JP2008085257A - Round semiconductor device and method of manufacturing same - Google Patents

Round semiconductor device and method of manufacturing same Download PDF

Info

Publication number
JP2008085257A
JP2008085257A JP2006266337A JP2006266337A JP2008085257A JP 2008085257 A JP2008085257 A JP 2008085257A JP 2006266337 A JP2006266337 A JP 2006266337A JP 2006266337 A JP2006266337 A JP 2006266337A JP 2008085257 A JP2008085257 A JP 2008085257A
Authority
JP
Japan
Prior art keywords
chip
semiconductor device
semiconductor
unlikely
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006266337A
Other languages
Japanese (ja)
Inventor
Naoya Isada
尚哉 諫田
Noriyuki Dairoku
範行 大録
Hidehiko Shindo
英彦 神藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006266337A priority Critical patent/JP2008085257A/en
Publication of JP2008085257A publication Critical patent/JP2008085257A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dicing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device easy to convey and capable of maintaining a strength necessary for RFID assembly by achieve a system unlikely to produce chipping and cracking and rounding the corner portion of a chip at which chipping and cracking are likely to occur. <P>SOLUTION: The circumference of a semiconductor chip 1 is shaped into a curved shape by dry etching and at the same time, its edge is caused to have a smooth curve by simultaneously using wet etching also, and thus, the chip becomes unlikely to produce chipping and cracking even if it is machined into a thin chip and vibration conveyance can be used. Because the semiconductor chip 1 is unlikely to produce chipping and cracking, it is possible to apply vibration at a large acceleration in a process for disaggregating for conveyance, and therefore, it is unlikely that a plurality of chips are conveyed erroneously and packaging yield can be improved. If the chip 1 for which the present machining technique has been applied to the thin RFID is employed, it will become unlikely that chip breakage occurs, which is caused by external force during the period of use and operation, in addition to assembling. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は半導体装置構造と半導体装置製造プロセスに関する。   The present invention relates to a semiconductor device structure and a semiconductor device manufacturing process.

従来の半導体装置は、Si等のウェハに回路を形成し、これを縦横に砥石切断するダイシングと呼ばれる方法で回路チップに個片化され、これを外部回路と接続する実装工程を経て完成される。個片化においては、特許第2814176号記載のように、回転砥石によりSi等のウェハ表面に格子状の溝加工を施し、しかる後に裏面を薄く加工する方法が採用されている。このためこれら従来技術では、チップ形状は四角形が通常であり、特殊な場合は特開2004-79667号記載のように多角形柱状または円柱状となる。   A conventional semiconductor device is formed through a mounting process in which a circuit is formed into a circuit chip by a method called dicing, in which a circuit is formed on a wafer such as Si, and this is cut into a grindstone vertically and horizontally, and this is connected to an external circuit. . In singulation, as described in Japanese Patent No. 2814176, a method is adopted in which a lattice-like groove is formed on the surface of a wafer such as Si with a rotating grindstone, and then the back surface is processed thinly. Therefore, in these conventional techniques, the chip shape is usually a quadrangle, and in a special case, it becomes a polygonal columnar shape or a cylindrical shape as described in JP-A-2004-79667.

また、特開2002-93752号記載のように、プラズマエッチングにより個片化する方法(プラズマダイシング)や、特開2001-127011号記載のように、ウェットエッチングによる方法、特開2003-197569号記載のように機械的切削と化学エッチングを併用する方法などが公開されており、個片化されたチップの端面は半導体主面に対してほぼ直角を成しており、チップ厚さの1/10から1/100の曲率半径の明確な稜が形成されている。   Further, as described in JP-A-2002-93752, a method of dividing into pieces by plasma etching (plasma dicing), a method of wet-etching as described in JP-A-2001-127011, and JP-A-2003-197569 The method of using both mechanical cutting and chemical etching, etc. has been disclosed, and the end face of the diced chip is almost perpendicular to the semiconductor main surface, which is 1/10 of the chip thickness A clear edge with a radius of curvature of 1/100 is formed.

特許第2814176号Patent No. 2814176 特開2004-79667号JP 2004-79667 A 特開2002-93752号JP 2002-93752 特開2001-127011号JP2001-127011 特開2003-197569号JP2003-197569

上記従来の切断加工された半導体を安価に組み立てるためには、振動や流体を利用して搬送する場合がある。搬送途中ではチップとチップ間や、搬送路の器壁と衝突するため、端面の稜部分が欠けやすく、実使用状態での破壊起点となることがある。特に、柔軟なアンテナを有するRFID回路に代表される、保護構造の少ない半導体回路ではチップ自体に外力が伝わるため、破損する恐れがあった。特に、チップの頂点部分は外力が集中しやすいため、前記の微細なクラックを有する場合、角が割れる不良が生じやすかった。また、チップの極薄型化や超小形化に対応して、0.5ミリメートル角以下で厚さ100マイクロメートル以下のチップでは、チップ同士の凝集や静電気やファンデアワールス力による器壁への付着があり、凝集を解きチップ搬送するためには高い振動数を要するようになってきており、上記のクラックや角の欠けはより大きな課題となっている。   In order to assemble the conventional semiconductor that has been cut and processed at low cost, the semiconductor may be transported using vibration or fluid. In the middle of the conveyance, it collides with the chip between the chips or with the wall of the conveyance path, so that the edge portion of the end surface is likely to be chipped and may become a starting point of breakage in the actual use state. In particular, in a semiconductor circuit with a small protection structure represented by an RFID circuit having a flexible antenna, an external force is transmitted to the chip itself, which may be damaged. In particular, since the external force tends to concentrate at the apex portion of the chip, when the fine cracks are present, defects that break the corners are likely to occur. Also, in response to ultra-thin and ultra-miniaturization of chips, chips with a thickness of 0.5 mm square or less and a thickness of 100 μm or less have agglomeration between chips and adhesion to the wall due to static electricity or van der Waals force In order to solve the aggregation and transport the chip, a high frequency has been required, and the above-mentioned cracks and missing corners have become a larger problem.

本発明の目的は、上記回路チップの個片化の方式を改良し、チップ外周部にクラックが生じにくい方式を実現し、割れや欠けを生じやすいチップ角部に丸みを設けたことにより、搬送が容易でRFIDの組立に必要な強度を維持する半導体装置を提供することにある。   The object of the present invention is to improve the circuit chip separation method, realize a method in which cracks are less likely to occur on the outer periphery of the chip, and provide roundness at the corners of the chip where cracks and chips are likely to occur. An object of the present invention is to provide a semiconductor device that is easy to maintain and has the strength required for RFID assembly.

本発明では、半導体チップの個片化をドライエッチングやウェットエッチングなどの化学加工により行う際に、回路面をレジストで保護した後に加熱等の方法でレジストの稜線に丸みを持たせ、チップ周辺のレジスト厚さを中央付近に比べて薄くしておく。エッチング加工では被加工物の加工と同時にレジストも厚さが減少するが、その作用によって被加工物の主面と端面がなだらかに傾斜が変化する形状を作ることができる。これによって、チップ分離によって新たに生じる端面の稜線を鈍らせることができ、搬送中やRFID組立中の外力によって割れや欠けが生じにくい半導体装置を提供できる。また、チップ分離後にレジストを除去せずに金属皮膜をスパッタ等で形成し、その後レジストを除去することで、傾斜を持った端面に金属皮膜を形成することで、外力によりクラックが生じたとしても破片が脱落することがないチップを供給することができる。   In the present invention, when the semiconductor chip is singulated by chemical processing such as dry etching or wet etching, the circuit surface is protected with a resist and then the ridge line of the resist is rounded by a method such as heating. The resist thickness is made thinner than that near the center. In the etching process, the thickness of the resist decreases simultaneously with the processing of the workpiece. However, the main surface and the end surface of the workpiece can be formed to have a shape in which the inclination changes gently. As a result, the edge line of the end face newly generated by chip separation can be blunted, and a semiconductor device that is unlikely to be cracked or chipped by an external force during conveyance or RFID assembly can be provided. Also, even if cracks occur due to external force by forming a metal film on the inclined end surface by forming a metal film by sputtering or the like without removing the resist after chip separation and then removing the resist. It is possible to supply a chip in which debris does not fall off.

半導体チップ上に配線形成技術を応用してアンテナを形成し、絶縁物質からなる膜でアンテナ面を保護した半導体チップが形成されたウェハに対し、本技術を適用することで、外力に対して強靭な非接触電子タグ用チップが形成できる。さらに、非接触電子タグの読取機または読取・書換え機との交信距離を延長するために非接触電子タグ用チップの近傍にアンテナを配置してタグ化することにより堅牢で実用性の高いタグを形成することができる。   By applying this technology to a wafer on which a semiconductor chip is formed by applying wiring formation technology on a semiconductor chip and forming the antenna surface with a film made of an insulating material, it is strong against external forces. A simple contactless electronic tag chip can be formed. Furthermore, in order to extend the communication distance with the reader or reader / writer of the non-contact electronic tag, a tag that is robust and highly practical by placing an antenna near the chip for the non-contact electronic tag is formed. Can be formed.

0.5ミリメートル角で厚さ50マイクロメートルのRFIDチップをこの方法で作成したところ、振動によってRFIDチップの重なりを解くことができ、個々のRFIDチップを一個ずつ取り出すことが可能であった。しかも、従来のダイシング方法で作製したRFIDチップの場合は、搬送途中にシリコンの砕片が発生したのに対し、本発明を応用したRFIDチップではシリコンの砕片を100分の1程度に減少させることが可能となり、チップ割れや欠けの外観不良となる率は10分の1程度に低減できることが明らかとなった。これまで、振動搬送によるチップのハンドリングはシリコン砕片の発生と高率の外観不良発生によって断念されてきたが、本発明の適用によって、振動搬送が可能となり、チップを一個ずつハンドリングするフリップチップボンダーが不要となった。多数個のRFIDを同時並列で作製することが可能となったので、RFIDの低コスト組立に大きく貢献できる。   An RFID chip with a thickness of 0.5 millimeters and a thickness of 50 micrometers was created by this method, and it was possible to remove the overlap of RFID chips by vibration and to take out individual RFID chips one by one. In addition, in the case of an RFID chip manufactured by a conventional dicing method, silicon debris is generated in the middle of conveyance, whereas in an RFID chip to which the present invention is applied, the silicon debris can be reduced to about 1/100. It became possible, and it became clear that the rate of appearance defects such as chip cracks and chips could be reduced to about 1/10. Until now, chip handling by vibration transfer has been abandoned due to generation of silicon debris and high rate of appearance defects, but application of the present invention enables vibration transfer and a flip chip bonder that handles chips one by one. It became unnecessary. Many RFIDs can be manufactured simultaneously in parallel, which can greatly contribute to the low-cost assembly of RFID.

以下に、本発明の一実施形態が適用された半導体装置について、図1から図4を用いて説明する。   A semiconductor device to which an embodiment of the present invention is applied will be described below with reference to FIGS.

図1は本発明の適用されたRFIDチップの外観図であり、図1(a)が側面、図1(b)に回路主面からのRFIDチップ1周辺の外観図を示した。電気回路の形成が完了した概ね直方体のRFIDチップ1と、電気回路側の表面に形成した概ね正方形の接合電極2からなる。接合電極2は金メッキにより表面を保護した回路電極であり、図1(c)に示すようにアルミ箔から構成されるアンテナ(A)3、アンテナ(B)4は、異方性導電接着剤5で電気的に導通している。アンテナ(A)3はベースフィルム6上に形成され、アンテナ(B)4はベースフィルム7上に形成されており、両者を貼り合わせることでチップ1とアンテナ(A)3、アンテナ(B)4をベースフィルム6および7で保護している。   FIG. 1 is an external view of an RFID chip to which the present invention is applied. FIG. 1 (a) is a side view, and FIG. 1 (b) is an external view of the periphery of the RFID chip 1 from the circuit main surface. It consists of a substantially rectangular RFID chip 1 in which the formation of the electric circuit has been completed and a substantially square bonding electrode 2 formed on the surface on the electric circuit side. The bonding electrode 2 is a circuit electrode whose surface is protected by gold plating. As shown in FIG. 1C, the antenna (A) 3 and the antenna (B) 4 made of aluminum foil are made of an anisotropic conductive adhesive 5. Is electrically connected. The antenna (A) 3 is formed on the base film 6, and the antenna (B) 4 is formed on the base film 7, and the chip 1, the antenna (A) 3, and the antenna (B) 4 are bonded together. Are protected by base films 6 and 7.

図2は本発明の適用されたもうひとつの半導体チップの外観図であり、図2(a)が側面、図2(b)に回路主面からのチップ周辺の外観図を示した。チップ1は電気回路の形成が完了した概ね円柱状のRFIDチップ1と、電気回路側の表面に形成した円形の接合電極2からなる。   2A and 2B are external views of another semiconductor chip to which the present invention is applied. FIG. 2A is a side view, and FIG. 2B is an external view of the periphery of the chip from the circuit main surface. The chip 1 includes a generally cylindrical RFID chip 1 in which the formation of an electric circuit has been completed, and a circular bonding electrode 2 formed on the surface on the electric circuit side.

以下にこのRFID回路装置の製造方法を順に説明する。図3(a)は半導体工程で回路形成が完了したRFIDチップ1と接合電極2が形成されたシリコンウェハ8の断面を示す。図3(b)のように、プラズマエッチング耐性のあるレジスト膜9をフォトリソグラフにより加工し、チップ分離する部分を露出する。その後、レジスト膜9が軟化する温度に加熱することで、表面張力によって断面形状が図3(c)に記載のような厚さ分布を有するようになる。これによって、いわゆるレジスト膜9は、チップ周辺部分では薄く、中央付近は厚くなる。その後、プラズマエッチングによる深溝加工を行い、図3(d)に記すような断面形状を得る。この後、シリコンウェハ8全体にバックグラインドテープ10を回路形成面に貼り付け、加工した深溝をバックグラインドテープ10の粘着層11で概ね充填し(図3(e))、バックグラインドによってチップ厚50マイクロメートル以下の所望の厚さにする(図3(f))。その後、等方性ウェットエッチングによって、稜の部分に丸みを持ったRFIDチップ1が完成する(図3(g))。   Hereinafter, a method for manufacturing the RFID circuit device will be described in order. FIG. 3A shows a cross section of the silicon wafer 8 on which the RFID chip 1 and the bonding electrode 2 on which the circuit formation has been completed in the semiconductor process are formed. As shown in FIG. 3B, the resist film 9 having plasma etching resistance is processed by photolithography to expose a portion for chip separation. Thereafter, by heating to a temperature at which the resist film 9 is softened, the cross-sectional shape has a thickness distribution as shown in FIG. As a result, the so-called resist film 9 is thin near the chip and thick near the center. Thereafter, deep groove processing by plasma etching is performed to obtain a cross-sectional shape as shown in FIG. Thereafter, a back grind tape 10 is attached to the entire surface of the silicon wafer 8 and the processed deep groove is substantially filled with the adhesive layer 11 of the back grind tape 10 (FIG. 3 (e)). The desired thickness is not more than micrometer (FIG. 3 (f)). Thereafter, the RFID chip 1 having a rounded edge is completed by isotropic wet etching (FIG. 3 (g)).

このようにして形成した稜に丸みを有するRFIDチップ1をバックグラインドテープ10および粘着層11から溶剤等を用いて剥がすことで、搭載に必要なチップを得ることができる。このチップを振動で搬送した場合、通常のダイシング方法で形成したチップに比べ、割れや欠けの発生率を低減でき、異物の混入を防止することができた。   A chip necessary for mounting can be obtained by removing the RFID chip 1 having a rounded ridge formed in this way from the back grind tape 10 and the adhesive layer 11 using a solvent or the like. When this chip was transported by vibration, the occurrence rate of cracks and chips could be reduced and foreign matter could be prevented from entering compared to a chip formed by a normal dicing method.

図4はチップ外周に連続した金属薄膜12を施した例であり、これにより、欠けが生じたとしても破片が脱落しにくく、他への影響を排除することができる。   FIG. 4 shows an example in which a continuous metal thin film 12 is provided on the outer periphery of the chip. As a result, even if chipping occurs, fragments are not easily dropped off, and the influence on others can be eliminated.

本発明による概略直方体RFID素子の側面と正面の外観図。The external view of the side and front of the substantially rectangular parallelepiped RFID element by this invention. 本発明による概略円柱RFID素子の側面と正面の外観図。1 is an external view of a side surface and a front surface of a substantially cylindrical RFID element according to the present invention. 本発明のRFID素子の形成プロセスフロー図。The formation process flowchart of the RFID element of this invention. 本発による概略直方体RFID素子の側面と正面の外観図。The external appearance figure of the side and front of the substantially rectangular parallelepiped RFID element by this invention.

符号の説明Explanation of symbols

1…RFIDチップ、2…接合電極、3…アンテナA、4…アンテナB、5…異方性導電フィルム、6…アンテナAのベースフィルム、7…アンテナBのベースフィルム、8…RFID回路が形成されたシリコンウェハ、9…レジスト膜、10…バックグラインドテープ、11…バックグラインドテープの粘着層、12…金属薄膜。
DESCRIPTION OF SYMBOLS 1 ... RFID chip, 2 ... Bonding electrode, 3 ... Antenna A, 4 ... Antenna B, 5 ... Anisotropic conductive film, 6 ... Base film of antenna A, 7 ... Base film of antenna B, 8 ... RFID circuit formation Silicon wafer, 9 ... resist film, 10 ... back grind tape, 11 ... adhesive layer of back grind tape, 12 ... metal thin film.

Claims (8)

半導体装置において、半導体チップ外形の断面形状の稜が、丸みを帯びており、その丸みがチップ厚さと同等からその1/10付近の半径であることを特徴とする半導体装置。   In the semiconductor device, the ridge of the cross-sectional shape of the outer shape of the semiconductor chip is rounded, and the roundness is equivalent to the chip thickness and has a radius in the vicinity of 1/10 thereof. 請求項1において、半導体チップの回路形成面の外形形状が概ね円形もしくは楕円形状を有することを特徴とする半導体装置。   2. The semiconductor device according to claim 1, wherein an outer shape of a circuit formation surface of the semiconductor chip is substantially circular or elliptical. 請求項1または2の半導体装置において、外形周辺に連続した金属箔膜が形成されていることを特徴とする半導体装置。   3. The semiconductor device according to claim 1, wherein a continuous metal foil film is formed around the outer periphery. 請求項1乃至請求項3記載の半導体装置において、ウェハから半導体チップを個片化する方法としてドライエッチング加工による切断方法を用いる際に、ドライエッチング用レジストをパターン化したあとで、レジストが流動する温度まで加熱し、レジストの稜を丸くすることで、半導体チップ中央付近のレジスト膜厚と周辺のレジスト膜厚に差をつけたことを特徴とする半導体装置の製造方法。   4. The semiconductor device according to claim 1, wherein when a cutting method by dry etching is used as a method for separating semiconductor chips from a wafer, the resist flows after patterning the dry etching resist. A method of manufacturing a semiconductor device, wherein the resist film is heated to a temperature and the edges of the resist are rounded to make a difference between the resist film thickness near the center of the semiconductor chip and the peripheral resist film thickness. 請求項4に記載の半導体装置の製造方法において、ドライエッチングの工程でウェハが貫通するまえにドライエッチングを中止し、その後、ウェットエッチングを行うことで、チップを完全に分離することを特徴とする半導体装置の製造方法。   5. The method of manufacturing a semiconductor device according to claim 4, wherein the dry etching is stopped before the wafer penetrates in the dry etching step, and then the wet etching is performed to completely separate the chips. A method for manufacturing a semiconductor device. 請求項1から5に記載の半導体チップ上にアンテナ配線を有することを特徴とする非接触電子タグ。   6. A contactless electronic tag comprising an antenna wiring on the semiconductor chip according to claim 1. 請求項1から5に記載の半導体装置のチップ上に接合用電極を有することを特徴とする非接触電子タグ。   6. A non-contact electronic tag comprising a bonding electrode on a chip of the semiconductor device according to claim 1. 請求項6に記載の非接触電子タグにおいて、半導体装置の近傍に読取または読取・書換えのための電波と共振するアンテナを有し、アンテナ中央付近に搭載することで交信距離を拡大したことを特徴とする非接触電子タグ。
7. The contactless electronic tag according to claim 6, wherein an antenna that resonates with radio waves for reading or reading / rewriting is provided in the vicinity of the semiconductor device, and the communication distance is expanded by being mounted near the center of the antenna. A contactless electronic tag.
JP2006266337A 2006-09-29 2006-09-29 Round semiconductor device and method of manufacturing same Pending JP2008085257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006266337A JP2008085257A (en) 2006-09-29 2006-09-29 Round semiconductor device and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006266337A JP2008085257A (en) 2006-09-29 2006-09-29 Round semiconductor device and method of manufacturing same

Publications (1)

Publication Number Publication Date
JP2008085257A true JP2008085257A (en) 2008-04-10

Family

ID=39355747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266337A Pending JP2008085257A (en) 2006-09-29 2006-09-29 Round semiconductor device and method of manufacturing same

Country Status (1)

Country Link
JP (1) JP2008085257A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035522B2 (en) 2007-09-19 2011-10-11 Hitachi, Ltd. RFID tag
JP2011228711A (en) * 2010-04-19 2011-11-10 Tokyo Electron Ltd Method for separation and conveyance of semiconductor integrated circuit chip
CN112133666A (en) * 2020-09-28 2020-12-25 北京国联万众半导体科技有限公司 Millimeter wave chip manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035522B2 (en) 2007-09-19 2011-10-11 Hitachi, Ltd. RFID tag
JP2011228711A (en) * 2010-04-19 2011-11-10 Tokyo Electron Ltd Method for separation and conveyance of semiconductor integrated circuit chip
CN112133666A (en) * 2020-09-28 2020-12-25 北京国联万众半导体科技有限公司 Millimeter wave chip manufacturing method

Similar Documents

Publication Publication Date Title
TW493236B (en) Method for manufacturing semiconductor devices
CN101625972B (en) Method of thinning a semiconductor wafer
JP2007096115A (en) Manufacturing method of semiconductor device
JP2006286968A (en) Manufacturing method of semiconductor device
US9553022B1 (en) Method for use in manufacturing a semiconductor device die
JPWO2003056613A1 (en) Semiconductor device and manufacturing method thereof
US9972580B2 (en) Semiconductor package and method for fabricating the same
TWI248110B (en) Semiconductor device and manufacturing method thereof
JP2006344816A (en) Method of manufacturing semiconductor chip
US9490103B2 (en) Separation of chips on a substrate
US8603897B2 (en) Method for manufacturing bonded wafer
JP2005322738A (en) Manufacturing method of semiconductor device
JP2005050997A (en) Semiconductor element isolation method
CN111834296A (en) Semiconductor device and method
JP2008085257A (en) Round semiconductor device and method of manufacturing same
US10020219B2 (en) Method for realizing ultra-thin sensors and electronics with enhanced fragility
US6465344B1 (en) Crystal thinning method for improved yield and reliability
JP5440623B2 (en) Circuit chip and RFID circuit device equipped with the same
TWI644774B (en) a method for separating a brittle material substrate, a substrate holding member for breaking a brittle material substrate, and a frame for adhering the adhesive film used for breaking the brittle material substrate
US6944370B2 (en) Method of processing a semiconductor wafer
JP2008217384A (en) Circuit chip, manufacturing method thereof, and rfid circuit device on which the circuit chip is mounted
JP2007005366A (en) Method of manufacturing semiconductor device
Kroninger et al. Time for change in pre-assembly? The challenge of thin chips
JP2000099678A (en) Ic card and its production
CN110534404B (en) Method for manufacturing semiconductor device