JP2008086874A - Moisture absorbing and releasing material - Google Patents

Moisture absorbing and releasing material Download PDF

Info

Publication number
JP2008086874A
JP2008086874A JP2006268895A JP2006268895A JP2008086874A JP 2008086874 A JP2008086874 A JP 2008086874A JP 2006268895 A JP2006268895 A JP 2006268895A JP 2006268895 A JP2006268895 A JP 2006268895A JP 2008086874 A JP2008086874 A JP 2008086874A
Authority
JP
Japan
Prior art keywords
moisture
polyamide
moisture absorption
porous particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006268895A
Other languages
Japanese (ja)
Other versions
JP5007795B2 (en
Inventor
Akira Konishi
亮 小西
Shigeru Yao
滋 八尾
Tatsuya Shoji
達也 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2006268895A priority Critical patent/JP5007795B2/en
Publication of JP2008086874A publication Critical patent/JP2008086874A/en
Application granted granted Critical
Publication of JP5007795B2 publication Critical patent/JP5007795B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drying Of Gases (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a moisture absorbing and releasing material of which the moisture absorbing velocity and the moisture releasing velocity are rapid and which does not cause the configurational modification due to moisture absorption and releasing, and is excellent in fluidity as powder because the material is almost spherical. <P>SOLUTION: The moisture absorbing and releasing material is characterized by being comprised of porous particles of which the number average particle size is 1-30 μm and the BET specific surface area is 100-80,000 m<SP>2</SP>/kg. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、環境に追随して吸湿・放湿特性を示す吸放湿材料に関する。   The present invention relates to a moisture absorbing / releasing material that exhibits moisture absorbing / releasing properties following the environment.

従来から、吸湿剤としてはポリアクリロニトリル誘導体系やポリアクリロアミド系及びポリアクリル酸塩系等の吸水性高分子が知られており、また、モンモリロナイトを主成分とする粘度鉱物としてのベントナイトも吸湿性を発揮することが知られている。   Conventionally, water-absorbing polymers such as polyacrylonitrile derivatives, polyacrylamides and polyacrylates have been known as hygroscopic agents, and bentonite as a viscous mineral mainly composed of montmorillonite is also hygroscopic. It is known to exert.

しかし、吸水性高分子は、吸水能力は大きいが一旦吸水した水分を放出する速度が著しく低い。一方、後者の粘度鉱物は単体では吸湿性を持ち合わせているが、その能力は一般的に低い為、乾燥剤などに用いられることは殆ど無く、その上、水に混合するとコロイド状になるため多量の粘度鉱物を他の材料に添加、混合した場合に分散が容易ではない。さらに塩化カルシウム等の無機塩は吸湿性に優れていることは一般的に知られているが、これらのものは吸湿により相変化が生じ潮解してしまい、取り扱い性に問題がある。   However, the water-absorbing polymer has a large water-absorbing ability but has a remarkably low rate of releasing the water once absorbed. On the other hand, the latter viscosity mineral has hygroscopicity as a single substance, but its ability is generally low, so it is rarely used as a desiccant. Dispersion is not easy when the viscosity mineral is added to and mixed with other materials. Further, it is generally known that inorganic salts such as calcium chloride are excellent in hygroscopicity, but these have a phase change due to moisture absorption and are deliquescent, and have problems in handling.

特開2005−104889号公報(特許文献1)には、真球状粉体または繊維を粉砕して得られた粉体であって、特定の吸湿放湿特性を有する粉体が開示されている。材料として、請求項1には、アクリル系共重合体、ナイロン、エチレンビニールアルコール共重合体、コットンおよびポリエステルが挙げられているが、実施例においてナイロン繊維として使用されているハイグラ(ユニチカ(株)製)は、吸水性ポリマーをナイロンで包んだものである。従って、特許文献1では、ナイロン単独の材料による粉体の性能に関しては実証されていない。また、吸水性ポリマーは、吸水に伴う形状変化が大きい問題がある。さらに、本発明者の検討では真球状の粉体は吸湿性に劣り、また繊維の粉砕物は粒子形状、粒子径および粒度分布が制御されていないために用途が限定される。
特開2005−104889号公報
Japanese Patent Application Laid-Open No. 2005-104889 (Patent Document 1) discloses a powder obtained by pulverizing a true spherical powder or a fiber and having a specific moisture absorption and desorption property. As a material, claim 1 includes acrylic copolymer, nylon, ethylene vinyl alcohol copolymer, cotton and polyester, and Higura (Unitika Ltd.) used as nylon fiber in the examples. Made by wrapping a water-absorbing polymer with nylon. Therefore, in patent document 1, it does not demonstrate regarding the performance of the powder by the material of nylon single. Further, the water-absorbing polymer has a problem that the shape change accompanying water absorption is large. Further, according to the study by the present inventors, the spherical powder is inferior in hygroscopicity, and the use of the pulverized fiber is limited because the particle shape, particle diameter and particle size distribution are not controlled.
JP 2005-104889 A

本発明は、上記の問題点を解決し、吸湿速度及び放湿速度が速く、吸放湿による形状変化が殆どなく、また球形に近く粉体としての流動性にも優れる吸放湿材料を提供することを目的とする。   The present invention solves the above problems and provides a moisture absorbing / releasing material that has a high moisture absorption rate and moisture releasing rate, has almost no shape change due to moisture absorption / release, and is nearly spherical and excellent in fluidity as a powder. The purpose is to do.

本発明は以下の事項に関する。   The present invention relates to the following matters.

1. 数平均粒子径1〜30μm、BET比表面積100〜80000m/kgである多孔質粒子からなる吸放湿材料。
2.平衡水分吸湿率(RH95%)が1〜15%であることを特徴とする上記1記載の吸放湿材料。
3. 前記多孔質粒子を電子顕微鏡により観察したときに、長軸/短軸比2以下の粒子の割合が80%以上であることを特徴とする上記1または2記載の吸放湿材料。
4. 前記多孔質粒子の数平均粒子径に対する体積平均粒子径の比が1〜2.5であることを特徴とする上記1〜3のいずれかに記載の吸放湿材料。
5. 吸湿及び放湿開始からの4時間までの吸湿速度及び放湿速度が、0.6%/時間以上であることを特徴とする上記1〜4のいずれかに記載の吸放湿材料
6. 前記多孔質粒子が有機高分子材料からなる上記1〜5のいずれかに記載の吸放湿材料。
7. 前記多孔質粒子がポリアミドからなる上記6記載の吸放湿材料。
1. A moisture absorbing / releasing material comprising porous particles having a number average particle diameter of 1 to 30 μm and a BET specific surface area of 100 to 80,000 m 2 / kg.
2. 2. The moisture absorbing / releasing material as described in 1 above, wherein the equilibrium moisture absorption rate (RH 95%) is 1 to 15%.
3. 3. The moisture absorbing / releasing material as described in 1 or 2 above, wherein the ratio of particles having a major axis / minor axis ratio of 2 or less is 80% or more when the porous particles are observed with an electron microscope.
4). The moisture-absorbing / releasing material according to any one of 1 to 3, wherein a ratio of a volume average particle diameter to a number average particle diameter of the porous particles is 1 to 2.5.
5. 5. The moisture-absorbing / releasing material according to any one of 1 to 4 above, wherein the moisture-absorbing rate and moisture-releasing rate for up to 4 hours from the start of moisture absorption and moisture-releasing are 0.6% / hour or more. 6. The moisture absorbing / releasing material according to any one of 1 to 5, wherein the porous particles are made of an organic polymer material.
7). 7. The moisture absorbing / releasing material as described in 6 above, wherein the porous particles are made of polyamide.

本発明の吸放湿材料は、吸湿速度及び放湿速度が速く、形状変化が殆どない点において優れている。このため、化粧品、半導体製品、機械部品などの包装や、製品内部に組み込むことで、製品の吸湿による酸化等による劣化を防ぐ目的、及び適度な湿度を提供する目的に好適に用いることができる。   The moisture absorption / release material of the present invention is excellent in that the moisture absorption rate and moisture release rate are fast and there is almost no change in shape. For this reason, it can be used suitably for the purpose of preventing deterioration due to oxidation or the like due to moisture absorption of the product and for providing an appropriate humidity by packaging cosmetics, semiconductor products, machine parts and the like, or incorporating the product into the product.

また、本発明の一態様では、形状が球形に近く、粒径が制御され、さらに粒径分布もそろっているため、粉体としての流動性に優れる。従って、取り扱い性にすぐれ、例えば狭い箇所への充填性にも優れ、その結果、体積あたりの吸放湿性能にも優れる。   In one embodiment of the present invention, the shape is close to a sphere, the particle size is controlled, and the particle size distribution is uniform, so that the fluidity as a powder is excellent. Therefore, it is excellent in handleability, for example, it is excellent in the filling property to a narrow place, and as a result, it is excellent in the moisture absorption / release performance per volume.

本発明の吸放湿材料は、数平均粒子径1〜30μm、BET比表面積100〜80000m/kgである多孔質粒子からなる。本発明の吸放湿材料は、RH95%(相対湿度95%)における平衡水分吸湿量が1〜15%であることが好ましい。平衡水分吸湿量が大きい場合には、吸湿性には優れるが、形状変化が大きくなるため、この範囲であることが好ましく、特に、5〜15%が好ましい。多孔質粒子を構成する材料は、有機高分子材料が好ましいが、このような範囲の平衡水分吸湿量(RH95%)を有するように材料が選ばれることが好ましい。 The moisture absorbing / releasing material of the present invention comprises porous particles having a number average particle diameter of 1 to 30 μm and a BET specific surface area of 100 to 80000 m 2 / kg. The hygroscopic material of the present invention preferably has an equilibrium moisture absorption of 1 to 15% at RH 95% (relative humidity 95%). When the equilibrium moisture absorption is large, the hygroscopicity is excellent, but since the shape change becomes large, this range is preferable, and 5 to 15% is particularly preferable. The material constituting the porous particles is preferably an organic polymer material, but the material is preferably selected so as to have an equilibrium moisture absorption (RH 95%) in such a range.

また、本発明の吸放湿材料は、吸湿及び放湿開始からの4時間までの吸湿速度及び放湿速度が、0.6%/時間以上であることが好ましい。ここで、吸湿速度は、乾燥試料をRH95%の環境に置いたときの吸湿率の変化を表し、放湿速度は、ほぼ飽和吸湿率に達した試料を0%の環境に置いたときの放湿率の変化を表す。前記吸放湿速度は、大きな比表面積と材料の選択によって得られる。特に好ましくは、0.8%/時間以上である。後述するようなポリアミド多孔質粒子を用いる場合には、一般に、吸湿速度及び放湿速度は10%/時間以下である。   Moreover, it is preferable that the moisture absorption / release material of the present invention has a moisture absorption rate and moisture release rate of 0.6% / hour or more up to 4 hours from the start of moisture absorption and moisture release. Here, the moisture absorption rate represents the change in the moisture absorption rate when the dried sample is placed in an environment of RH 95%, and the moisture release rate is the release rate when a sample that has reached the saturated moisture absorption rate is placed in an environment of 0%. Represents changes in moisture content. The moisture absorption / release rate can be obtained by selecting a large specific surface area and material. Particularly preferably, it is 0.8% / hour or more. When using polyamide porous particles as will be described later, the moisture absorption rate and moisture release rate are generally 10% / hour or less.

以下に、多孔質粒子として、ポリアミド多孔質粒子を例に説明するが、ここで説明する微粒子の形状、粒子径、比表面積、細孔径等の粒子の物理的形態を表す指標に関しては、ポリアミド以外の微粒子の場合にも適用される。   Hereinafter, polyamide porous particles will be described as an example of porous particles. However, with respect to the indexes representing the physical form of particles such as the shape, particle diameter, specific surface area, and pore diameter of the fine particles described here, other than polyamide This also applies to the case of fine particles.

多孔質粒子を構成するポリアミドとしては、公知の種々のものを挙げることができる。例えば、環状アミドの開環重合、あるいはジカルボン酸とジアミンの重縮合で得られる。モノマーとしては、ε−カプロラクタム、ω−ラウロラクタム等の環状アミドを開環重合して得られる結晶性ポリアミド、ε−アミノカプロン酸、ω−アミノドデカン酸、ω−アミノウンデカン酸などのアミノ酸の重縮合、または蓚酸、アジピン酸、セバシン酸、テレフタル酸、イソフタル酸、1,4−シクロヘキシルジカルボン酸などのジカルボン酸および誘導体とエチレンジアミン、ヘキサメチレンジアミン、1,4−シクロヘキシルジアミン、m−キシリレンジアミン、ペンタメチレンジアミン、デカメチレンジアミンなどのジアミンを重縮合して得られるものなどである。   Various known polyamides can be used as the polyamide constituting the porous particles. For example, it can be obtained by ring-opening polymerization of a cyclic amide or polycondensation of a dicarboxylic acid and a diamine. As monomers, polycondensation of amino acids such as crystalline polyamide obtained by ring-opening polymerization of cyclic amides such as ε-caprolactam and ω-laurolactam, ε-aminocaproic acid, ω-aminododecanoic acid, ω-aminoundecanoic acid, etc. Or dicarboxylic acids and derivatives such as succinic acid, adipic acid, sebacic acid, terephthalic acid, isophthalic acid, 1,4-cyclohexyldicarboxylic acid, and ethylenediamine, hexamethylenediamine, 1,4-cyclohexyldiamine, m-xylylenediamine, penta Those obtained by polycondensation of diamines such as methylenediamine and decamethylenediamine.

前記ポリアミドは、単独重合体及びこれらの共重合体からなるポリアミドまたはその誘導体である。具体的には、ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド12、ポリアミド610、ポリアミド66/6T(Tはテレフタル酸成分を表す)などである。また上記ポリアミドの混合物であってもよい。特に、ポリアミド6、ポリアミド66が好ましい。   The polyamide is a polyamide composed of a homopolymer and a copolymer thereof, or a derivative thereof. Specifically, polyamide 6, polyamide 66, polyamide 11, polyamide 12, polyamide 610, polyamide 66 / 6T (T represents a terephthalic acid component), and the like. Moreover, the mixture of the said polyamide may be sufficient. In particular, polyamide 6 and polyamide 66 are preferable.

ポリアミドの分子量は、2,000〜100,000である。好ましくは5,000〜40,000である。   The molecular weight of the polyamide is 2,000-100,000. Preferably it is 5,000-40,000.

本発明で使用される多孔質粒子は、球状粒子または球状粒子に近いことが好ましい。多孔質粒子の形状は、例えば走査型または透過型の電子顕微鏡等で観察することができる。電子顕微鏡で観察した多孔質粒子の外形(多孔質粒子を平面に投影した影に相当する像)は、図1に示すように、外側に微細な突起が観察されるが、ほぼ円または円形に近い形をしている。この外形の、それぞれほぼ中心を通る最も長い軸を長軸とし最も短い軸を短軸としたとき、長軸/短軸比により、円に対する近似性、即ち粒子としては球形に対する近似性を示すことができる。尚、長軸/短軸比の下限は1であり、円を表す。本発明においては、長軸/短軸比2以下の粒子の割合(より好ましい例では長軸/短軸比1.5以下の粒子の割合)が、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは98%以上である。ここで、粒子数の割合は、例えば電子顕微鏡像にて、観察できる任意の80個以上の粒子、さらに好ましくは100個以上の粒子を測定することで求めることができる。球状に近い粒子が多い程、粉体としての流動性に優れ、充填性や肌触りなどが向上する。   The porous particles used in the present invention are preferably spherical particles or close to spherical particles. The shape of the porous particles can be observed with, for example, a scanning or transmission electron microscope. As shown in FIG. 1, the outer shape of the porous particles observed with an electron microscope (an image corresponding to a shadow obtained by projecting the porous particles on a plane) has fine protrusions observed on the outside, but is approximately circular or circular. It has a close shape. When the longest axis passing through the center of each of these outlines is the long axis and the shortest axis is the short axis, the long axis / short axis ratio indicates closeness to a circle, that is, closeness to a sphere as a particle. Can do. The lower limit of the major axis / minor axis ratio is 1, which represents a circle. In the present invention, the ratio of particles having a major axis / minor axis ratio of 2 or less (in a more preferred example, the ratio of particles having a major axis / minor axis ratio of 1.5 or less) is preferably 80% or more, more preferably 90%. More preferably, it is 98% or more. Here, the ratio of the number of particles can be determined, for example, by measuring any 80 or more particles, more preferably 100 or more particles that can be observed with an electron microscope image. The more spherical particles there are, the better the fluidity as a powder and the better the filling properties and the touch.

ポリアミド多孔質粒子は、数平均粒子径が1〜30μmである。数平均粒子径が小さすぎると、取り扱い操作が悪くなり、また数平均粒子径が大きくなりすぎると吸湿放湿の速度が低下することがあるからである。   The polyamide porous particles have a number average particle diameter of 1 to 30 μm. This is because if the number average particle size is too small, the handling operation becomes worse, and if the number average particle size is too large, the moisture absorption and desorption rate may decrease.

本発明で使用されるポリアミド多孔質粒子のBET比表面積は、100〜80000m/kgである。比表面積が100m/kgより小さいと表面吸着の効果が低下するので好ましくない。また比表面積が80000m/kgより大きくなると取り扱いにくい。 The BET specific surface area of the polyamide porous particles used in the present invention is 100 to 80,000 m 2 / kg. If the specific surface area is less than 100 m 2 / kg, the effect of surface adsorption is lowered, which is not preferable. Further, when the specific surface area is larger than 80000 m 2 / kg, it is difficult to handle.

ポリアミド多孔質粒子の平均細孔径は、0.01〜0.8μmであることが好ましい。平均細孔径が0.01μmより小さいと、透明樹脂に分散した時の接着性が劣る場合がある。また、平均細孔径が0.8μmより大きければ、取り扱いにくいので好ましくない。   The average pore diameter of the polyamide porous particles is preferably 0.01 to 0.8 μm. If the average pore diameter is smaller than 0.01 μm, the adhesiveness when dispersed in the transparent resin may be inferior. Moreover, if the average pore diameter is larger than 0.8 μm, it is not preferable because it is difficult to handle.

ポリアミド多孔質粒子の多孔度指数(RI)は、5〜100が好ましい。ここで多孔度指数(RI)とは、同じ直径の平滑な球状粒子の比表面積に対し、多孔質の球状粒子の比表面積の比で表示したものと定義する。次式で表せる。多孔度指数が5より小さければ、透明樹脂に分散した時の接着性が劣る場合がある。多孔度が100より大きいと、取り扱いづらくなる。   The porosity index (RI) of the polyamide porous particles is preferably 5 to 100. Here, the porosity index (RI) is defined as the ratio of the specific surface area of the porous spherical particles to the specific surface area of the smooth spherical particles having the same diameter. It can be expressed by the following formula. If the porosity index is less than 5, the adhesion when dispersed in the transparent resin may be inferior. When the porosity is greater than 100, it becomes difficult to handle.


ここで、RI;多孔度指数、S;多孔質粒子の比表面積[m/kg]、
;同一粒子径の円滑な球状粒子の比表面積[m/kg]である。
は、次式に従って求めることができる。
すなわち、観測された数平均球状粒子径dobs[m]、ポリアミドの密度ρ[kg/m]とすると、円滑な球の比表面積Sは次式で表すことができる。

Where RI: porosity index, S: specific surface area of the porous particles [m 2 / kg],
S 0 : Specific surface area [m 2 / kg] of smooth spherical particles having the same particle diameter.
S 0 can be obtained according to the following equation.
That is, when the observed number average spherical particle diameter d obs [m] and polyamide density ρ [kg / m 3 ], the smooth specific surface area S 0 of the sphere can be expressed by the following equation.


ここでは、ポリアミド6ならびにポリアミド66の密度を結晶相1230kg/m、非晶相1100kg/mとした。

Here, polyamide 6 and density crystal phase 1230kg / m 3 of polyamide 66, was amorphous phase 1100 kg / m 3.

また、ポリアミド多孔質粒子は結晶性であって、融点が110〜320℃である。好ましくは、140〜280℃である。融点が110℃より低くなると、熱安定性が低くなる。また融点が320℃より高くなることはナイロンの分子構造上殆どない。   The polyamide porous particles are crystalline and have a melting point of 110 to 320 ° C. Preferably, it is 140-280 degreeC. When the melting point is lower than 110 ° C., the thermal stability is lowered. Further, the melting point is higher than 320 ° C. because of the molecular structure of nylon.

さらに、本発明で使用されるポリアミド多孔質粒子は、DSCで測定された結晶化度が40%以上であることが好ましい。ポリアミドの結晶化度は、X線解析より求める方法、DSC測定法により求める方法、密度から求める方法があるが、DSC測定法により求める方法が好適である。普通溶融物から結晶化させたポリアミドの結晶化度は高いものでせいぜい30%程度である。ポリアミドの結晶化度が40%より高いことが好ましい。結晶化度が高いことにより、多孔質粒子が熱的に形状的に安定になり、幅広い用途において使用が可能になる。   Furthermore, it is preferable that the polyamide porous particles used in the present invention have a crystallinity measured by DSC of 40% or more. The crystallinity of polyamide can be determined by X-ray analysis, DSC measurement, or density. The DSC measurement is preferred. The degree of crystallinity of the polyamide crystallized from the ordinary melt is at most about 30%. It is preferred that the crystallinity of the polyamide is higher than 40%. Due to the high degree of crystallinity, the porous particles become thermally formally stable and can be used in a wide range of applications.

ポリアミドの結晶化度は、R.Viewegら、kunststoffe IV polyamide、218頁、Carl Hanger Verlag、1966年の記載により、ポリアミド6、ポリアミド66の融解熱はそれぞれ45cal/gとして算出した。結晶化度は次の式から算出される。   The crystallinity of the polyamide is According to the description of Vieweg et al., Kunststoff IV polyamide, page 218, Carl Hanger Verlag, 1966, the heat of fusion of polyamide 6 and polyamide 66 was calculated as 45 cal / g, respectively. The degree of crystallinity is calculated from the following formula.


χ ;結晶化度(%)
ΔHobs;サンプルの融解熱 (cal/g)
ΔH;ポリアミドの融解熱 (cal/g)

χ: Crystallinity (%)
ΔH obs ; Heat of fusion of sample (cal / g)
ΔH m : heat of fusion of polyamide (cal / g)

ポリアミド多孔質粒子は、粒子径分布において、数平均粒子径(または数基準平均粒子径)に対する体積平均粒子径(または体積基準平均粒子径)の比が1〜2.5であることが好ましい。数平均粒子径に対する体積平均粒子径の比(粒度分布指数PDI)が2.5より大きいと粉体としての取り扱い性が悪くなる。多孔質粒子の粒径分布がそろっていることも、本発明の吸放湿材料が、粉体としての流動性および充填性に優れている理由となっている。   The polyamide porous particles preferably have a ratio of the volume average particle diameter (or volume reference average particle diameter) to the number average particle diameter (or number reference average particle diameter) of 1 to 2.5 in the particle size distribution. When the ratio of the volume average particle diameter to the number average particle diameter (particle size distribution index PDI) is larger than 2.5, the handleability as a powder is deteriorated. The uniform particle size distribution of the porous particles is also the reason why the moisture-absorbing / releasing material of the present invention is excellent in fluidity and filling properties as a powder.

多孔質粒子の粒子径は、例えばコールターカウンターで、測定数を例えば50000個として測定することができる。数平均粒子径と体積平均粒子径、粒子径分布指数は次式で表される。
数平均粒子径 :
The particle diameter of the porous particles can be measured, for example, with a Coulter counter, with the number of measurements being, for example, 50,000. The number average particle size, volume average particle size, and particle size distribution index are expressed by the following equations.
Number average particle size:


体積平均粒子径:

Volume average particle size:


粒子径分布指数:

Particle size distribution index:


ここで、Xi;個々の粒子径、nは測定数である。

Here, Xi: individual particle diameter, n is the number of measurements.

本発明に使用されるポリアミド多孔質粒子の製造方法の1例を、次に説明する。例えば、ポリアミドの溶液に、ポリアミドに特定の非溶媒を混合して、均一な溶液を形成させた後、析出させることにより製造される。   Next, an example of a method for producing the polyamide porous particles used in the present invention will be described. For example, it is produced by mixing a polyamide solution with a specific non-solvent in the polyamide to form a uniform solution and then depositing it.

すなわち、ポリアミドとのその良溶媒からなる溶液に、ポリアミドの非溶媒である脂肪族アルコールと水を添加して、一時的に均一な溶液を形成させた後、その後、時間をおいて析出させることにより、ポリアミド多孔質粒子が得られる。   In other words, after adding a non-solvent aliphatic alcohol and water to a solution composed of a good solvent with polyamide, a uniform solution is temporarily formed, and then precipitated over time. Thus, polyamide porous particles can be obtained.

ポリアミドの良溶媒としては、芳香族アルコール系溶液または蟻酸が好ましい。具体的には、0−クレゾール、m−クレゾール、p−クレゾール、クロロフェノール等または蟻酸が好ましい。これらは水と少なくとも部分的に相溶するから好ましい。   As a good solvent for polyamide, an aromatic alcohol solution or formic acid is preferred. Specifically, 0-cresol, m-cresol, p-cresol, chlorophenol and the like or formic acid are preferable. These are preferred because they are at least partially compatible with water.

ポリアミド溶液は、ポリアミドが0.1〜30重量%、好ましくは、0.2〜25重量%、ポリアミドの溶媒が99.9〜70重量%、好ましくは、99.8〜75重量%の範囲であることが好ましい。ポリアミド溶液中でポリアミドの割合が30重量%を越えると、溶解しにくくなったり、均一な溶液にならないことがある。また、溶解しても溶液の粘度が高くなり、扱いにくくなるので好ましくない。ポリアミドの割合が0.1重量%より低くなると、ポリマー濃度が低く、製品の生産性が低くなるので好ましくない。   The polyamide solution has a polyamide content of 0.1 to 30% by weight, preferably 0.2 to 25% by weight, and a polyamide solvent content of 99.9 to 70% by weight, preferably 99.8 to 75% by weight. Preferably there is. If the proportion of polyamide in the polyamide solution exceeds 30% by weight, it may be difficult to dissolve or a uniform solution may not be obtained. Moreover, even if it melt | dissolves, since the viscosity of a solution will become high and it will become difficult to handle, it is unpreferable. If the ratio of the polyamide is lower than 0.1% by weight, the polymer concentration is low and the productivity of the product is low, which is not preferable.

ポリアミドの非溶媒は、ポリアミドの溶液と、水が少なくとも部分的に相容するものが好ましい。また、水とは相容することが重要である。例えば、沸点100℃以下の脂肪族アルコール、ケトンなどが好ましい。具体的には、メタノール、エタノール、プロパノール、アセトンまたはそれらの混合物などが好ましい。   The polyamide non-solvent is preferably one in which the polyamide solution and water are at least partially compatible. It is important to be compatible with water. For example, aliphatic alcohols and ketones having a boiling point of 100 ° C. or lower are preferable. Specifically, methanol, ethanol, propanol, acetone or a mixture thereof is preferable.

ポリアミドの非溶媒と水の合計重量割合は、ポリアミド溶液の重量割合より多いことが好ましい。ポリアミドの非溶媒と水の合計重量割合が、ポリアミド溶液の重量割合より少ないと、ポリマーが十分析出しないことがあるので好ましくない。また極端に多すぎる時は、仕上げ工程の溶媒量が増えすぎて経済的でない。   The total weight ratio of the polyamide non-solvent and water is preferably larger than the weight ratio of the polyamide solution. If the total weight ratio of the non-solvent of polyamide and water is less than the weight ratio of the polyamide solution, the polymer may not be sufficiently precipitated, which is not preferable. On the other hand, when the amount is too large, the amount of the solvent in the finishing process increases too much, which is not economical.

ポリアミドの非溶媒と水の合計に対する水の割合は、2〜90重量%、好ましくは、5〜85重量%である。水の割合が2重量%より少ない場合は、粒子にならない。90重量%より大きい場合は、水層が相分離するので好ましくない。   The ratio of water to the total of the non-solvent of polyamide and water is 2 to 90% by weight, preferably 5 to 85% by weight. When the proportion of water is less than 2% by weight, particles are not formed. When it is larger than 90% by weight, the aqueous layer is phase-separated, which is not preferable.

上記溶液の添加順序は、溶液の均一性が保たれれば、特に制限はないが、ポリアミド非溶媒と水を混合した後、ポリアミド溶液を加えるのが好ましい。また、ポリアミド溶液に、ポリアミド非溶媒を添加し、次に水を加えてもよい。または、ポリアミド溶液に水を混合した後でポリアミド非溶媒を加えてもよい。   The order of addition of the solution is not particularly limited as long as the uniformity of the solution is maintained, but it is preferable to add the polyamide solution after mixing the polyamide non-solvent and water. Further, a polyamide non-solvent may be added to the polyamide solution, and then water may be added. Alternatively, the polyamide non-solvent may be added after mixing water with the polyamide solution.

本発明においては、ポリアミドの溶液と非溶媒と水の3者が肉眼で観察して均一相容系になることが重要であり、ポリアミドの溶液、非溶媒、水のそれぞれの割合は、均一溶液となる溶媒組成を選ぶ必要がある。これにより、均一な溶液を形成させて、時間的な経過を経て、相分離を利用して、多孔質粒子を析出させるものである。   In the present invention, it is important that a polyamide solution, a non-solvent, and water are observed with the naked eye so that a homogeneous compatible system is obtained. It is necessary to select a solvent composition. As a result, a uniform solution is formed, and after a lapse of time, porous particles are deposited using phase separation.

均一な溶液を形成する時間は、たとえば、0.1秒〜240分程度の時間である。好ましくは1秒〜120分間が適当である。一時的にも、均一な溶液を形成することが重要である。必要ならば、適当な攪拌を加えるほうが好ましい。   The time for forming a uniform solution is, for example, about 0.1 seconds to 240 minutes. Preferably, 1 second to 120 minutes is appropriate. Even temporarily, it is important to form a uniform solution. If necessary, it is preferable to add appropriate stirring.

均一な溶液になるまでの溶液において均一になるまでの攪拌方法は、混合溶液が迅速に均一になるような方法がよい。例えば、マグネチックスターラーのような回転式攪拌機の場合、粒径が5〜15μmの多孔質粒子が生成する。   As a stirring method until the solution becomes uniform until it becomes a uniform solution, a method that makes the mixed solution uniform quickly is good. For example, in the case of a rotary stirrer such as a magnetic stirrer, porous particles having a particle size of 5 to 15 μm are generated.

また、本発明において、均一な溶液を形成するまでの間に、位置の変換が比較的よい攪拌の場合、さらに大きな粒径が生成する。例えばVブレンダー、手振動、バイブレータなどの振動式攪拌の場合15〜25μmの多孔質粒子が生成する。その機構についてはよくわかっていないが、器壁に結晶核が一時的に生成しても、また再溶解し、溶媒が均一になるところまで核が発生しないから、核が少なくなり、その結果、大粒子に成長すると思われる。   In the present invention, a larger particle size is generated in the case of stirring with relatively good position conversion until a uniform solution is formed. For example, in the case of vibration agitation such as V blender, hand vibration, and vibrator, 15 to 25 μm porous particles are generated. Although the mechanism is not fully understood, even if crystal nuclei are temporarily generated on the vessel wall, they will be re-dissolved, and nuclei will not be generated until the solvent becomes homogeneous. It seems to grow into large particles.

均一な溶液を形成したならば、攪拌の必要はなく、ポリアミド粒子が析出し始める時以降は、静置しておくことが好ましい。攪拌してもよいがポリアミド粒子の形状、大きさには影響がないと思われる。   If a uniform solution is formed, it is not necessary to stir, and it is preferable to leave it standing after the polyamide particles start to precipitate. Although it may be stirred, it does not seem to affect the shape and size of the polyamide particles.

前記の均一な溶液からポリマー粒子を析出させる温度は、5〜60℃が好ましい。温度によっては、溶液が均一になる組成範囲が広くなることがある。温度が50℃より低いと、均一になる領域が狭くなる溶媒組成の範囲が場合がある。温度が60℃より高いと、溶媒の蒸気圧が高くなり好ましくない。   The temperature at which the polymer particles are precipitated from the uniform solution is preferably 5 to 60 ° C. Depending on the temperature, the composition range in which the solution becomes uniform may be widened. When the temperature is lower than 50 ° C., there may be a range of the solvent composition in which the uniform region becomes narrow. If the temperature is higher than 60 ° C., the vapor pressure of the solvent becomes high, which is not preferable.

ポリアミド溶液の混合物が5〜10℃であることが特に好ましい。この温度では、粒子径が2〜10μmの多孔質粒子ができる。この現象は低温のため核生成が早くなり、その結果核の数が多くなり、小さな粒子になると思われる。   It is particularly preferred that the polyamide solution mixture is at 5-10 ° C. At this temperature, porous particles having a particle diameter of 2 to 10 μm are formed. This phenomenon is likely to result in faster nucleation due to low temperature, resulting in a larger number of nuclei and smaller particles.

析出したポリアミド粒子は、溶液から遠心分離、濾過、デカンテイションなどの通常の方法で単離することができる。例えば、縣濁した溶液を、メタノールで希釈して、遠心分離に掛けてもよい。数回メタノールで洗浄して遠心分離に掛けてもよい。次に熱風乾燥、真空乾燥に供してもよい。   The precipitated polyamide particles can be isolated from the solution by usual methods such as centrifugation, filtration, and decantation. For example, a suspended solution may be diluted with methanol and centrifuged. It may be washed several times with methanol and centrifuged. Next, you may use for hot air drying and vacuum drying.

本発明の吸湿放湿材料は、前記多孔質粒子をそのまま用いるだけでなく、前記多孔質粒子を含む塗膜を透明性基板上に形成した態様、前記多孔質粒子を透明性基板に接着した態様等で用いることができる。   The moisture-absorbing / releasing material of the present invention is not limited to using the porous particles as they are, but is also an embodiment in which a coating film containing the porous particles is formed on a transparent substrate, and an embodiment in which the porous particles are bonded to a transparent substrate. Etc. can be used.

しかしながら、吸湿・放湿体としての形状は限定的ではなく最終製品の用途、使用目的使用部位などに適宜設定すれば良く、例えば粉体、シート状、フィルム状、ペレット状、造粒体等を上げることができる。   However, the shape of the moisture absorbing / releasing body is not limited and may be set as appropriate for the use of the final product, the intended use site, etc., for example, powder, sheet, film, pellet, granule, etc. Can be raised.

以下、実施例について説明するが、本発明はこれらの例に限定されるものではない。また、多孔質粒子の物性(粒子径、比表面積、平均細孔径、結晶化度など)の測定は次のように行った。   Hereinafter, examples will be described, but the present invention is not limited to these examples. The physical properties of the porous particles (particle diameter, specific surface area, average pore diameter, crystallinity, etc.) were measured as follows.

(粒子形状、平均粒子径、粒度分布指数)
粒子形状は走査型電子顕微鏡像を用いて前記方法を用いて評価した。また、数平均粒子径と体積平均粒子径はコールターカウンターを用いて粒子50000個の実測定値から見積もり、粒度分布指数(PDI)は前出の式を用いて算出した。
(Particle shape, average particle size, particle size distribution index)
The particle shape was evaluated using the above method using a scanning electron microscope image. In addition, the number average particle size and the volume average particle size were estimated from actual measured values of 50,000 particles using a Coulter counter, and the particle size distribution index (PDI) was calculated using the above formula.

(細孔径分布)
水銀ポロシメーターで測定した。測定範囲は0.0034〜400μmで測定した。平均細孔径を求めた。
(Pore size distribution)
Measured with a mercury porosimeter. The measurement range was 0.0034 to 400 μm. The average pore diameter was determined.

(比表面積・多孔度指数)
ポリアミド粒子の比表面積は、窒素吸着によるBET法で3点測定でおこなった。この値から、前に述べた式に従って多孔度指数を求めた。
(Specific surface area / Porosity index)
The specific surface area of the polyamide particles was measured by three-point measurement by the BET method using nitrogen adsorption. From this value, the porosity index was determined according to the previously described equation.

(結晶化度)
ポリアミドの結晶化度は、DSC(示差走査熱量計)で測定した。前に述べた方法で行った。
(Crystallinity)
The crystallinity of the polyamide was measured by DSC (differential scanning calorimeter). This was done as previously described.

〔測定用試料〕
次の測定用試料を準備した。
[Sample for measurement]
The following measurement samples were prepared.

(a)多孔質粒子
多孔質粒子を次のように製造した。フェノールとメタノールとを質量比で9:1の割合で含む溶液に、ポリアミド6(分子量13,000)を加えて溶解させポリアミド6濃度10質量%のポリアミド6溶液を調製した。このナイロン溶液に、メタノールと水とを7:0.5の混合比で混合した混合液を添加した。温度は室温で行った。60分静置して、ポリアミド6の粒子を析出させた。その後、遠心分離でポリマー粒子を単離した。
(A) Porous particles Porous particles were produced as follows. Polyamide 6 (molecular weight 13,000) was added and dissolved in a solution containing phenol and methanol in a mass ratio of 9: 1 to prepare a polyamide 6 solution having a polyamide 6 concentration of 10% by mass. To this nylon solution, a mixed solution in which methanol and water were mixed at a mixing ratio of 7: 0.5 was added. The temperature was room temperature. The mixture was allowed to stand for 60 minutes to precipitate polyamide 6 particles. Thereafter, the polymer particles were isolated by centrifugation.

得られたポリマー粒子を走査型電子顕微鏡で観察したところ、数平均粒子径約9.6μm、体積平均粒子径約13.8μmの比較的均一な球形の多孔質粒子であった。長軸/短軸比1.5以下の粒子の割合は98%以上であった。また、平均細孔径約0.0568μm、PDI1.47、比表面積約22.8m/kg、多孔度指数RI41.8、ポリマー粒子の結晶化度56%であった。図1に、このような方法で得られるポリアミド多孔質粒子の代表的な走査型電子顕微鏡像を示す。
(b)真球粒子
ポリアミド612コポリマーの真球粒子、数平均粒子径約5.9μm、体積平均粒子径約8.8μm。
When the obtained polymer particles were observed with a scanning electron microscope, they were relatively uniform spherical porous particles having a number average particle size of about 9.6 μm and a volume average particle size of about 13.8 μm. The ratio of particles having a major axis / minor axis ratio of 1.5 or less was 98% or more. The average pore diameter was about 0.0568 μm, PDI was 1.47, the specific surface area was about 22.8 m 2 / kg, the porosity index was 41.8, and the crystallinity of the polymer particles was 56%. FIG. 1 shows a representative scanning electron microscope image of polyamide porous particles obtained by such a method.
(B) True spherical particles True spherical particles of polyamide 612 copolymer, number average particle size of about 5.9 μm, volume average particle size of about 8.8 μm.

(c)ペレット
ポリアミド6のペレット、径は2〜3mm、厚さ2mm程度の円盤状。
(C) Pellets Pellets of polyamide 6, a disk shape with a diameter of 2 to 3 mm and a thickness of about 2 mm.

<吸湿・放湿実験1>
測定用試料(ポリアミド多孔質粒子、ポリアミド真球粒子およびポリアミドペレット)をそれぞれ200ccのビーカーに約5g量り取り、一晩(約18時間)RH0%のNBox内に放置した。吸湿環境下(室温、空気、RH95%以上)に4時間、放湿環境下(室温、窒素雰囲気、RH0%)に4時間放置し吸湿・放湿挙動を観察した。1回の吸放湿サイクル後は14時間以上放湿環境下に放置し、再度吸湿環境下に4時間、放湿環境下に4時間放置した。このような試験を3回繰り返した。
<Moisture absorption and moisture release experiment 1>
About 5 g of each sample for measurement (polyamide porous particles, polyamide true sphere particles, and polyamide pellets) was weighed into a 200 cc beaker and allowed to stand overnight (about 18 hours) in an N 2 Box of RH 0%. The samples were allowed to stand in a hygroscopic environment (room temperature, air, RH 95% or more) for 4 hours and in a dehumidifying environment (room temperature, nitrogen atmosphere, RH 0%) for 4 hours to observe moisture absorption and dehumidification behavior. After one moisture absorption / release cycle, the sample was left in a moisture release environment for 14 hours or more, and again left in a moisture absorption environment for 4 hours and in a moisture release environment for 4 hours. Such a test was repeated three times.

吸湿試験開始以前に水分率計(加熱天秤:200℃)にて測定した値を初期水分量と仮定し、吸放湿試験時において変化した重量は全て水分の脱着によるものと見なし、初期水分量と重量変化の和を水分量とし試料重量分の水分量のパーセンテージを吸水率(%)として評価した。この結果を図2に示す。   Assuming that the initial moisture content is the value measured with a moisture meter (heating balance: 200 ° C.) before the start of the moisture absorption test, the weight that changed during the moisture absorption / release test is considered to be due to the desorption of moisture. And the sum of the weight changes, and the percentage of the moisture content for the sample weight was evaluated as the water absorption rate (%). The result is shown in FIG.

<吸湿・放湿実験2>
測定用試料(ポリアミド多孔質粒子およびポリアミドペレット)をそれぞれ直径約8.5〜9mmφのシャーレ上に5〜8g分け取り吸湿・放湿試験を行った。吸湿試験の環境は、室温、空気中、RH95%以上、放湿試験の環境は、室温、窒素雰囲気、RH0%とし、吸湿試験の環境下に4週間放置して吸湿させた後、放湿試験の環境下に4週間放置して放湿させた。吸湿率の測定は実験1と同じである。
<Moisture absorption and moisture release experiment 2>
Samples for measurement (polyamide porous particles and polyamide pellets) were separately divided into 5 to 8 g on a petri dish having a diameter of about 8.5 to 9 mmφ and subjected to moisture absorption and moisture release tests. The environment for moisture absorption test is room temperature, in air, RH 95% or more, and the environment for moisture release test is room temperature, nitrogen atmosphere, RH 0%. And left for 4 weeks to let it dry. The measurement of moisture absorption is the same as in Experiment 1.

図3に、240時間までの吸湿過程の測定結果を示す。図4には、図3と同じデータの初期吸湿過程を示すために時間軸を拡大して24時間までの結果を示す。図5に、240時間までの放湿過程の測定結果を示す。図6には、図5と同じデータの24時間までの結果を示す。   FIG. 3 shows the measurement results of the moisture absorption process up to 240 hours. FIG. 4 shows the results up to 24 hours with the time axis expanded to show the initial moisture absorption process of the same data as FIG. FIG. 5 shows the measurement results of the moisture release process up to 240 hours. FIG. 6 shows the results up to 24 hours of the same data as FIG.

<吸湿・放湿実験3>
放湿試験の環境を23℃、RH45%の恒温恒湿とした以外は、上記吸湿・放湿実験2と同じ実験を繰り返した。図7に、240時間までの放湿過程の測定結果を示す。図8に、図7と同じデータの24時間までの結果を示す。
<Moisture absorption and moisture release experiment 3>
The same experiment as the above-described moisture absorption / moisture release experiment 2 was repeated except that the environment of the moisture release test was set to a constant temperature and humidity of 23 ° C and RH 45%. FIG. 7 shows the measurement results of the moisture release process up to 240 hours. FIG. 8 shows the results up to 24 hours of the same data as FIG.

吸湿・放湿実験2および3から、0〜4時間までの間の吸湿速度および放湿速度を求めた結果を表1に示す。   Table 1 shows the results of obtaining the moisture absorption rate and moisture release rate from 0 to 4 hours from the moisture absorption and moisture release experiments 2 and 3.

多孔質粒子の代表的な走査型電子顕微鏡写真像である。It is a typical scanning electron micrograph image of porous particles. 吸湿・放湿実験1による、各試料の吸・放湿サイクル試験の結果を示すグラフである。It is a graph which shows the result of the moisture absorption / desorption cycle test of each sample by the moisture absorption / desorption experiment 1. 吸湿・放湿実験2による吸湿過程における、各試料の吸湿率の経時変化を示すグラフである。6 is a graph showing a change with time in moisture absorption rate of each sample in a moisture absorption process according to a moisture absorption / release experiment 2; 吸湿・放湿実験2による吸湿過程の初期段階を示すグラフである。6 is a graph showing an initial stage of a moisture absorption process according to moisture absorption / release experiment 2; 吸湿・放湿実験2による放湿過程における、各試料の吸湿率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the moisture absorption rate of each sample in the moisture release process by the moisture absorption / moisture release experiment 2. 吸湿・放湿実験2による放湿過程の初期段階を示すグラフである。It is a graph which shows the initial stage of the moisture release process by the moisture absorption and moisture release experiment. 吸湿・放湿実験3による放湿過程における、各試料の吸湿率の経時変化を示すグラフである。6 is a graph showing a change with time in moisture absorption rate of each sample in a moisture release process by a moisture absorption / release experiment 3; 吸湿・放湿実験3による放湿過程の初期段階を示すグラフである。It is a graph which shows the initial stage of the moisture release process by the moisture absorption and moisture release experiment 3. FIG.

Claims (7)

数平均粒子径1〜30μm、BET比表面積100〜80000m/kgである多孔質粒子からなる吸放湿材料。 A moisture absorbing / releasing material comprising porous particles having a number average particle diameter of 1 to 30 μm and a BET specific surface area of 100 to 80,000 m 2 / kg. 平衡水分吸湿率(RH95%)が1〜15%であることを特徴とする請求項1記載の吸放湿材料。 The moisture absorption / release material according to claim 1, wherein the equilibrium moisture absorption rate (RH 95%) is 1 to 15%. 前記多孔質粒子を電子顕微鏡により観察したときに、長軸/短軸比2以下の粒子の割合が80%以上であることを特徴とする請求項1または2記載の吸放湿材料。   The moisture absorbing / releasing material according to claim 1 or 2, wherein when the porous particles are observed with an electron microscope, the ratio of particles having a major axis / minor axis ratio of 2 or less is 80% or more. 前記多孔質粒子の数平均粒子径に対する体積平均粒子径の比が1〜2.5であることを特徴とする請求項1〜3のいずれかに記載の吸放湿材料。   The moisture absorbing / releasing material according to any one of claims 1 to 3, wherein a ratio of a volume average particle diameter to a number average particle diameter of the porous particles is 1 to 2.5. 吸湿及び放湿開始からの4時間までの吸湿速度及び放湿速度が、0.6%/時間以上であることを特徴とする請求項1〜4のいずれかに記載の吸放湿材料   The moisture absorption / release material according to any one of claims 1 to 4, wherein the moisture absorption rate and moisture release rate for up to 4 hours from the start of moisture absorption and moisture release are 0.6% / hour or more. 前記多孔質粒子が有機高分子材料からなる請求項1〜5のいずれかに記載の吸放湿材料。   The moisture absorbing / releasing material according to any one of claims 1 to 5, wherein the porous particles are made of an organic polymer material. 前記多孔質粒子がポリアミドからなる請求項6記載の吸放湿材料。   The moisture absorbing / releasing material according to claim 6, wherein the porous particles are made of polyamide.
JP2006268895A 2006-09-29 2006-09-29 Hygroscopic material Expired - Fee Related JP5007795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006268895A JP5007795B2 (en) 2006-09-29 2006-09-29 Hygroscopic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006268895A JP5007795B2 (en) 2006-09-29 2006-09-29 Hygroscopic material

Publications (2)

Publication Number Publication Date
JP2008086874A true JP2008086874A (en) 2008-04-17
JP5007795B2 JP5007795B2 (en) 2012-08-22

Family

ID=39371591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006268895A Expired - Fee Related JP5007795B2 (en) 2006-09-29 2006-09-29 Hygroscopic material

Country Status (1)

Country Link
JP (1) JP5007795B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101134A1 (en) * 2009-03-05 2010-09-10 宇部興産株式会社 Polyamide particles and process for producing same
JP2012078081A (en) * 2010-09-08 2012-04-19 Kobe Steel Ltd Aluminum-made fin material
WO2014027647A1 (en) 2012-08-14 2014-02-20 三菱瓦斯化学株式会社 Moisture-absorbing/releasing material
US9512314B2 (en) 2012-08-14 2016-12-06 Mitsubishi Gas Chemical Company, Inc. Polyether polyamide composition
CN109476851A (en) * 2016-07-19 2019-03-15 大赛璐赢创株式会社 Polyamide particles and its manufacturing method, its resin combination and molded product

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9862624B2 (en) 2007-11-07 2018-01-09 Palo Alto Research Center Incorporated Device and method for dynamic processing in water purification
US10052571B2 (en) 2007-11-07 2018-08-21 Palo Alto Research Center Incorporated Fluidic device and method for separation of neutrally buoyant particles
US9486812B2 (en) 2006-11-30 2016-11-08 Palo Alto Research Center Incorporated Fluidic structures for membraneless particle separation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011320A (en) * 1999-06-28 2001-01-16 Japan Exlan Co Ltd Moisture absorbing and releasing polymer and its molded product
JP2002325827A (en) * 2001-05-01 2002-11-12 Nagai Kikai Chuzo Co Ltd Deodorizing absorptive sheet material
JP2004243206A (en) * 2003-02-13 2004-09-02 National Institute Of Advanced Industrial & Technology Humidifying agent and its manufacturing method, and humidifying method
JP2005054153A (en) * 2003-08-07 2005-03-03 Ube Ind Ltd Preparation process of polyamide porous particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011320A (en) * 1999-06-28 2001-01-16 Japan Exlan Co Ltd Moisture absorbing and releasing polymer and its molded product
JP2002325827A (en) * 2001-05-01 2002-11-12 Nagai Kikai Chuzo Co Ltd Deodorizing absorptive sheet material
JP2004243206A (en) * 2003-02-13 2004-09-02 National Institute Of Advanced Industrial & Technology Humidifying agent and its manufacturing method, and humidifying method
JP2005054153A (en) * 2003-08-07 2005-03-03 Ube Ind Ltd Preparation process of polyamide porous particle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101134A1 (en) * 2009-03-05 2010-09-10 宇部興産株式会社 Polyamide particles and process for producing same
US8822555B2 (en) 2009-03-05 2014-09-02 Ube Industries, Ltd. Polyamide particles and process for producing same
JP5652389B2 (en) * 2009-03-05 2015-01-14 宇部興産株式会社 Polyamide particles and method for producing the same
JP2012078081A (en) * 2010-09-08 2012-04-19 Kobe Steel Ltd Aluminum-made fin material
WO2014027647A1 (en) 2012-08-14 2014-02-20 三菱瓦斯化学株式会社 Moisture-absorbing/releasing material
US9512314B2 (en) 2012-08-14 2016-12-06 Mitsubishi Gas Chemical Company, Inc. Polyether polyamide composition
CN109476851A (en) * 2016-07-19 2019-03-15 大赛璐赢创株式会社 Polyamide particles and its manufacturing method, its resin combination and molded product
KR20190031268A (en) * 2016-07-19 2019-03-25 다이셀에보닉 주식회사 Polyamide particles, process for producing the same, resin composition and molded article
EP3489282A4 (en) * 2016-07-19 2019-07-17 Daicel-Evonik Ltd. Polyamide particles, production process therefor, resin composition, and molded article
US11142613B2 (en) 2016-07-19 2021-10-12 Daicel-Evonik Ltd. Polyamide particles, production process therefor, resin composition, and molded article
CN109476851B (en) * 2016-07-19 2022-04-05 大赛璐赢创株式会社 Polyamide particles, process for producing the same, resin composition thereof, and molded article
KR102399269B1 (en) * 2016-07-19 2022-05-19 다이셀에보닉 주식회사 Polyamide particles and manufacturing method thereof, resin composition and molded article

Also Published As

Publication number Publication date
JP5007795B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5007795B2 (en) Hygroscopic material
Cavallaro et al. Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend
CN100471524C (en) Process for making water-swellable material comprising coated water-swellable polymers
CN100441234C (en) Process for making water-swellable material comprising coated water-swellable polymers
Gaabour Spectroscopic and thermal analysis of polyacrylamide/chitosan (PAM/CS) blend loaded by gold nanoparticles
WO2017105352A1 (en) Synthesis of inorganic sio2 microcapsules containing phase change materials and applications therein
Tian et al. Temperature-responsive nanocomposites based on mesoporous SBA-15 silica and PNIPAAm: synthesis and characterization
Tian et al. Water-resistant HKUST-1 functionalized with polydimethylsiloxane for efficient rubidium ion capture
Huerta-Angeles et al. Super-porous nanocomposite PNIPAm hydrogels reinforced with titania nanoparticles, displaying a very fast temperature response as well as pH-sensitivity
JP2012531509A (en) Foam composition
Perfetti et al. Thermo-physical characterization of Pharmacoat® 603, Pharmacoat® 615 and Mowiol® 4–98
Xing et al. Controllable self-growth of a hydrogel with multiple membranes
Shekhar et al. Swelling, thermal and mechanical properties of NIPAM-based terpolymeric hydrogel
Dong et al. Tunable Morphology of 2D Honeycomb‐Patterned Films and the Hydrophobicity of a Ferrocenyl‐Based Oligomer
Panzavolta et al. Montmorillonite reinforced type A gelatin nanocomposites
Yang et al. Calix [4] arene-based low molecular mass gelators to form gels in organoalkoxysilanes
Wang et al. Physical crosslinked poly (n-isopropylacrylamide)/nano-hydroxyapatite thermosensitive composite hydrogels
Liu et al. Hydrate salt/self‐curing acrylic resin form‐stable phase change materials with enhanced surface stability and thermal properties via the incorporation of graphene oxide
Ma et al. Simultaneous phase change energy storage and thermoresponsive shape memory properties of porous poly (vinyl alcohol)/phase change microcapsule composites
JP7154763B2 (en) Method for producing aromatic polyimide
Yang et al. Preparation and characterization of soy protein isolate/SiO2 nanocomposite films and their walnut oil microcapsules
Sulu et al. Synthesis, characterization, and drug release properties of macroporous dual stimuli responsive stereo regular nanocomposites gels of poly (N-isopropylacrylamide) and graphene oxide
JP5656694B2 (en) Non-adsorptive heat-sealable composition, non-adsorptive packaging material and non-adsorptive packaging bag
KR101080428B1 (en) Application of activated carbon fibers for the pH-stimuli responsive hydrogels as reinforcement and drug reservoir
Hekimoğlu et al. Thermal energy storage characteristics of polyacrylic acid/dodecanol/carbon nanofiber composites as thermal conductive shape‐stabilized composite phase change materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Ref document number: 5007795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees