JP2008082952A - Semiconductor strain sensor - Google Patents

Semiconductor strain sensor Download PDF

Info

Publication number
JP2008082952A
JP2008082952A JP2006265079A JP2006265079A JP2008082952A JP 2008082952 A JP2008082952 A JP 2008082952A JP 2006265079 A JP2006265079 A JP 2006265079A JP 2006265079 A JP2006265079 A JP 2006265079A JP 2008082952 A JP2008082952 A JP 2008082952A
Authority
JP
Japan
Prior art keywords
electrode
piezoresistor
outer frame
semiconductor strain
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006265079A
Other languages
Japanese (ja)
Inventor
Eiji Yoshikawa
英治 吉川
Kimiaki Taruya
公昭 樽谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006265079A priority Critical patent/JP2008082952A/en
Publication of JP2008082952A publication Critical patent/JP2008082952A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor strain sensor for reducing the error of an electric signal from piezoresistance by preventing thermal stress from reaching the piezoresistance even when the whole temperature varies and the thermal stress occurs between an electrode and a semiconductor substrate. <P>SOLUTION: This semiconductor strain sensor comprises the semiconductor substrate 1 having a thin section 1a and an outer frame section 1b that is disposed outside the thin section 1a and is thicker than the thin section 1a, the piezoresistance 2 disposed in the thin section 1a, and the electrode 4 that is disposed in the outer frame section 1b, is electrically connected to the piezoresistance 2 via wiring 3, and transmits the electric signal from the piezoresistance 2 to the outside. A recessed part 1c is formed along the periphery of the electrode 4 in the outer frame section 1b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、半導体基板に、変形することで抵抗値が変化するピエゾ抵抗と、このピエゾ抵抗の抵抗値の変化を電気信号で外部に伝達する電極とを備えた半導体感歪センサに関する。   The present invention relates to a semiconductor strain sensitive sensor comprising a semiconductor substrate having a piezoresistor whose resistance value changes by deformation and an electrode for transmitting the change in the resistance value of the piezoresistor to the outside by an electric signal.

従来、薄肉部およびこの薄肉部の外側に設けられこの薄肉部よりも厚い外枠部を有した半導体基板と、前記薄肉部に設けられたピエゾ抵抗と、前記外枠部に設けられ、前記ピエゾ抵抗と配線を介して電気的に接続され、前記ピエゾ抵抗からの電気信号を外部に伝達する電極とを備えた半導体感歪センサにおいて、全面に渡って平らである前記半導体基板の上面に、電極が配置された半導体感歪センサが知られている(例えば、特許文献1参照)。   Conventionally, a semiconductor substrate having a thin portion and an outer frame portion provided outside the thin portion and thicker than the thin portion, a piezoresistor provided in the thin portion, and provided in the outer frame portion, the piezo In a semiconductor strain sensitive sensor comprising an electrode electrically connected to a resistor through a wiring and transmitting an electric signal from the piezoresistor to the outside, an electrode is formed on the upper surface of the semiconductor substrate that is flat over the entire surface. A semiconductor strain sensitive sensor in which is arranged is known (for example, see Patent Document 1).

特開2002−131161号公報JP 2002-131161 A

しかしながら、このものの場合、通常、電極にはアルミニウムが用いられ、半導体基板にはシリコンが用いられており、両者の熱膨張係数が異なるので、全体の温度が変化すると、電極と半導体基板との間に熱応力が発生し、この熱応力がピエゾ抵抗にまで伝達され、ピエゾ抵抗からの電気信号に誤差が発生してしまうという問題点があった。   However, in this case, aluminum is usually used for the electrode, and silicon is used for the semiconductor substrate. Since the thermal expansion coefficients of the two are different, if the overall temperature changes, there is a difference between the electrode and the semiconductor substrate. There is a problem in that a thermal stress is generated and the thermal stress is transmitted to the piezoresistor, and an error occurs in an electric signal from the piezoresistor.

この発明は、上述のような問題点を解決することを課題とするものであって、その目的は、全体の温度が変化し、電極と半導体基板との間に熱応力が発生しても、この熱応力がピエゾ抵抗にまで伝達せず、その結果ピエゾ抵抗からの電気信号の誤差を低減する半導体感歪センサを提供するものである。   The object of the present invention is to solve the above-described problems, and the purpose of the invention is to change the overall temperature and generate thermal stress between the electrode and the semiconductor substrate. It is an object of the present invention to provide a semiconductor strain sensitive sensor in which this thermal stress is not transmitted to a piezoresistor, and as a result, an error in an electric signal from the piezoresistor is reduced.

この発明に係る半導体感歪センサは、薄肉部およびこの薄肉部の外側に設けられこの薄肉部よりも厚い外枠部を有した半導体基板と、前記薄肉部に設けられたピエゾ抵抗と、前記外枠部に設けられ、前記ピエゾ抵抗と配線を介して電気的に接続され、前記ピエゾ抵抗からの電気信号を外部に伝達する電極とを備えた半導体感歪センサにおいて、前記外枠部には、前記電極の周囲に沿って凹部が形成されている。
また、この発明に係る半導体感歪センサは、薄肉部およびこの薄肉部の外側に設けられこの薄肉部よりも厚い外枠部を有した半導体基板と、前記薄肉部に設けられたピエゾ抵抗と、前記外枠部に設けられ、前記ピエゾ抵抗と配線を介して電気的に接続され、前記ピエゾ抵抗からの電気信号を外部に伝達する電極とを備えた半導体感歪センサにおいて、前記配線は、弾性の接続体を有し、前記接続体は、前記電極と前記ピエゾ抵抗とをつなぐ経路の一部を構成している。
The semiconductor strain sensitive sensor according to the present invention includes a thin substrate and a semiconductor substrate provided outside the thin portion and having an outer frame portion thicker than the thin portion, a piezoresistor provided in the thin portion, and the outer In the semiconductor strain sensitive sensor, which is provided in a frame portion and is electrically connected to the piezoresistor via a wiring and includes an electrode that transmits an electric signal from the piezoresistor to the outside, the outer frame portion includes: A recess is formed along the periphery of the electrode.
The semiconductor strain sensitive sensor according to the present invention is a semiconductor substrate having a thin portion and an outer frame portion provided outside the thin portion and thicker than the thin portion, a piezoresistor provided in the thin portion, In the semiconductor strain sensitive sensor, which is provided in the outer frame portion and is electrically connected to the piezoresistor via a wiring and transmits an electric signal from the piezoresistor to the outside, the wiring is elastic The connection body constitutes a part of a path connecting the electrode and the piezoresistor.

この発明に係る半導体感歪センサによれば、全体の温度が変化し、電極と半導体基板との間に熱応力が発生しても、この熱応力がピエゾ抵抗にまで伝達せず、その結果、ピエゾ抵抗からの電気信号の誤差を低減することができる。   According to the semiconductor strain sensitive sensor according to the present invention, even if the overall temperature changes and thermal stress is generated between the electrode and the semiconductor substrate, this thermal stress is not transmitted to the piezoresistor, and as a result, The error of the electric signal from the piezoresistor can be reduced.

以下、この発明の各実施の形態を図に基づいて説明するが、各図において、同一または相当の部材、部位については、同一の符号を付して説明する。
実施の形態1.
図1は実施の形態1に係る半導体感歪センサの平面図、図2は図1のII−II線に沿った矢視断面図、図3は図1のIII−III線に沿った矢視断面図である。
実施の形態1に係る半導体感歪センサは、薄肉部1aおよびこの薄肉部1aの外側に設けられたこの薄肉部1aよりも厚い外枠部1bを有した半導体基板1と、半導体基板1の下側に設けられた台座5とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding members and parts will be described with the same reference numerals.
Embodiment 1 FIG.
1 is a plan view of the semiconductor strain sensitive sensor according to the first embodiment, FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1, and FIG. 3 is a view taken along line III-III in FIG. It is sectional drawing.
A semiconductor strain sensitive sensor according to the first embodiment includes a semiconductor substrate 1 having a thin portion 1a and an outer frame portion 1b that is provided outside the thin portion 1a and is thicker than the thin portion 1a. And a pedestal 5 provided on the side.

半導体基板1と台座5との間で、薄肉部1aの下方には、真空が維持された圧力基準室8が形成されている。
薄肉部1aは、ダイヤフラムとして機能しており、外部の空気の圧力の変化により変形する。
薄肉部1aの上部の周縁部には、変形にともない抵抗値が変化する4個のピエゾ抵抗2が互いに対向して設けられている。
それぞれのピエゾ抵抗2には、ホイートストンブリッジを構成するように4本の配線3(図1の点模様で示した領域)が接続されている。
外枠部1bの上部の一端部には、ピエゾ抵抗2に電圧を印加し、また、ピエゾ抵抗2の抵抗値の変化にともない変化する電圧を電気信号として外部に伝達する4個の電極4が外枠部1bの1つの側面に沿って設けられ、それぞれの電極4は、配線3の上側に積層して接続されている。
外枠部1bの上面には、電極4の周囲において、外枠部1bの1つの側面に面した領域以外には、電極4の周囲に沿って凹部1cが形成されている。
配線3は、凹部1cを迂回して、外枠部1bの1つの側面に面した領域を通って電極4と接続されている。
A pressure reference chamber 8 in which a vacuum is maintained is formed between the semiconductor substrate 1 and the base 5 and below the thin portion 1a.
The thin portion 1a functions as a diaphragm and is deformed by a change in the pressure of external air.
Four piezoresistors 2 whose resistance values change with deformation are provided opposite to each other at the upper peripheral portion of the thin portion 1a.
Each of the piezoresistors 2 is connected with four wires 3 (regions indicated by dotted patterns in FIG. 1) so as to constitute a Wheatstone bridge.
Four electrodes 4 that apply a voltage to the piezoresistor 2 and transmit a voltage that changes with a change in the resistance value of the piezoresistor 2 as an electrical signal to one end of the upper portion of the outer frame 1b. Provided along one side surface of the outer frame portion 1 b, each electrode 4 is stacked and connected on the upper side of the wiring 3.
On the upper surface of the outer frame portion 1 b, a recess 1 c is formed along the periphery of the electrode 4 except for the region facing the one side surface of the outer frame portion 1 b around the electrode 4.
The wiring 3 bypasses the concave portion 1c and is connected to the electrode 4 through a region facing one side surface of the outer frame portion 1b.

半導体基板1は、SOI基板であり、中間部に層状の埋込酸化膜1dが全面に渡って形成されている。
薄肉部1aは、半導体基板1の下面からディープRIEによって埋込酸化膜1dまでエッチングすることにより形成されている。
薄肉部1aの大きさは、一辺が400μm、厚さが10μm程度である。
The semiconductor substrate 1 is an SOI substrate, and a layered buried oxide film 1d is formed over the entire surface in an intermediate portion.
The thin portion 1a is formed by etching from the lower surface of the semiconductor substrate 1 to the buried oxide film 1d by deep RIE.
As for the size of the thin portion 1a, one side is about 400 μm and the thickness is about 10 μm.

半導体基板1の上面には、シリコン酸化膜6が形成され、さらにこのシリコン酸化膜6の上面にはシリコン窒化膜7が形成されており、シリコン酸化膜6およびシリコン窒化膜7によって半導体基板1が保護されている。   A silicon oxide film 6 is formed on the upper surface of the semiconductor substrate 1, and a silicon nitride film 7 is formed on the upper surface of the silicon oxide film 6, and the semiconductor substrate 1 is formed by the silicon oxide film 6 and the silicon nitride film 7. Protected.

電極4は、配線3とのオートミックコンタクト性、コスト、耐久性などを総合的に考慮すると、アルミニウムまたはアルミニウムに微量のシリコンや銅を添加したアルミニウム合金を用いることが望ましい。
台座5は、ホウ珪酸ガラスからなり、陽極接合により半導体基板1と接合されている。
For the electrode 4, it is desirable to use aluminum or an aluminum alloy obtained by adding a trace amount of silicon or copper to aluminum in consideration of the automic contact property with the wiring 3, cost, and durability.
The pedestal 5 is made of borosilicate glass and is bonded to the semiconductor substrate 1 by anodic bonding.

ピエゾ抵抗2および配線3は、半導体基板1にイオン注入、拡散することによって形成されている。
凹部1cの深さは、イオン注入、拡散によって形成された配線3の深さと同等以上であり、3μm〜5μm程度であり、ドライエッチングにより形成されている。
The piezoresistor 2 and the wiring 3 are formed by ion implantation and diffusion into the semiconductor substrate 1.
The depth of the recess 1c is equal to or greater than the depth of the wiring 3 formed by ion implantation and diffusion, and is about 3 μm to 5 μm, and is formed by dry etching.

次に、実施の形態1に係る半導体感歪センサの動作について説明する。
まず、電極4により、各ピエゾ抵抗2には、ホイートストンブリッジとしての電圧が印加される。
次に、外部の空気の圧力の変化にともない、薄肉部1aが変形し、ピエゾ抵抗2の抵抗値も変化する。ピエゾ抵抗2の抵抗値が変化すると、配線3を介して変化した電圧が電極4に伝えられる。
電極4には、図示しない圧力算出手段が設けられており、この圧力算出手段は、電圧の変化から薄肉部1aの変形量を算出し、さらに、薄肉部1aの変形量から薄肉部1aに加えた空気の圧力を算出する。
Next, the operation of the semiconductor strain sensitive sensor according to the first embodiment will be described.
First, a voltage as a Wheatstone bridge is applied to each piezoresistor 2 by the electrode 4.
Next, as the pressure of the external air changes, the thin portion 1a is deformed and the resistance value of the piezoresistor 2 also changes. When the resistance value of the piezoresistor 2 changes, the changed voltage is transmitted to the electrode 4 via the wiring 3.
The electrode 4 is provided with a pressure calculation means (not shown). The pressure calculation means calculates the deformation amount of the thin portion 1a from the change in voltage, and further adds the deformation amount of the thin portion 1a to the thin portion 1a. Calculate the air pressure.

ここで、全体の温度が変化すると、電極4および半導体基板1は変形する。
このとき、電極4と半導体基板1とは、それぞれの熱膨張係数が異なるため、電極4と半導体基板1との間では、熱応力が発生する。
この熱応力は、半導体基板1を通じて伝達されるものの、電極4周辺の半導体基板1には、電極4の周囲に沿った凹部1cが形成されているので、熱応力が、凹部1cに吸収され、凹部1cより外側へ伝達されない。
その結果、ピエゾ抵抗2には、全体の温度変化により発生する熱応力の影響が伝達されず、半導体感歪センサの誤差の発生を防ぐことができる。
Here, when the entire temperature changes, the electrode 4 and the semiconductor substrate 1 are deformed.
At this time, since the thermal expansion coefficients of the electrode 4 and the semiconductor substrate 1 are different, thermal stress is generated between the electrode 4 and the semiconductor substrate 1.
Although this thermal stress is transmitted through the semiconductor substrate 1, the semiconductor substrate 1 around the electrode 4 is formed with the recess 1c along the periphery of the electrode 4, so that the thermal stress is absorbed by the recess 1c, It is not transmitted outside the recess 1c.
As a result, the influence of the thermal stress generated by the overall temperature change is not transmitted to the piezoresistor 2, and the occurrence of errors in the semiconductor strain sensitive sensor can be prevented.

以上説明したように、実施の形態1に係る半導体感歪センサによると、外枠部1bには、電極4の周囲に沿って凹部1cが形成されているので、全体の温度が変化し、電極4と半導体基板1との間に熱応力が発生しても、この熱応力がピエゾ抵抗2にまで伝達せず、その結果、ピエゾ抵抗2からの電気信号の誤差を低減することができる。   As described above, according to the semiconductor strain sensor according to the first embodiment, the outer frame portion 1b is formed with the recess 1c along the periphery of the electrode 4, so that the overall temperature changes, and the electrode Even if a thermal stress is generated between the semiconductor substrate 1 and the semiconductor substrate 1, the thermal stress is not transmitted to the piezoresistor 2, and as a result, an error in the electrical signal from the piezoresistor 2 can be reduced.

実施の形態2.
図4は実施の形態2に係る半導体感歪センサの平面図、図5は図4のV−V線に沿った矢視断面図である。
実施の形態2に係る半導体感歪センサは、半導体基板1の外枠部1bに、電極4の全周囲に渡って凹部1cが形成され、電極4と配線3とが切り離されている。
この凹部1cには、接続体である1本の板形状のバネ9がZ形状に折り曲げられて設けられており、このバネ9を介して電極4と配線3とが電気的に接続されている。
外枠部1bには、電極4の全周に渡って凹部1cが形成されているので、外部の温度変化に伴い、電極4と配線3との間に熱応力が発生しても、熱応力が凹部1cより外側へ伝達されない。
その他の構成は、実施の形態1と同様である。
Embodiment 2. FIG.
4 is a plan view of the semiconductor strain sensitive sensor according to the second embodiment, and FIG. 5 is a cross-sectional view taken along line VV in FIG.
In the semiconductor strain sensitive sensor according to the second embodiment, a recess 1 c is formed in the outer frame portion 1 b of the semiconductor substrate 1 over the entire periphery of the electrode 4, and the electrode 4 and the wiring 3 are separated.
In this recess 1c, a single plate-like spring 9 as a connecting body is provided by being bent in a Z shape, and the electrode 4 and the wiring 3 are electrically connected via the spring 9. .
Since the recess 1c is formed in the outer frame 1b over the entire circumference of the electrode 4, even if a thermal stress is generated between the electrode 4 and the wiring 3 due to an external temperature change, the thermal stress Is not transmitted outside the recess 1c.
Other configurations are the same as those in the first embodiment.

実施の形態2に係る半導体感歪センサによると、配線3は、バネ9を有し、このバネ9を介して電極4と接続されているので、外部の温度が変化し、電極4による熱応力が発生しても、ピエゾ抵抗2にまで伝達されず、半導体感歪センサの誤差を低減することができる。
また、電極4および配線3が変形し、電極4と配線3との間の距離が広がっても、バネ9が変形することで、電極4と配線3との間の距離の変化に追随し、両者の電気的接続を確実にすることができる。
According to the semiconductor strain sensitive sensor according to the second embodiment, since the wiring 3 has the spring 9 and is connected to the electrode 4 through the spring 9, the external temperature changes and the thermal stress caused by the electrode 4 changes. Even if this occurs, it is not transmitted to the piezoresistor 2, and the error of the semiconductor strain sensitive sensor can be reduced.
Moreover, even if the electrode 4 and the wiring 3 are deformed and the distance between the electrode 4 and the wiring 3 is increased, the spring 9 is deformed to follow the change in the distance between the electrode 4 and the wiring 3, Both electrical connections can be ensured.

実施の形態3.
図6(a)は実施の形態3に係る半導体感歪センサの平面図、図6(b)は図6(a)のバネ9の拡大図である。
実施の形態3に係る半導体感歪センサは、半導体基板1の外枠部1bに、電極4の全周に渡って凹部1cが形成され、電極4と配線3とが切り離されている。
この凹部1cの電極4と配線3との間には、接続体である板形状のバネ9が2本設けられ、それぞれのバネ9は山形状に折り曲げられ、突出した方向が互いに反対方向となるように配置されている。これらのバネ9により電極4と配線3とが電気的に接続されている。
その他の構成は、実施の形態2と同様である。
Embodiment 3 FIG.
FIG. 6A is a plan view of the semiconductor strain sensitive sensor according to the third embodiment, and FIG. 6B is an enlarged view of the spring 9 in FIG.
In the semiconductor strain sensitive sensor according to the third embodiment, a recess 1 c is formed in the outer frame portion 1 b of the semiconductor substrate 1 over the entire circumference of the electrode 4, and the electrode 4 and the wiring 3 are separated.
Two plate-shaped springs 9 as connecting bodies are provided between the electrode 4 and the wiring 3 of the recess 1c. Each spring 9 is bent into a mountain shape, and the protruding directions are opposite to each other. Are arranged as follows. The electrodes 4 and the wiring 3 are electrically connected by these springs 9.
Other configurations are the same as those of the second embodiment.

実施の形態3に係る半導体感歪センサによると、凹部1cには、バネ9が2本設けられているので、実施の形態2に係る半導体感歪センサのものより、電極4と配線3との電気的接続をより確実にすることができる。   According to the semiconductor strain sensor according to the third embodiment, since two springs 9 are provided in the recess 1c, the electrode 4 and the wiring 3 are connected to those of the semiconductor strain sensor according to the second embodiment. The electrical connection can be made more reliable.

なお、上記実施の形態2および実施の形態3では、接続体をバネ9として説明したが勿論このものに限らず、導電性かつ弾性のあるものであればよい。   In the second embodiment and the third embodiment, the connection body has been described as the spring 9, but of course, the connection body is not limited to this, and any conductive and elastic material may be used.

また、上記実施の形態2および実施の形態3では、バネ9の端部が電極4と接続されている半導体感歪センサについて説明したが、バネ9が配線3の中間部にあり、配線3の端部が電極4と接続されてもよい。   In the second and third embodiments, the semiconductor strain sensitive sensor in which the end of the spring 9 is connected to the electrode 4 has been described. However, the spring 9 is in the middle of the wiring 3 and the wiring 3 The end may be connected to the electrode 4.

また、上記各実施の形態では、外部の空気の圧力を測定するための半導体感歪センサについて説明したが、例えば、可動機構体の可動部の可動量を測定するためのセンサであってもよく、また、ピエゾ抵抗を備えた加速度を測定するセンサ等であってもよい。   In each of the above embodiments, the semiconductor strain sensitive sensor for measuring the pressure of the external air has been described. However, for example, the sensor may be a sensor for measuring the movable amount of the movable portion of the movable mechanism body. Also, a sensor or the like that measures acceleration with a piezoresistor may be used.

実施の形態1に係る半導体感歪センサの平面図である。2 is a plan view of the semiconductor strain sensor according to Embodiment 1. FIG. 図1のII−II線に沿った矢視断面図である。It is arrow sectional drawing along the II-II line | wire of FIG. 図1のIII−III線に沿った矢視断面図である。It is arrow sectional drawing along the III-III line of FIG. 実施の形態2に係る半導体感歪センサの平面図である。FIG. 6 is a plan view of a semiconductor strain sensitive sensor according to a second embodiment. 図4のV−V線に沿った矢視断面図である。It is arrow sectional drawing along the VV line of FIG. 図6(a)は実施の形態3に係る半導体感歪センサの平面図、図6(b)は図6(a)のバネの拡大図である。6A is a plan view of the semiconductor strain sensitive sensor according to the third embodiment, and FIG. 6B is an enlarged view of the spring of FIG. 6A.

符号の説明Explanation of symbols

1 半導体基板、1a 薄肉部、1b 外枠部、1c 凹部、1d 埋込酸化膜、2 ピエゾ抵抗、3 配線、4 電極、5 台座、6 シリコン酸化膜、7 シリコン窒化膜、8 圧力基準室、9 バネ。   DESCRIPTION OF SYMBOLS 1 Semiconductor substrate, 1a Thin part, 1b Outer frame part, 1c Recessed part, 1d Embedded oxide film, 2 Piezoresistor, 3 Wiring, 4 Electrode, 5 base, 6 Silicon oxide film, 7 Silicon nitride film, 8 Pressure reference chamber, 9 Spring.

Claims (4)

薄肉部およびこの薄肉部の外側に設けられこの薄肉部よりも厚い外枠部を有した半導体基板と、
前記薄肉部に設けられたピエゾ抵抗と、
前記外枠部に設けられ、前記ピエゾ抵抗と配線を介して電気的に接続され、前記ピエゾ抵抗からの電気信号を外部に伝達する電極と、
を備えた半導体感歪センサにおいて、
前記外枠部には、前記電極の周囲に沿って凹部が形成されていることを特徴とする半導体感歪センサ。
A semiconductor substrate having a thin portion and an outer frame portion provided outside the thin portion and thicker than the thin portion;
Piezoresistor provided in the thin part,
An electrode provided on the outer frame, electrically connected to the piezoresistor via a wiring, and transmitting an electric signal from the piezoresistor to the outside;
In a semiconductor strain sensitive sensor equipped with
A semiconductor strain sensitive sensor, wherein a concave portion is formed in the outer frame portion along the periphery of the electrode.
薄肉部およびこの薄肉部の外側に設けられこの薄肉部よりも厚い外枠部を有した半導体基板と、
前記薄肉部に設けられたピエゾ抵抗と、
前記外枠部に設けられ、前記ピエゾ抵抗と配線を介して電気的に接続され、前記ピエゾ抵抗からの電気信号を外部に伝達する電極と、
を備えた半導体感歪センサにおいて、
前記配線は、弾性の接続体を有し、前記接続体は、前記電極と前記ピエゾ抵抗とをつなぐ経路の一部を構成していることを特徴とする半導体感歪センサ。
A semiconductor substrate having a thin portion and an outer frame portion provided outside the thin portion and thicker than the thin portion;
Piezoresistor provided in the thin part,
An electrode provided on the outer frame, electrically connected to the piezoresistor via a wiring, and transmitting an electric signal from the piezoresistor to the outside;
In a semiconductor strain sensitive sensor equipped with
The wiring includes an elastic connection body, and the connection body constitutes a part of a path connecting the electrode and the piezoresistor.
前記接続体は、並列に複数設けられたことを特徴とする請求項2に記載の半導体感歪センサ。   The semiconductor strain sensor according to claim 2, wherein a plurality of the connection bodies are provided in parallel. 前記接続体は、バネであることを特徴とする請求項2または請求項3に記載の半導体感歪センサ。   4. The semiconductor strain sensitive sensor according to claim 2, wherein the connection body is a spring.
JP2006265079A 2006-09-28 2006-09-28 Semiconductor strain sensor Pending JP2008082952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006265079A JP2008082952A (en) 2006-09-28 2006-09-28 Semiconductor strain sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006265079A JP2008082952A (en) 2006-09-28 2006-09-28 Semiconductor strain sensor

Publications (1)

Publication Number Publication Date
JP2008082952A true JP2008082952A (en) 2008-04-10

Family

ID=39353964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006265079A Pending JP2008082952A (en) 2006-09-28 2006-09-28 Semiconductor strain sensor

Country Status (1)

Country Link
JP (1) JP2008082952A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265012A (en) * 2008-04-28 2009-11-12 Fujikura Ltd Semiconductor sensor
US20130046999A1 (en) * 2011-08-17 2013-02-21 Broadcom Corporation Semiconductor Device Predictive Dynamic Thermal Management
CN110612060A (en) * 2017-05-22 2019-12-24 苹果公司 Multi-element piezoelectric sensor for physiological measurements
US11375957B2 (en) 2016-08-12 2022-07-05 Apple Inc. Vital signs monitoring system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236659A (en) * 1988-03-17 1989-09-21 Nippon Denso Co Ltd Semiconductor pressure sensor
JPH0526607A (en) * 1991-07-19 1993-02-02 Mitsubishi Electric Corp Strain gauge
JPH05288624A (en) * 1992-04-14 1993-11-02 Yokogawa Electric Corp Differential pressure measuring apparatus
JPH08236787A (en) * 1995-03-01 1996-09-13 Tokai Rika Co Ltd Cpacitive acceleration sensor and manufacture thereof
JPH1038731A (en) * 1996-07-25 1998-02-13 Nippon Seiki Co Ltd Semiconductor pressure detector
WO1998032170A1 (en) * 1997-01-17 1998-07-23 Seiko Epson Corporation Electronic component, semiconductor device, manufacturing method therefor, circuit board and electronic equipment
JP2000294686A (en) * 1999-03-19 2000-10-20 Internatl Business Mach Corp <Ibm> Ball grid array package where stress is alleviated
JP2000340805A (en) * 1999-04-19 2000-12-08 Motorola Inc Electronic part and manufacture
JP2001208628A (en) * 2000-01-26 2001-08-03 Matsushita Electric Works Ltd Semiconductor pressure sensor and its manufacturing method
JP2003217770A (en) * 2002-01-11 2003-07-31 Hon Hai Precision Industry Co Ltd Socket connector
JP2003315357A (en) * 2002-04-26 2003-11-06 Matsushita Electric Works Ltd Semiconductor acceleration sensor element

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236659A (en) * 1988-03-17 1989-09-21 Nippon Denso Co Ltd Semiconductor pressure sensor
JPH0526607A (en) * 1991-07-19 1993-02-02 Mitsubishi Electric Corp Strain gauge
JPH05288624A (en) * 1992-04-14 1993-11-02 Yokogawa Electric Corp Differential pressure measuring apparatus
JPH08236787A (en) * 1995-03-01 1996-09-13 Tokai Rika Co Ltd Cpacitive acceleration sensor and manufacture thereof
JPH1038731A (en) * 1996-07-25 1998-02-13 Nippon Seiki Co Ltd Semiconductor pressure detector
WO1998032170A1 (en) * 1997-01-17 1998-07-23 Seiko Epson Corporation Electronic component, semiconductor device, manufacturing method therefor, circuit board and electronic equipment
JP2000294686A (en) * 1999-03-19 2000-10-20 Internatl Business Mach Corp <Ibm> Ball grid array package where stress is alleviated
JP2000340805A (en) * 1999-04-19 2000-12-08 Motorola Inc Electronic part and manufacture
JP2001208628A (en) * 2000-01-26 2001-08-03 Matsushita Electric Works Ltd Semiconductor pressure sensor and its manufacturing method
JP2003217770A (en) * 2002-01-11 2003-07-31 Hon Hai Precision Industry Co Ltd Socket connector
JP2003315357A (en) * 2002-04-26 2003-11-06 Matsushita Electric Works Ltd Semiconductor acceleration sensor element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265012A (en) * 2008-04-28 2009-11-12 Fujikura Ltd Semiconductor sensor
US20130046999A1 (en) * 2011-08-17 2013-02-21 Broadcom Corporation Semiconductor Device Predictive Dynamic Thermal Management
US8930724B2 (en) * 2011-08-17 2015-01-06 Broadcom Corporation Semiconductor device predictive dynamic thermal management
US11375957B2 (en) 2016-08-12 2022-07-05 Apple Inc. Vital signs monitoring system
US11918381B2 (en) 2016-08-12 2024-03-05 Apple Inc. Vital signs monitoring system
CN110612060A (en) * 2017-05-22 2019-12-24 苹果公司 Multi-element piezoelectric sensor for physiological measurements
US11349063B2 (en) 2017-05-22 2022-05-31 Apple Inc. Multi-element piezo sensor for in-bed physiological measurements
CN110612060B (en) * 2017-05-22 2022-09-02 苹果公司 Multi-element piezoelectric sensor for physiological measurements

Similar Documents

Publication Publication Date Title
US7382599B2 (en) Capacitive pressure sensor
US8631707B2 (en) Differential temperature and acceleration compensated pressure transducer
JP4739164B2 (en) Semiconductor strain sensitive sensor for measuring intake air pressure of vehicle engine
US8230746B2 (en) Combined type pressure gauge, and manufacturing method of combined type pressure gauge
US7866215B2 (en) Redundant self compensating leadless pressure sensor
KR20080031969A (en) Pressure sensors and methods of making the same
JP6665588B2 (en) Pressure sensor
KR101953454B1 (en) Pressure sensor chip
JP2008039760A (en) Pressure sensor
JP5220866B2 (en) Semiconductor pressure sensor
JP2007240250A (en) Pressure sensor, pressure sensor package, pressure sensor module and electronic component
JP2008082952A (en) Semiconductor strain sensor
CN108793055B (en) Trench-based microelectromechanical transducer and method of manufacturing the same
JP2010025843A (en) Pressure sensor
US20160334292A1 (en) Pressure sensor
JP2005127750A (en) Semiconductor sensor and its manufacturing method
KR101573367B1 (en) Piezoresistive typed ceramic pressure sensor
JP2009288170A (en) Semiconductor pressure sensor
JP2009265012A (en) Semiconductor sensor
CN107490337B (en) Strain detector and method for manufacturing the same
JP6528602B2 (en) Pressure pulse wave sensor and biological information measuring device
CN109425460B (en) Micro-electromechanical transducer with thin film for high voltage, method of manufacturing the same, and system including the same
JP6725299B2 (en) Load sensor
JP4706634B2 (en) Semiconductor sensor and manufacturing method thereof
JP2010025760A (en) Semiconductor sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115