584A (en) * 2003-05-16 2004-12-02 Mitsui High Tec Inc Lead frame, and plating method therefor
JP2007254855A (en) * 2006-03-24 2007-10-04 Dowa Holdings Co Ltd Silver plated metal member for electronic component and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140884A (en) * 1981-02-23 1982-08-31 Sumitomo Electric Ind Ltd Plating method for silver
JPS6314890A (en) * 1986-07-05 1988-01-22 Nippon Steel Corp Decorative galvanized steel sheet and its production
JPH1140722A (en) * 1997-07-15 1999-02-12 Mitsui High Tec Inc Manufacture of lead frame for semiconductor device
JPH11274177A (en) * 1998-03-25 1999-10-08 Toppan Printing Co Ltd Lead frame and its manufacture
JP2002299538A (en) * 2001-03-30 2002-10-11 Dainippon Printing Co Ltd Lead frame and semiconductor package using the same
JP2003027279A (en) * 2001-07-12 2003-01-29 Mitsui High Tec Inc Plating method for lead frame
JP2004339584A (en) * 2003-05-16 2004-12-02 Mitsui High Tec Inc Lead frame, and plating method therefor
JP2007254855A (en) * 2006-03-24 2007-10-04 Dowa Holdings Co Ltd Silver plated metal member for electronic component and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222617A (en) * 2009-03-23 2010-10-07 Kumamoto Univ Silver plated material and production method of the same
JP2010287741A (en) * 2009-06-11 2010-12-24 Nagasaki Univ Lead frame and method of manufacturing the same, and semiconductor device
WO2011099574A1 (en) * 2010-02-12 2011-08-18 古河電気工業株式会社 Silver-coated composite material for movable contact component, method for producing same, and movable contact component
CN102667989A (en) * 2010-02-12 2012-09-12 古河电气工业株式会社 Silver-coated composite material for movable contact component, method for producing same, and movable contact component
US8637164B2 (en) 2010-02-12 2014-01-28 Furukawa Electric Co., Ltd. Silver-coated composite material for a movable contact part, method of producing the same, and movable contact part
JP5705738B2 (en) * 2010-02-12 2015-04-22 古河電気工業株式会社 Silver-coated composite material for movable contact parts, manufacturing method thereof, and movable contact parts
KR101784023B1 (en) * 2010-02-12 2017-10-10 후루카와 덴키 고교 가부시키가이샤 Silver-coated composite material for movable contact component, method for producing same, and movable contact component
JP2013036072A (en) * 2011-08-05 2013-02-21 Furukawa Electric Co Ltd:The Coated composite material for moving contact part, moving contact part, switch, and method for production thereof
JP2015229791A (en) * 2014-06-05 2015-12-21 Jx日鉱日石金属株式会社 Metal material for electronic part and connector terminal, connector and electronic part using the same

Also Published As

Publication number Publication date
JP4887533B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
TWI330202B (en) Copper alloy sheet material for electric and electronic parts
TW201945598A (en) Surface-treated copper foil, copper clad laminate, and printed wiring board
JP5268748B2 (en) Sn or Sn alloy plating film and composite material having the same
JP4887533B2 (en) Silver plated metal member and manufacturing method thereof
JP4934852B2 (en) Silver plated metal member for electronic parts and method for producing the same
TWI699458B (en) Lead frame material and manufacturing method thereof
US20190169764A1 (en) Surface-treated material, method for producing the surface-treated material, and component formed by using the surface-treated material
TW201803065A (en) Lead frame material and method for producing same
Gao et al. Electrodeposited Ni microcones with a thin Au film bonded with Au wire
Hsu et al. The effect of saccharin addition on the mechanical properties and fracture behavior of electroless Ni–Cu–P deposit on Al
JP5766318B2 (en) Lead frame
WO2020079904A1 (en) Electroconductive material, molded article, and electronic component
JPS6187894A (en) Method for plating titanium blank
JP2010150647A (en) Copper alloy tinned strip having solder wettability and insertion/extraction performance
JP2014123760A5 (en)
JP2015079841A (en) Lead frame base for optical semiconductor devices, lead frame for optical semiconductor devices and method for manufacturing lead frame for optical semiconductor devices
JP6805217B2 (en) Conductive materials, molded products and electronic components
JP7366480B1 (en) Lead frame material and its manufacturing method, and semiconductor package using lead frame material
TWI788542B (en) Lead frame material, manufacturing method thereof, and semiconductor package using the lead frame material
JP7178530B1 (en) Lead frame material, manufacturing method thereof, and semiconductor package
KR20130142630A (en) Solder joint structure having tooth-like structure with excellent efficiency for suppressing the formation of kirkendall voids and method of manufacturing the same
JP2022148743A (en) Conductive material, molded article and electronic component
JP7172583B2 (en) Terminal materials for connectors
WO2023286697A1 (en) Lead frame material and method for producing same, and semiconductor package
JP2005206904A (en) METHOD OF PRODUCING Ni-W ALLOY FILM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4887533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250