JP2008082073A - Joint structure of pile and post - Google Patents

Joint structure of pile and post Download PDF

Info

Publication number
JP2008082073A
JP2008082073A JP2006264915A JP2006264915A JP2008082073A JP 2008082073 A JP2008082073 A JP 2008082073A JP 2006264915 A JP2006264915 A JP 2006264915A JP 2006264915 A JP2006264915 A JP 2006264915A JP 2008082073 A JP2008082073 A JP 2008082073A
Authority
JP
Japan
Prior art keywords
pile
steel pipe
column
reinforcing bar
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006264915A
Other languages
Japanese (ja)
Other versions
JP4708295B2 (en
Inventor
Toshiharu Nakamura
敏晴 中村
Takashi Misawa
孝史 三澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2006264915A priority Critical patent/JP4708295B2/en
Publication of JP2008082073A publication Critical patent/JP2008082073A/en
Application granted granted Critical
Publication of JP4708295B2 publication Critical patent/JP4708295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Foundations (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the bending strength and toughness of the joint portion between a pile and a post without overlapping the upper end of a reinforcement 11 of the pile with the lower end of a reinforcement 31 of a post to bending strength and toughness equal to or higher than those in the case that the upper end of the reinforcement of the pile is overlapped with the lower end of the reinforcement of the post in a joint structure between the pile and the post for connecting the pile 1 and the post 3 to each other through a steel tube 5 which is so buried as to ride over the pile and the post. <P>SOLUTION: When a predetermined horizontal force acting on the joint portion between the pile and the post is Q, a bearing force against the steel tube of the pile 1 necessary for resisting the horizontal force is P, the depth of the steel tube buried into the pile is L, the tensile yield strength of a lateral tie disposed around the steel tube is fsy, the cross sectional area of the lateral tie per unit length of the steel tube is As, and a correction factor is α, As is so determined so that an expression P=α×fsy×As×cos45°×P×L/(2P-Q) is established with α set to 1.5 to 3.0. The lateral tie in an amount matching the As is disposed at a pile portion around the steel tube. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主として1杭1柱式の鉄道RCラーメン高架橋で採用される鉄筋コンクリート造の杭と鉄筋コンクリート造の柱との接合構造に関する。   The present invention mainly relates to a joint structure between a reinforced concrete pile and a reinforced concrete column employed in a 1-pile 1-column type railway RC rigid frame viaduct.

従来、この種の杭と柱の接合構造は図13に示すようになっている。図中GLは地面、GL´は盛土、1は鉄筋コンクリート造の杭を示している。杭1は、ケーシング工法により地表から掘削した孔内に鉄筋11を建て込んだ後、孔内にコンクリートを打設することにより造成される。杭1の上端には、橋台2を支える鉄筋コンクリート造の柱3が接続されている。尚、柱3の下端部は鉄筋コンクリート造の地中梁4に一体に連続するフーチング3aになっている。杭1の鉄筋11と柱3の鉄筋31は、夫々、周方向の間隔を存して配設した軸方向に長手の主筋12,32と、これら主筋12,32を取り囲む、軸方向の間隔を存して配設したリング状の帯鉄筋13,33とで構成される。   Conventionally, this type of pile-column connection structure is as shown in FIG. In the figure, GL is the ground, GL ′ is embankment, and 1 is a reinforced concrete pile. The pile 1 is constructed by placing a reinforcing bar 11 in a hole excavated from the ground surface by a casing method and then placing concrete in the hole. A reinforced concrete column 3 that supports the abutment 2 is connected to the upper end of the pile 1. In addition, the lower end part of the column 3 is a footing 3a that is integrally continuous with the underground beam 4 made of reinforced concrete. The reinforcing bar 11 of the pile 1 and the reinforcing bar 31 of the column 3 are respectively provided with axially long main bars 12 and 32 arranged in the circumferential direction and the axial distance surrounding these main bars 12 and 32. It is composed of ring-shaped reinforcing bars 13 and 33 that are arranged and exist.

杭1の鉄筋11の上端部は、杭1の上端面より上方にのびて、柱3の鉄筋31の下端部にオーバーラップしている。これにより杭1と柱3の接続強度が向上する。然し、柱3の鉄筋31の下端部における配筋作業がこれにオーバーラップする杭1の鉄筋11に邪魔されて非常に面倒になり、また、鉄筋11,31のオーバーラップ部分へのコンクリートの打設も面倒になり、施工性が悪くなる不具合がある。   The upper end portion of the reinforcing bar 11 of the pile 1 extends upward from the upper end surface of the pile 1 and overlaps the lower end portion of the reinforcing bar 31 of the column 3. Thereby, the connection strength of the pile 1 and the pillar 3 improves. However, the bar arrangement work at the lower end of the reinforcing bar 31 of the column 3 is very troublesome because it is obstructed by the reinforcing bar 11 of the pile 1 that overlaps it, and the concrete is applied to the overlapping part of the reinforcing bars 11 and 31. There is a problem that the installation becomes troublesome and the workability becomes worse.

かかる不具合を解消するため、鉄筋コンクリート造の杭と鉄筋コンクリート造の柱とを、杭の鉄筋の上端部を柱の鉄筋の下端部にオーバーラップさせることなく接続する杭と柱の接合構造も従来知られている(例えば、特許文献1参照)。このものでは、所定長さの鋼管の下半部が杭の上端部の鉄筋で囲われる断面中央部に埋め込まれると共に、鋼管の上半部が柱の下端部の鉄筋で囲われる断面中央部に埋め込まれ、杭と柱が鋼管を介して接続される。
特開2005−76330号公報
In order to solve this problem, a pile-column connection structure that connects a reinforced concrete pile and a reinforced concrete column without overlapping the upper end of the reinforcing bar of the pile with the lower end of the reinforcing bar of the column is also known. (For example, refer to Patent Document 1). In this, the lower half of the steel pipe of a predetermined length is embedded in the center of the cross section surrounded by the reinforcing bar at the upper end of the pile, and the upper half of the steel pipe is embedded in the central part of the cross section surrounded by the reinforcing bar at the lower end of the column. Embedded, piles and columns are connected via steel pipes.
JP-A-2005-76330

上記の如く杭と柱とを鋼管を介して接続するものでは、杭の鉄筋の上端部が柱の鉄筋の下端部にオーバーラップしないため、施工性が著しく向上する。然し、このものでは、本願発明者が行った後述する試験の結果、杭に埋め込まれた鋼管の周囲の帯鉄筋の量が不足すると、鋼管周囲のコンクリートが割裂破壊し、杭と柱の接続部分の曲げ耐力が低下すると共にじん性能も低下して、所要の耐震性能を確保できなくなることが判明した。   In the case where the pile and the column are connected via the steel pipe as described above, the workability is remarkably improved because the upper end of the reinforcing bar of the pile does not overlap the lower end of the reinforcing bar of the column. However, in this case, if the amount of steel bars around the steel pipe embedded in the pile is insufficient as a result of the test described later by the present inventor, the concrete around the steel pipe breaks and breaks, and the connection part between the pile and the column It has been found that the required seismic performance cannot be ensured due to the decrease in the bending strength and the dust performance.

本発明は、以上の点に鑑み、鋼管の周囲の帯鉄筋の量を適切に設定して、杭と柱の接続部分の曲げ耐力とじん性能とを杭の鉄筋の上端部が柱の鉄筋の下端部にオーバーラップするものと同等以上に向上できるようにした杭と柱の接合構造を提供することをその課題としている。   In view of the above points, the present invention appropriately sets the amount of steel bar reinforcement around the steel pipe, and determines the bending strength and dust performance of the connection part between the pile and the column. An object of the present invention is to provide a pile-column joint structure that can be improved to be equal to or higher than that overlapping the lower end portion.

上記課題を解決するために、本発明は、鉄筋コンクリート造の杭と鉄筋コンクリート造の柱とを、杭の鉄筋の上端部を柱の鉄筋の下端部にオーバーラップさせることなく接続する杭と柱の接合構造であって、所定長さの鋼管の下半部が杭の上端部の鉄筋で囲われる断面中央部に埋め込まれ、鋼管の上半部が柱の下端部の鉄筋で囲われる断面中央部に埋め込まれるものにおいて、鋼管の太さ及び肉厚は、鋼管の断面の曲げ耐力が杭の鉄筋の主筋全体の断面の曲げ耐力と同等になるように設定され、杭と柱の接続部分に作用する所定の水平力に抗するのに必要な杭の鋼管に対する支圧力と、杭への鋼管の埋め込み深さとから杭の主筋を取り囲むリング状の帯鉄筋の量を決定し、この量の帯鉄筋を鋼管の周囲の杭部分に配設することを特徴とする。   In order to solve the above-described problems, the present invention provides a connection between a pile and a column that connects a reinforced concrete pile and a reinforced concrete column without overlapping the upper end of the reinforcing bar of the pile with the lower end of the reinforcing bar of the column. In the structure, the lower half of the steel pipe of a predetermined length is embedded in the center of the cross section surrounded by the reinforcing bar at the upper end of the pile, and the upper half of the steel pipe is embedded in the central part of the cross section surrounded by the reinforcing bar at the lower end of the column. In the embedded structure, the thickness and wall thickness of the steel pipe are set so that the bending strength of the cross section of the steel pipe is equal to the bending strength of the cross section of the main reinforcing bar of the pile, and acts on the connection part of the pile and column. The amount of ring-shaped rebar that surrounds the main bar of the pile is determined from the support pressure on the steel pipe of the pile necessary to withstand a predetermined horizontal force and the depth of embedding of the steel pipe in the pile. It arrange | positions in the pile part around a steel pipe, It is characterized by the above-mentioned.

杭と柱の接続部分に作用する水平力に抗する抵抗力は、主として鋼管に対するその前背面のコンクリートによる支圧力で得られる。この支圧力は、鋼管の周囲のコンクリートが健全なときに期待できるものであり、このコンクリートが割裂破壊する場合には、支圧力は期待できず、曲げ耐力及びじん性能が低下する。従って、曲げ耐力及びじん性能を向上させるには、鋼管の周囲のコンクリートをしっかりと拘束してその割裂破壊を抑制できるように、鋼管の周囲の杭部分に配設する帯鉄筋の量を適切に設定することが必要になる。そして、本願発明によれば、杭と柱の接続部分に作用する所定の水平力に抗するのに必要な杭の鋼管に対する支圧力が得られるように帯鉄筋の量を決定し、この量の帯鉄筋を鋼管の周囲の杭部分に配設するため、杭と柱の接続部分に所定の水平力が作用しても鋼管の周囲のコンクリートは割裂破壊しない。その結果、杭と柱の接続部分の曲げ耐力及びじん性能が向上する。   The resistance force against the horizontal force acting on the connection part between the pile and the column is obtained mainly by the support pressure by the concrete on the front and back surfaces of the steel pipe. This bearing pressure can be expected when the concrete surrounding the steel pipe is healthy. If this concrete breaks and breaks, the bearing pressure cannot be expected, and the bending strength and the dust performance deteriorate. Therefore, in order to improve the bending strength and the toughness performance, the amount of the steel bars to be arranged in the pile part around the steel pipe is appropriately adjusted so that the concrete around the steel pipe can be firmly restrained and the split fracture can be suppressed. It becomes necessary to set. And according to the present invention, the amount of the rebar is determined so that the supporting pressure against the steel pipe of the pile necessary to resist the predetermined horizontal force acting on the connecting portion of the pile and the column is obtained, and this amount Since the steel bars are arranged in the pile portion around the steel pipe, the concrete around the steel pipe does not split and break even if a predetermined horizontal force acts on the connection portion between the pile and the column. As a result, the bending strength and the dust performance of the connection part of a pile and a column improve.

より具体的には、鋼管の断面形状が正方形である場合、杭と柱の接続部分に作用する所定の水平力をQ、この水平力に抗するのに必要な杭の鋼管に対する支圧力をP、杭への鋼管の埋め込み深さをL、鋼管の周囲に配設する帯鉄筋の引張降伏耐力をfsy、鋼管の単位長さ当りの帯鉄筋の断面積をAs、補正係数をαとして、次式、
P=α・fsy・As・cos45°・P・L/(2P−Q)
が、αを1.5〜3.0の値にして成立するように、Asを決定し、このAsに見合う量の帯鉄筋を鋼管の周囲の杭部分に配設する。これによれば、後述する試験結果から明らかなように、杭と柱の接続部分の曲げ耐力とじん性能を杭の鉄筋の上端部が柱の鉄筋の下端部にオーバーラップするものと同等以上に向上できる。
More specifically, when the cross-sectional shape of the steel pipe is a square, the predetermined horizontal force acting on the connecting portion of the pile and the column is Q, and the support pressure to the steel pipe of the pile necessary to resist this horizontal force is P , L is the depth of steel pipe embedded in the pile, fsy is the tensile yield strength of the steel bars disposed around the steel pipe, As is the cross-sectional area of the steel bars per unit length of the steel pipe, and α is the correction factor. formula,
P = α, fsy, As, cos 45 °, P, L / (2P-Q)
However, As is determined so that α is set to a value of 1.5 to 3.0, an amount of the reinforcing bar corresponding to the As is disposed in the pile portion around the steel pipe. According to this, as is clear from the test results described later, the bending strength and the dust performance of the connection part of the pile and the column are equal to or higher than those in which the upper end of the reinforcing bar of the pile overlaps the lower end of the reinforcing bar of the column. Can be improved.

尚、Asを大きくすればする程αは小さくなるが、Asの増大に伴い施工性が悪くなるため、αの下限は1.5としている。また、αが3.0を上回る場合は、Asが小さくなり過ぎて、鋼管周囲のコンクリートが帯鉄筋による拘束力不足で割裂破壊しやすくなる。そして、杭の鉄筋の上端部が柱の鉄筋の下端部にオーバーラップするものと同等以上の曲げ耐力とじん性能とを得ることができなくなる。そこで、αの上限は3.0としている。   In addition, although α becomes small, so that As is enlarged, since workability worsens with the increase in As, the lower limit of α is set to 1.5. Moreover, when (alpha) exceeds 3.0, As will become small too much, and the concrete around a steel pipe will be easy to split and break by the restraint force with a strip reinforcement insufficient. And it becomes impossible to obtain the bending strength and the dust performance equivalent to or higher than those in which the upper end of the reinforcing bar of the pile overlaps the lower end of the reinforcing bar of the column. Therefore, the upper limit of α is set to 3.0.

図1は本発明の実施形態の杭と柱の接合構造を示している。尚、図13に示した上記従来例と同様の部材、部位には上記と同一の符号を付している。本実施形態では、図2に示されているように、杭1が断面円形であり、柱2が断面正方形である。   FIG. 1 shows a joint structure between a pile and a column according to an embodiment of the present invention. Note that the same members and parts as those in the conventional example shown in FIG. In this embodiment, as FIG. 2 shows, the pile 1 is circular in cross section and the pillar 2 is cross-sectional square.

また、本実施形態では、杭1の鉄筋11の上端部が柱3の鉄筋31の下端部にオーバーラップしていない。その代り、図2に示す如く断面正方形の鋼管5を用い、この鋼管5の下半部を杭1の上端部の鉄筋11で囲われる断面中央部に埋め込むと共に、鋼管5の上半部を柱3の下端部の鉄筋31で囲われる断面中央部に埋め込んでいる。これにより、杭1と柱3とが鋼管5を介して接続される。尚、杭1と柱3の接続部分の曲げ耐力が杭1の鉄筋11の上端部を柱3の鉄筋31の下端部にオーバーラップさせる図13に示すものと同等になるように、鋼管5の太さと肉厚は、鋼管5の断面の曲げ耐力が杭1の鉄筋11の主筋12全体の断面の曲げ耐力と同等になるように設定されている。   Moreover, in this embodiment, the upper end part of the reinforcing bar 11 of the pile 1 does not overlap the lower end part of the reinforcing bar 31 of the column 3. Instead, as shown in FIG. 2, a steel pipe 5 having a square cross section is used, and the lower half of the steel pipe 5 is embedded in the center of the cross section surrounded by the reinforcing bar 11 at the upper end of the pile 1, and the upper half of the steel pipe 5 is a column. 3 is embedded in the central portion of the cross section surrounded by the reinforcing bar 31 at the lower end. Thereby, the pile 1 and the column 3 are connected via the steel pipe 5. The bending strength of the connection portion between the pile 1 and the column 3 is equal to that shown in FIG. 13 where the upper end of the reinforcing bar 11 of the pile 1 overlaps the lower end of the reinforcing bar 31 of the column 3. The thickness and thickness are set so that the bending strength of the cross section of the steel pipe 5 is equivalent to the bending strength of the cross section of the entire main bar 12 of the reinforcing bar 11 of the pile 1.

ここで、鋼管5及びコンクリートの材料強度を十分利用して、杭1と柱3の接続部分の曲げ耐力及びじん性能を効率良く向上させるには、杭1の鋼管5の周囲のコンクリートを杭1の帯鉄筋33でしっかりと拘束して、鋼管5の周囲のコンクリートが割裂破壊しないようにすることが必要になる。そこで、鋼管5の周囲の杭1の部分に配設する帯鉄筋33の量をどのように決定すれば良いかを調べるため、下記の試験を行った。   Here, in order to efficiently improve the bending strength and the dust performance of the connection part of the pile 1 and the column 3 by making full use of the material strength of the steel pipe 5 and concrete, the concrete around the steel pipe 5 of the pile 1 is piled up. Therefore, it is necessary to prevent the concrete surrounding the steel pipe 5 from being split and broken. Therefore, in order to investigate how to determine the amount of the rebar 33 disposed in the portion of the pile 1 around the steel pipe 5, the following test was performed.

試験に用いた試験体はNo1からNo6までの6種類であり、何れの試験体も外形寸法は図3に示す通りである。即ち、試験体は、鉄道RCラーメン高架橋の1柱1杭式の基礎に一般的に用いられるφ1000mmの杭の1/2モデルのφ500(長さ2000mm)の鉄筋コンクリート造の杭1であり、その一端にフーチング3aに対応する平面形状2500mm×1500mm高さ800mmの直方体形状の接合部3a´が一体に形成されている。そして、接合部3a´を下にした上下反転姿勢で試験体を試験機のベースに接合部において固定し、杭1の上端に自重による圧縮応力度に相当する1N/mmの鉛直荷重を載荷する。また、接合部3a´から1500mm離れた杭1の上部を油圧ジャッキで水平方向に押し引きし、この部分に正負交番の水平荷重を載荷するようにした。 There are six types of test bodies used in the tests from No1 to No6, and the outer dimensions of all the test bodies are as shown in FIG. In other words, the specimen is a reinforced concrete pile 1 of φ500 (length 2000 mm) which is a half model of φ1000 mm pile generally used for the foundation of a 1-column 1-pile type of RC RC ramen viaduct. In addition, a rectangular parallelepiped joining portion 3a ′ having a planar shape of 2500 mm × 1500 mm and a height of 800 mm corresponding to the footing 3a is integrally formed. Then, the test body is fixed to the base of the testing machine in the upside down posture with the joint 3a ′ down, and a vertical load of 1 N / mm 2 corresponding to the degree of compressive stress due to its own weight is loaded on the upper end of the pile 1 To do. Further, the upper part of the pile 1 that is 1500 mm away from the joint 3a ′ is pushed and pulled in the horizontal direction with a hydraulic jack, and a positive and negative alternating horizontal load is loaded on this part.

No1の試験体は、図13に示した従来例を模したものであり、図4(a)に示すように、主筋12が接合部3a´に亘って配設されている。主筋12は、杭1の断面中心と同心の直径360mmの円周上に周方向に等間隔で16本配設されている。また、帯鉄筋13は、図4(a)にA,Cで示す杭1の上部と接合部3a´内の領域では軸方向に120mm間隔で配設され、Bで示す領域では軸方向に60mm間隔で配設されている。   The test specimen No. 1 simulates the conventional example shown in FIG. 13, and as shown in FIG. 4A, the main muscle 12 is disposed across the joint 3 a ′. Sixteen main bars 12 are arranged at equal intervals in the circumferential direction on a circumference having a diameter of 360 mm concentric with the cross-sectional center of the pile 1. In addition, the belt reinforcing bars 13 are arranged at intervals of 120 mm in the axial direction in the upper portion of the pile 1 indicated by A and C in FIG. 4A and the region in the joint portion 3a ′, and 60 mm in the axial direction in the region indicated by B. They are arranged at intervals.

No2〜No6の試験体も、主筋12が杭1の断面中心と同心の直径360mmの円周上に周方向に等間隔で16本配設されているが、主筋12は、図4(b)に示すように、接合部3a´の60mm手前で終端している。そして、杭1の鉄筋11で囲われる断面中央部に接合部3a´の下端に達する鋼管5が埋め込まれている。また、帯鉄筋13は、図4(b)にAで示す杭1の上部領域では軸方向に120mm間隔で配設され、Bに示す鋼管5の周囲の杭部分を含む領域では60mm間隔で配設されている。   In the specimens No. 2 to No. 6, 16 main bars 12 are arranged at equal intervals in the circumferential direction on the circumference of 360 mm in diameter concentric with the cross-sectional center of the pile 1, but the main bars 12 are shown in FIG. As shown in FIG. 4, it terminates 60 mm before the joint 3a ′. And the steel pipe 5 which reaches the lower end of joining part 3a 'is embedded in the cross-sectional center part enclosed by the reinforcing bar 11 of the pile 1. FIG. In addition, the strip reinforcing bars 13 are arranged at intervals of 120 mm in the axial direction in the upper region of the pile 1 shown by A in FIG. 4B, and are arranged at intervals of 60 mm in the region including the pile portion around the steel pipe 5 shown in B. It is installed.

ここで、主筋12は、No1〜No6の何れの試験体においても、SD345製の直径16mmのものである。また、鋼管5は、No2〜No6の何れの試験体においても、SM490製で、断面形状が一辺200mmの正方形である。また、鋼管5の肉厚は、鋼管5の断面の曲げ耐力が16本の主筋12全体の断面の曲げ耐力と同等になるように、8mmに設定されている。   Here, the main muscle 12 is made of SD345 and has a diameter of 16 mm in any of the test bodies No1 to No6. Further, the steel pipe 5 is made of SM490 and has a square shape with a cross-sectional side of 200 mm in any of the test bodies No2 to No6. Further, the thickness of the steel pipe 5 is set to 8 mm so that the bending strength of the cross section of the steel pipe 5 is equivalent to the bending strength of the cross section of the entire 16 main bars 12.

No1の試験体の図4(a)のA,B,C各領域と、No2〜No6の試験体の図4(b)のA領域に配設する帯鉄筋13は何れもSD345製の直径10mmのものである。また、No2〜No4の試験体の図4(b)のB領域に配設する帯鉄筋13は、上記と同様にSD345製の直径10mmのものであるが、杭1への鋼管5の埋め込み深さLがNo2の試験体では800mm、No3の試験体では600mm、No4の試験体では400mmになっている。また、No5とNo6の試験体は、杭1への鋼管5の埋め込み深さLが共に600mmになっているが、図4(b)のB領域に配設する帯鉄筋13を、No5の試験体ではSD345製の直径13mmのものとし、No6の試験体ではSD345製の直径16mmのものとしている。   4A of the No. 1 test body, each of the reinforcing bars 13 disposed in the A area of FIG. 4B of the No. 2 to No. 6 test specimens is 10 mm in diameter made of SD345. belongs to. Moreover, although the band reinforcement 13 arrange | positioned in the B area | region of FIG.4 (b) of the test body of No2-No4 is the thing of diameter 10mm made from SD345 like the above, the embedding depth of the steel pipe 5 to the pile 1 is carried out. The length L is 800 mm for the No. 2 specimen, 600 mm for the No. 3 specimen, and 400 mm for the No. 4 specimen. Moreover, although the embedded depth L of the steel pipe 5 to the pile 1 is both 600 mm, the test specimens of No5 and No6 have the band reinforcing bars 13 arranged in the region B of FIG. The body is made of SD345 with a diameter of 13 mm, and the specimen No. 6 is made of SD345 with a diameter of 16 mm.

各試験体に用いた主筋12、帯鉄筋13、鋼管5及びコンクリートの材料強度の試験値を下記表1に示す。   Table 1 below shows the test values of the material strength of the main reinforcement 12, the band reinforcement 13, the steel pipe 5, and the concrete used for each test specimen.

Figure 2008082073
Figure 2008082073

試験は、各試験体の杭1の上部に上記の如く油圧ジャッキの押し引きで正負交番の水平荷重を載荷することで行った。荷重・変位の制御は、No1の試験体において以下の手順で行った。即ち、降伏するまでは荷重制御で水平荷重を正負1サイクル毎に10kN宛増加させて載荷した。降伏の判定は、油圧ジャッキを押し出す方向の載荷において、引張側45°方向(水平荷重の作用線に対し水平方向に45°回転した方向)の主筋11のひずみが降伏ひずみに達した時点とし、このときの変位を降伏変位とした。降伏後は、変位が降伏変位の偶数倍で3サイクル毎に段階的に増加するように変位制御で水平荷重を載荷した。載荷の終了は荷重―変位曲線の包絡線における水平荷重が最大水平荷重の50%を下回ることを目標にした。No2〜No6の試験体の載荷試験は、No1の試験体の降伏変位を用いてNo1の試験体の場合と同様の方法で行った。   The test was carried out by loading a horizontal load of alternating positive and negative by pushing and pulling the hydraulic jack as described above on the top of the pile 1 of each specimen. The load / displacement control was performed in the following procedure in the No. 1 specimen. That is, until yielding, the horizontal load was increased by 10 kN for each positive and negative cycle by load control and loaded. The determination of yield is made when the strain of the main bar 11 in the direction of 45 ° in the tension side (the direction rotated 45 ° in the horizontal direction with respect to the action line of the horizontal load) reaches the yield strain in the loading in the direction of pushing out the hydraulic jack. The displacement at this time was defined as the yield displacement. After yielding, a horizontal load was loaded with displacement control so that the displacement increased evenly every three cycles and increased stepwise every three cycles. The end of loading was aimed at the horizontal load in the envelope of the load-displacement curve being below 50% of the maximum horizontal load. The loading test of No2-No6 specimens was performed in the same manner as the No1 specimen using the yield displacement of No1 specimen.

以下の説明では、No1の試験体の降伏変位8.7mmをΔと記し、油圧ジャッキを押し出す方向の水平荷重・水平変位を+、油圧ジャッキを引き戻す方向の水平荷重・水平変位を−とする。また、荷重、変位は水平荷重の作用点の水平荷重、水平変位を意味する。   In the following description, the yield displacement 8.7 mm of the No. 1 specimen is denoted by Δ, the horizontal load / horizontal displacement in the direction of pushing out the hydraulic jack is +, and the horizontal load / horizontal displacement in the direction of pulling back the hydraulic jack is −. Moreover, a load and a displacement mean the horizontal load and horizontal displacement of the action point of a horizontal load.

図5は各試験体の荷重と変位の履歴曲線を示している。尚、荷重は、鉛直方向荷重による偏心曲げモーメントの影響を加味した値になっている。   FIG. 5 shows a load and displacement history curve of each specimen. The load is a value that takes into account the effect of the eccentric bending moment due to the vertical load.

No1の試験体では、変位8.7mm、荷重148kNで引張側45°方向の主筋12のひずみが降伏ひずみに達し、杭基部及び杭側面に3本の水平な曲げひび割れが発生した。その後、6Δまでは175kN前後の一定の荷重のまま変形が増大した。この間に曲げひび割れの先端から斜め下方へ向かうせん断ひび割れが発生した。せん断ひび割れは杭基部から30cm程度の区間で密に発生した。また、杭基部には、コンクリートの圧壊に伴う縦方向のひび割れも生じた。   In the No. 1 test body, the strain of the main bar 12 in the direction of 45 ° in the tension side reached the yield strain at a displacement of 8.7 mm and a load of 148 kN, and three horizontal bending cracks occurred on the pile base and the pile side. Thereafter, deformation increased with a constant load of around 175 kN up to 6Δ. During this time, shear cracks occurred obliquely downward from the tip of the bending crack. Shear cracks occurred densely in the section about 30 cm from the pile base. In addition, vertical cracks caused by concrete crushing occurred in the pile base.

そして、6Δで杭基部コンクリートの圧壊に伴う被りコンクリートの剥落が始まり、変形が進むのに伴い剥落範囲が大きくなって、荷重が低下した。その後、12Δの2,3サイクル目の繰り返し載荷において荷重は1サイクル目に比べ低下が顕著になり、12Δの3サイクル〜14Δにかけて主筋12が破断して荷重は大きく低下した。履歴曲線の形状は、図5(a)に示すように、紡錘型の吸収エネルギーが大きい形状になった。また、破壊形式は、杭基部に塑性ヒンジが形成され、主筋12が座屈して被りコンクリートがはらみ出す曲げ破壊であった。   Then, at 6Δ, the covering concrete started to peel off due to the collapse of the pile base concrete, and as the deformation progressed, the peeling range increased and the load decreased. Thereafter, in the repeated loading of the second and third cycles of 12Δ, the load became significantly lower than that in the first cycle, and the main bar 12 broke and the load was greatly reduced from the third cycle to 14Δ of 12Δ. As shown in FIG. 5 (a), the hysteresis curve has a spindle-shaped absorption energy. Moreover, the failure type was a bending failure in which a plastic hinge was formed at the pile base, the main reinforcement 12 buckled and the concrete covered.

No2の試験体では、変位17.3mm、荷重171kNで鋼管5の引張側ひずみが降伏ひずみに達した。また、2Δまでに水平のひび割れが鋼管埋め込み部(鋼管5の上端より下方の杭部分)の上部に3〜4本発生すると共に、鋼管埋め込み端部(鋼管5の上端と同レベルの部分)から下方にのびる鉛直の割裂ひび割れ及び杭基部から上方にのびる鉛直の割裂ひび割れが発生した。その後、2〜4Δの間で水平の曲げひび割れの進展とともに鉛直の割裂ひび割れも進展した。この鉛直の割裂ひび割れは荷重作用線に対し水平方向に±45°回転した位置に集中して発生した。   In the No. 2 specimen, the tensile strain on the steel pipe 5 reached the yield strain at a displacement of 17.3 mm and a load of 171 kN. In addition, 3 to 4 horizontal cracks are generated in the upper portion of the steel pipe embedded portion (pile portion below the upper end of the steel pipe 5) by 2Δ, and from the steel pipe embedded end portion (the same level as the upper end of the steel pipe 5). Vertical split cracks extending downward and vertical split cracks extending upward from the pile base occurred. After that, vertical split cracks progressed with horizontal bending cracks between 2 and 4Δ. The vertical split cracks were concentrated at a position rotated ± 45 ° in the horizontal direction with respect to the load action line.

そして、4Δで杭基部コンクリートの圧壊に伴う被りコンクリートの剥落が始まり、剥落範囲は徐々に大きくなったが、12Δまでは215kN前後でほぼ一定の荷重のまま変形が増大した。12Δでコンクリートの圧壊に伴う被りコンクリートの剥落が大きくなり、その後16Δまで12Δのときに比べ荷重の低下は見られるが、繰り返し載荷において荷重の低下は顕著ではなかった。履歴曲線は、図5(b)に示すように、紡錘型の吸収エネルギーが大きい形状になった。載荷は試験機の限界から+16Δ、−18Δで終了した。そのため、終局状態は確認できなかったが、破壊形式は杭基部での鋼管5の座屈による曲げ破壊と考えられる。   Then, at 4Δ, the covering concrete started to fall off due to the collapse of the pile base concrete, and the peeling range gradually increased, but until 12Δ, the deformation increased with a substantially constant load around 215 kN. At 12Δ, peeling of the covered concrete accompanying the crushing of the concrete increased, and thereafter, a load decrease was seen up to 16Δ compared to 12Δ, but the load decrease was not significant in repeated loading. As shown in FIG. 5B, the hysteresis curve has a shape with a large spindle-type absorbed energy. Loading was completed at + 16Δ and −18Δ due to the limit of the testing machine. Therefore, although the final state could not be confirmed, the failure type is considered to be bending failure due to buckling of the steel pipe 5 at the pile base.

No3の試験体では、変位22.4mm、荷重172kNで鋼管5の引張側ひずみが降伏ひずみに達した。また、2Δまでに水平のひび割れが鋼管埋め込み部の上部に4本発生すると共に、鋼管埋め込み端部から下方にのびる鉛直の割裂ひび割れ及び杭基部から上方にのびる鉛直の割裂ひび割れが発生した。その後、2〜4Δの間で水平の曲げひび割れの進展とともに鉛直の割裂ひび割れも進展した。この鉛直の割裂ひび割れは荷重作用線に対し水平方向に±45°回転した位置に集中して発生した。   In the No. 3 specimen, the tensile strain on the steel pipe 5 reached the yield strain at a displacement of 22.4 mm and a load of 172 kN. In addition, four horizontal cracks occurred in the upper part of the steel pipe embedded part by 2Δ, and a vertical split crack extending downward from the steel pipe embedded end part and a vertical split crack extending upward from the pile base part were generated. After that, vertical split cracks progressed with horizontal bending cracks between 2 and 4Δ. The vertical split cracks were concentrated at a position rotated ± 45 ° in the horizontal direction with respect to the load action line.

そして、4Δで202kNの最大荷重を示すが、この時点で鋼管埋め込み端部の水平の曲げひび割れ及び鉛直の割裂ひび割れが大きくなり、鋼管埋め込み端部下方の被りコンクリートの剥落が始まった。その後、4〜6Δまでは荷重をかろうじて維持したが、6Δで鋼管埋め込み端部下方の被りコンクリートの剥落が大きくなり、鋼管埋め込み端部下方20cmで折れ曲がったような変形状態になった。そして、8Δの繰り返し載荷において鋼管埋め込み端部を中心とした被りコンクリートの剥落を生じて荷重の低下が顕著になり、10Δ、12Δで荷重は大きく低下した。履歴曲線の形状は、図5(c)に示すように、スリップ型に近似した吸収エネルギーが小さい形状になった。破壊形式は、鋼管5の周囲のコンクリートの割裂破壊であった。   The maximum load of 202 kN is shown by 4Δ. At this time, the horizontal bending crack and the vertical split crack at the embedded end of the steel pipe became large, and the covering concrete under the embedded end of the steel pipe began to peel off. Thereafter, the load was barely maintained from 4 to 6Δ, but at 6Δ, the concrete stripped under the steel pipe embedded end was greatly peeled off, and it was in a deformed state that was bent 20 cm below the steel pipe embedded end. Then, in the repeated loading of 8Δ, the covered concrete peeled off centering on the steel pipe embedded end portion, and the load was significantly reduced, and the load was greatly reduced at 10Δ and 12Δ. As shown in FIG. 5C, the hysteresis curve has a shape with small absorbed energy that approximates a slip type. The fracture type was split fracture of concrete around the steel pipe 5.

No4の試験体では、鋼管5の引張側ひずみが降伏ひずみを越えなかった。また、2Δまでに水平のひび割れが鋼管埋め込み部の上部に2本発生すると共に、鋼管埋め込み端部から下方にのびる鉛直の割裂ひび割れ及び杭基部から上方にのびる鉛直の割裂ひび割れが発生した。その後、2〜4Δの間で水平の曲げひび割れの進展とともに鉛直の割裂ひび割れも進展した。この鉛直の割裂ひび割れは荷重作用線に対し水平方向に±45°回転した位置に集中して発生した。   In the No. 4 specimen, the tensile strain on the steel pipe 5 did not exceed the yield strain. In addition, two horizontal cracks occurred in the upper part of the steel pipe embedded part by 2Δ, and a vertical split crack extending downward from the steel pipe embedded end part and a vertical split crack extending upward from the pile base part were generated. After that, vertical split cracks progressed with horizontal bending cracks between 2 and 4Δ. The vertical split cracks were concentrated at a position rotated ± 45 ° in the horizontal direction with respect to the load action line.

そして、4Δで140kNの最大荷重を示すが、この時点で鋼管埋め込み端部の水平の曲げひび割れ及び鉛直の割裂ひび割れが大きくなり、鋼管埋め込み端部付近の被りコンクリートの剥落が始まった。その後、荷重は4Δでの値を維持することなく6Δ、8Δ、10Δで順に低下していった。また、6Δで鋼管埋め込み端部付近の被りコンクリートの剥落が大きくなり、鋼管埋め込み端部下方20cmで折れ曲がったような変形状態になった。そして、8Δの繰り返し載荷において荷重の低下が顕著になった。履歴曲線の形状は、図5(d)に示すように、スリップ型に近似しており、No3の試験体に比べ吸収エネルギーは更に小さい。破壊形式は、No3の試験体と同様に鋼管5の周囲のコンクリートの割裂破壊であった。   The maximum load of 140 kN is indicated by 4Δ. At this time, horizontal bending cracks and vertical split cracks at the steel pipe embedded end portion became large, and peeling of the covered concrete near the steel pipe embedded end portion began. Thereafter, the load gradually decreased at 6Δ, 8Δ, and 10Δ without maintaining the value at 4Δ. Moreover, peeling of covering concrete in the vicinity of the steel pipe embedded end portion became large at 6Δ, and it was in a deformed state that was bent 20 cm below the steel pipe embedded end portion. And the load reduction became remarkable in the repeated loading of 8Δ. As shown in FIG. 5D, the shape of the hysteresis curve approximates a slip type, and the absorbed energy is smaller than that of the No. 3 specimen. The fracture type was split fracture of concrete around the steel pipe 5 as in the case of No. 3 specimen.

No5の試験体では、変位20.6mm、荷重175kNで鋼管5の引張側ひずみが降伏ひずみに達した。また、2Δまでに水平のひび割れが鋼管埋め込み部の上部に2〜3本発生すると共に、鋼管埋め込み端部から下方にのびる鉛直の割裂ひび割れ及び杭基部から上方にのびる鉛直の割裂ひび割れが発生した。その後、2〜4Δの間で水平の曲げひび割れの進展とともに鉛直の割裂ひび割れも進展した。この鉛直の割裂ひび割れは荷重作用線に対し水平方向に±45°回転した位置に集中して発生した。   In the specimen No. 5, the tensile strain on the steel pipe 5 reached the yield strain at a displacement of 20.6 mm and a load of 175 kN. In addition, 2 to 3 horizontal cracks occurred in the upper part of the steel pipe embedded part by 2Δ, and vertical split cracks extending downward from the steel pipe embedded end part and vertical split cracks extending upward from the pile base part occurred. After that, vertical split cracks progressed with horizontal bending cracks between 2 and 4Δ. The vertical split cracks were concentrated at a position rotated ± 45 ° in the horizontal direction with respect to the load action line.

そして、8Δで杭基部コンクリートの圧壊に伴う被りコンクリートの剥落が始まり、剥落範囲は徐々に大きくなったが、16Δまで200kN前後でほぼ一定の荷重のまま変形が増大した。16Δで杭基部コンクリートの圧壊に伴う被りコンクリートの剥落が大きくなったが、荷重は殆ど低下しなかった。18Δの繰り返し載荷において荷重の低下が顕著になり、3サイクル目を+20Δまで載荷した。履歴曲線の形状は、図5(e)に示すように、紡錘型の吸収エネルギーの大きい形状になった。尚、試験機の限界はNo2の試験体で載荷を終了した16Δ程度であるが、No5,6の試験体では安全を確認しながら限界を超えて載荷を続行した。破壊形式は杭基部での鋼管5の座屈による曲げ破壊であった。   Then, at 8Δ, the covering concrete started to fall off due to the collapse of the pile base concrete, and the peeling range gradually increased, but the deformation increased with a nearly constant load at around 200 kN up to 16Δ. At 16Δ, the peeling of the covered concrete accompanying the crushing of the pile base concrete increased, but the load hardly decreased. The load drop became remarkable in repeated loading of 18Δ, and the third cycle was loaded up to + 20Δ. As shown in FIG. 5 (e), the hysteresis curve has a spindle shape with large absorbed energy. The limit of the testing machine was about 16Δ when loading was completed with the No. 2 specimen, but with the No. 5 and 6 specimens, loading was continued beyond the limit while confirming safety. The failure mode was bending failure due to buckling of the steel pipe 5 at the pile base.

No6の試験体では、変位17.8mm、荷重176kNで鋼管5の引張側ひずみが降伏ひずみに達した。また、2Δまでに水平のひび割れが鋼管埋め込み部の上部に2〜3本発生すると共に、鋼管埋め込み端部から下方にのびる鉛直の割裂ひび割れ及び杭基部から上方にのびる鉛直の割裂ひび割れが発生した。その後、2〜4Δの間で水平の曲げひび割れの進展とともに鉛直の割裂ひび割れも進展した。この鉛直の割裂ひび割れは荷重作用線に対し水平方向に±45°回転した位置に集中して発生した。   In the specimen No. 6, the tensile strain on the steel pipe 5 reached the yield strain at a displacement of 17.8 mm and a load of 176 kN. In addition, 2 to 3 horizontal cracks occurred in the upper part of the steel pipe embedded part by 2Δ, and vertical split cracks extending downward from the steel pipe embedded end part and vertical split cracks extending upward from the pile base part occurred. After that, vertical split cracks progressed with horizontal bending cracks between 2 and 4Δ. The vertical split cracks were concentrated at a position rotated ± 45 ° in the horizontal direction with respect to the load action line.

そして、8Δで杭基部コンクリートの圧壊に伴う被りコンクリートの剥落が始まり、剥落範囲は徐々に大きくなったが、16Δまで210kN前後でほぼ一定の荷重のまま変形が増大した。16Δで杭基部コンクリートの圧壊に伴う被りコンクリートの剥落が大きくなったが、荷重は殆ど低下しなかった。18Δの繰り返し載荷において荷重の低下が顕著になり、20Δの繰り返し載荷において荷重の低下が更に顕著になり、3サイクル目を+22Δまで載荷した。履歴曲線の形状は、図5(f)に示すように、紡錘型の吸収エネルギーの大きい形状になった。破壊形式は杭基部での鋼管5の座屈による曲げ破壊であった。   Then, at 8Δ, the covering concrete started to fall off due to the collapse of the pile base concrete, and the peeling range gradually increased, but the deformation increased with a substantially constant load around 210 kN up to 16Δ. At 16Δ, the peeling of the covered concrete accompanying the crushing of the pile base concrete increased, but the load hardly decreased. The decrease in load became remarkable in repeated loading of 18Δ, and the decrease in load became more remarkable in repeated loading of 20Δ, and the third cycle was loaded up to + 22Δ. As shown in FIG. 5F, the shape of the hysteresis curve is a spindle-type shape having a large absorbed energy. The failure mode was bending failure due to buckling of the steel pipe 5 at the pile base.

各試験体の試験結果を下記表2に示す。尚、表2中の損傷レベル2は繰り返し載荷で耐力低下が顕著にならない最大変位時点を意味する。   The test results for each specimen are shown in Table 2 below. In addition, the damage level 2 in Table 2 means the maximum displacement point at which the yield strength does not become noticeable with repeated loading.

Figure 2008082073
Figure 2008082073

図6(a)は、No1の試験体と、鋼管5の埋め込み深さが互いに異なるNo2,3,4の試験体の荷重―変位曲線の包絡線を示している。同図より、No2の試験体はNo1の試験体よりじん性能が優れていることが分かる。尚、鋼管5の断面の曲げ耐力を主筋12全体の断面の曲げ耐力と同程度に設定しているにも拘らず、No2,3,5,6の試験体はNo1の試験体より最大荷重、即ち、曲げ耐力が大きくなっている。これは、鋼材の材料の規格値と実強度とが表1に示されているように異なること、即ち、主筋12(SD345)では降伏点規格値が345kNであるのに対し実降伏点が381〜391と異なり、鋼管5(SM490)では降伏点規格値が325kNであるのに対し実降伏点が402〜431kNと異なることに起因すると考えられる。   FIG. 6A shows the envelopes of the load-displacement curves of the No. 1 test body and the No. 2, 3 and 4 test bodies having different embedding depths of the steel pipe 5. From the figure, it can be seen that the No. 2 specimen has better dust performance than the No. 1 specimen. Although the bending strength of the cross section of the steel pipe 5 is set to the same level as the bending strength of the cross section of the entire main reinforcement 12, the test pieces of Nos. 2, 3, 5, and 6 have the maximum load than the No. 1 test piece. That is, the bending strength is increased. This is because the standard values and actual strengths of the steel materials are different as shown in Table 1, that is, the yield point standard value is 345 kN for the main reinforcement 12 (SD345), whereas the actual yield point is 381. Unlike 391, it is considered that the steel pipe 5 (SM490) has a yield point standard value of 325 kN, whereas the actual yield point is different from 402 to 431 kN.

No3の試験体は、No2の試験体とほぼ同等の曲げ耐力を有するが、じん性能はNo1の試験体よりも劣り、No4の試験体は曲げ耐力及びじん性能がNo1の試験体よりも劣ることが分かる。これは、杭1への鋼管5の埋め込み深さLがNo2の試験体の800mmに対しNo3の試験体では600mm、No4の試験体では400mmと小さくなっていることによる影響である。   The No. 3 test body has almost the same bending strength as the No. 2 test body, but the dust performance is inferior to the No. 1 test body, and the No. 4 test body is inferior to the No. 1 test body in bending strength and dust performance. I understand. This is due to the fact that the embedding depth L of the steel pipe 5 in the pile 1 is as small as 600 mm for the No3 specimen and 400 mm for the No4 specimen compared to 800 mm for the No2 specimen.

図6(b)は、No1の試験体と、鋼管5の埋め込み深さLが600mmと同一で帯鉄筋13の太さが互いに異なるNo3,5,6の試験体の荷重―変位曲線の包絡線を示している。No3の試験体では終局変位が107.0mmでじん性率(終局変位を降伏変位で除した値)が3.3であるのに対し、No5の試験体では終局変位150.5mmじん性率7.3、No6の試験体では終局変位163.1mmじん性率9.2とじん性能が大きく向上している。これは、鋼管5の周囲の杭部分に配設する帯鉄筋13の径をNo3の試験体の10mmからNo5の試験体では13mm、No6の試験体では16mmとして、帯鉄筋13の量を大きくしたことによる影響である。   FIG. 6B shows the envelope of the load-displacement curve of the No. 1 specimen and No. 3, 5 and 6 specimens in which the embedding depth L of the steel pipe 5 is the same as 600 mm and the thicknesses of the strip reinforcing bars 13 are different from each other. Is shown. In the No. 3 specimen, the ultimate displacement is 107.0 mm and the toughness ratio (the value obtained by dividing the ultimate displacement by the yield displacement) is 3.3, whereas in the No. 5 specimen, the ultimate displacement is 150.5 mm. .3, No. 6 specimen has a final displacement of 163.1 mm toughness of 9.2 and a great improvement in toughness. This is because the diameter of the band rebar 13 arranged in the pile portion around the steel pipe 5 is 10 mm to 13 mm for the No3 test body and 16 mm for the No6 test body, and the amount of the band rebar 13 is increased. It is an influence by that.

図7に、2Δの載荷時におけるNo1,2の試験体の引張側の主筋12のひずみ及びNo2の試験体の鋼管5の引張側の面のひずみの高さ方向の分布を示す。縦軸は杭基部(接合部3a´の上端)からの高さを示している。No1の試験体では、主筋12のひずみが杭基部の近傍で最大になる。一方、No2の試験体では、主筋12のひずみが鋼管埋め込み端部の近傍で最大になり、杭基部に向けて減少する。また、鋼管5のひずみは杭基部の近傍で最大になる。このことから、No2の試験体においては、鋼管埋め込み端部から杭基部に向けて主筋12が断面の引張応力を徐々に分担しなくなり、代わりに鋼管5が断面の引張応力を分担することが分かる。これは鋼管5を埋め込んだNo3〜No6の試験体でも同様である。   FIG. 7 shows the distribution in the height direction of the strain of the main muscle 12 on the tensile side of the No. 1 and No. 2 specimens and the strain on the surface of the steel pipe 5 of the No. 2 specimen when 2Δ is loaded. The vertical axis indicates the height from the pile base (the upper end of the joint 3a ′). In the No. 1 test body, the strain of the main bar 12 is maximized in the vicinity of the pile base. On the other hand, in the No. 2 specimen, the strain of the main reinforcement 12 becomes maximum in the vicinity of the steel pipe embedded end and decreases toward the pile base. Further, the strain of the steel pipe 5 is maximized in the vicinity of the pile base. From this, it can be seen that in the No. 2 test body, the main bar 12 does not gradually share the tensile stress of the cross section from the steel pipe embedded end toward the pile base, and instead the steel pipe 5 shares the tensile stress of the cross section. . The same applies to the test bodies No. 3 to No. 6 in which the steel pipe 5 is embedded.

帯鉄筋13のひずみの水平断面における分布は、荷重の作用線に対し水平方向に±45°回転した位置で最大になる。これは、鉛直の割裂ひび割れが荷重作用線に対し水平方向に±45°回転した位置で集中的に発生することと一致する。図8に、8Δの載荷時におけるNo1,2の試験体の荷重作用線に対し45°回転した位置での帯鉄筋13のひずみの高さ方向の分布を示す。No1の試験体では、杭基部より上方へ360mmまでの区間でひずみが他区間より大きくなる。一方、No2の試験体では、鋼管埋め込み端部と杭基部とでひずみが大きくなり、鋼管埋め込み部の中間部分ではひずみが小さくなる。これは鋼管5を埋め込んだNo3〜No6の試験体でも同様である。   The distribution of the strain of the rebar 13 in the horizontal section is maximized at a position rotated ± 45 ° in the horizontal direction with respect to the line of action of the load. This is consistent with the fact that vertical split cracks occur intensively at positions rotated ± 45 ° in the horizontal direction with respect to the load action line. FIG. 8 shows the distribution in the height direction of the strain of the band rebar 13 at a position rotated by 45 ° with respect to the load action line of the No. 1 and No. 2 specimens when 8Δ is loaded. In the test body of No1, distortion becomes larger than other sections in the section up to 360 mm from the pile base. On the other hand, in the specimen No. 2, the strain increases at the steel pipe embedded end portion and the pile base portion, and the strain decreases at the intermediate portion of the steel pipe embedded portion. The same applies to the test bodies No. 3 to No. 6 in which the steel pipe 5 is embedded.

次に、杭1に鋼管5を埋め込んだ場合における曲げモーメント・水平力に対する耐荷メカニズムについて考察する。帯鉄筋13のひずみ分布が上記の如く鋼管埋め込み端部と杭基部とで大きく中間部分で小さいことから、耐荷メカニズムは図9のようにモデル化できる。このモデルでは、曲げモーメントMと水平力Qに対する抵抗力は、鋼管5に対するその前背面のコンクリートによる支圧力P及び鋼管5とコンクリートの摩擦力Tから成るものとしている。この支圧力P及び摩擦力Tは、鋼管5の周囲のコンクリートが健全なときに期待できるものである。No3,4の試験体のように鋼管5の周囲のコンクリートが割裂破壊する場合には、曲げ耐力及びじん性能が低下することから分かるように、支圧力P及び摩擦力Tは期待できない。従って、曲げ耐力及びじん性能を向上させるには、鋼管5の周囲のコンクリートをしっかりと拘束してその割裂破壊を抑制できるように、鋼管5の周囲の杭部分に配設する帯鉄筋13の量を適切に設定することが必要になる。   Next, the load bearing mechanism against bending moment and horizontal force when the steel pipe 5 is embedded in the pile 1 will be considered. Since the strain distribution of the band reinforcement 13 is large at the steel pipe embedded end and the pile base as described above and small at the middle portion, the load bearing mechanism can be modeled as shown in FIG. In this model, the resistance force against the bending moment M and the horizontal force Q is composed of the support pressure P by the concrete on the front and back surfaces of the steel pipe 5 and the friction force T between the steel pipe 5 and the concrete. The supporting pressure P and the frictional force T can be expected when the concrete around the steel pipe 5 is healthy. When the concrete around the steel pipe 5 breaks and breaks like the No. 3 and 4 specimens, the bearing pressure P and the frictional force T cannot be expected as can be seen from the decrease in bending strength and dust performance. Therefore, in order to improve the bending strength and the dust performance, the amount of the strip reinforcing bars 13 disposed in the pile portion around the steel pipe 5 so that the concrete around the steel pipe 5 can be firmly restrained and the split fracture can be suppressed. Must be set appropriately.

このような帯鉄筋13の量の算定方法について以下説明する。図9に示した杭1に作用する力のモーメントの釣り合いにより、鋼管5の断面の一辺の長さをdとして、次式が得られる。
M=T・d+{L・P/3(2P−Q)}+(L−Q)・L・(5P−2Q)/3(2P−Q)…(1)
鋼管5に作用する摩擦力の合力Tは、粘着力をc(=0.7N/mm)、摩擦角をφ(=20°)として、次式のようになる。
T=c・d・L・{(P−Q)/(2P−Q)}+(P−Q)tanφ…(2)
支圧力の合力Pは、帯鉄筋13の拘束力で発揮されるものとし、帯鉄筋13の引張降伏応力をfsy、鋼管5の単位長さ当りの帯鉄筋13の断面積をAs、補正係数をαとして、次式で算定する。
A method for calculating the amount of the rebar 13 will be described below. By the balance of moments of force acting on the pile 1 shown in FIG. 9, the following equation is obtained, where d is the length of one side of the cross section of the steel pipe 5.
M = T · d + {L · P 2/3 (2P-Q)} + (L-Q) · L · (5P-2Q) / 3 (2P-Q) ... (1)
The resultant force T of the frictional force acting on the steel pipe 5 is expressed by the following equation, where the adhesive force is c (= 0.7 N / mm 2 ) and the friction angle is φ (= 20 °).
T = c · d · L · {(PQ) / (2PQ)} + (PQ) tan φ (2)
The resultant force P of the support pressure is assumed to be exerted by the restraining force of the band reinforcing bar 13, the tensile yield stress of the band reinforcing bar 13 is fsy, the cross-sectional area of the band reinforcing bar 13 per unit length of the steel pipe 5 is As, and the correction coefficient is α is calculated by the following formula.

P=α・fsy・As・cos45°・P・L/(2P−Q)…(3)
式(3)は、図10に示すように、水平断面内で帯鉄筋13のひずみが最大になる位置、即ち、水平力作用線に対し水平方向に±45°回転した位置での帯鉄筋13の引張力で支圧力Pが規定されるとしたものである。補正係数αは、支圧力Pを求める際の簡略化等に対する補正としての係数である。
P = α · fsy · As · cos 45 ° · P · L / (2P-Q) (3)
As shown in FIG. 10, the expression (3) indicates that the band rebar 13 is located at a position where the distortion of the band rebar 13 is maximum in the horizontal section, that is, at a position rotated ± 45 ° in the horizontal direction with respect to the horizontal force action line. The supporting pressure P is defined by the tensile force of The correction coefficient α is a coefficient as a correction for simplification or the like when obtaining the support pressure P.

図11は、縦軸に式(1)と式(2)とを用いて試験から得られる支圧力、横軸に式(3)右辺のαを除いた項の値を取り、No2〜No6の試験体の試験値をプロットしたものである。試験から得られる支圧力を計算するための水平力は、帯鉄筋13の拘束力を十分期待できる範囲にとどめることを考慮して、帯鉄筋13が降伏する時点のものとした。図11より、じん性能の劣るNo3,4の試験体では補正係数αが4.5以上になることが分かる。一方、じん性能に優れるNo2の試験体ではα≒3.0、No5の試験体ではα≒2.5、No6の試験体ではα≒2.0になることが分かる。   FIG. 11 shows the bearing pressure obtained from the test using the formula (1) and formula (2) on the vertical axis and the value of the term excluding α on the right side of the formula (3) on the horizontal axis. The test value of the test body is plotted. The horizontal force for calculating the bearing pressure obtained from the test was set at the time when the band reinforcing bar 13 yielded in consideration of keeping the binding force of the band reinforcing bar 13 within a sufficiently expectable range. From FIG. 11, it can be seen that the correction coefficient α is 4.5 or more in the No. 3 and 4 specimens with inferior dust performance. On the other hand, it can be seen that α 2 is approximately 3.0 for the No. 2 specimen, which is excellent in dust performance, α is approximately 2.5 for the No 5 specimen, and α is approximately 2.0 for the No 6 specimen.

図12はNo2,3,5,6の試験体の補正係数αとじん性率との関係をプロットしたものである。図12より、補正係数αが3.0以下であればじん性率が7程度以上の大きな値になることが分かる。従って、式(3)がα≦3.0の範囲で成立するように、鋼管5の単位長さ当りの帯鉄筋13の断面積Asを決定し、この断面積Asに見合う量の帯鉄筋13を鋼管5の周囲の杭部分に配設すれば、図13に示す従来例のものと同等以上の曲げ耐力及びじん性能を得ることができる。但し、式(3)がα<1.5の範囲で成立するように断面積Asを決定した場合には、鋼管5の周囲の杭部分に配設する帯鉄筋13が密になり過ぎて施工性が悪くなる。そのため、式(3)が1.5≦α≦3.0の範囲で成立するように断面積Asを決定すべきである。   FIG. 12 is a plot of the relationship between the correction coefficient α and the toughness rate of No. 2, 3, 5, and 6 specimens. From FIG. 12, it can be seen that if the correction coefficient α is 3.0 or less, the toughness rate becomes a large value of about 7 or more. Therefore, the cross-sectional area As of the band rebar 13 per unit length of the steel pipe 5 is determined so that the formula (3) is satisfied in the range of α ≦ 3.0, and the amount of the band rebar 13 corresponding to the cross-sectional area As is determined. If it is arrange | positioned in the pile part around the steel pipe 5, the bending proof stress and dust performance equivalent to or more than the thing of the prior art example shown in FIG. 13 can be obtained. However, when the cross-sectional area As is determined so that the formula (3) is established in the range of α <1.5, the rebar 13 disposed in the pile portion around the steel pipe 5 becomes too dense and is constructed. Sexuality gets worse. Therefore, the cross-sectional area As should be determined so that the formula (3) is established in the range of 1.5 ≦ α ≦ 3.0.

尚、鋼管5の単位長さ当りの帯鉄筋13の断面積Asを大きくするため、No5,6の試験体では帯鉄筋13を太くしているが、帯鉄筋13の軸方向間隔を狭くして断面積Asを大きくするようにしても良い。また、No2〜No6の試験体では、鋼管5の周囲の杭部分より広範囲の図4(b)のB領域で帯鉄筋13の軸方向間隔を狭めているが、上記の如く決定される断面積Asに見合う量の帯鉄筋13を配設する領域は鋼管5の周囲の杭部分に限定しても良い。また、杭1への鋼管5の埋め込み深さLが鋼管5の断面の一辺の長さdの3倍より小さくなるNo4の試験体では曲げ耐力が大幅に低下するため、埋め込み深さLは3d以上にすることが望ましい。   In addition, in order to increase the cross-sectional area As of the band rebar 13 per unit length of the steel pipe 5, the band rebar 13 is thickened in the No. 5 and 6 specimens, but the axial interval of the band rebar 13 is reduced. The cross-sectional area As may be increased. Moreover, in the test body of No2-No6, although the axial direction space | interval of the band reinforcement 13 is narrowed in the B area | region of FIG.4 (b) wider than the pile part around the steel pipe 5, the cross-sectional area determined as mentioned above The region where the rebar 13 corresponding to the amount of As is disposed may be limited to the pile portion around the steel pipe 5. In addition, since the bending strength of the No. 4 test body in which the embedding depth L of the steel pipe 5 in the pile 1 is smaller than three times the length d of one side of the cross section of the steel pipe 5 is greatly reduced, the embedding depth L is 3d. It is desirable to make it above.

本発明の実施形態の接合構造を示す杭と柱の縦断面図。The longitudinal cross-sectional view of the pile and pillar which show the joining structure of embodiment of this invention. 図1のII−II線切断面図。The II-II line | wire sectional view of FIG. (a)試験体の正面図、(b)試験体の平面図。(A) The front view of a test body, (b) The top view of a test body. (a)No1の試験体の配筋を示す図、(b)No2〜No6の試験体の配筋を示す図。(A) The figure which shows the bar arrangement of the test body of No1, (b) The figure which shows the bar arrangement of the test body of No2-No6. 各試験体の荷重と変位の履歴曲線を示すグラフ。The graph which shows the history curve of the load and displacement of each test body. 各試験体の荷重―変位曲線の包絡線を示すグラフ。The graph which shows the envelope of the load-displacement curve of each test body. 主筋と鋼管のひずみ分布を示すグラフ。The graph which shows the strain distribution of a main reinforcement and a steel pipe. 帯鉄筋のひずみ分布を示すグラフ。The graph which shows strain distribution of a belt reinforcement. 耐荷モデルを示す図。The figure which shows a load-bearing model. 支圧力の算定原理を説明する図。The figure explaining the calculation principle of a bearing pressure. 各試験体の補正係数αを示すグラフ。The graph which shows the correction coefficient (alpha) of each test body. 補正係数αとじん性率との関係を示すグラフ。The graph which shows the relationship between the correction coefficient (alpha) and a toughness rate. 従来例の接合構造を示す杭と柱の縦断面図。The longitudinal cross-sectional view of the pile and pillar which show the joining structure of a prior art example.

符号の説明Explanation of symbols

1…杭、11…杭の鉄筋、12…主筋、13…帯鉄筋、3…柱、31…柱の鉄筋、5…鋼管。   DESCRIPTION OF SYMBOLS 1 ... Pile, 11 ... Pile reinforcement, 12 ... Main reinforcement, 13 ... Strip reinforcement, 3 ... Column, 31 ... Column reinforcement, 5 ... Steel pipe.

Claims (2)

鉄筋コンクリート造の杭と鉄筋コンクリート造の柱とを、杭の鉄筋の上端部を柱の鉄筋の下端部にオーバーラップさせることなく接続する杭と柱の接合構造であって、所定長さの鋼管の下半部が杭の上端部の鉄筋で囲われる断面中央部に埋め込まれ、鋼管の上半部が柱の下端部の鉄筋で囲われる断面中央部に埋め込まれるものにおいて、
鋼管の太さ及び肉厚は、鋼管の断面の曲げ耐力が杭の鉄筋の主筋全体の断面の曲げ耐力と同等になるように設定され、
杭と柱の接続部分に作用する所定の水平力に抗するのに必要な杭の鋼管に対する支圧力と、杭への鋼管の埋め込み深さとから杭の主筋を取り囲むリング状の帯鉄筋の量を決定し、この量の帯鉄筋を鋼管の周囲の杭部分に配設することを特徴とする杭と柱の接合構造。
A pile-column connection structure that connects a reinforced concrete pile and a reinforced concrete column without overlapping the upper end of the reinforcing bar of the pile with the lower end of the reinforcing bar of the column. The half is embedded in the center of the cross section surrounded by the reinforcing bar at the upper end of the pile, and the upper half of the steel pipe is embedded in the center of the cross section surrounded by the reinforcing bar at the lower end of the column.
The thickness and wall thickness of the steel pipe are set so that the bending strength of the cross section of the steel pipe is equivalent to the bending strength of the cross section of the entire main reinforcing bar of the pile,
The amount of ring-shaped rebar that surrounds the main bar of the pile is determined from the support pressure to the steel pipe of the pile necessary to resist the predetermined horizontal force acting on the connection part of the pile and the column, and the embedding depth of the steel pipe in the pile. A pile-column connection structure characterized by deciding and arranging this amount of steel bars in a pile portion around a steel pipe.
請求項1記載の杭と柱の接合構造であって、前記鋼管の断面形状が正方形であるものにおいて、
前記水平力をQ、前記支圧力をP、前記埋め込み深さをL、鋼管の周囲に配設する帯鉄筋の引張降伏耐力をfsy、鋼管の単位長さ当りの帯鉄筋の断面積をAs、補正係数をαとして、次式、
P=α・fsy・As・cos45°・P・L/(2P−Q)
が、αを1.5〜3.0の値にして成立するように、Asを決定し、このAsに見合う量の帯鉄筋を鋼管の周囲の杭部分に配設することを特徴とする杭と柱の接合構造。
In the joint structure of a pile and a column according to claim 1, wherein the cross-sectional shape of the steel pipe is square,
The horizontal force is Q, the supporting pressure is P, the embedding depth is L, the tensile yield strength of the steel bars disposed around the steel pipe is fsy, and the cross-sectional area of the steel bars per unit length of the steel pipe is As, Assuming that the correction coefficient is α,
P = α, fsy, As, cos 45 °, P, L / (2P-Q)
Is determined such that α is established with a value of 1.5 to 3.0, and a reinforcing bar having an amount corresponding to the As is disposed in a pile portion around the steel pipe. And column connection structure.
JP2006264915A 2006-09-28 2006-09-28 Pile-column connection structure Active JP4708295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006264915A JP4708295B2 (en) 2006-09-28 2006-09-28 Pile-column connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264915A JP4708295B2 (en) 2006-09-28 2006-09-28 Pile-column connection structure

Publications (2)

Publication Number Publication Date
JP2008082073A true JP2008082073A (en) 2008-04-10
JP4708295B2 JP4708295B2 (en) 2011-06-22

Family

ID=39353208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264915A Active JP4708295B2 (en) 2006-09-28 2006-09-28 Pile-column connection structure

Country Status (1)

Country Link
JP (1) JP4708295B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102839600A (en) * 2012-07-30 2012-12-26 东南大学 Steel structure connecting device of wood-stone composite bridge
CN111778857A (en) * 2020-06-23 2020-10-16 中交第二航务工程局有限公司 Process for synchronously erecting upper and lower beams of double-layer overhead bridge of urban public rail

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172692A (en) * 1997-12-16 1999-06-29 Sato Benec Co Ltd Execution of column constitution member
JP2000144904A (en) * 1998-11-09 2000-05-26 Fujita Corp Joint construction between pile and upper structural skeleton in structure
JP2003105775A (en) * 2001-07-24 2003-04-09 Nippon Steel Corp Connecting structure of steel pipe pile and upper structure, and design method therefor
JP2005076330A (en) * 2003-09-02 2005-03-24 Okumura Corp Connection structure of pile and post
JP2005344388A (en) * 2004-06-03 2005-12-15 Shimizu Corp Pile head connection structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172692A (en) * 1997-12-16 1999-06-29 Sato Benec Co Ltd Execution of column constitution member
JP2000144904A (en) * 1998-11-09 2000-05-26 Fujita Corp Joint construction between pile and upper structural skeleton in structure
JP2003105775A (en) * 2001-07-24 2003-04-09 Nippon Steel Corp Connecting structure of steel pipe pile and upper structure, and design method therefor
JP2005076330A (en) * 2003-09-02 2005-03-24 Okumura Corp Connection structure of pile and post
JP2005344388A (en) * 2004-06-03 2005-12-15 Shimizu Corp Pile head connection structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102839600A (en) * 2012-07-30 2012-12-26 东南大学 Steel structure connecting device of wood-stone composite bridge
CN111778857A (en) * 2020-06-23 2020-10-16 中交第二航务工程局有限公司 Process for synchronously erecting upper and lower beams of double-layer overhead bridge of urban public rail

Also Published As

Publication number Publication date
JP4708295B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
Lehman et al. Foundation connections for circular concrete-filled tubes
Choi et al. Behavior of reinforced concrete columns confined by new steel-jacketing method.
WO2006030893A1 (en) Foundation structure of tower
Stephens et al. Seismic CFST column-to-precast cap beam connections for accelerated bridge construction
JP2019199761A (en) Plastic hinge structure of rc columnar structure and method for repairing plastic hinge part of rc columnar structure
Chen et al. Tests of steel and composite CHS X-joints with curved chord under axial compression
WO2009125774A1 (en) Load bearing material
Kalogeropoulos et al. Effectiveness of R/C jacketing of substandard R/C columns with short lap splices
Roeder et al. Concrete filled steel tubes for bridge pier and foundation construction
CN202850266U (en) Steel pipe concrete combination shear wall
JP4708295B2 (en) Pile-column connection structure
JP4708296B2 (en) Pile-column connection structure
JP5004829B2 (en) Seismic reinforcement method for structure and reinforcement structure
Lim et al. Cyclic loading tests of interior beam–column connections for concrete-filled thin-walled tube columns
Rhim et al. Development of an optimum pre-founded column system for top-down construction
JP2016223208A (en) Pile foundation structure
JP5423185B2 (en) Concrete-filled pier structure
JP2008291601A (en) Pile head joining structure
Qiong et al. Seismic behavior of precast shear walls with vertical reinforcements overlap grouted in constraint sleeve
Takashi et al. Efficiency of micropile for seismic retrofit of foundation system
Li et al. Seismic behavior of precast concrete filled dual steel tube columns in socket foundations
JP5375511B2 (en) Storage tank
JP2006223157A (en) Support fixing structure and constructing method for the same
JP4519088B2 (en) Reinforced concrete member lap joint reinforcement method
JP6539639B2 (en) Column beam structure using square steel pipe and cross section determination method of column beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110316

R150 Certificate of patent or registration of utility model

Ref document number: 4708295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250