JP2008081836A - Method for manufacturing copper alloy strip or copper alloy foil with excellent strength, electric conductivity and bendability, copper alloy strip or copper alloy foil, and electronic parts using the same - Google Patents

Method for manufacturing copper alloy strip or copper alloy foil with excellent strength, electric conductivity and bendability, copper alloy strip or copper alloy foil, and electronic parts using the same Download PDF

Info

Publication number
JP2008081836A
JP2008081836A JP2006266765A JP2006266765A JP2008081836A JP 2008081836 A JP2008081836 A JP 2008081836A JP 2006266765 A JP2006266765 A JP 2006266765A JP 2006266765 A JP2006266765 A JP 2006266765A JP 2008081836 A JP2008081836 A JP 2008081836A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy strip
alloy foil
strip
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006266765A
Other languages
Japanese (ja)
Inventor
Masazumi Mori
正澄 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2006266765A priority Critical patent/JP2008081836A/en
Publication of JP2008081836A publication Critical patent/JP2008081836A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a copper alloy strip or copper alloy foil having excellent strength, electric conductivity and bendability. <P>SOLUTION: Electrolysis using a plating bath containing plating additives is performed to manufacture an electrolytic copper alloy strip or electrolytic copper alloy foil having ≤0.4 μm average crystal grain size. After the electrolytic copper alloy strip or the electrolytic copper alloy foil is cold rolled, heat treatment is applied or heat treatment is not applied. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えばフレキシブルプリント基板やICテープキャリア等のプリント配線基板に使用される銅合金条又は銅合金箔の製造方法、銅合金条又は銅合金箔、及びそれを用いた電子部品に関する。   The present invention relates to a copper alloy strip or a copper alloy foil manufacturing method used for a printed wiring board such as a flexible printed board or an IC tape carrier, a copper alloy strip or a copper alloy foil, and an electronic component using the same.

フレキシブルプリント基板(FPC)は可撓性を有し、電子機器内に屈曲して収納することにより機器の省スペースを図ることができるため、種々の分野で使用されている。又、LSIを液晶ディスプレイに接合する方法として、フィルム基板(キャリアテープ)が用いられている。
通常、FPCやキャリアテープ等のプリント配線基板は、導電性の銅箔の表面にポリイミド等の樹脂フィルムが形成されている。そして、プリント配線基板の折り曲げによって回路が切断しないよう、銅箔には高い強度と曲げ性が要求されることから、主に圧延銅箔が利用されてきた。さらに近年、圧延銅箔の高強度化と耐熱性向上を図る目的で、Ag、Sn等を添加した圧延合金箔が開発されているが、電子機器の軽薄短小化が進む中でより一層の圧延合金箔の高強度化が必要となっている。
一方、電解銅箔は圧延銅箔に比べて微細な組織を得ることができ、高強度化が可能であるが、曲げ性が劣るためFPCやキャリアテープ等のプリント配線基板用としては適さなかった。そこで、電解銅箔を圧延して屈曲性を向上させる技術が報告されている(例えば、特許文献1、2参照)。
A flexible printed circuit board (FPC) has flexibility and is used in various fields because it can save space by being bent and housed in an electronic device. A film substrate (carrier tape) is used as a method for bonding the LSI to the liquid crystal display.
Usually, a printed wiring board such as an FPC or a carrier tape has a resin film such as polyimide formed on the surface of a conductive copper foil. In order to prevent the circuit from being cut by bending the printed wiring board, high strength and bendability are required for the copper foil, and thus rolled copper foil has been mainly used. In recent years, rolled alloy foils have been developed with the addition of Ag, Sn, etc. for the purpose of increasing the strength and heat resistance of rolled copper foils. It is necessary to increase the strength of the alloy foil.
On the other hand, the electrolytic copper foil can obtain a fine structure as compared with the rolled copper foil and can increase the strength. However, since the bendability is inferior, it is not suitable for printed wiring boards such as FPC and carrier tape. . Then, the technique which rolls an electrolytic copper foil and improves a flexibility is reported (for example, refer patent document 1, 2).

特開昭61−204357号公報JP-A-61-204357 特開平8−141604号公報JP-A-8-141604

しかしながら、上記特許文献1、2記載の技術を用いた場合に、強度の向上効果が充分とはいえなかった。
一方、端子、コネクター等の電子部品用材料として、導電性に優れた銅合金条が一般に広く用いられている。これらの用途には素材の厚みが必要であるため、銅合金条は銅合金箔に比べて厚い(通常、50μm以上を条としている)。又、銅合金条には強度と曲げ加工性が要求されること等から、銅合金箔、特に電解銅合金箔とは市場や要求特性が異なり、製造も別に行われるのが通常である。
そこで、ほぼ同一の製造方法によって銅合金箔だけでなく、強度と曲げ加工性を要求される銅合金条を製造することができれば、これら銅合金箔や銅合金条を用いた電子部品用材料を提供するための優れた製造方法となりうる。
本発明は上記の課題を解決するためになされたものであり、強度、導電率、曲げ加工性に優れた銅合金条及び銅合金箔の製造方法、銅合金条及び銅合金箔、並びにそれを用いた電子部品の提供を目的とする。
However, when the techniques described in Patent Documents 1 and 2 are used, the effect of improving the strength is not sufficient.
On the other hand, copper alloy strips having excellent conductivity are generally widely used as materials for electronic parts such as terminals and connectors. Since the thickness of the material is necessary for these uses, the copper alloy strip is thicker than the copper alloy foil (usually 50 μm or more). In addition, since copper alloy strips are required to have strength and bending workability, the market and required characteristics are different from those of copper alloy foils, particularly electrolytic copper alloy foils, and they are usually manufactured separately.
Therefore, if it is possible to manufacture not only copper alloy foils but also copper alloy strips that require strength and bending workability by substantially the same manufacturing method, materials for electronic parts using these copper alloy foils and copper alloy strips can be obtained. It can be an excellent manufacturing method to provide.
The present invention has been made to solve the above-described problems, and has a copper alloy strip and a copper alloy foil manufacturing method excellent in strength, electrical conductivity and bending workability, a copper alloy strip and a copper alloy foil, and The purpose is to provide the electronic components used.

本発明者らは種々検討した結果、電解により結晶粒径を制御し、Ag、Sn及びInの群から選ばれる少なくとも1種を含有する銅合金条又は銅合金箔を所定の条件で圧延及び熱処理することにより、上記課題を解決できることを見出した。   As a result of various studies, the inventors of the present invention controlled the crystal grain size by electrolysis, and rolled and heat-treated a copper alloy strip or copper alloy foil containing at least one selected from the group of Ag, Sn, and In under predetermined conditions. It has been found that the above problems can be solved by doing so.

上記の目的を達成するために、本発明の強度、導電率、曲げ加工性に優れた銅合金条又は銅合金箔の製造方法は、めっき添加剤を含むめっき浴を用いた電解により平均結晶粒径0.4μm以下の電解銅合金条又は電解銅合金箔を製造し、該電解銅合金条又は電解銅合金箔を冷間圧延した後、熱処理を行わないか又は熱処理を行うことを特徴とする。
電解で得られた平均結晶粒径0.4μm以下の微細組織は延性が低く、曲げ加工性が悪いだけでなく、粒界面積増大により導電率が低下するが、その後の圧延による動的再結晶で曲げ加工性を改善すると同時に、動的再結晶で粒径を大きくすることで粒界面積を低減し、導電率を向上させることができる。
ここで銅合金箔は、例えばフレキシブルプリント基板やICテープキャリア等のプリント配線基板に使用され、通常、3〜35μm程度の厚みのものを示し、銅合金条は、例えば端子、コネクター等の電子部品用材料に用いられ、通常50μm以上程度の厚みのものを示す。
In order to achieve the above object, the method for producing a copper alloy strip or copper alloy foil having excellent strength, electrical conductivity, and bending workability according to the present invention is obtained by electrolysis using a plating bath containing a plating additive. An electrolytic copper alloy strip or electrolytic copper alloy foil having a diameter of 0.4 μm or less is manufactured, and after cold rolling the electrolytic copper alloy strip or electrolytic copper alloy foil, heat treatment is not performed or heat treatment is performed. .
A fine structure with an average crystal grain size of 0.4 μm or less obtained by electrolysis has low ductility and poor bending workability, and also decreases the conductivity due to an increase in grain boundary area, but dynamic recrystallization by subsequent rolling In addition to improving the bending workability, the grain boundary area can be reduced by increasing the particle size by dynamic recrystallization, and the conductivity can be improved.
Here, the copper alloy foil is used for a printed wiring board such as a flexible printed board or an IC tape carrier, and usually has a thickness of about 3 to 35 μm, and the copper alloy strip is an electronic component such as a terminal or a connector. It is used for a material for use and usually has a thickness of about 50 μm or more.

前記銅合金条又は銅合金箔がAg、Sn及びInの群から選ばれる少なくとも1種の添加元素を合計0.05〜1.0質量%含有し、残部が銅及び不可避的不純物からなることが好ましい。これらの元素はCuマトリックス中に固溶し、固溶強化により合金の強度を上昇させる。   The copper alloy strip or the copper alloy foil may contain a total of 0.05 to 1.0% by mass of at least one additive element selected from the group of Ag, Sn, and In, with the balance being made of copper and inevitable impurities. preferable. These elements dissolve in the Cu matrix and increase the strength of the alloy by solid solution strengthening.

前記めっき添加剤としてチオ尿素、アリルチオ尿素、アセチルチオ尿素、フェニルチオ尿素、ベンゾトリアゾール、ゼラチン、ポリエチレンイミン、膠、ビス(3−スルホプロピル)ジスルフィド、及びヤヌスグリーンBの群から選ばれる1種または2種以上を用いることが好ましい。
前記冷間圧延の加工度が20%以上であることが好ましく、前記熱処理温度が350℃以下であることが好ましい。
One or two selected from the group consisting of thiourea, allylthiourea, acetylthiourea, phenylthiourea, benzotriazole, gelatin, polyethyleneimine, glue, bis (3-sulfopropyl) disulfide, and Janus Green B as the plating additive It is preferable to use the above.
The cold rolling workability is preferably 20% or more, and the heat treatment temperature is preferably 350 ° C. or less.

本発明の銅合金条又は銅合金箔は、前記銅合金条又は銅合金箔の製造方法により製造されたことを特徴とする。
本発明の銅合金条又は銅合金箔において、前記平均結晶粒径が0.5μm以下であることが好ましく、導電率が50%IACS以上、引張強さが650MPa以上で、かつ最小曲げ半径比(MBR/tが6以下であることが好ましい。
ここで、MBR/tは、(割れの発生しない最小曲げ半径/試験片厚さ)で表される試験である。
The copper alloy strip or copper alloy foil of the present invention is characterized by being manufactured by the method for manufacturing a copper alloy strip or copper alloy foil.
In the copper alloy strip or copper alloy foil of the present invention, the average crystal grain size is preferably 0.5 μm or less, the electrical conductivity is 50% IACS or more, the tensile strength is 650 MPa or more, and the minimum bending radius ratio ( MBR / t is preferably 6 or less.
Here, MBR / t is a test represented by (minimum bending radius at which cracking does not occur / test specimen thickness).

本発明の電子部品は、前記銅合金条又は銅合金箔を用いたことを特徴とする。   The electronic component of the present invention is characterized by using the copper alloy strip or the copper alloy foil.

本発明によれば、従来に比べて強度、導電率、曲げ加工性に優れた銅合金条及び銅合金箔が得られる。   According to the present invention, it is possible to obtain a copper alloy strip and a copper alloy foil that are superior in strength, electrical conductivity, and bending workability as compared with the prior art.

以下、本発明に係る銅合金条又は銅合金箔の製造方法の実施の形態について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。
<電解銅合金条又は電解銅合金箔の製造>
本発明に係る銅合金条又は銅合金箔の製造方法において、まず電解銅合金条又は電解銅合金箔を製造する。電解銅合金条及び電解銅合金箔は、従来から公知の電解法(電気めっき法)によって製造される。本発明においては、平均結晶粒径0.4μm以下の電解銅合金条又は電解銅合金箔を得るため、めっき添加剤を含むめっき浴を用いて電解する。
めっき浴としては、従来公知の銅めっき浴(例えば硫酸銅浴)を用いることができ、電解条件(電流密度、温度)やアノード、カソード等も特に制限されない。例えば、アノードとして酸化イリジウム電極等の不溶性電極又は銅電極を用い、カソードとしてはドラムカソードを用いることができる。
Hereinafter, an embodiment of a method for producing a copper alloy strip or copper alloy foil according to the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.
<Manufacture of electrolytic copper alloy strip or electrolytic copper alloy foil>
In the method for producing a copper alloy strip or copper alloy foil according to the present invention, first, an electrolytic copper alloy strip or an electrolytic copper alloy foil is produced. The electrolytic copper alloy strip and the electrolytic copper alloy foil are produced by a conventionally known electrolytic method (electroplating method). In the present invention, electrolysis is performed using a plating bath containing a plating additive in order to obtain an electrolytic copper alloy strip or an electrolytic copper alloy foil having an average crystal grain size of 0.4 μm or less.
As the plating bath, a conventionally known copper plating bath (for example, a copper sulfate bath) can be used, and the electrolysis conditions (current density, temperature), anode, cathode and the like are not particularly limited. For example, an insoluble electrode such as an iridium oxide electrode or a copper electrode can be used as the anode, and a drum cathode can be used as the cathode.

電解銅合金条及び電解銅合金箔は、Ag、Sn及びInの群から選ばれる少なくとも1種の添加元素を合計0.05〜1.0質量%含有している。Ag、Sn、Inは、電析した銅合金の強度を上昇させる添加元素であり、上記銅めっき浴中にこれらの元素の塩(例えば硫酸塩)として添加することにより、電解銅合金に含有される。なお、電解の際には、Ag、Sn、Inの析出電位とCuの析出電位を近付けるため、銅めっき浴中に適当な錯化剤(例えばEDTA(エチレンジアミン4酢酸)、クエン酸、クエン酸塩等)を加えることが好ましい。
電解銅合金中の添加元素の合計含有量が0.05質量%未満である場合、合金の強度が充分でない傾向にある。合計含有量が1.0質量%を超えると導電率や曲げ加工性が劣化する傾向にある。特に、Agの含有量が多いと曲げ性が劣化し、Sn及びInの含有量が多いと導電率および曲げ加工性が劣化する傾向にある。又、Agの含有量が多いと材料のコストアップにつながる傾向にある。
The electrolytic copper alloy strip and the electrolytic copper alloy foil contain 0.05 to 1.0% by mass in total of at least one additive element selected from the group of Ag, Sn, and In. Ag, Sn, and In are additive elements that increase the strength of the electrodeposited copper alloy, and are contained in the electrolytic copper alloy by adding them as a salt (for example, sulfate) of these elements in the copper plating bath. The In the electrolysis, an appropriate complexing agent (for example, EDTA (ethylenediaminetetraacetic acid), citric acid, citrate, etc.) is used in the copper plating bath to bring the deposition potential of Ag, Sn, and In close to the deposition potential of Cu. Etc.) is preferably added.
When the total content of additive elements in the electrolytic copper alloy is less than 0.05% by mass, the strength of the alloy tends to be insufficient. When the total content exceeds 1.0% by mass, conductivity and bending workability tend to deteriorate. In particular, when the content of Ag is large, the bendability tends to deteriorate, and when the content of Sn and In is large, the conductivity and bending workability tend to deteriorate. Moreover, when there is much content of Ag, it exists in the tendency which leads to the cost increase of material.

めっき添加剤は、電析する銅の結晶を微細化するものであり、好ましくは、チオ尿素、アリルチオ尿素、アセチルチオ尿素、フェニルチオ尿素、ベンゾトリアゾール、ゼラチン、ポリエチレンイミン、膠、ビス(3−スルホプロピル)ジスルフィド、及びヤヌスグリーンBの群から選ばれる1種または2種以上を用いる。
これらのめっき添加剤は、めっき浴に対し合計で0.0001〜0.01質量%添加することが好ましい。めっき添加剤の添加量が0.0001質量%であると、結晶粒の微細化が充分でない場合があり、0.01質量%を超えても効果が飽和する傾向にある。
The plating additive refines the copper crystal to be electrodeposited, and preferably thiourea, allylthiourea, acetylthiourea, phenylthiourea, benzotriazole, gelatin, polyethyleneimine, glue, bis (3-sulfopropyl) ) One or more selected from the group of disulfide and Janus Green B are used.
These plating additives are preferably added in a total amount of 0.0001 to 0.01% by mass with respect to the plating bath. If the addition amount of the plating additive is 0.0001% by mass, the crystal grains may not be sufficiently refined, and even if the amount exceeds 0.01% by mass, the effect tends to be saturated.

このようにして、平均結晶粒径0.4μm以下の電解銅合金条又は電解銅合金箔を得る。電解銅合金条又は電解銅合金箔の結晶粒が微細になるほど強度が向上する。一方、平均結晶粒径が0.4μmを超えると、その後に圧延しても強度の高い銅合金条及び銅合金箔が得られない。なお、平均結晶粒径は小さいほど好ましいが、電解条件等との関係から、通常、下限は0.1μm程度である。   In this way, an electrolytic copper alloy strip or an electrolytic copper alloy foil having an average crystal grain size of 0.4 μm or less is obtained. The strength improves as the crystal grains of the electrolytic copper alloy strip or the electrolytic copper alloy foil become finer. On the other hand, if the average crystal grain size exceeds 0.4 μm, high strength copper alloy strips and copper alloy foils cannot be obtained even after rolling. In addition, although an average crystal grain size is so preferable that it is small, from a relationship with electrolysis conditions etc., a minimum is normally about 0.1 micrometer.

電解による銅合金条の厚みは、例えば0.1〜0.5mm程度であり、銅合金箔では、例えば10〜50μm程度である。圧延後の銅合金条の厚みは、例えば0.05〜0.3mm程度であり、銅合金箔では、例えば5〜35μm程度である。電解銅合金条又は電解銅合金箔の成分組成としては、例えばC:0.001〜0.05%、S:0.001〜0.1%、O:0.001〜0.1%、N:0.001〜0.05%、及び必要に応じて上記添加元素を含み、残部Cuおよび不可避的不純物からなるものが例示される。   The thickness of the copper alloy strip by electrolysis is, for example, about 0.1 to 0.5 mm, and the thickness of the copper alloy foil is, for example, about 10 to 50 μm. The thickness of the copper alloy strip after rolling is, for example, about 0.05 to 0.3 mm, and for a copper alloy foil, it is, for example, about 5 to 35 μm. The component composition of the electrolytic copper alloy strip or the electrolytic copper alloy foil is, for example, C: 0.001 to 0.05%, S: 0.001 to 0.1%, O: 0.001 to 0.1%, N : 0.001 to 0.05%, and those containing the above-described additional elements as necessary, and remaining Cu and unavoidable impurities are exemplified.

<圧延>
次に、電解銅合金条又は電解銅合金箔を冷間圧延した後、熱処理を行わないか又は熱処理を行う。冷間圧延加工を施すことにより、曲げ加工性(屈曲性)を付与することができ、熱処理によって更に曲げ加工性(屈曲性)を向上させることができる。
さらに、電解で得られた平均結晶粒径0.4μm以下の微細組織は延性が低く、曲げ加工性が悪いだけでなく、粒界面積増大により導電率が低下するが、その後の圧延による動的再結晶で曲げ加工性を改善すると同時に、動的再結晶で粒径を大きくすることで粒界面積を低減し、導電率を向上させることができる。
上記したように電解銅合金条又は電解銅合金箔の平均結晶粒径は0.4μm以下であるが、圧延により、最終製品の平均結晶粒径は、通常0.5μm程度となる。但し、圧延後の最終製品の平均結晶粒径が1μm以下であることが好ましい。
<Rolled>
Next, after cold rolling the electrolytic copper alloy strip or the electrolytic copper alloy foil, no heat treatment is performed or heat treatment is performed. By performing cold rolling, bending workability (flexibility) can be imparted, and bending workability (flexibility) can be further improved by heat treatment.
Furthermore, a fine structure having an average crystal grain size of 0.4 μm or less obtained by electrolysis has low ductility and poor bending workability, and also decreases in conductivity due to an increase in grain boundary area. At the same time as improving the bending workability by recrystallization, the grain interface area can be reduced by increasing the particle size by dynamic recrystallization, and the conductivity can be improved.
As described above, the average crystal grain size of the electrolytic copper alloy strip or the electrolytic copper alloy foil is 0.4 μm or less, but the average crystal grain size of the final product is usually about 0.5 μm by rolling. However, the average crystal grain size of the final product after rolling is preferably 1 μm or less.

好ましくは加工度20%以上で冷間加工を行う。冷間加工度が20%未満であると、導電率や曲げ加工性(屈曲性)の向上効果が充分でない傾向にある。又、熱処理を行わなくとも、曲げ加工性は向上するが、350℃以下の熱処理を行うと、曲げ加工性が一層向上する。但し、熱処理温度が350℃を超えると、材料が軟化して強度が低下する傾向にある。なお、冷間加工度を複数パスで行った場合、総加工度を20%以上とすることが好ましい。   Preferably, cold working is performed at a working degree of 20% or more. If the degree of cold work is less than 20%, the effect of improving conductivity and bending workability (flexibility) tends to be insufficient. Further, the bending workability is improved without performing the heat treatment, but the bending workability is further improved by performing the heat treatment at 350 ° C. or lower. However, when the heat treatment temperature exceeds 350 ° C., the material tends to soften and the strength tends to decrease. In addition, when the cold work degree is performed by a plurality of passes, the total work degree is preferably 20% or more.

以上のようにして得られた銅合金条又は銅合金箔は、導電率50%IACS以上、引張強さ650MPa以上、かつMBR/tが6以下である。
又、得られた銅合金箔は、例えばフレキシブルプリント基板やICテープキャリア等のプリント配線基板に使用することができる。又、得られた銅合金条は、例えば端子、コネクター等の電子部品用材料に使用することができる。その場合、例えば、0.1〜0.5mm程度の電解銅合金条を圧延し0.05〜0.3mmの電子部品用材料を作製することができる。
The copper alloy strip or copper alloy foil obtained as described above has an electrical conductivity of 50% IACS or more, a tensile strength of 650 MPa or more, and an MBR / t of 6 or less.
The obtained copper alloy foil can be used for printed wiring boards such as flexible printed boards and IC tape carriers. The obtained copper alloy strip can be used for materials for electronic parts such as terminals and connectors. In that case, for example, an electrolytic copper alloy strip of about 0.1 to 0.5 mm can be rolled to produce a material for electronic parts of 0.05 to 0.3 mm.

<実施例>
次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
<Example>
EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.

<電解銅合金条又は電解銅合金箔の製造>
電流密度5〜20A/dmの定電流電解により、カソード上に面積70×70mm、板厚0.2〜0.25mmの電解銅合金条を作製した。アノードとして無酸素銅の圧延条(板厚:2〜3mm)を用い、カソードとしてステンレス(SUS304)板を用いた。めっき浴として、硫酸銅(CuSO・5HO)270g/L、硫酸(HSO)100g/Lを含む硫酸銅浴を用いた。
又、この硫酸銅浴に、表1〜5に示すようにAg、Sn及びInの群から選ばれる少なくとも1種を、各表記載の割合で含有させた。ここで、各表においてAg:0.55%とは、めっきして得られた銅合金中の含有量である。
又、Ag、Sn、Inはそれぞれ塩としてAgSO、SnSO、In(SO。を用いた。さらに、Inを用いた場合、錯化剤としてEDTAを浴に添加した。
さらに、めっき添加剤として、チオ尿素、アリルチオ尿素、アセチルチオ尿素、フェニルチオ尿素、ベンゾトリアゾール、ゼラチン、ポリアクリルアミド、膠、ビス(3−スルホプロピル)ジスルフィド、及びヤヌスグリーンBの中から、表1のように1種を選んで添加し、それぞれ電解して各試料とした。めっき浴の温度は室温とし、電極間にめっき浴を流速2〜5m/s程度で流動させた。
<Manufacture of electrolytic copper alloy strip or electrolytic copper alloy foil>
An electrolytic copper alloy strip having an area of 70 × 70 mm and a plate thickness of 0.2 to 0.25 mm was produced on the cathode by constant current electrolysis at a current density of 5 to 20 A / dm 2 . An oxygen-free copper rolled strip (plate thickness: 2 to 3 mm) was used as the anode, and a stainless steel (SUS304) plate was used as the cathode. As a plating bath, a copper sulfate bath containing 270 g / L of copper sulfate (CuSO 4 .5H 2 O) and 100 g / L of sulfuric acid (H 2 SO 4 ) was used.
Moreover, at least 1 sort (s) chosen from the group of Ag, Sn, and In as shown in Tables 1-5 was contained in this copper sulfate bath in the ratio of each table | surface. Here, in each table, Ag: 0.55% is the content in the copper alloy obtained by plating.
Ag, Sn, and In are Ag 2 SO 4 , SnSO 4 , and In 2 (SO 4 ) 3 as salts, respectively. Was used. Furthermore, when In was used, EDTA was added to the bath as a complexing agent.
Further, as plating additives, among thiourea, allylthiourea, acetylthiourea, phenylthiourea, benzotriazole, gelatin, polyacrylamide, glue, bis (3-sulfopropyl) disulfide, and Janus Green B, as shown in Table 1 One type was selected and added to each, and each sample was electrolyzed. The temperature of the plating bath was room temperature, and the plating bath was flowed between the electrodes at a flow rate of about 2 to 5 m / s.

<圧延>
次に、各試料の電解銅合金条をラボ圧延機で50パス程度の条件で冷間圧延した後、アルゴンガス雰囲気中で熱処理を施した。各試料の圧延加工度と熱処理条件(温度と処理時間)は表2に示した。
<Rolled>
Next, each electrolytic copper alloy strip of each sample was cold-rolled under a condition of about 50 passes with a laboratory rolling mill, and then heat-treated in an argon gas atmosphere. The rolling degree and heat treatment conditions (temperature and treatment time) of each sample are shown in Table 2.

<評価>
1.電解銅合金条又は電解銅合金箔の平均結晶粒径
圧延前の電解銅合金条のSIM(二次イオン)像を撮影した。この像の結晶粒の個数を目視で測定し、個数と測定面積とから下式を用い、円相当径として平均結晶粒径を計算した。
但し、R:円相当径(μm)、S:測定面積(μm)、N:結晶粒個数(個)である。
なお、図1は、めっき浴に対し、めっき添加剤としてチオ尿素を0.007%(7ppm)添加して電解した場合の、電解銅合金条の断面組織を示すSIM像である。
<Evaluation>
1. Average crystal grain size of electrolytic copper alloy strip or electrolytic copper alloy foil A SIM (secondary ion) image of the electrolytic copper alloy strip before rolling was taken. The number of crystal grains in this image was visually measured, and the average crystal grain size was calculated as the equivalent circle diameter from the number and measurement area using the following formula.
However, R: equivalent circle diameter (μm), S: measurement area (μm 2 ), N: number of crystal grains (pieces).
FIG. 1 is a SIM image showing a cross-sectional structure of the electrolytic copper alloy strip when electrolysis is performed by adding 0.007% (7 ppm) of thiourea as a plating additive to the plating bath.

2.曲げ加工性
圧延及び熱処理後の銅合金条及び銅合金箔について、Bad Way方向(曲げ軸が圧延方向に平行な方向)の90°W曲げ試験(JIS H 3110)を行い、最小曲げ半径比MBR/t(割れの発生しない最小曲げ半径/試験片厚さ)を求めた。MBR/tが5以下であれば曲げ性が良好であると判断した。
3.強度(引張強さ)
圧延及び熱処理後の銅合金条及び銅合金箔について、引張方向を圧延直角方向として引張試験を行った。なお、試験片サイズは、幅10mm、長さ50mm、頚部の幅が5mmで頚部の長さが20mmのものを用いた。
4.導電率
ダブルブリッジによる体積抵抗率測定から導電率を測定した。
2. Bending workability Copper alloy strips and copper alloy foils after rolling and heat treatment are subjected to a 90 ° W bending test (JIS H 3110) in the Bad Way direction (direction in which the bending axis is parallel to the rolling direction), and the minimum bending radius ratio MBR / T (minimum bending radius at which cracks do not occur / test specimen thickness) was determined. If MBR / t was 5 or less, it was judged that the bendability was good.
3. Strength (tensile strength)
About the copper alloy strip and copper alloy foil after rolling and heat processing, the tension test was done by making a tension direction into a rolling perpendicular direction. The test piece size was 10 mm in width, 50 mm in length, 5 mm in the neck width, and 20 mm in the neck length.
4). Electrical conductivity Electrical conductivity was measured from volume resistivity measurement using a double bridge.

得られた結果を表に示す。
The results obtained are shown in the table.

表1〜4から明らかなように、各発明例の試料は650MPa以上の強度を有し、かつ曲げ性に優れたものとなった。
特に、冷間圧延後に350℃以下の熱処理を加えた発明例19、40、41、47、48、61、62、82、83、86、89、92および95の場合、同一条件で加工した発明例(例えば、発明例19に対する発明例16)に比べ、強度を低下させずに曲げ性を一層向上させることができた。
なお、「熱処理後の平均粒径」とある欄は、冷間圧延後の熱処理を意味し、熱処理しなかった場合は冷間圧延後の平均粒径を表す。
As is apparent from Tables 1 to 4, the samples of each invention example had a strength of 650 MPa or more and excellent bendability.
In particular, in the case of Invention Examples 19, 40, 41, 47, 48, 61, 62, 82, 83, 86, 89, 92, and 95 after heat treatment at 350 ° C. or less after cold rolling, the invention processed under the same conditions Compared to the example (for example, Invention Example 16 with respect to Invention Example 19), the bendability could be further improved without reducing the strength.
The column “average particle size after heat treatment” means heat treatment after cold rolling, and represents the average particle size after cold rolling when heat treatment is not performed.

一方、電解銅合金条製造時にめっき添加剤を加えず、平均結晶粒径が0.4μmを超えた比較例1〜4の場合、強度が650MPa未満に低下した。
電解銅合金条製造時にめっき添加剤を加えたが、Ag、Sn及びInの群から選ばれる添加元素の含有量の合計が0.05質量%未満である比較例5〜11の場合、強度が650MPa未満に低下した。
冷間圧延の加工度が20%未満である比較例12の場合、曲げ性が低下した。
冷間加工後に350℃を超える熱処理を行った比較例13の場合、強度が650MPa未満に低下した。
電解銅条製造時のめっき添加剤の添加量が適正値を超えた比較例14〜16の場合、電解銅条が脆くなり、圧延を行うことができなかった。例えば、添加剤(チオ尿素)の最適添加量は〜0.0015%程度であるが(発明例7参照)、比較例14の場合の添加量は0.005%であった。
電解銅の変わりに溶解鋳造で作製したインゴットを圧延して銅箔とした比較例17〜22の場合、圧延前の素材の平均結晶粒径が0.4μmを大幅に超えたため、強度が650MPa未満に大幅に低下した。
On the other hand, in the case of Comparative Examples 1 to 4 in which the plating additive was not added during the production of the electrolytic copper alloy strip and the average grain size exceeded 0.4 μm, the strength decreased to less than 650 MPa.
In the case of Comparative Examples 5 to 11 in which the total content of additive elements selected from the group of Ag, Sn, and In is less than 0.05% by mass, a plating additive was added during the production of the electrolytic copper alloy strip. It decreased to less than 650 MPa.
In the case of Comparative Example 12 in which the degree of cold rolling was less than 20%, the bendability was lowered.
In the case of Comparative Example 13 in which heat treatment exceeding 350 ° C. was performed after cold working, the strength decreased to less than 650 MPa.
In the case of Comparative Examples 14 to 16 in which the addition amount of the plating additive during the production of the electrolytic copper strip exceeded the appropriate value, the electrolytic copper strip became brittle and could not be rolled. For example, the optimum addition amount of the additive (thiourea) is about .about.0.0015% (see Invention Example 7), but the addition amount in the case of Comparative Example 14 was 0.005%.
In the case of Comparative Examples 17 to 22 in which an ingot produced by melt casting instead of electrolytic copper was rolled into a copper foil, the average crystal grain size of the material before rolling greatly exceeded 0.4 μm, so the strength was less than 650 MPa. Dropped significantly.

電解銅合金条の断面組織を示す二次イオン(SIM)像である。It is a secondary ion (SIM) image which shows the cross-sectional structure | tissue of an electrolytic copper alloy strip.

Claims (9)

めっき添加剤を含むめっき浴を用いた電解により平均結晶粒径0.4μm以下の電解銅合金条又は電解銅合金箔を製造し、該電解銅合金条又は電解銅合金箔を冷間圧延した後、熱処理を行わないか又は熱処理を行うことを特徴とする強度、導電率、曲げ加工性に優れた銅合金条又は銅合金箔の製造方法。   After producing an electrolytic copper alloy strip or electrolytic copper alloy foil having an average crystal grain size of 0.4 μm or less by electrolysis using a plating bath containing a plating additive, and cold rolling the electrolytic copper alloy strip or electrolytic copper alloy foil A method for producing a copper alloy strip or a copper alloy foil excellent in strength, electrical conductivity, and bending workability, characterized by not performing heat treatment or performing heat treatment. 前記銅合金条又は銅合金箔がAg、Sn及びInの群から選ばれる少なくとも1種の添加元素を合計0.05〜1.0質量%含有し、残部が銅及び不可避的不純物からなることを特徴とする請求項1に記載の銅合金条又は銅合金箔の製造方法。   The copper alloy strip or the copper alloy foil contains a total of 0.05 to 1.0% by mass of at least one additive element selected from the group of Ag, Sn and In, and the balance is made of copper and inevitable impurities. The method for producing a copper alloy strip or a copper alloy foil according to claim 1. 前記めっき添加剤としてチオ尿素、アリルチオ尿素、アセチルチオ尿素、フェニルチオ尿素、ベンゾトリアゾール、ゼラチン、ポリエチレンイミン、膠、ビス(3−スルホプロピル)ジスルフィド、及びヤヌスグリーンBの群から選ばれる1種または2種以上を用いることを特徴とする請求項1又は2に記載の銅合金条又は銅合金箔の製造方法。   One or two selected from the group consisting of thiourea, allylthiourea, acetylthiourea, phenylthiourea, benzotriazole, gelatin, polyethyleneimine, glue, bis (3-sulfopropyl) disulfide, and Janus Green B as the plating additive The method for producing a copper alloy strip or a copper alloy foil according to claim 1 or 2, wherein the above is used. 前記冷間圧延の加工度が20%以上であることを特徴とする請求項1〜3の何れか一項に記載の銅合金条又は銅合金箔の製造方法。   The method for producing a copper alloy strip or a copper alloy foil according to any one of claims 1 to 3, wherein a workability of the cold rolling is 20% or more. 前記熱処理温度が350℃以下であることを特徴とする請求項1〜4の何れか一項に記載の銅合金条又は銅合金箔の製造方法。   The said heat processing temperature is 350 degrees C or less, The manufacturing method of the copper alloy strip or copper alloy foil as described in any one of Claims 1-4 characterized by the above-mentioned. 請求項1〜5の何れか一項に記載の銅合金条又は銅合金箔の製造方法により製造されたことを特徴とする銅合金条又は銅合金箔。   A copper alloy strip or a copper alloy foil produced by the method for producing a copper alloy strip or a copper alloy foil according to any one of claims 1 to 5. 前記平均結晶粒径が0.5μm以下であることを特徴とする請求項6に記載の銅合金条又は銅合金箔。   The copper alloy strip or copper alloy foil according to claim 6, wherein the average crystal grain size is 0.5 μm or less. 導電率が50%IACS以上、引張強さが650MPa以上で、かつ最小曲げ半径比(MBR/tが6以下であることを特徴とする請求項6又は7に記載の銅合金条又は銅合金箔。   The copper alloy strip or copper alloy foil according to claim 6 or 7, wherein the electrical conductivity is 50% IACS or more, the tensile strength is 650MPa or more, and the minimum bending radius ratio (MBR / t is 6 or less). . 請求項6〜8のいずれかに記載の銅合金条又は銅合金箔を用いたことを特徴とする電子部品。   An electronic component using the copper alloy strip or the copper alloy foil according to any one of claims 6 to 8.
JP2006266765A 2006-09-29 2006-09-29 Method for manufacturing copper alloy strip or copper alloy foil with excellent strength, electric conductivity and bendability, copper alloy strip or copper alloy foil, and electronic parts using the same Withdrawn JP2008081836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006266765A JP2008081836A (en) 2006-09-29 2006-09-29 Method for manufacturing copper alloy strip or copper alloy foil with excellent strength, electric conductivity and bendability, copper alloy strip or copper alloy foil, and electronic parts using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006266765A JP2008081836A (en) 2006-09-29 2006-09-29 Method for manufacturing copper alloy strip or copper alloy foil with excellent strength, electric conductivity and bendability, copper alloy strip or copper alloy foil, and electronic parts using the same

Publications (1)

Publication Number Publication Date
JP2008081836A true JP2008081836A (en) 2008-04-10

Family

ID=39352978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266765A Withdrawn JP2008081836A (en) 2006-09-29 2006-09-29 Method for manufacturing copper alloy strip or copper alloy foil with excellent strength, electric conductivity and bendability, copper alloy strip or copper alloy foil, and electronic parts using the same

Country Status (1)

Country Link
JP (1) JP2008081836A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104088A (en) * 2011-11-11 2013-05-30 Furukawa Electric Co Ltd:The Rolled copper foil
JP2014145126A (en) * 2013-01-30 2014-08-14 Furukawa Electric Co Ltd:The Electrolytic copper foil having high strength and high heat resistance and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104088A (en) * 2011-11-11 2013-05-30 Furukawa Electric Co Ltd:The Rolled copper foil
JP2014145126A (en) * 2013-01-30 2014-08-14 Furukawa Electric Co Ltd:The Electrolytic copper foil having high strength and high heat resistance and method of producing the same

Similar Documents

Publication Publication Date Title
JP2007294923A (en) Manufacturing method of copper strip or copper foil having excellent strength, electric conductivity, and bendability, and electronic component using the same
KR101779653B1 (en) High strength, high heat-resistance electrolytic copper foil, and manufacturing method for same
JP4413992B2 (en) Copper alloy sheet for electrical and electronic parts
JP4986499B2 (en) Method for producing Cu-Ni-Si alloy tin plating strip
CN1195395C (en) Copper alloy foil for integrated board
KR100774226B1 (en) Cu-Ni-Si-Zn-Sn BASED PLATING BATH EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING AND TIN PLATING BATH THEREOF
JP2007039804A (en) Copper alloy for electronic apparatus and method of producing the same
EP1716732A2 (en) Tin-based coating of electronic component
JP2006233314A (en) High-strength copper alloy
TWI514937B (en) Wiring circuit board
JP2007314859A (en) Cu-Zn ALLOY STRIP WITH EXCELLENT RESISTANCE TO THERMAL PEELING OF Sn PLATING, AND Sn-PLATED STRIP THEREOF
WO2014115681A1 (en) Electrolytic copper foil and method for producing same
JP2006009039A (en) Tin based plating film in which growth of whisker is suppressed and forming method therefor
JP5393739B2 (en) Cu-Ni-Si alloy tin plating strip
KR20150050266A (en) Manufacturing method of high strength copper foil using micro-hardening and high strength copper foil manufactured by the same
JP2006283107A (en) Cu-Ni-Si-BASED COPPER ALLOY AND ITS MANUFACTURING METHOD
JP4805409B2 (en) Composite material for electric and electronic parts and electric and electronic parts using the same
JP2008081836A (en) Method for manufacturing copper alloy strip or copper alloy foil with excellent strength, electric conductivity and bendability, copper alloy strip or copper alloy foil, and electronic parts using the same
JP4020881B2 (en) Cu-Ni-Si-Mg copper alloy strip
JP2005105307A (en) REFLOW-Sn-PLATED MEMBER, METHOD FOR MANUFACTURING THE MEMBER, AND COMPONENT FOR ELECTRICAL AND ELECTRONIC EQUIPMENT USING THE MEMBER
JP2010232283A (en) Copper-coated polyimide substrate and method of manufacturing the same
EP2320717A1 (en) Wiring circuit board and method of manufacturing the same
JP2004232049A (en) Cu PLATING TITANIUM COPPER
JP2005029826A (en) Method for manufacturing copper alloy foil for electronic component
JP2007314850A (en) Cu-ni-si-based alloy strip excellent in plating adhesion

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201