JP2008087045A - Flux-cored wire for electrogas arc welding and two-electrode electrolgas arc welding method - Google Patents

Flux-cored wire for electrogas arc welding and two-electrode electrolgas arc welding method Download PDF

Info

Publication number
JP2008087045A
JP2008087045A JP2006271324A JP2006271324A JP2008087045A JP 2008087045 A JP2008087045 A JP 2008087045A JP 2006271324 A JP2006271324 A JP 2006271324A JP 2006271324 A JP2006271324 A JP 2006271324A JP 2008087045 A JP2008087045 A JP 2008087045A
Authority
JP
Japan
Prior art keywords
mass
wire
electrode wire
electrode
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006271324A
Other languages
Japanese (ja)
Other versions
JP4986563B2 (en
Inventor
Yoshihito Ishizaki
圭人 石▲崎▼
Tetsuya Hashimoto
哲哉 橋本
Yasuyuki Yokota
泰之 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006271324A priority Critical patent/JP4986563B2/en
Priority to CN200710146983XA priority patent/CN101157165B/en
Priority to KR1020070098712A priority patent/KR100920548B1/en
Publication of JP2008087045A publication Critical patent/JP2008087045A/en
Application granted granted Critical
Publication of JP4986563B2 publication Critical patent/JP4986563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flux-cored wire for two-electrode electrogas arc welding and a two-electrode electrolgas arc welding method providing high strength and toughness of a welded metal even when the heat input exceeds 500 kJ/cm and having excellent welding workability. <P>SOLUTION: A groove in which a surface side is wider than a back side is formed by butting a pair of plates 1 to be welded. A welding wire 11 is installed in a fixing manner with respect to the distal direction of the groove and a welding wire 13 is installed in a reciprocally moving manner. The mean content in each composition of both welding wires is 0.02-0.09% C, 1.5-2.5% Mn, 0.2-0.6% Si, 0.6-1.9% Ni, 0.3-1.2% Mo, 0.10-0.40% Ti, 0.005-0.020% B, 0.10-0.50% Mg, wherein the total of Ni+Mo is 1.2-2.6%, and the mass ratio Mo/Ni of Mo to Ni is 0.25-1.00, and the balance Fe with inevitable impurities and the slag forming agent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、厚鋼板の2電極立向1パス溶接が可能なエレクトロガスアーク溶接用フラックス入りワイヤ及び2電極エレクトロガスアーク溶接方法に関する。   The present invention relates to a flux-cored wire for electrogas arc welding capable of two-electrode vertical one-pass welding of a thick steel plate and a two-electrode electrogas arc welding method.

エレクトロガスアーク溶接は、高能率立向溶接方法として、船舶、石油貯蔵タンク及び橋梁等の幅広い分野で適用されている。近時、中国・東アジア諸国の経済及び産業の発展が著しく、物流量の増加に伴い、コンテナ貨物の効率的な輸送を目的として、コンテナ船の大型化が急速に進んでいる。   Electrogas arc welding is applied in a wide range of fields such as ships, oil storage tanks and bridges as a highly efficient vertical welding method. In recent years, the economic and industrial development of China and East Asian countries has been remarkable, and with the increase of goods flow, the size of container ships has been increasing rapidly for the purpose of efficient transportation of container cargo.

コンテナ船の大型化に伴い、船側外板及びハッチコーミング等の厚肉化が進んでおり、板厚50mm以上の鋼板が使用され、更に、板厚80mmを超える鋼板の適用も検討されている。このような厚鋼板を高能率に溶接できる施工法として、エレクトロガスアーク溶接法による大入熱1パス溶接化の要求が高まっている。   Along with the increase in size of container ships, thickening of ship side outer plates and hatch coaming is progressing, steel plates with a thickness of 50 mm or more are used, and the application of steel plates with a thickness of more than 80 mm is also being considered. As a construction method capable of welding such a thick steel plate with high efficiency, there is an increasing demand for high heat input one-pass welding by electrogas arc welding.

しかしながら、このような厚鋼板の溶接を従来の1電極1パス溶接方法で行うと、溶接速度が大幅に低下するとともに、融合不良等の欠陥が発生し易くなる。この問題点を解決すべく、これらの問題を解消し、作業効率を向上させるため、2電極エレクトロガスアーク溶接方法が提案されている(例えば特許文献1乃至3)。   However, when such a thick steel plate is welded by the conventional one-electrode one-pass welding method, the welding speed is greatly reduced and defects such as poor fusion tend to occur. In order to solve these problems, a two-electrode electrogas arc welding method has been proposed (for example, Patent Documents 1 to 3) in order to solve these problems and improve working efficiency.

特許文献1には、裏当材側電極として、スラグ生成率が溶着金属に対して0.5乃至2.6質量%である鋼ワイヤ又はフラックス入りワイヤを使用し、摺動銅板側電極として、スラグ生成率が溶着金属に対して2.7乃至5.5質量%であるフラックス入りワイヤを使用し、更に、裏当材側電極ワイヤ中及び摺動銅板側電極ワイヤ中のC、Si、Mn、Ti及びBの組成を規定し、両電極ワイヤ間を一定に保ちながら裏当材と摺動銅板との間で両電極ワイヤを揺動させることにより、良好な溶接作業性及び優れた溶接金属性能が得られる2電極エレクトロガスアーク溶接方法が開示されている。   In Patent Document 1, as a backing material side electrode, a steel wire or flux-cored wire having a slag generation rate of 0.5 to 2.6% by mass with respect to the weld metal is used, and as a sliding copper plate side electrode, A flux-cored wire having a slag generation rate of 2.7 to 5.5% by mass with respect to the weld metal is used. Further, C, Si, Mn in the backing material side electrode wire and the sliding copper plate side electrode wire By defining the composition of Ti and B and keeping both electrode wires constant, the two electrode wires are swung between the backing material and the sliding copper plate, thereby achieving good welding workability and excellent weld metal. A two-electrode electrogas arc welding method that provides performance is disclosed.

また、特許文献2に開示された技術は、35乃至90mm厚鋼板の開先を2電極立向エレクトロガスアーク溶接する際に、板厚方向に溶接電極を2本配置し、摺動銅板側電極にスラグ生成率がワイヤ溶融量に対して2.7乃至5.5質量%であるフラックス入りワイヤを使用し、裏当材側電極にスラグ生成率がワイヤ溶融量に対して2.6質量%以下であるソリッドワイヤ又はフラックス入りワイヤを使用し、摺動銅板側電極と裏当材側電極のワイヤ極間距離を10乃至38mm、更に摺動銅板側電極のワイヤ送給速度を裏当材側電極のワイヤ送給速度の1乃至1.5倍で且つ両極の平均ワイヤ送給速度を14乃至20m/分とし、両電極を揺動させ、立向1パス溶接によって溶接することで、溶接作業性に優れ、また、良好な溶込形状を得ることができるというものである。   In addition, the technique disclosed in Patent Document 2 has two welding electrodes arranged in the plate thickness direction when a groove of a 35 to 90 mm thick steel plate is subjected to two-electrode vertical electrogas arc welding. A flux-cored wire having a slag generation rate of 2.7 to 5.5% by mass with respect to the wire melting amount is used, and a slag generation rate of the backing material side electrode is 2.6% by mass or less with respect to the wire melting amount. The distance between the wire electrodes of the sliding copper plate side electrode and the backing material side electrode is 10 to 38 mm, and the wire feeding speed of the sliding copper plate side electrode is set to the backing material side electrode. Welding workability is 1 to 1.5 times the wire feed speed and the average wire feed speed of both poles is 14 to 20 m / min, both electrodes are swung and welded by vertical one-pass welding. Excellent and good penetration shape It is intended that it is.

また、特許文献3には、極厚の被溶接板の一方の面に摺動銅当金を当接させ、他方の面に固定式裏当材を当接させ、その開先内に、摺動銅当金側の溶接電極としてワイヤ全量に対して金属弗化物及びその他の成分組成を規定したフラックス入りワイヤを使用し、固定式裏当材側の溶接電極としてソリッドワイヤを使用し、この2本の溶接電極を板厚方向に並べて挿入して被溶接板を溶接することにより、厚鋼板を溶接する際に、良好な低温靭性及び良好な溶接作業性が得られる2電極立向エレクトロガスアーク溶接方法が開示されている。このとき、溶接時にこの2本の溶接電極を揺動させれば、この2本の溶接電極の開先壁に対する溶込の均一化を図ることができることが記載されている。   Further, in Patent Document 3, sliding copper metal is brought into contact with one surface of an extremely thick plate to be welded, and a fixed backing material is brought into contact with the other surface. A flux-cored wire with metal fluoride and other component composition specified for the total amount of wire is used as the welding electrode on the moving copper side, and a solid wire is used as the welding electrode on the fixed backing side. Two-electrode vertical electrogas arc welding that provides good low temperature toughness and good welding workability when welding thick steel plates by inserting the welding electrodes side by side in the plate thickness direction and welding the plates to be welded A method is disclosed. At this time, it is described that if the two welding electrodes are swung during welding, the penetration of the two welding electrodes into the groove wall can be made uniform.

しかしながら、上述の従来技術には以下に示すような問題点がある。特許文献1乃至3に開示された2電極エレクトロガスアーク溶接方法は、いずれの方法においても、両電極の開先壁への溶込の均一化を図るために、溶接時に2電極とも摺動させることが好ましいため、両電極が被溶接板の表面側に摺動したときに被溶接板の裏面側に溶融スラグがたまり易い上、溶接長が長くなると、被溶接板の裏面側に配置される電極ワイヤの摺動の影響により、被溶接板の裏面側の電極ワイヤがアーク不安定になり、裏ビード不良及びスパッタ発生量過多等の現象が発生し易くなる。このため、被溶接板の裏面側の電極ワイヤにスラグ生成量の少ないソリッドワイヤ又はフラックス入りワイヤを使用することにより溶接作業性の改善が提案されているが、被溶接板の裏面側の電極ワイヤの組成を規定することによって裏ビード不良及びスパッタ発生量過多等を抑制することは困難である。   However, the above-described prior art has the following problems. In any of the two-electrode electrogas arc welding methods disclosed in Patent Documents 1 to 3, the two electrodes are slid during welding in order to make the penetration of both electrodes into the groove wall uniform. Therefore, when both electrodes slide on the front side of the welded plate, the molten slag tends to accumulate on the back side of the welded plate, and when the weld length becomes longer, the electrode disposed on the back side of the welded plate Due to the influence of the sliding of the wire, the electrode wire on the back side of the welded plate becomes arc unstable, and phenomena such as back bead failure and excessive spatter generation easily occur. For this reason, improvement of welding workability has been proposed by using a solid wire or flux-cored wire with a small amount of slag generation as the electrode wire on the back side of the welded plate. It is difficult to suppress the back bead failure and the excessive amount of spatter generated by defining the composition.

この問題点を解決すべく、本発明者らは、被溶接板の裏面側に配置される電極ワイヤを固定することで、被溶接板の裏面側の電極ワイヤの摺動による被溶接板の裏面側の溶融スラグ溜まり及びアーク不安定を抑制する方法を提案している(特許文献4)。   In order to solve this problem, the present inventors fixed the electrode wire disposed on the back surface side of the welded plate, thereby allowing the back surface of the welded plate to slide due to the sliding of the electrode wire on the back surface side of the welded plate. A method for suppressing molten slag accumulation on the side and arc instability has been proposed (Patent Document 4).

特開平11−197884号公報JP 11-197884 A 特開平11−285826号公報Japanese Patent Laid-Open No. 11-285826 特開2002−103041号公報JP 2002-103041 A 特開2004−167600号公報JP 2004-167600 A

しかしながら、特許文献4に開示された技術には以下に示すような問題点がある。特許文献4には、靭性の高い溶接金属を得ることができるエレクトロガスアーク溶接用フラックス入りワイヤ及び溶接方法が開示されており、この技術によれば、溶接作業性に優れ、得られる溶接金属の低温靭性は良好であるものの、上述の通り、エレクトロガスアーク溶接に適用する鋼板の厚肉化、更には高強度化及び高靭性化が要求される中で、入熱が500kJ/cmを超えるような場合においても、溶接金属の強度を確保し、且つ靭性に優れたエレクトロガスアーク溶接材料が必要になってきている。また、近時、更なる低温域で安定して靭性に優れる溶接材料が要求されており、特許文献4に開示された技術においてはこれらの点において不十分である。   However, the technique disclosed in Patent Document 4 has the following problems. Patent Document 4 discloses a flux-cored wire for electrogas arc welding and a welding method capable of obtaining a weld metal having high toughness. According to this technique, welding workability is excellent and the obtained weld metal has a low temperature. Although the toughness is good, as described above, when the heat input exceeds 500 kJ / cm while the steel sheet applied for electrogas arc welding is required to have a thicker wall and higher strength and toughness. However, there is a need for an electrogas arc welding material that ensures the strength of the weld metal and has excellent toughness. Recently, there has been a demand for a welding material that is stable and excellent in toughness in a further low temperature range, and the technique disclosed in Patent Document 4 is insufficient in these respects.

本発明はかかる問題点に鑑みてなされたものであって、入熱が500kJ/cmを超えても溶接金属の強度及び靭性が高く、溶接作業性に優れるエレクトロガスアーク溶接用フラックス入りワイヤ及び2電極エレクトロガスアーク溶接方法を提供することを目的とする。   The present invention has been made in view of such problems, and even if the heat input exceeds 500 kJ / cm, the strength and toughness of the weld metal is high, and the flux-cored wire for electrogas arc welding and the two electrodes excellent in welding workability. An object is to provide an electrogas arc welding method.

本発明に係るエレクトロガスアーク溶接用フラックス入りワイヤは、垂直に配置した1対の被溶接板を突き合わせて両者間に表面側が裏面側より幅広で垂直に延びる開先を形成し、前記被溶接板の裏面側に前記開先に固定的にあてがわれる裏面側裏当材を設置し、前記被溶接板の表面側に前記開先の長手方向に沿って前記開先に対して相対的に摺動可能な表面側裏当材を設置し、裏面側の第1電極ワイヤを前記開先の奥行き方向に対して固定的に設置し、表面側の第2電極ワイヤを前記開先の奥行き方向に対して往復移動可能に設置して、前記第1電極ワイヤ及び第2電極ワイヤにより前記開先を立向突き合わせ溶接する2電極エレクトロガスアーク溶接に使用されるフラックス入りワイヤにおいて、第1電極ワイヤ及び第2電極ワイヤの各組成における含有量の平均値として、C:0.02乃至0.09質量%、Mn:1.5乃至2.5質量%、Si:0.2乃至0.6質量%、Ni:0.6乃至1.9質量%、Mo:0.3乃至1.2質量%、Ti:0.10乃至0.40質量%、B:0.005乃至0.020質量%、Mg:0.10乃至0.50質量%を含有し、Ni+Moの総量が1.2乃至2.6質量%、MoとNiとの質量比Mo/Niが0.25乃至1.00であり、残部がFe及び不可避的不純物とスラグ生成剤であることを特徴とする。   A flux-cored wire for electrogas arc welding according to the present invention has a pair of welded plates arranged vertically and a groove between which the front side is wider than the back side and extends vertically. A back side backing material fixedly applied to the groove is installed on the back side, and slides relative to the groove along the longitudinal direction of the groove on the surface side of the welded plate. A possible front side backing material is installed, the first electrode wire on the back side is fixedly installed in the depth direction of the groove, and the second electrode wire on the front side is set in the depth direction of the groove. In the flux-cored wire used for two-electrode electrogas arc welding, which is installed so as to be reciprocally movable, and the groove is vertically butt-welded with the first electrode wire and the second electrode wire, the first electrode wire and the second electrode wire Each of the electrode wires As an average value of content in composition, C: 0.02 to 0.09 mass%, Mn: 1.5 to 2.5 mass%, Si: 0.2 to 0.6 mass%, Ni: 0.6 To 1.9% by mass, Mo: 0.3 to 1.2% by mass, Ti: 0.10 to 0.40% by mass, B: 0.005 to 0.020% by mass, Mg: 0.10 to 0% .50% by mass, the total amount of Ni + Mo is 1.2 to 2.6% by mass, the mass ratio of Mo to Ni is Mo / Ni of 0.25 to 1.00, and the balance is Fe and inevitable impurities And a slag forming agent.

前記第1電極ワイヤは前記スラグ生成剤を前記第1電極ワイヤの質量に対して0.3乃至1.6質量%含有し、前記第2電極ワイヤは前記スラグ生成剤を前記第2電極ワイヤの質量に対して1.0乃至2.0質量%含有すると共に、前記第1電極ワイヤ及び前記第2電極ワイヤにおける前記スラグ生成剤の含有量の和が1.3乃至3.3質量%であり、前記スラグ生成剤は、前記第1電極ワイヤ及び前記第2電極ワイヤの各組成における含有量の平均値として、F:0.10乃至0.70質量%であることが好ましい。   The first electrode wire contains 0.3 to 1.6% by mass of the slag generating agent with respect to the mass of the first electrode wire, and the second electrode wire contains the slag generating agent of the second electrode wire. 1.0 to 2.0% by mass with respect to the mass, and the sum of the contents of the slag generating agent in the first electrode wire and the second electrode wire is 1.3 to 3.3% by mass. The slag generating agent is preferably F: 0.10 to 0.70 mass% as an average value of contents in each composition of the first electrode wire and the second electrode wire.

また、前記第2電極ワイヤは第2電極ワイヤの質量あたり、CO:0.04乃至0.25質量%含む炭酸塩を含有していても良い。 Further, the second electrode wire may contain a carbonate containing CO 2 : 0.04 to 0.25 mass% per mass of the second electrode wire.

本発明に係る2電極エレクトロガスアーク溶接方法は、垂直に配置した1対の被溶接板を突き合わせて両者間に表面側が裏面側より幅広で垂直に延びる開先を形成し、前記被溶接板の裏面側に前記開先に固定的にあてがわれる裏面側裏当材を設置し、前記被溶接板の表面側に前記開先の長手方向に沿って前記開先に対して相対的に摺動可能な表面側裏当材を設置し、裏面側の第1電極ワイヤを前記開先の奥行き方向に対して固定的に設置し、表面側の第2電極ワイヤを前記開先の奥行き方向に対して往復移動可能に設置して、前記第1電極ワイヤ及び前記第2電極ワイヤにより前記開先を立向突き合わせ溶接する2電極エレクトロガスアーク溶接方法において、前記第1電極ワイヤ及び第2電極ワイヤは、前記第1電極ワイヤ及び前記第2電極ワイヤの各組成における含有量の平均値として、C:0.02乃至0.09質量%、Mn:1.5乃至2.5質量%、Si:0.2乃至0.6質量%、Ni:0.6乃至1.9質量%、Mo:0.3乃至1.2質量%、Ti:0.10乃至0.40質量%、B:0.005乃至0.020質量%、Mg:0.10乃至0.50質量%を含有し、Ni+Moの総量が1.2乃至2.6質量%、MoとNiとの質量比Mo/Niが0.25乃至1.00であり、残部がFe及び不可避的不純物とスラグ生成剤である組成を有し、裏面側の前記第1電極のワイヤ径は1.2乃至1.6mm、表面側の前記第2電極のワイヤ径は1.4乃至2.0mmであり、前記第1電極のワイヤ径は前記第2電極のワイヤ径以下であり、前記第1電極及び前記第2電極を単位時間あたりの送給量が同一になるよう送給することを特徴とする。   In the two-electrode electrogas arc welding method according to the present invention, a pair of welded plates arranged vertically are abutted to form a groove between which the front side is wider than the back side and extends vertically, and the backside of the welded plate A back side backing material fixedly applied to the groove is installed on the side, and can be slid relative to the groove along the longitudinal direction of the groove on the surface side of the welded plate. A front surface backing material, a first electrode wire on the rear surface side is fixedly installed in the depth direction of the groove, and a second electrode wire on the front surface side is installed in the depth direction of the groove. In the two-electrode electrogas arc welding method in which the groove is vertically butt-welded with the first electrode wire and the second electrode wire, the first electrode wire and the second electrode wire are arranged so as to be reciprocally movable. A first electrode wire and the second electric wire; As an average value of the content in each composition of the wire, C: 0.02 to 0.09 mass%, Mn: 1.5 to 2.5 mass%, Si: 0.2 to 0.6 mass%, Ni: 0.6 to 1.9 mass%, Mo: 0.3 to 1.2 mass%, Ti: 0.10 to 0.40 mass%, B: 0.005 to 0.020 mass%, Mg: 0.9. 10 to 0.50% by mass, the total amount of Ni + Mo is 1.2 to 2.6% by mass, the mass ratio Mo / Ni between Mo and Ni is 0.25 to 1.00, the balance being Fe and The wire diameter of the first electrode on the back surface side is 1.2 to 1.6 mm, and the wire diameter of the second electrode on the front surface side is 1.4 to 2. 0 mm, and the wire diameter of the first electrode is equal to or less than the wire diameter of the second electrode, and the first electrode and the first electrode Feeding amount fed per unit time of the electrode, characterized in that the feeding to be the same.

前記第1電極ワイヤは前記スラグ生成剤を前記第1電極ワイヤの質量に対して0.3乃至1.6質量%含有し、前記第2電極ワイヤは前記スラグ生成剤を前記第2電極ワイヤの質量に対して1.0乃至2.0質量%含有すると共に、前記第1電極ワイヤ及び前記第2電極ワイヤにおける前記スラグ生成剤の含有量の和が1.3乃至3.3質量%であり、前記スラグ生成剤は、前記第1電極ワイヤ及び前記第2電極ワイヤの各組成における含有量の平均値として、F:0.10乃至0.70質量%であることが好ましい。   The first electrode wire contains 0.3 to 1.6% by mass of the slag generating agent with respect to the mass of the first electrode wire, and the second electrode wire contains the slag generating agent of the second electrode wire. 1.0 to 2.0% by mass with respect to the mass, and the sum of the contents of the slag generating agent in the first electrode wire and the second electrode wire is 1.3 to 3.3% by mass. The slag generating agent is preferably F: 0.10 to 0.70 mass% as an average value of contents in each composition of the first electrode wire and the second electrode wire.

表面側の前記第2電極ワイヤは第2電極ワイヤの質量あたり、CO:0.04乃至0.25質量%含む炭酸塩を含有していても良い。 The second electrode wire on the surface side may contain a carbonate containing CO 2 : 0.04 to 0.25% by mass per mass of the second electrode wire.

本発明によれば、エレクトロガスアーク溶接用フラックス入りワイヤのC、Mn、Si、Ni、Mo、Ti、B及びMgの各成分の組成、Ni+Moの総量並びにMo/Niの比を適切に規定することにより溶接金属の強度及び靭性を向上させる。また、被溶接板の表面側に開先の長手方向に沿って開先に対して相対的に摺動可能な表面側裏当材を設置し、裏面側に開先に固定的にあてがわれる裏面側裏当材を設置し、裏面側の第1電極ワイヤを開先の奥行き方向に対して固定的に設置し、表面側の第2電極ワイヤを開先の奥行き方向に対して往復移動可能に設置して開先を立向突合せ溶接することにより、溶融スラグの飛散を抑制する。これによって、入熱が500kJ/cmを超えるような場合であっても、強度及び靭性が高い溶接金属を得ることができる。   According to the present invention, the composition of each component of C, Mn, Si, Ni, Mo, Ti, B and Mg, the total amount of Ni + Mo, and the ratio of Mo / Ni in the flux cored wire for electrogas arc welding should be appropriately specified. This improves the strength and toughness of the weld metal. Also, a surface side backing material that is slidable relative to the groove along the longitudinal direction of the groove is installed on the surface side of the plate to be welded, and fixed to the groove on the back surface side. The back side backing material is installed, the first electrode wire on the back side is fixedly installed in the depth direction of the groove, and the second electrode wire on the front side can be reciprocated in the depth direction of the groove. The slag is prevented from splashing by installing the groove in vertical butt welding. Thereby, even if the heat input exceeds 500 kJ / cm, a weld metal having high strength and toughness can be obtained.

以下、本発明の実施形態について添付の図面を参照して具体的に説明する。先ず、本発明の第1実施形態について説明する。図1(a)は本実施形態に係る2電極エレクトロガスアーク溶接方法を示す模式的側面図、図1(b)は同じく模式的上面図、図2(a)及び(b)は溶接ワイヤ13の摺動を示す模式的上面図である。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. First, a first embodiment of the present invention will be described. FIG. 1A is a schematic side view showing a two-electrode electrogas arc welding method according to the present embodiment, FIG. 1B is a schematic top view, and FIGS. It is a typical top view which shows sliding.

図1(a)及び(b)に示すように、垂直に配置された1対の厚鋼板からなる被溶接板1が突き合わされて両者間に表面側が裏面側より幅広で垂直に延びる開先が形成され、被溶接板1の表面側に、開先の長手方向に沿って開先に対して相対的に摺動可能な表面側裏当材として摺動銅板2が、スラグ逃がし溝3を設けた状態で設置されている。摺動銅板2には、溶接部に大気が侵入しないようシールドするためのシールドガスを図1(a)に示す矢印4の方向に噴出するガス噴射口5が設けられており、また、摺動銅板2を冷却するために摺動銅板2内部に設けられた冷却水通路(図示せず)に冷却水を矢印6の方向に供給し、矢印7の方向に排出する冷却水給排口8が設けられている。また、被溶接板1の裏面側に、開先に固定的にあてがわれる裏面側裏当材として裏当材9が設置されている。また、開先内には、被溶接板1の裏面側にコンタクトチップ10によって保持された第1電極ワイヤとしての溶接ワイヤ11(裏面側電極ワイヤ)が開先の奥行き方向に対して固定的に設置され、表面側にコンタクトチップ12によって保持された第2電極ワイヤとしての溶接ワイヤ13(表面側電極ワイヤ)が開先の奥行き方向(図1に示す矢印14の方向)に対して往復移動可能に設置されている。   As shown in FIGS. 1 (a) and 1 (b), a welded plate 1 made of a pair of vertically arranged thick steel plates is abutted against each other, and there is a groove extending vertically between the two so that the front side is wider than the back side. A sliding copper plate 2 is provided on the surface side of the welded plate 1 as a surface side backing material that can slide relative to the groove along the longitudinal direction of the groove, and a slag relief groove 3 is provided. Installed. The sliding copper plate 2 is provided with a gas injection port 5 for jetting a shielding gas for shielding the atmosphere from entering the welded portion in the direction of the arrow 4 shown in FIG. A cooling water supply / discharge port 8 for supplying cooling water in the direction of arrow 6 to a cooling water passage (not shown) provided in the sliding copper plate 2 to cool the copper plate 2 and discharging it in the direction of arrow 7 is provided. Is provided. Further, a backing material 9 is installed on the back side of the welded plate 1 as a back side backing material fixedly applied to the groove. Further, in the groove, a welding wire 11 (back surface side electrode wire) as a first electrode wire held by the contact tip 10 on the back surface side of the welded plate 1 is fixed in the depth direction of the groove. The welding wire 13 (surface-side electrode wire) as a second electrode wire that is installed and held on the surface side by the contact tip 12 can reciprocate in the depth direction of the groove (the direction of the arrow 14 shown in FIG. 1). Is installed.

被溶接板1と溶接ワイヤ11との間及び被溶接板1と溶接ワイヤ13との間にアークを発生させ、開先を立向突合せ溶接すると、被溶接板1、溶接ワイヤ11及び溶接ワイヤ13が溶融し、溶融池15及び溶融スラグ16が形成され、溶接部に溶接金属17が形成される。   When an arc is generated between the welded plate 1 and the welding wire 11 and between the welded plate 1 and the welding wire 13 and the groove is vertically butt-welded, the welded plate 1, the welding wire 11 and the welding wire 13 are formed. Is melted, a molten pool 15 and a molten slag 16 are formed, and a weld metal 17 is formed at the weld.

例えば、被溶接板1の裏面側に設置された溶接ワイヤ11及び被溶接板1の表面側に設置された溶接ワイヤ13の双方が開先の奥行き方向に対して往復移動する場合、双方の溶接ワイヤが被溶接板1表面側に移動したときに、被溶接板1の裏面側に溶融スラグ16が溜まり、双方の溶接ワイヤが被溶接板1の裏面側に移動したときは、被溶接板1の表面側に設置された溶接ワイヤ13のアークによって被溶接板1の裏面側の溶融スラグ16が抑え込まれる結果、被溶接板1の裏面側に溶融スラグ16が溜まり易くなる。これにより、アークが不安定になり、融合不良を起こしたり、溶融スラグ16の飛散が激しくなったりして溶接作業性が劣化する。   For example, when both the welding wire 11 installed on the back surface side of the welded plate 1 and the welding wire 13 installed on the front surface side of the welded plate 1 reciprocate in the depth direction of the groove, both weldings are performed. When the wire moves to the surface side of the plate to be welded 1, the molten slag 16 accumulates on the back side of the plate to be welded 1, and when both welding wires move to the back side of the plate to be welded 1, As a result, the molten slag 16 on the back surface side of the welded plate 1 is restrained by the arc of the welding wire 13 installed on the front surface side, so that the molten slag 16 tends to accumulate on the back surface side of the welded plate 1. As a result, the arc becomes unstable, poor fusion occurs, or the molten slag 16 is scattered more and the welding workability is deteriorated.

本実施形態に係る2電極エレクトロガスアーク溶接方法においては、被溶接板1の裏面側に設置された溶接ワイヤ11が開先の奥行き方向に対して固定され、被溶接板1の表面側に設置された溶接ワイヤ13が開先の奥行き方向に対して往復移動することで、図2(a)に示すように、溶接ワイヤ13が被溶接板1の裏面側に移動したときに、被溶接材1の裏面側で発生した溶融スラグ16が摺動銅板2側(図2(a)に示す矢印18の方向)に移動し、図2(b)に示すように、溶接ワイヤ13が被溶接板1の表面側に移動したときに、この溶融スラグ16が図2(b)に示す矢印19の方向に移動し、スラグ逃がし溝3より排出される。これにより、被溶接板1の裏面側に発生した溶融スラグ16の一部は裏ビードのスラグとなるが、溶融スラグ16の多くは被溶接板1の表面側に設置された摺動銅板2に設けられたスラグ逃がし溝3より排出される。これにより、裏面側に設置された溶接ワイヤ11のアークを安定化させ、融合不良及び溶融スラグ16の飛散を抑えることができる。   In the two-electrode electrogas arc welding method according to the present embodiment, the welding wire 11 installed on the back surface side of the welded plate 1 is fixed with respect to the depth direction of the groove and installed on the front surface side of the welded plate 1. When the welding wire 13 reciprocates in the depth direction of the groove and the welding wire 13 moves to the back side of the welded plate 1 as shown in FIG. The molten slag 16 generated on the back surface side of the steel plate moves toward the sliding copper plate 2 (in the direction of the arrow 18 shown in FIG. 2A), and as shown in FIG. The molten slag 16 moves in the direction of the arrow 19 shown in FIG. 2 (b) and is discharged from the slag escape groove 3. Thereby, a part of the molten slag 16 generated on the back surface side of the welded plate 1 becomes a slag of the back bead, but most of the molten slag 16 is formed on the sliding copper plate 2 installed on the front surface side of the welded plate 1. It is discharged from the provided slag escape groove 3. Thereby, the arc of the welding wire 11 installed on the back side can be stabilized, and fusion failure and scattering of the molten slag 16 can be suppressed.

ここで、本発明者らは、厚鋼板の2電極1パス立向突合せ溶接において、フラックス入りワイヤの成分組成及びワイヤ径について検討し、優れた溶接作業性及び良好な低温靭性が得られるエレクトロガスアーク溶接用フラックス入りワイヤ及び溶接方法について検討を行った。そして、本実施形態に係る2電極エレクトロガスアーク溶接方法において、入熱が500kJ/cmを超えるような場合であっても、強度及び靭性が高い溶接金属を得ることができるエレクトロガスアーク溶接用フラックス入りワイヤの成分について鋭意検討した結果、C、Mn、Si、Ni、Mo、Ti、B及びMgの最適成分量を見出した。更に、靭性安定化にはNi+Moの総量及びMo/Niの比を規定することが有効であることが明らかになった。   Here, the present inventors have studied the composition of the flux-cored wire and the wire diameter in two-electrode one-pass vertical butt welding of thick steel plates, and an electrogas arc capable of obtaining excellent welding workability and good low-temperature toughness. The flux-cored wire for welding and the welding method were examined. In the two-electrode electrogas arc welding method according to the present embodiment, a flux-cored wire for electrogas arc welding capable of obtaining a weld metal having high strength and toughness even when the heat input exceeds 500 kJ / cm. As a result of intensive studies on these components, the optimum component amounts of C, Mn, Si, Ni, Mo, Ti, B and Mg were found. Furthermore, it became clear that it is effective to regulate the total amount of Ni + Mo and the ratio of Mo / Ni for toughness stabilization.

以下、本実施形態に係るエレクトロガスアーク溶接用フラックス入りワイヤにおける各成分の組成限定理由及びワイヤ径の限定理由について説明する。本実施形態に係るエレクトロガスアーク溶接用フラックス入りワイヤは、鋼製外皮及びフラックスからなるものである。なお、以下の説明において、C、Mn、Si、Ni、Mo、Ti、Bの含有量は、第1電極ワイヤ及び第2電極ワイヤの各組成における含有量の平均値である(以下、これを単に平均値という)。   Hereinafter, the reason for limiting the composition of each component and the reason for limiting the wire diameter in the flux cored wire for electrogas arc welding according to the present embodiment will be described. The flux cored wire for electrogas arc welding according to the present embodiment is made of a steel outer sheath and a flux. In the following description, the contents of C, Mn, Si, Ni, Mo, Ti, and B are average values of contents in the respective compositions of the first electrode wire and the second electrode wire (hereinafter referred to as “this”). Simply called average).

「C:0.02乃至0.09質量%」
Cは溶接金属の強度を確保するために必要な元素である。第1電極ワイヤ(裏面側電極ワイヤ)及び第2電極ワイヤ(表面側電極ワイヤ)のC量平均値が0.02質量%未満では、溶接金属の強度が低下する。また、溶接金属の組織が粗大化し、靭性も低下する。一方、C量平均値が0.09質量%を超えると、溶接金属の強度が高くなり過ぎ、靭性が低下する。従って、2電極エレクトロガスアーク溶接に使用されるフラックス入りワイヤにおいて、裏面側電極ワイヤ及び表面側電極ワイヤのC量平均値は、0.02乃至0.09質量%とする。なお、C源としては、鋼製外皮中に含有されるC、C単体、グラファイト、又は、鉄粉若しくは金属粉中に含有されるC等を使用することができる。
“C: 0.02 to 0.09 mass%”
C is an element necessary for ensuring the strength of the weld metal. When the average amount of C of the first electrode wire (back surface side electrode wire) and the second electrode wire (front surface side electrode wire) is less than 0.02% by mass, the strength of the weld metal is lowered. Moreover, the structure of the weld metal becomes coarse and the toughness also decreases. On the other hand, if the average amount of C exceeds 0.09% by mass, the strength of the weld metal becomes too high and the toughness decreases. Therefore, in the flux-cored wire used for two-electrode electrogas arc welding, the C amount average value of the back-side electrode wire and the front-side electrode wire is 0.02 to 0.09 mass%. In addition, as C source, C contained in the steel outer shell, C simple substance, graphite, or C contained in iron powder or metal powder can be used.

「Mn:1.5乃至2.5質量%」
Mnは脱酸剤として溶接金属の酸素量を低減させ、靭性を向上させるとともに、溶接金属の強度を確保するのにも有効な元素である。裏面側電極ワイヤ及び表面側電極ワイヤのMn量平均値が1.5質量%未満では、溶接金属の靭性が低下する。一方、Mn量平均値が2.5質量%を超えると、溶接金属の強度が高くなり過ぎ、靭性が低下する。従って、Mn量平均値は、1.5乃至2.5質量%とする。なお、Mn源としては、鋼製外皮中に含有されるMn、金属Mn、Fe−Mn又はFe−Si−Mn等を使用することができる。
“Mn: 1.5 to 2.5 mass%”
Mn is an element effective as a deoxidizer for reducing the amount of oxygen in the weld metal, improving toughness, and ensuring the strength of the weld metal. If the Mn content average value of the back-side electrode wire and the front-side electrode wire is less than 1.5% by mass, the toughness of the weld metal decreases. On the other hand, if the average value of Mn exceeds 2.5% by mass, the strength of the weld metal becomes too high and the toughness decreases. Therefore, the average amount of Mn is 1.5 to 2.5% by mass. As the Mn source, Mn, metal Mn, Fe—Mn, Fe—Si—Mn, or the like contained in the steel outer shell can be used.

「Si:0.2乃至0.6質量%」
Siも脱酸剤として溶接金属の酸素量を低減させ、靭性を向上させる効果を有するものである。裏面側電極ワイヤ及び表面側電極ワイヤのSi量平均値が0.2質量%未満では、溶接金属の靭性が低下する。一方、Si量平均値が0.6質量%を超えると、溶接金属を脱酸したことで溶融スラグとなったSiOの量が過剰になり、溶融スラグの粘度が高くなるため、溶融スラグの排出性が悪くなる。これにより、融合不良が発生し易くなる上、溶融スラグが飛散し、作業性が劣化する。従って、Si量平均値は、0.2乃至0.6質量%とする。なお、Si源としては、鋼製外皮中に含有されるSi、Fe−Si、Fe−Si−Mn、Fe−Si−B、Fe−Si−Mg又はREM(Rare Earth Metal)−Ca−Si等を使用することができる。
“Si: 0.2 to 0.6 mass%”
Si also has the effect of reducing the oxygen content of the weld metal and improving toughness as a deoxidizer. When the Si amount average value of the back-side electrode wire and the front-side electrode wire is less than 0.2% by mass, the toughness of the weld metal decreases. On the other hand, if the average amount of Si exceeds 0.6% by mass, the amount of SiO 2 that has become molten slag due to deoxidation of the weld metal becomes excessive, and the viscosity of the molten slag increases. Discharge is worse. As a result, poor fusion is likely to occur, and molten slag is scattered, resulting in poor workability. Therefore, the Si amount average value is 0.2 to 0.6 mass%. In addition, as Si source, Si, Fe-Si, Fe-Si-Mn, Fe-Si-B, Fe-Si-Mg, or REM (Rare Earth Metal) -Ca-Si etc. contained in the steel outer shell Can be used.

「Ni:0.6乃至1.9質量%」
Niはオーステナイト形成元素であり、溶接金属の靭性を安定化させる効果を有する元素である。裏面側電極ワイヤ及び表面側電極ワイヤのNi量平均値が0.6質量%未満では、溶接金属の靭性が低下する。一方、Ni量平均値が1.9質量%を超えると、入熱が500kJ/cmを超えるような場合、溶接金属がオーステナイト凝固となり、溶接金属の組織が粗大化し、靭性が低下する。従って、Ni量平均値は、0.6乃至1.9質量%とする。なお、Ni源としては、金属Ni、Fe−Ni又はNi−Mg等を使用することができる。
“Ni: 0.6 to 1.9% by mass”
Ni is an austenite forming element and is an element having an effect of stabilizing the toughness of the weld metal. If the Ni amount average value of the back-side electrode wire and the front-side electrode wire is less than 0.6% by mass, the toughness of the weld metal decreases. On the other hand, when the Ni average value exceeds 1.9% by mass, when the heat input exceeds 500 kJ / cm, the weld metal becomes austenite solidified, the weld metal structure becomes coarse, and the toughness decreases. Therefore, the average amount of Ni is set to 0.6 to 1.9% by mass. As the Ni source, metal Ni, Fe—Ni, Ni—Mg, or the like can be used.

「Mo:0.3乃至1.2質量%」
Moはフェライト形成元素であり、溶接金属の焼入れ性を向上させる効果を有し、入熱が500kJ/cmを超えるような場合の凝固組織微細化に有効な元素である。従って、溶接金属の靭性を向上させ、更には少量の添加で溶接金属の強度を向上させることができる。裏面側電極ワイヤ及び表面側電極ワイヤのMo量平均値が0.3質量%未満では、凝固組織は粗大化し靭性は低下する。一方、Mo量平均値が1.2質量%を超えると強度が高くなり過ぎ、靭性が低下する。従って、Mo量平均値は、0.3乃至1.2質量%とする。なお、Mo源としては、金属Mo又はFe−Mo等を使用することができる。
“Mo: 0.3 to 1.2 mass%”
Mo is a ferrite-forming element, has an effect of improving the hardenability of the weld metal, and is an effective element for refining the solidified structure when the heat input exceeds 500 kJ / cm. Therefore, the toughness of the weld metal can be improved, and further the strength of the weld metal can be improved with a small amount of addition. When the Mo amount average value of the back-side electrode wire and the front-side electrode wire is less than 0.3% by mass, the solidified structure becomes coarse and the toughness decreases. On the other hand, when the Mo amount average value exceeds 1.2% by mass, the strength becomes too high and the toughness is lowered. Therefore, the Mo amount average value is set to 0.3 to 1.2% by mass. As the Mo source, metal Mo, Fe—Mo, or the like can be used.

「Ti:0.10乃至0.40質量%」
Tiは溶接金属の靭性を向上させる効果を有する元素である。裏面側電極ワイヤ及び表面側電極ワイヤのTi量平均値が0.10質量%未満では、溶接金属の靭性が低下する。一方、Ti量平均値が0.40質量%を超えると溶接金属中のTiが過剰になり、靭性が低下する。従って、Ti量平均値は、0.10乃至0.40質量%とする。なお、Ti源としては、金属Ti又はFe−Ti等を使用することができる。
“Ti: 0.10 to 0.40 mass%”
Ti is an element having an effect of improving the toughness of the weld metal. If the Ti amount average value of the back-side electrode wire and the front-side electrode wire is less than 0.10% by mass, the toughness of the weld metal decreases. On the other hand, if the average amount of Ti exceeds 0.40% by mass, Ti in the weld metal becomes excessive and the toughness decreases. Therefore, the average amount of Ti is 0.10 to 0.40 mass%. As the Ti source, metal Ti, Fe—Ti, or the like can be used.

「B:0.005乃至0.020質量%」
Bは少量の添加で溶接金属の靭性を向上させる効果を有する元素である。裏面側電極ワイヤ及び表面側電極ワイヤのB量平均値が0.005質量%未満では、溶接金属の靭性が低下する。一方、B量平均値が0.020質量%を超えると溶接金属中のBが過剰になり、強度が高くなり過ぎ、靭性が低下する。従って、B量平均値は、0.005乃至0.020質量%とする。なお、B源としては、Fe−B、Fe−Si−B又はB等を使用することができる。
“B: 0.005 to 0.020 mass%”
B is an element having an effect of improving the toughness of the weld metal with a small amount of addition. If the B amount average value of the back-side electrode wire and the front-side electrode wire is less than 0.005% by mass, the toughness of the weld metal decreases. On the other hand, if the average amount of B exceeds 0.020% by mass, B in the weld metal becomes excessive, the strength becomes too high, and the toughness decreases. Therefore, the average amount of B is set to 0.005 to 0.020 mass%. As the B source, it is possible to use Fe-B, Fe-Si- B or B 2 O 3 and the like.

「Mg:0.10乃至0.50質量%」
Mgは脱酸剤として溶接金属の酸素量を低減し靭性を向上させる効果を有する元素である。裏面側電極ワイヤ及び表面側電極ワイヤのMg量平均値が0.10質量%未満では、溶接金属の靭性が低下する。一方、Mg量平均値が0.50質量%を超えるとアークが不安定になりスパッタが多発する。従って、Mg量平均値は、0.10乃至0.50質量%とする。なお、Mg源としては、金属Mg、Al−Mg、Fe−Si−Mg又はNi−Mg等を使用することができる。
“Mg: 0.10 to 0.50 mass%”
Mg is an element having an effect of reducing the oxygen content of the weld metal and improving toughness as a deoxidizer. If the Mg amount average value of the back-side electrode wire and the front-side electrode wire is less than 0.10% by mass, the toughness of the weld metal decreases. On the other hand, if the Mg average value exceeds 0.50% by mass, the arc becomes unstable and sputtering occurs frequently. Therefore, the average amount of Mg is set to 0.10 to 0.50 mass%. As the Mg source, metal Mg, Al—Mg, Fe—Si—Mg, Ni—Mg, or the like can be used.

「Ni+Moの総量:1.2乃至2.6質量%、Mo/Niの比:0.25乃至1.00」
上述のようにNi量平均値及びMo量平均値を規定し、このフラックス入りワイヤを使用して、2電極エレクトロガスアーク溶接を行ったところ、入熱が500kJ/cmを超えるような場合、溶接金属の十分な強度及び安定した靭性を確保することができなかった。そこで、本発明者らが更に検討を加えた結果、裏面側電極ワイヤ及び表面側電極ワイヤのNi+Moの総量及びMo量平均値/Ni量平均値の比(以下、Mo/Niの比という)を規定することが有効であることを見出した。C、Mn、Si、Ni、Mo、Ti、B及びMgの組成を限定した範囲に規定することで、溶接金属の強度及び靭性のバランスが取れるが、大入熱溶接の場合、Ni+Moの総量が溶接金属の強度及び靭性の確保に重要な働きを有することが分かった。Ni+Moの総量が1.2質量%未満では、焼入れ性が低下し、組織が粗大化し靭性が低下するうえ強度も低下する。一方で、Ni+Moの総量が2.6質量%を超えると、焼入れ性は高くなり過ぎ、強度も高くなり過ぎるため靭性が低下する。従ってNi+Moの総量は、1.2乃至2.6質量%とする。
“Total amount of Ni + Mo: 1.2 to 2.6 mass%, Mo / Ni ratio: 0.25 to 1.00”
As described above, the average amount of Ni and the average amount of Mo are defined, and when two-electrode electrogas arc welding is performed using this flux-cored wire, if the heat input exceeds 500 kJ / cm, the weld metal It was not possible to ensure sufficient strength and stable toughness. Therefore, as a result of further investigation by the present inventors, the total amount of Ni + Mo and the ratio of the Mo amount average value / Ni amount average value of the back side electrode wire and the front side electrode wire (hereinafter referred to as Mo / Ni ratio) We found that it was effective to specify. By defining the composition of C, Mn, Si, Ni, Mo, Ti, B, and Mg in a limited range, the strength and toughness of the weld metal can be balanced, but in the case of high heat input welding, the total amount of Ni + Mo is It has been found that it has an important role in ensuring the strength and toughness of the weld metal. If the total amount of Ni + Mo is less than 1.2% by mass, the hardenability decreases, the structure becomes coarse, the toughness decreases, and the strength also decreases. On the other hand, if the total amount of Ni + Mo exceeds 2.6% by mass, the hardenability becomes too high and the strength becomes too high, so that the toughness is lowered. Therefore, the total amount of Ni + Mo is 1.2 to 2.6 mass%.

Moは溶接金属の焼入れ性を向上させる効果を有し、溶接金属の組織微細化に有効であるが、過度に添加すると溶接金属の強度が高くなり過ぎ、靭性が低下する。一方で、Niは溶接金属の靭性の安定化に有効な元素であるが、過度に添加すると溶接金属がオーステナイト凝固となり、溶接金属の靭性が低下する。そこで、上述のNi量平均値及びMo量平均値の規定範囲内で溶接金属の更なる靭性向上を図るには、オーステナイト形成元素のNiを添加することで靭性の安定化を図り、また、フェライト形成元素のMoを添加することでオーステナイト凝固を抑制し、組織の微細化を行うことが有効であることを見出した。即ち、裏面側電極ワイヤ及び表面側電極ワイヤのMo/Niの比を適正範囲に規定することが非常に有効であることが分かった。Mo/Niの比が0.25未満では、Moが有する溶接金属の組織微細化の効果が得られず、溶接金属の靭性が低下する。一方、Mo/Niの比が1.00を超えると、溶接金属がオーステナイト凝固し易くなり、溶接金属の靭性が低下する。従って、Mo/Niの比は、0.25乃至1.00とする。   Mo has the effect of improving the hardenability of the weld metal and is effective for refining the structure of the weld metal. However, when it is added excessively, the strength of the weld metal becomes too high and the toughness is lowered. On the other hand, Ni is an element effective for stabilizing the toughness of the weld metal, but if added excessively, the weld metal becomes austenite solidified and the toughness of the weld metal decreases. Therefore, in order to further improve the toughness of the weld metal within the specified range of the above average amount of Ni and average amount of Mo, the toughness is stabilized by adding Ni as an austenite forming element, and ferrite It has been found that it is effective to suppress the austenite solidification and refine the structure by adding Mo as a forming element. That is, it was found that it is very effective to define the Mo / Ni ratio of the back surface side electrode wire and the front surface side electrode wire within an appropriate range. If the ratio of Mo / Ni is less than 0.25, the effect of refining the weld metal structure of Mo cannot be obtained, and the toughness of the weld metal decreases. On the other hand, when the ratio of Mo / Ni exceeds 1.00, the weld metal tends to solidify austenite, and the toughness of the weld metal decreases. Therefore, the ratio of Mo / Ni is set to 0.25 to 1.00.

「裏面側電極ワイヤにおけるスラグ生成剤の含有量:0.3乃至1.6質量%、表面側電極ワイヤにおけるスラグ生成剤の含有量:1.0乃至2.0質量%、裏面側電極ワイヤ及び表面側電極ワイヤにおけるスラグ生成剤の含有量の和:1.3乃至3.3質量%」
上述のように、本実施形態に係る2電極エレクトロガスアーク溶接方法においては、被溶接板1の裏面側に溶接ワイヤ11が開先の奥行き方向に対して固定的に設置され、表面側に溶接ワイヤ13が開先の奥行き方向に対して往復移動可能に設置されていることにより、溶融スラグ16を被溶接板1の表面側に設置された摺動銅板2の方向に移動させ易くし、これにより、溶接作業性の安定化を図っている。ここで、更に、溶接ワイヤ11(裏面側電極ワイヤ)におけるスラグ生成剤の含有量を裏面側電極ワイヤの質量に対して0.3乃至1.6質量%に規定することで、溶融スラグ量を低減させ、スラグ生成剤によるアークの安定化を図ることができ、優れた溶接作業性が得られる。裏面側電極ワイヤにおけるスラグ生成剤の含有量が裏面側電極ワイヤの質量に対して0.3質量%未満では、裏ビードの形状が不安定になり、また、1.6質量%を超えると被溶接板1の裏面側にスラグがたまり易くなり、アークが不安定になり、融合不良が発生し易くなる。従って、裏面側電極ワイヤにおけるスラグ生成剤の含有量は、裏面側電極ワイヤの質量に対して、0.3乃至1.6質量%とする。
“Content of slag generator in backside electrode wire: 0.3 to 1.6 mass%, content of slag generator in surface side electrode wire: 1.0 to 2.0 mass%, backside electrode wire and Sum of content of slag forming agent in surface side electrode wire: 1.3 to 3.3 mass% "
As described above, in the two-electrode electrogas arc welding method according to the present embodiment, the welding wire 11 is fixedly installed on the back side of the welded plate 1 with respect to the depth direction of the groove, and the welding wire is provided on the front side. 13 is installed so as to be able to reciprocate in the depth direction of the groove, thereby making it easier to move the molten slag 16 in the direction of the sliding copper plate 2 installed on the surface side of the plate 1 to be welded. The welding workability is stabilized. Here, the amount of molten slag is further defined by defining the content of the slag generating agent in the welding wire 11 (back surface side electrode wire) to 0.3 to 1.6 mass% with respect to the mass of the back surface side electrode wire. The arc can be stabilized by the slag forming agent, and excellent welding workability can be obtained. If the content of the slag forming agent in the backside electrode wire is less than 0.3% by mass with respect to the mass of the backside electrode wire, the shape of the back bead becomes unstable. Slag tends to accumulate on the back side of the weld plate 1, the arc becomes unstable, and poor fusion tends to occur. Therefore, the content of the slag generating agent in the back side electrode wire is 0.3 to 1.6% by mass with respect to the mass of the back side electrode wire.

また、被溶接板1の表面側に設置される溶接ワイヤ13は開先の奥行き方向に対して往復移動するため、優れた溶接作業性を確保するには適度な量のスラグ生成剤を含有することが必要である。一方、スラグ生成剤の含有量が過度になると、溶融スラグ16が被溶接板1の裏面側に逆流したり、アークが不安定になったりするため、融合不良が発生し易くなる。溶接ワイヤ13(表面側電極ワイヤ)におけるスラグ生成剤の含有量が表面側電極ワイヤの質量に対して1.0質量%未満では、スラグ生成量が不足し、溶融金属を抑えられず、溶接金属が溶落し易くなり、また、2.0質量%を超えると、溶融スラグ16が被溶接板1の裏面側に逆流したり、アークが不安定になったりするため、融合不良が発生し易くなる。従って、表面側電極ワイヤにおけるスラグ生成剤の含有量は、表面側電極ワイヤの質量に対して、1.0乃至2.0質量%とする。   Further, since the welding wire 13 installed on the surface side of the welded plate 1 reciprocates in the depth direction of the groove, it contains an appropriate amount of slag generating agent to ensure excellent welding workability. It is necessary. On the other hand, when the content of the slag generating agent is excessive, the molten slag 16 flows backward to the back side of the welded plate 1 or the arc becomes unstable, so that poor fusion is likely to occur. If the content of the slag generating agent in the welding wire 13 (surface-side electrode wire) is less than 1.0% by mass with respect to the mass of the surface-side electrode wire, the amount of slag generation is insufficient, the molten metal cannot be suppressed, and the weld metal When the amount exceeds 2.0% by mass, the molten slag 16 flows backward to the back side of the welded plate 1 and the arc becomes unstable, so that poor fusion is likely to occur. . Therefore, the content of the slag generating agent in the surface-side electrode wire is 1.0 to 2.0 mass% with respect to the mass of the surface-side electrode wire.

また、裏面側電極ワイヤ及び表面側電極ワイヤにおけるスラグ生成剤の含有量の和が1.3質量%未満では、溶融スラグ量が不足し、溶融金属を抑えられず、溶接金属が溶落し易くなり、3.3質量%を超えると、溶融池に浮遊する溶融スラグ量が過多になり、アークが不安定になるため、融合不良が発生し易くなる。従って、裏面側電極ワイヤ及び表面側電極ワイヤにおけるスラグ生成剤の含有量の和は、1.3乃至3.3質量%とする。   In addition, when the sum of the contents of the slag generating agent in the back side electrode wire and the front side electrode wire is less than 1.3% by mass, the molten slag amount is insufficient, the molten metal cannot be suppressed, and the weld metal is likely to fall off. If it exceeds 3.3 mass%, the amount of molten slag floating in the molten pool becomes excessive, and the arc becomes unstable, so that poor fusion is likely to occur. Therefore, the sum of the contents of the slag forming agent in the back-side electrode wire and the front-side electrode wire is 1.3 to 3.3% by mass.

なお、スラグ生成剤としては、SiO、KO、CaO、NaO、Al、LiO、CaF、BaF、NaF、KSiF、SrF、AlF、MgF、LiF、CaCO、MgCO、BaCO、LiCO、NaCO及びSrCOからなる群から選択された少なくとも1種の元素等を使用することができる。 As the slag-forming agent, SiO 2, K 2 O, CaO, Na 2 O, Al 2 O 3, Li 2 O, CaF 2, BaF 2, NaF, K 2 SiF 6, SrF 2, AlF 3, MgF 2 , at least one element selected from the group consisting of LiF, CaCO 3 , MgCO 3 , BaCO 3 , Li 2 CO 3 , Na 2 CO 3 and Sr 2 CO 3 can be used.

「裏面側電極ワイヤ及び表面側電極ワイヤにおけるスラグ生成剤の含有量の和におけるF量平均値:0.10乃至0.70質量%」
スラグ生成剤に含有されるFは、溶融スラグの粘性を低くし、溶融スラグの排出性を向上させる効果を有する。裏面側電極ワイヤ及び表面側電極ワイヤにおけるスラグ生成剤の含有量の和におけるF量平均値が0.10質量%未満では、溶融スラグの排出性が低く、溶融池に浮遊する溶融スラグ量が過多になり、アーク不安定になるため、融合不良が発生し易くなる。一方、F量平均値が0.70質量%を超えると、溶融スラグの排出性が向上し過ぎ、溶融金属を抑えられず、溶接金属が溶落し易くなる。従って、スラグ生成剤量平均値におけるF量平均値は、0.10乃至0.70質量%とする。なお、F源としては、CaF、BaF、NaF、KSiF、SrF、AlF、MgF又はLiF等を使用することができる。
“F amount average value in sum of contents of slag forming agent in back side electrode wire and front side electrode wire: 0.10 to 0.70 mass%”
F contained in the slag forming agent has the effect of lowering the viscosity of the molten slag and improving the dischargeability of the molten slag. When the F amount average value in the sum of the contents of the slag generating agent in the back surface side electrode wire and the front surface side electrode wire is less than 0.10% by mass, the discharge property of the molten slag is low, and the molten slag amount floating in the molten pool is excessive. Since the arc becomes unstable, poor fusion is likely to occur. On the other hand, when the F amount average value exceeds 0.70% by mass, the dischargeability of the molten slag is excessively improved, the molten metal cannot be suppressed, and the weld metal is easily melted down. Therefore, the F amount average value in the slag generating agent amount average value is set to 0.10 to 0.70 mass%. As the F source, CaF 2 , BaF 2 , NaF, K 2 SiF 6 , SrF 2 , AlF 3 , MgF 2 or LiF can be used.

「表面側電極ワイヤは表面側電極ワイヤ質量あたりCO:0.04乃至0.25質量%含む炭酸塩を含有する」
炭酸塩の分解で発生するCOはアークを安定的に広げる効果を有する。この炭酸塩を表面側電極ワイヤに添加することで、表面側電極ワイヤが開先の奥行き方向に対して往復移動してもアークが広がった状態で安定しているため、被溶接板の裏面側に生成されたスラグを被溶接板の表面側に設置された摺動銅板側に移動させ易くする。炭酸塩が含むCO量が0.04質量%未満では、その効果が得られず、融合不良が発生し易くなる。一方で、0.25質量%を超えるとガス発生量が過大になりアーク不安定になり易い。従って、表面側電極ワイヤは表面側電極ワイヤ質量あたりCO:0.04乃至0.25質量%含む炭酸塩を含有するものとする。なお、炭酸塩としては、CaCO、MgCO、BaCO、LiCO、NaCO又はSrCO等を使用することができる。また、裏面側電極ワイヤもCO:0.25質量%以下を含む炭酸塩を含有していても良い。
“The surface-side electrode wire contains carbonate containing 0.02 to 0.25% by mass of CO 2 per mass of the surface-side electrode wire”
CO 2 generated by the decomposition of the carbonate has an effect of stably spreading the arc. By adding this carbonate to the surface-side electrode wire, even if the surface-side electrode wire reciprocates in the depth direction of the groove, the arc is stable in a spread state. The generated slag is easily moved to the sliding copper plate side installed on the surface side of the plate to be welded. If the amount of CO 2 contained in the carbonate is less than 0.04% by mass, the effect cannot be obtained, and poor fusion tends to occur. On the other hand, if it exceeds 0.25% by mass, the amount of gas generated becomes excessive and the arc is likely to become unstable. Accordingly, the surface-side electrode wire surface side electrode wire mass per CO 2: 0.04 to and those containing carbonate containing 0.25% by weight. As the carbonate, CaCO 3 , MgCO 3 , BaCO 3 , Li 2 CO 3 , Na 2 CO 3 or Sr 2 CO 3 can be used. The back side electrode wire may also contain a carbonate containing CO 2 : 0.25% by mass or less.

なお、上述のエレクトロガスアーク溶接用フラックス入りワイヤの残部は、Fe、BのO、REM、P、S、Al及びCaからなる群から選択された少なくとも1種の元素及び不可避的不純物からなる組成を有しているものとする。 The balance of the above-mentioned flux cored wire for electrogas arc welding is made of at least one element selected from the group consisting of O, REM, P, S, Al and Ca of Fe, B 2 O 3 and inevitable impurities. It has the composition which becomes.

次に、本発明の2電極エレクトロガスアーク溶接方法について説明する。本発明の2電極エレクトロガスアーク溶接方法においては、上述の組成の第1電極ワイヤ及び第2電極ワイヤを使用し、第1電極ワイヤの直径を1.2乃至1.6mm、第2電極ワイヤの直径を1.4乃至2.0mmとして、両者の単位時間あたりのワイヤ送給量が同一になるように第1電極ワイヤ及び第2電極ワイヤを送給する。   Next, the two-electrode electrogas arc welding method of the present invention will be described. In the two-electrode electrogas arc welding method of the present invention, the first electrode wire and the second electrode wire having the above-described composition are used, the diameter of the first electrode wire is 1.2 to 1.6 mm, and the diameter of the second electrode wire is Is set to 1.4 to 2.0 mm, and the first electrode wire and the second electrode wire are fed so that the wire feeding amount per unit time is the same.

「裏面側第1電極ワイヤのワイヤ径(以下、裏面側ワイヤ径という);1.2乃至1.6mm、表面側第2電極ワイヤのワイヤ径(以下、表面側ワイヤ径という);1.4乃至2.0mm、且つ裏面側ワイヤ径≦表面側ワイヤ径」
アークは、溶接ワイヤのワイヤ径が大きくなるほど広がり、溶融スラグを流動させるのには有効であるが、ワイヤ径が過度に大きいと溶融池が不安定になり、スパッタが増加する。被溶接板の裏面側は開先幅が狭いため、ワイヤ径が過度に大きいと、母材(被溶接板)の溶込が多くなり、溶接金属が母材(被溶接板)の影響を受け易い上、裏ビードの余盛も過多になってしまう。従って、被溶接板の裏面側においてはアークの広がりが適度に小さい方が好ましく、裏面側ワイヤ径は1.2乃至1.6mmとする。一方、被溶接板の表面側においては、ワイヤ径が小さいと溶融スラグの排出性が悪くなり、アークが不安定になる。従って、表面側ワイヤ径は1.4乃至2.0mmとする。また、溶接作業性のバランスを考慮すると、裏面側ワイヤ径が表面側ワイヤ径よりも大きいと、被溶接板の裏面側に溶融スラグが溜まり易くなり、アークが不安定になる。従って、裏面側ワイヤ径≦表面側ワイヤ径とする。
“Wire diameter of backside first electrode wire (hereinafter referred to as backside wire diameter); 1.2 to 1.6 mm; Wire diameter of surface side second electrode wire (hereinafter referred to as frontside wire diameter); 1.4 Thru 2.0 mm, and backside wire diameter ≦ frontside wire diameter ”
The arc spreads as the wire diameter of the welding wire increases and is effective in flowing the molten slag. However, if the wire diameter is excessively large, the molten pool becomes unstable and spatter increases. Since the groove width is narrow on the back side of the welded plate, if the wire diameter is excessively large, penetration of the base material (welded plate) increases and the weld metal is affected by the base material (welded plate). It is easy and the back beads are excessive. Accordingly, it is preferable that the arc spread is moderately small on the back side of the welded plate, and the back side wire diameter is 1.2 to 1.6 mm. On the other hand, on the surface side of the plate to be welded, if the wire diameter is small, the discharge property of the molten slag is deteriorated and the arc becomes unstable. Therefore, the surface side wire diameter is set to 1.4 to 2.0 mm. In consideration of the balance of welding workability, if the back surface side wire diameter is larger than the front surface side wire diameter, the molten slag tends to accumulate on the back surface side of the welded plate, and the arc becomes unstable. Accordingly, the rear surface side wire diameter ≦ the front surface side wire diameter.

なお、2本の溶接ワイヤの全質量の平均値とは、ワイヤ径にかかわらず、各ワイヤの成分値を使用し、2本の溶接ワイヤの平均値を計算したものである。また、本発明に係るエレクトロガスアーク溶接用フラックス入りワイヤのフラックス充填率は20乃至30質量%とした。   The average value of the total mass of the two welding wires is the average value of the two welding wires calculated using the component values of each wire regardless of the wire diameter. Further, the flux filling rate of the flux cored wire for electrogas arc welding according to the present invention was set to 20 to 30% by mass.

本発明に係る2電極エレクトロガスアーク溶接方法においては、母材(被溶接板)の影響も少なからず受けるため、母材(被溶接板)に適用する鋼板は、一般構造用圧延鋼材、溶接構造用圧延鋼材、溶接構造用高降伏点鋼板、建築構造用圧延鋼及び船舶用に使用される鋼板のうち、下記表1に示す範囲(質量%)のものが好ましい。   In the two-electrode electrogas arc welding method according to the present invention, the steel plate applied to the base material (welded plate) is not limited to the influence of the base material (welded plate). Of the rolled steel materials, high yield point steel plates for welded structures, rolled steel for building structures, and steel plates used for ships, those in the ranges (mass%) shown in Table 1 below are preferred.

Figure 2008087045
Figure 2008087045

以下、本発明の実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。図3は本発明の実施例及び比較例において使用した溶接方法を示す模式的上面図である。図3において、図1及び図2と同一構成物には同一符号を付して、その詳細な説明は省略する。   Hereinafter, the effect of the Example of this invention is demonstrated compared with the comparative example which remove | deviates from the scope of the present invention. FIG. 3 is a schematic top view showing a welding method used in Examples and Comparative Examples of the present invention. 3, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

供試鋼板(被溶接板1)として、降伏強度:390N/mm以上、板厚:80mm、幅:500mm、長さ:1000mmであり、下記表2に示す組成を有するものを使用し、表面側ワイヤ径及び裏面側ワイヤ径を共に1.6mmとして表3に示す組成(質量%)を有するものを使用し、図3、表4及び表5に示す条件で以下に示す溶接方法によって本発明に係るエレクトロガスアーク溶接用フラックス入りワイヤ及び比較例のフラックス入りワイヤを使用して1パス立向突合せ溶接を実施し、溶接中に作業性の確認を行った。また、溶接後、UT検査(Ultrasonic Testing;超音波探傷検査)を行い、融合不良の有無を確認した。ここで、表3に示すスラグ生成剤としては、SiO、KO、CaO、NaO、Al、LiO、CaF、BaF、NaF、KSiF、SrF、AlF、MgF、LiF、CaCO、MgCO、BaCO、LiCO、NaCO及びSrCOからなる群から選択された少なくとも1種の元素等を使用することができる。また、残部は、Fe、BのO、REM、P、S、Al及びCaからなる群から選択された少なくとも1種の元素及び不可避的不純物である。 As the test steel plate (welded plate 1), the yield strength: 390 N / mm 2 or more, the plate thickness: 80 mm, the width: 500 mm, the length: 1000 mm, having the composition shown in Table 2 below, the surface The present invention was carried out according to the welding method shown below under the conditions shown in FIGS. 3, 4 and 5 using both the side wire diameter and the back side wire diameter of 1.6 mm and having the composition (mass%) shown in Table 3. 1-pass vertical butt welding was carried out using the flux-cored wire for electrogas arc welding and the flux-cored wire of the comparative example, and workability was confirmed during welding. In addition, after welding, a UT inspection (Ultrasonic Testing) was performed to confirm the presence or absence of poor fusion. Here, as the slag forming agent shown in Table 3, SiO 2, K 2 O , CaO, Na 2 O, Al 2 O 3, Li 2 O, CaF 2, BaF 2, NaF, K 2 SiF 6, SrF 2 Use of at least one element selected from the group consisting of AlF 3 , MgF 2 , LiF, CaCO 3 , MgCO 3 , BaCO 3 , Li 2 CO 3 , Na 2 CO 3 and Sr 2 CO 3 it can. The balance is at least one element selected from the group consisting of Fe, B 2 O 3 , REM, P, S, Al, and Ca, and unavoidable impurities.

本発明のエレクトロガスアーク溶接用フラックス入りワイヤは、鋼製外皮にフラックスを充填して構成される。Feは、この鋼製外皮中のFe,フラックス中に含有される鉄粉からのFe及びFe合金(Fe−Mn,Fe−Si等)に含有されるFeを合計したものであるが、このFeの含有量は少なくともワイヤ全質量あたり、90%以上である。   The flux cored wire for electrogas arc welding of the present invention is configured by filling a steel outer shell with a flux. Fe is the total of Fe in this steel outer shell, Fe from iron powder contained in the flux, and Fe contained in Fe alloys (Fe-Mn, Fe-Si, etc.). Is at least 90% of the total mass of the wire.

Figure 2008087045
Figure 2008087045

Figure 2008087045
Figure 2008087045

図3に示すように、1対の被溶接板1の開先は、被溶接板1の表面側が裏面側よりも幅広のV字形とし、開先の角度は20°とした。また、被溶接板1の裏面側において、1対の被溶接板1間の距離は8mmとした。そして、この被溶接板1の表面側に開先の長手方向に沿って開先に対して相対的に摺動可能な摺動銅板(図示せず)を設置し、裏面側に開先に固定的にあてがわれる裏当材(図示せず)を設置し、開先内に表3に示す組成を有するワイヤA乃至Vから選択された2本の1.6mmの溶接ワイヤ11及び13を、被溶接板1の裏面側においては被溶接板1の裏面から30mmの位置に設置し、また、被溶接板1の表面側においては、裏面側に設置した溶接ワイヤ11に接触せず、また、開先内で板厚方向に25乃至30mm摺動できる位置に設置し、裏面側の溶接ワイヤ11を開先の奥行き方向に対して固定した状態で表面側の溶接ワイヤ13を被溶接板1の裏面側において2秒間、被溶接板1の表面側において3秒間停止させながら開先の奥行き方向に対して往復移動させ、開先を1パス立向突合せ溶接した。   As shown in FIG. 3, the groove of the pair of welded plates 1 was V-shaped with the front surface side of the welded plate 1 wider than the back surface side, and the groove angle was 20 °. The distance between the pair of welded plates 1 on the back side of the welded plate 1 was 8 mm. A sliding copper plate (not shown) that can slide relative to the groove along the longitudinal direction of the groove is installed on the surface side of the welded plate 1 and fixed to the groove on the back surface side. A backing material (not shown) to be applied is installed, and two 1.6 mm welding wires 11 and 13 selected from wires A to V having the composition shown in Table 3 in the groove, On the back side of the plate 1 to be welded, it is installed at a position 30 mm from the back side of the plate 1 to be welded, and on the surface side of the plate 1 to be welded, it does not contact the welding wire 11 installed on the back side. It is installed at a position where it can slide 25 to 30 mm in the plate thickness direction within the groove, and the welding wire 13 on the front surface side is fixed to the depth direction of the groove with the welding wire 11 on the back surface side fixed to the depth direction of the groove. 2 seconds on the back side and 3 seconds on the front side of the plate 1 to be welded while stopping the groove Is reciprocated with respect to the direction come, and 1 pass elevational direction butt welding groove.

Figure 2008087045
Figure 2008087045

Figure 2008087045
Figure 2008087045

下記表6乃至表11に評価結果を示す。なお、供試鋼板(被溶接板1)の長さ:1000mmのうち、溶接が安定していないと考えられる溶接開始側及びクレータ側の各100mmは検査対象外とした(有効長:800mm、なお、途中で溶接金属が溶落したものは短くなる。)。有効長において融合不良が認められないものを◎、融合不良の長さが有効長の2%未満のものを○、融合不良の長さが有効長の2%を超えるものを×とした。また、溶接金属の引張試験片は、板厚中央部より採取し、直径10mm、標点間距離50mmのサイズで試験し、570N/mm以上のものを十分強度が得られていると判断し、判定を○とした。衝撃試験については、JIS Z 3128に規定されている方法により−40℃における衝撃値を測定し、その値が41J以上のものを衝撃性能が良好であると判断し、判定を○とした。 The evaluation results are shown in Tables 6 to 11 below. Of the length of the test steel plate (welded plate 1): 1000 mm, 100 mm on each of the welding start side and the crater side considered to be unstable is excluded from inspection (effective length: 800 mm, If the weld metal melts on the way, it will become shorter.) The case where no fusion failure was found in the effective length was marked as ◎, the case where the fusion failure length was less than 2% of the effective length, and the case where the fusion failure length exceeded 2% of the effective length was marked as ×. In addition, a tensile test piece of weld metal was taken from the center of the plate thickness and tested with a size of 10 mm in diameter and a distance of 50 mm between gauge points, and it was judged that sufficient strength was obtained for 570 N / mm 2 or more. The determination was ○. For the impact test, the impact value at −40 ° C. was measured by the method defined in JIS Z 3128, and those having a value of 41 J or more were judged to have good impact performance, and the evaluation was “good”.

Figure 2008087045
Figure 2008087045

Figure 2008087045
Figure 2008087045

Figure 2008087045
Figure 2008087045

Figure 2008087045
Figure 2008087045

Figure 2008087045
Figure 2008087045

Figure 2008087045
Figure 2008087045

上記表6乃至8に示すように、実施例1乃至16においては、溶接金属の強度が十分に得られ、衝撃値も良好で且つ溶接作業性も実用上問題なく良好であった。   As shown in Tables 6 to 8, in Examples 1 to 16, the strength of the weld metal was sufficiently obtained, the impact value was good, and the welding workability was also good without any practical problem.

上記表9乃至11に示すように、比較例17では、裏面側電極ワイヤにおけるスラグ生成剤の含有量が裏面側電極ワイヤの質量に対して0.3質量%未満であり、裏ビードが若干不安定であった。比較例18では、表面側電極ワイヤにおけるスラグ生成剤の含有量が表面側電極ワイヤの質量に対して2.0質量%を超えており、融合不良が発生し易くなった。比較例19では、裏面側電極ワイヤにおけるスラグ生成剤の含有量が裏面側電極ワイヤの質量に対して1.6質量%を超えており、融合不良が発生し易くなった。比較例20では、表面側電極ワイヤにおけるスラグ生成剤の含有量が表面側電極ワイヤの質量に対して1.0質量%未満であり、溶接金属が溶落し易くなったため、突出し長さの調整、即ち、突出し長さを短くすることで溶融池を揺動銅板上方にあげることにより、溶接金属の溶落を防止する必要があった。なお、ワイヤ突出し長さを短くすると、溶接速度が遅くなり、溶接速度が遅くなると、同じワイヤ送給量に対して、溶融池面が上昇する。また、比較例21では、裏面側電極ワイヤにおけるスラグ生成剤の含有量が裏面側電極ワイヤの質量に対して0.3質量%未満、裏面側電極ワイヤ及び表面側電極ワイヤにおけるスラグ生成剤の含有量の和が1.3質量%未満であり、溶接金属が溶落し易くなったため、比較例20と同様に突出し長さの調整を行う必要があり、また、裏ビードが若干不安定であった。比較例22では、表面側電極ワイヤにおけるスラグ生成剤の含有量が表面側電極ワイヤの質量に対して2.0質量%を超え、また、裏面側電極ワイヤ及び表面側電極ワイヤにおけるスラグ生成剤の含有量の和が3.3質量%を超えており、融合不良が発生し易くなった。   As shown in Tables 9 to 11, in Comparative Example 17, the content of the slag generating agent in the back electrode wire is less than 0.3% by mass with respect to the mass of the back electrode wire, and the back bead is slightly incomplete. It was stable. In Comparative Example 18, the content of the slag generating agent in the surface-side electrode wire exceeded 2.0% by mass with respect to the mass of the surface-side electrode wire, and fusion failure was likely to occur. In Comparative Example 19, the content of the slag generating agent in the back surface side electrode wire exceeded 1.6% by mass with respect to the mass of the back surface side electrode wire, and fusion failure was likely to occur. In Comparative Example 20, the content of the slag generating agent in the surface-side electrode wire is less than 1.0% by mass with respect to the mass of the surface-side electrode wire, and the weld metal is easily melted down. That is, it has been necessary to prevent the weld metal from falling off by raising the molten pool above the swinging copper plate by shortening the protruding length. Note that when the wire protruding length is shortened, the welding speed is slowed down, and when the welding speed is slowed down, the molten pool surface rises with respect to the same wire feed amount. In Comparative Example 21, the content of the slag generating agent in the back surface side electrode wire is less than 0.3% by mass with respect to the mass of the back surface side electrode wire, and the content of the slag generating agent in the back surface side electrode wire and the front surface side electrode wire. Since the sum of the amounts was less than 1.3% by mass and the weld metal easily melted down, it was necessary to adjust the protruding length as in Comparative Example 20, and the back bead was slightly unstable. . In Comparative Example 22, the content of the slag generating agent in the surface-side electrode wire exceeds 2.0 mass% with respect to the mass of the surface-side electrode wire, and the slag generating agent in the back-side electrode wire and the surface-side electrode wire The sum of the contents exceeded 3.3% by mass, and poor fusion was likely to occur.

また、比較例23では、裏面側電極ワイヤ及び表面側電極ワイヤにおけるスラグ生成剤の含有量の和におけるF含有量平均値が0.10質量%未満であり、融合不良が発生し易くなった。比較例24では、裏面側電極ワイヤ及び表面側電極ワイヤにおけるスラグ生成剤の含有量の和におけるF含有量平均値が0.70質量%を超えており、溶接金属が溶落し易くなったため、比較例20と同様に突出し長さの調整を行う必要があった。比較例25では、表面側電極ワイヤにおけるスラグ生成剤の含有量が表面側電極ワイヤの質量に対して1.0質量%未満で且つ表面側電極ワイヤが含有するCO量平均値が0.04質量%未満であり、融合不良が発生し易くなった。比較例26では、表面側電極ワイヤが含有するCO量平均値が0.25質量%を超えており、アークが若干不安定になった。 Moreover, in Comparative Example 23, the F content average value in the sum of the contents of the slag generating agents in the back surface side electrode wire and the front surface side electrode wire was less than 0.10% by mass, and poor fusion was likely to occur. In Comparative Example 24, the F content average value in the sum of the contents of the slag generating agent in the back surface side electrode wire and the front surface side electrode wire exceeded 0.70% by mass, and the weld metal was easily melted down. As in Example 20, the protrusion length had to be adjusted. In Comparative Example 25, the content of the slag generating agent in the surface-side electrode wire is less than 1.0% by mass with respect to the mass of the surface-side electrode wire, and the CO 2 content average value contained in the surface-side electrode wire is 0.04. It was less than mass%, and poor fusion was likely to occur. In Comparative Example 26, the average amount of CO 2 contained in the surface-side electrode wire exceeded 0.25% by mass, and the arc became slightly unstable.

比較例27では、C量平均値が0.02質量%未満であり、溶接金属の強度が不足し、また、靭性が低下した。一方、比較例28では、C量平均値が0.09質量%を超えており、溶接金属の強度が高くなり過ぎ、靭性が低下した。   In Comparative Example 27, the average amount of C was less than 0.02% by mass, the strength of the weld metal was insufficient, and the toughness was reduced. On the other hand, in Comparative Example 28, the C amount average value exceeded 0.09% by mass, the strength of the weld metal became too high, and the toughness decreased.

比較例29では、Si量平均値が0.2質量%未満であり、溶接金属の靭性が低下した。一方、比較例30では、Si量平均値が0.6質量%を超えており、溶融スラグとなったSiO量が過剰になったため、溶融スラグの排出性が悪化し、アークが不安定になった結果、融合不良が発生した。 In Comparative Example 29, the average amount of Si was less than 0.2% by mass, and the toughness of the weld metal was lowered. On the other hand, in Comparative Example 30, since the average amount of Si exceeds 0.6 mass% and the amount of SiO 2 that has become molten slag becomes excessive, the discharge of molten slag deteriorates and the arc becomes unstable. As a result, poor fusion occurred.

比較例31では、Mn量平均値が1.5質量%未満であり、溶接金属の靭性が低下した。一方、比較例32では、Mn量平均値が2.5質量%を超えており、溶接金属の強度が高くなり過ぎ、靭性が低下した。   In Comparative Example 31, the average amount of Mn was less than 1.5% by mass, and the toughness of the weld metal was lowered. On the other hand, in Comparative Example 32, the average amount of Mn exceeded 2.5% by mass, the strength of the weld metal was too high, and the toughness was lowered.

比較例33では、Ni量平均値が0.6質量%未満、Ni+Moの総量が1.2質量%未満で且つMo/Niの比が1.00を超えており、溶接金属の靭性が低下した。一方、比較例34では、Ni量平均値が1.9質量%を超えており、溶接金属の靭性が低下した。   In Comparative Example 33, the average amount of Ni was less than 0.6% by mass, the total amount of Ni + Mo was less than 1.2% by mass, and the ratio of Mo / Ni exceeded 1.00, resulting in decreased weld metal toughness. . On the other hand, in Comparative Example 34, the average amount of Ni exceeded 1.9% by mass, and the toughness of the weld metal was lowered.

比較例35では、Mo量平均値が0.3質量%未満且つMo/Niの比が0.25未満であり、溶接金属の靭性が低下した。一方、比較例36では、Mo量平均値が1.2質量%を超えており、溶接金属の強度が高くなり過ぎ、靭性が低下した。   In Comparative Example 35, the Mo amount average value was less than 0.3% by mass and the Mo / Ni ratio was less than 0.25, and the toughness of the weld metal was lowered. On the other hand, in Comparative Example 36, the Mo amount average value exceeds 1.2 mass%, the strength of the weld metal becomes too high, and the toughness is lowered.

比較例37では、Ti量平均値が0.10質量%未満であり、溶接金属の靭性が低下した。一方、比較例38では、Ti量平均値が0.40質量%を超えており、溶接金属の靭性が低下した。   In Comparative Example 37, the average amount of Ti was less than 0.10% by mass, and the toughness of the weld metal was lowered. On the other hand, in Comparative Example 38, the Ti amount average value exceeded 0.40 mass%, and the toughness of the weld metal was lowered.

比較例39では、B量平均値が0.005質量%未満であり、溶接金属の靭性が低下した。一方、比較例40では、B量平均値が0.020質量%を超えており、溶接金属の強度が高くなり過ぎ、靭性が低下した。   In Comparative Example 39, the average amount of B was less than 0.005% by mass, and the toughness of the weld metal was lowered. On the other hand, in Comparative Example 40, the average amount of B exceeded 0.020 mass%, the strength of the weld metal was too high, and the toughness was lowered.

比較例41では、Mg量平均値が0.1質量%未満であり、溶接金属の靭性が低下した。一方、比較例42では、Mg量平均値が0.5質量%を超えており、アークが不安定になりスパッタが多発した。   In Comparative Example 41, the average amount of Mg was less than 0.1% by mass, and the toughness of the weld metal was lowered. On the other hand, in Comparative Example 42, the average amount of Mg exceeded 0.5% by mass, the arc became unstable and spatter occurred frequently.

比較例43では、Ni+Moの総量が1.2質量%未満であり、溶接金属の強度が不足し、また、靭性が低下した。一方、比較例44では、Ni+Moの総量が2.6質量%を超えており、溶接金属の強度が高くなり過ぎ、靭性が低下した。   In Comparative Example 43, the total amount of Ni + Mo was less than 1.2% by mass, the strength of the weld metal was insufficient, and the toughness was reduced. On the other hand, in Comparative Example 44, the total amount of Ni + Mo exceeded 2.6% by mass, the strength of the weld metal was too high, and the toughness was lowered.

比較例45では、Mo/Niの比が0.25未満であり、溶接金属の靭性が低下した。一方、比較例46では、Mo/Niの比が1.0を超えており、溶接金属の靭性が低下した。   In Comparative Example 45, the Mo / Ni ratio was less than 0.25, and the toughness of the weld metal was reduced. On the other hand, in Comparative Example 46, the ratio of Mo / Ni exceeded 1.0, and the toughness of the weld metal was lowered.

これにより、上述のように、C、Mn、Si、Ni、Mo、Ti、B及びMgの各成分の組成、Ni+Moの総量並びにMo/Niの比を適切に規定された本発明に係るエレクトロガスアーク溶接用フラックス入りワイヤを使用し、上述の2電極エレクトロガスアーク溶接方法によって1パス立向溶接を行うことで、入熱が500kJ/cmを超えるような場合であっても、強度及び靭性が高い溶接金属を得られることが分かった。   Accordingly, as described above, the composition of each component of C, Mn, Si, Ni, Mo, Ti, B, and Mg, the total amount of Ni + Mo, and the ratio of Mo / Ni according to the present invention are appropriately defined. Welding with high strength and toughness even when the heat input exceeds 500 kJ / cm by performing one-pass vertical welding using the above-mentioned two-electrode electrogas arc welding method using a flux-cored wire for welding It turns out that metal can be obtained.

更に、表面側電極ワイヤにおけるスラグ生成剤の含有量、裏面側電極ワイヤにおけるスラグ生成剤の含有量、表面側電極ワイヤ及び裏面側電極ワイヤにおけるスラグ生成剤の含有量の和及び表面側電極ワイヤが含有する炭酸塩が含むCO量を適切に規定することで、更に溶接作業性が向上し、強度及び靭性が高い溶接金属を得られることが分かった。 Furthermore, the content of the slag generating agent in the surface-side electrode wire, the content of the slag generating agent in the back-side electrode wire, the sum of the contents of the slag generating agent in the surface-side electrode wire and the back-side electrode wire, and the surface-side electrode wire It was found that by appropriately defining the amount of CO 2 contained in the contained carbonate, welding workability is further improved, and a weld metal having high strength and toughness can be obtained.

次に、本発明の実施例の効果について、上記表3に示す組成を有するワイヤB及びワイヤRを使用し、下記表12に示す溶接条件で、上述の供試鋼板(被溶接板1)を使用し、図3に示す上述の溶接方法によって1パス立向突合せ溶接を行い、溶接作業性に及ぼすワイヤ径の影響を確認した。この評価結果を下記表13に示す。   Next, with respect to the effects of the examples of the present invention, the above-mentioned test steel plate (welded plate 1) was used under the welding conditions shown in Table 12 below using wire B and wire R having the composition shown in Table 3 above. 1 pass vertical butt welding was performed by the above-described welding method shown in FIG. 3, and the influence of the wire diameter on welding workability was confirmed. The evaluation results are shown in Table 13 below.

Figure 2008087045
Figure 2008087045

Figure 2008087045
Figure 2008087045

実施例47乃至53及び比較例54乃至57は、いずれも著しい溶接作業性の劣化はなく、適用可能であったが、比較例54では、裏面側ワイヤ径が1.6mmを超えており、裏ビードの余盛が高くなった。また、比較例54では、裏面側ワイヤ径が1.6mmを超えており、更に、裏面側ワイヤ径が表面側ワイヤ径よりも大きいため、これも裏ビードの余盛が高くなった。また、比較例56では、裏面側ワイヤ径が表面側ワイヤ径よりも大きく、アークが不安定であった。また、比較例57では、表面側ワイヤ径が1.4mmよりも小さく、溶融スラグの排出性が悪くなり、アーク不安定になった。   Examples 47 to 53 and Comparative Examples 54 to 57 were applicable without any significant deterioration in welding workability. However, in Comparative Example 54, the back-side wire diameter exceeded 1.6 mm, and the back side The surplus of beads increased. Moreover, in the comparative example 54, since the back surface side wire diameter exceeded 1.6 mm and the back surface side wire diameter was larger than the front surface side wire diameter, this also increased the back-beading. In Comparative Example 56, the back-side wire diameter was larger than the front-side wire diameter, and the arc was unstable. Further, in Comparative Example 57, the surface-side wire diameter was smaller than 1.4 mm, the dischargeability of the molten slag was deteriorated, and the arc became unstable.

これにより、上述のように、裏面側電極ワイヤとしてワイヤ径が1.2乃至1.6mmの電極ワイヤを設置し、表面側電極ワイヤとしてワイヤ径が1.4乃至2.0mmで且つ裏面側電極ワイヤのワイヤ径と等しいか又はそれよりも大きい電極ワイヤを設置し、上述の2電極エレクトロガスアーク溶接方法によって1パス立向溶接を行うことで、入熱が500kJ/cmを超えるような場合であっても、溶接作業性に優れていることが分かった。   As a result, as described above, an electrode wire having a wire diameter of 1.2 to 1.6 mm is installed as the back surface side electrode wire, and the wire diameter is 1.4 to 2.0 mm as the front surface side electrode wire and the back surface side electrode. This is the case where the heat input exceeds 500 kJ / cm by installing an electrode wire equal to or larger than the wire diameter of the wire and performing one-pass vertical welding by the above-described two-electrode electrogas arc welding method. However, it was found that the welding workability was excellent.

(a)は本発明の第1実施形態に係る2電極エレクトロガスアーク溶接方法を示す模式的側面図、(b)は同じく模式的上面図である。(A) is a typical side view which shows the two-electrode electrogas arc welding method which concerns on 1st Embodiment of this invention, (b) is a typical top view similarly. (a)及び(b)は溶接ワイヤ13の摺動を示す模式的上面図である。(A) And (b) is a schematic top view which shows sliding of the welding wire 13. FIG. 本発明の実施例及び比較例において使用した溶接方法を示す模式的上面図である。It is a typical top view which shows the welding method used in the Example and comparative example of this invention.

符号の説明Explanation of symbols

1;被溶接板
2;摺動銅板
3;スラグ逃がし溝
4、6、7、14、18、19;矢印
5;ガス噴射口
8;冷却水給排口
9;裏当材
10、12;コンタクトチップ
11、13;溶接ワイヤ
15;溶融池
16;溶融スラグ
17;溶接金属
1; welding plate 2; sliding copper plate 3; slag relief groove 4, 6, 7, 14, 18, 19; arrow 5; gas injection port 8; cooling water supply / discharge port 9; Tips 11, 13; Welding wire 15; Molten pool 16; Molten slag 17; Weld metal

Claims (6)

垂直に配置した1対の被溶接板を突き合わせて両者間に表面側が裏面側より幅広で垂直に延びる開先を形成し、前記被溶接板の裏面側に前記開先に固定的にあてがわれる裏面側裏当材を設置し、前記被溶接板の表面側に前記開先の長手方向に沿って前記開先に対して相対的に摺動可能な表面側裏当材を設置し、裏面側の第1電極ワイヤを前記開先の奥行き方向に対して固定的に設置し、表面側の第2電極ワイヤを前記開先の奥行き方向に対して往復移動可能に設置して、前記第1電極ワイヤ及び第2電極ワイヤにより前記開先を立向突き合わせ溶接する2電極エレクトロガスアーク溶接に使用されるフラックス入りワイヤにおいて、第1電極ワイヤ及び第2電極ワイヤの各組成における含有量の平均値として、C:0.02乃至0.09質量%、Mn:1.5乃至2.5質量%、Si:0.2乃至0.6質量%、Ni:0.6乃至1.9質量%、Mo:0.3乃至1.2質量%、Ti:0.10乃至0.40質量%、B:0.005乃至0.020質量%、Mg:0.10乃至0.50質量%を含有し、Ni+Moの総量が1.2乃至2.6質量%、MoとNiとの質量比Mo/Niが0.25乃至1.00であり、残部がFe及び不可避的不純物とスラグ生成剤であることを特徴とするエレクトロガスアーク溶接用フラックス入りワイヤ。 A pair of plates to be welded arranged vertically is abutted to each other to form a groove that is wider than the back side and extends vertically between the two, and is fixedly applied to the groove on the back side of the plate to be welded. A back side backing material is installed, and a front side backing material that is slidable relative to the groove along the longitudinal direction of the groove is installed on the surface side of the welded plate. The first electrode wire is fixedly installed in the depth direction of the groove, and the second electrode wire on the surface side is installed so as to be able to reciprocate in the depth direction of the groove. In the flux-cored wire used for two-electrode electrogas arc welding in which the groove is vertically butted by the wire and the second electrode wire, as an average value of the content in each composition of the first electrode wire and the second electrode wire, C: 0.02 to 0.09 mass , Mn: 1.5 to 2.5% by mass, Si: 0.2 to 0.6% by mass, Ni: 0.6 to 1.9% by mass, Mo: 0.3 to 1.2% by mass, Ti : 0.10 to 0.40 mass%, B: 0.005 to 0.020 mass%, Mg: 0.10 to 0.50 mass%, the total amount of Ni + Mo is 1.2 to 2.6 mass %, Mo / Ni mass ratio Mo / Ni is 0.25 to 1.00, and the balance is Fe, unavoidable impurities and slag forming agent, a flux-cored wire for electrogas arc welding. 前記第1電極ワイヤは前記スラグ生成剤を前記第1電極ワイヤの質量に対して0.3乃至1.6質量%含有し、前記第2電極ワイヤは前記スラグ生成剤を前記第2電極ワイヤの質量に対して1.0乃至2.0質量%含有すると共に、前記第1電極ワイヤ及び前記第2電極ワイヤにおける前記スラグ生成剤の含有量の和が1.3乃至3.3質量%であり、前記スラグ生成剤は、前記第1電極ワイヤ及び前記第2電極ワイヤの各組成における含有量の平均値として、F:0.10乃至0.70質量%であることを特徴とする請求項1に記載のエレクトロガスアーク溶接用フラックス入りワイヤ。 The first electrode wire contains 0.3 to 1.6% by mass of the slag generating agent with respect to the mass of the first electrode wire, and the second electrode wire contains the slag generating agent of the second electrode wire. 1.0 to 2.0% by mass with respect to the mass, and the sum of the contents of the slag generating agent in the first electrode wire and the second electrode wire is 1.3 to 3.3% by mass. The slag generating agent is F: 0.10 to 0.70 mass% as an average value of the content in each composition of the first electrode wire and the second electrode wire. A flux-cored wire for electrogas arc welding as described in 1. 前記第2電極ワイヤは第2電極ワイヤの質量あたり、CO:0.04乃至0.25質量%含む炭酸塩を含有することを特徴とする請求項1又は2に記載のエレクトロガスアーク溶接用フラックス入りワイヤ。 The flux for electrogas arc welding according to claim 1 or 2, wherein the second electrode wire contains a carbonate containing CO 2 : 0.04 to 0.25 mass% per mass of the second electrode wire. Cored wire. 垂直に配置した1対の被溶接板を突き合わせて両者間に表面側が裏面側より幅広で垂直に延びる開先を形成し、前記被溶接板の裏面側に前記開先に固定的にあてがわれる裏面側裏当材を設置し、前記被溶接板の表面側に前記開先の長手方向に沿って前記開先に対して相対的に摺動可能な表面側裏当材を設置し、裏面側の第1電極ワイヤを前記開先の奥行き方向に対して固定的に設置し、表面側の第2電極ワイヤを前記開先の奥行き方向に対して往復移動可能に設置して、前記第1電極ワイヤ及び前記第2電極ワイヤにより前記開先を立向突き合わせ溶接する2電極エレクトロガスアーク溶接方法において、前記第1電極ワイヤ及び第2電極ワイヤは、前記第1電極ワイヤ及び前記第2電極ワイヤの各組成における含有量の平均値として、C:0.02乃至0.09質量%、Mn:1.5乃至2.5質量%、Si:0.2乃至0.6質量%、Ni:0.6乃至1.9質量%、Mo:0.3乃至1.2質量%、Ti:0.10乃至0.40質量%、B:0.005乃至0.020質量%、Mg:0.10乃至0.50質量%を含有し、Ni+Moの総量が1.2乃至2.6質量%、MoとNiとの質量比Mo/Niが0.25乃至1.00であり、残部がFe及び不可避的不純物とスラグ生成剤である組成を有し、裏面側の前記第1電極のワイヤ径は1.2乃至1.6mm、表面側の前記第2電極のワイヤ径は1.4乃至2.0mmであり、前記第1電極のワイヤ径は前記第2電極のワイヤ径以下であり、前記第1電極及び前記第2電極を単位時間あたりの送給量が同一になるよう送給することを特徴とする2電極エレクトロガスアーク溶接方法。 A pair of plates to be welded arranged vertically is abutted to each other to form a groove that is wider than the back side and extends vertically between the two, and is fixedly applied to the groove on the back side of the plate to be welded. A back side backing material is installed, and a front side backing material that is slidable relative to the groove along the longitudinal direction of the groove is installed on the surface side of the welded plate. The first electrode wire is fixedly installed in the depth direction of the groove, and the second electrode wire on the surface side is installed so as to be able to reciprocate in the depth direction of the groove. In the two-electrode electrogas arc welding method in which the groove is vertically butt-welded with a wire and the second electrode wire, the first electrode wire and the second electrode wire are each of the first electrode wire and the second electrode wire. As an average value of the content in the composition, C: 0.02 to 0.09 mass%, Mn: 1.5 to 2.5 mass%, Si: 0.2 to 0.6 mass%, Ni: 0.6 to 1.9 mass%, Mo: 0.3 To 1.2 mass%, Ti: 0.10 to 0.40 mass%, B: 0.005 to 0.020 mass%, Mg: 0.10 to 0.50 mass%, and the total amount of Ni + Mo is 1.2 to 2.6% by mass, Mo / Ni mass ratio Mo / Ni is 0.25 to 1.00, and the balance is Fe, inevitable impurities and slag generator, The wire diameter of the first electrode on the side is 1.2 to 1.6 mm, the wire diameter of the second electrode on the surface side is 1.4 to 2.0 mm, and the wire diameter of the first electrode is the second The wire diameter is less than the wire diameter of the electrode, and the first electrode and the second electrode are fed so that the feeding amount per unit time is the same. 2 electrode electro-gas arc welding method comprising Rukoto. 前記第1電極ワイヤは前記スラグ生成剤を前記第1電極ワイヤの質量に対して0.3乃至1.6質量%含有し、前記第2電極ワイヤは前記スラグ生成剤を前記第2電極ワイヤの質量に対して1.0乃至2.0質量%含有すると共に、前記第1電極ワイヤ及び前記第2電極ワイヤにおける前記スラグ生成剤の含有量の和が1.3乃至3.3質量%であり、前記スラグ生成剤は、前記第1電極ワイヤ及び前記第2電極ワイヤの各組成における含有量の平均値として、F:0.10乃至0.70質量%であることを特徴とする請求項4に記載の2電極エレクトロガスアーク溶接方法。 The first electrode wire contains 0.3 to 1.6% by mass of the slag generating agent with respect to the mass of the first electrode wire, and the second electrode wire contains the slag generating agent of the second electrode wire. 1.0 to 2.0% by mass with respect to the mass, and the sum of the contents of the slag generating agent in the first electrode wire and the second electrode wire is 1.3 to 3.3% by mass. 5. The slag generating agent is F: 0.10 to 0.70 mass% as an average value of contents in each composition of the first electrode wire and the second electrode wire. A two-electrode electrogas arc welding method as described in 1. 表面側の前記第2電極ワイヤは第2電極ワイヤの質量あたり、CO:0.04乃至0.25質量%含む炭酸塩を含有することを特徴とする請求項4又は5に記載の2電極エレクトロガスアーク溶接方法。 6. The two-electrode according to claim 4, wherein the second electrode wire on the surface side contains a carbonate containing CO 2 : 0.04 to 0.25 mass% per mass of the second electrode wire. Electrogas arc welding method.
JP2006271324A 2006-10-02 2006-10-02 Flux-cored wire for electrogas arc welding and 2-electrode electrogas arc welding method Active JP4986563B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006271324A JP4986563B2 (en) 2006-10-02 2006-10-02 Flux-cored wire for electrogas arc welding and 2-electrode electrogas arc welding method
CN200710146983XA CN101157165B (en) 2006-10-02 2007-09-03 Medicine core soldering wire for electric arc welding as well as bi-electrode electric arc welding method
KR1020070098712A KR100920548B1 (en) 2006-10-02 2007-10-01 Flux-cored wire for two electrode electro gas arc welding and two electrode electro gas arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271324A JP4986563B2 (en) 2006-10-02 2006-10-02 Flux-cored wire for electrogas arc welding and 2-electrode electrogas arc welding method

Publications (2)

Publication Number Publication Date
JP2008087045A true JP2008087045A (en) 2008-04-17
JP4986563B2 JP4986563B2 (en) 2012-07-25

Family

ID=39305465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271324A Active JP4986563B2 (en) 2006-10-02 2006-10-02 Flux-cored wire for electrogas arc welding and 2-electrode electrogas arc welding method

Country Status (3)

Country Link
JP (1) JP4986563B2 (en)
KR (1) KR100920548B1 (en)
CN (1) CN101157165B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102179640A (en) * 2011-04-26 2011-09-14 武汉铁锚焊接材料股份有限公司 High-strength and high-toughness metal powder flux-cored wire
JP2012011400A (en) * 2010-06-29 2012-01-19 Nippon Steel Corp Method for manufacturing welding joint and welding device for executing the same
JP2012011407A (en) * 2010-06-30 2012-01-19 Nippon Steel Corp Method for manufacturing welding joint and welding device for executing the same
US20120312795A1 (en) * 2011-06-09 2012-12-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Two-electrode welding method
JP2015514584A (en) * 2012-03-12 2015-05-21 ホバート ブラザーズ カンパニー System and method for welding electrodes
US9555493B2 (en) 2008-07-09 2017-01-31 Lincoln Global, Inc. Apparatus for welding with curtain electrodes and strip electrodes
US9839970B2 (en) 2010-12-21 2017-12-12 Lincoln Global, Inc. Dual wire welding system and method
US10532418B2 (en) 2017-08-08 2020-01-14 Lincoln Global, Inc. Dual wire welding or additive manufacturing contact tip and diffuser
US10773335B2 (en) 2017-08-08 2020-09-15 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method
US10792752B2 (en) 2017-08-08 2020-10-06 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method
US11285557B2 (en) 2019-02-05 2022-03-29 Lincoln Global, Inc. Dual wire welding or additive manufacturing system
US11440121B2 (en) 2017-08-08 2022-09-13 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method
US11498146B2 (en) 2019-09-27 2022-11-15 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method
US11504788B2 (en) 2017-08-08 2022-11-22 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554519A (en) * 2011-12-14 2012-07-11 安泰科技股份有限公司 Flux-cored wire for master cable energy forced shaping, and preparation and application method thereof
JP6190774B2 (en) * 2014-07-25 2017-08-30 株式会社神戸製鋼所 Electrogas arc welding method and electrogas arc welding apparatus
CN114952003B (en) * 2021-12-10 2023-04-07 西安交通大学 Control method for forming quality of large-thick-plate narrow-gap laser filler wire welding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110391A (en) * 1997-06-26 1999-01-19 Nippon Steel Corp Flux cored wire for multielectrode vertical electrogas arc welding for extra thick plate
JPH11197884A (en) * 1998-01-08 1999-07-27 Nippon Steel Weld Prod & Eng Co Ltd Dual electrode electrogas arc welding method
JP2000094185A (en) * 1998-09-24 2000-04-04 Kobe Steel Ltd Flux-cored wire for electro gas arc welding
JP2005305498A (en) * 2004-04-21 2005-11-04 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for electrogas arc welding
JP2005329460A (en) * 2004-04-22 2005-12-02 Nippon Steel Corp Electrogas arc welding method excellent in brittle fracture initiation resistance characteristics of weld zone

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180488A (en) * 1996-12-24 1998-07-07 Nippon Steel Corp Flux cored wire for electro gas arc welding
KR100294454B1 (en) 1997-03-27 2002-11-18 가부시키 가이샤 고베세이코쇼 Flux-cored wire for electrogas arc welding
CN1104993C (en) * 2000-01-19 2003-04-09 武汉钢铁(集团)公司 High-strength and high-toughness submerged-arc welding wire
JP3993150B2 (en) 2002-10-31 2007-10-17 株式会社神戸製鋼所 Flux-cored wire for two-electrode electrogas arc welding, two-electrode electrogas arc welding method, and two-electrode electrogas arc welding apparatus
JP4372604B2 (en) 2004-04-12 2009-11-25 日鐵住金溶接工業株式会社 Flux-cored wire for electrogas arc welding
CN1739907A (en) * 2005-09-15 2006-03-01 姜春 High hardness submerged arc welding wire
CN1817500A (en) * 2006-03-08 2006-08-16 哈尔滨工业大学 Flexible pad bender of section materials and bending method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110391A (en) * 1997-06-26 1999-01-19 Nippon Steel Corp Flux cored wire for multielectrode vertical electrogas arc welding for extra thick plate
JPH11197884A (en) * 1998-01-08 1999-07-27 Nippon Steel Weld Prod & Eng Co Ltd Dual electrode electrogas arc welding method
JP2000094185A (en) * 1998-09-24 2000-04-04 Kobe Steel Ltd Flux-cored wire for electro gas arc welding
JP2005305498A (en) * 2004-04-21 2005-11-04 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for electrogas arc welding
JP2005329460A (en) * 2004-04-22 2005-12-02 Nippon Steel Corp Electrogas arc welding method excellent in brittle fracture initiation resistance characteristics of weld zone

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9555493B2 (en) 2008-07-09 2017-01-31 Lincoln Global, Inc. Apparatus for welding with curtain electrodes and strip electrodes
JP2012011400A (en) * 2010-06-29 2012-01-19 Nippon Steel Corp Method for manufacturing welding joint and welding device for executing the same
JP2012011407A (en) * 2010-06-30 2012-01-19 Nippon Steel Corp Method for manufacturing welding joint and welding device for executing the same
US9839970B2 (en) 2010-12-21 2017-12-12 Lincoln Global, Inc. Dual wire welding system and method
CN102179640A (en) * 2011-04-26 2011-09-14 武汉铁锚焊接材料股份有限公司 High-strength and high-toughness metal powder flux-cored wire
US20120312795A1 (en) * 2011-06-09 2012-12-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Two-electrode welding method
US8809740B2 (en) * 2011-06-09 2014-08-19 Kobe Steel, Ltd. Two-electrode welding method
US9950394B2 (en) 2012-03-12 2018-04-24 Hobart Brothers Company Systems and methods for welding electrodes
JP2015514584A (en) * 2012-03-12 2015-05-21 ホバート ブラザーズ カンパニー System and method for welding electrodes
US10532418B2 (en) 2017-08-08 2020-01-14 Lincoln Global, Inc. Dual wire welding or additive manufacturing contact tip and diffuser
US10773335B2 (en) 2017-08-08 2020-09-15 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method
US10792752B2 (en) 2017-08-08 2020-10-06 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method
US11440121B2 (en) 2017-08-08 2022-09-13 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method
US11484960B2 (en) 2017-08-08 2022-11-01 Lincoln Global, Inc. Dual wire welding or additive manufacturing contact tip and diffuser
US11504788B2 (en) 2017-08-08 2022-11-22 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method
US11964346B2 (en) 2017-08-08 2024-04-23 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method
US11285557B2 (en) 2019-02-05 2022-03-29 Lincoln Global, Inc. Dual wire welding or additive manufacturing system
US11498146B2 (en) 2019-09-27 2022-11-15 Lincoln Global, Inc. Dual wire welding or additive manufacturing system and method

Also Published As

Publication number Publication date
KR100920548B1 (en) 2009-10-08
JP4986563B2 (en) 2012-07-25
CN101157165A (en) 2008-04-09
KR20080030932A (en) 2008-04-07
CN101157165B (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4986563B2 (en) Flux-cored wire for electrogas arc welding and 2-electrode electrogas arc welding method
JP5205115B2 (en) MIG flux-cored wire for pure Ar shield gas welding and MIG arc welding method
KR101003249B1 (en) Flux-cored wire for electrogas arc welding
KR101193273B1 (en) Wire containing flux for gas-sealed arc welding, allowing all-position welding
JP4776508B2 (en) Flux-cored wire for electrogas arc welding
US20190126411A1 (en) Flux-cored wire
JP3993150B2 (en) Flux-cored wire for two-electrode electrogas arc welding, two-electrode electrogas arc welding method, and two-electrode electrogas arc welding apparatus
JP7060159B2 (en) MIG welding method
JP5410039B2 (en) Stainless steel flux cored wire for electrogas arc welding
JP2008290116A (en) Fillet welded joint and fillet welding method
KR102115725B1 (en) Multi-electrode gas-shielded arc one-side welding method
JP5104037B2 (en) Fillet welding method and fillet welded joint
KR20180043358A (en) High current pulse arc welding method and flux cored welding wire
CN114340828A (en) Steel wire for gas-shielded arc welding, method for gas-shielded arc welding, and method for manufacturing gas-shielded arc welding joint
JP2015139784A (en) Two-electrode horizontal fillet gas shielded arc welding method
KR102117815B1 (en) Multi-electrode gas-shielded arc one-side welding method
JP6257489B2 (en) Gas shield arc welding method
KR101600172B1 (en) Flux cored wire for gas shielded arc welding
JP2017148863A (en) Ni-BASED WELDING MATERIAL FOR ELECTROSLAG WELDING
JP6188626B2 (en) Two-electrode horizontal fillet gas shielded arc welding method
KR101091469B1 (en) PURE Ar GAS SHIELDED WELDING MIG FLUX-CORED WIRE AND MIG ARC WELDING METHOD
KR102216814B1 (en) Multi-electrode submerged arc welding method and welding device
JP2005219062A (en) Yag-laser and arc hybrid welding method
JP4697693B2 (en) Two-electrode vertical electrogas arc welding method for extra heavy steel
JP3808251B2 (en) Solid wire for gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Ref document number: 4986563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3