JP2008080211A - Carbon dioxide absorber, carbon dioxide separating method using the same, and carbon dioxide separation apparatus - Google Patents

Carbon dioxide absorber, carbon dioxide separating method using the same, and carbon dioxide separation apparatus Download PDF

Info

Publication number
JP2008080211A
JP2008080211A JP2006261369A JP2006261369A JP2008080211A JP 2008080211 A JP2008080211 A JP 2008080211A JP 2006261369 A JP2006261369 A JP 2006261369A JP 2006261369 A JP2006261369 A JP 2006261369A JP 2008080211 A JP2008080211 A JP 2008080211A
Authority
JP
Japan
Prior art keywords
carbon dioxide
absorbent
absorption
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006261369A
Other languages
Japanese (ja)
Inventor
Hiroshi Marusawa
博 丸澤
Yoshinori Saito
芳則 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2006261369A priority Critical patent/JP2008080211A/en
Publication of JP2008080211A publication Critical patent/JP2008080211A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon dioxide absorber which enables an absorption of a carbon dioxide at a high temperature, has a small attenuation rate by the CO<SB>2</SB>absorption in a maximum weight variation even if a cycle of an absorption/discharge of CO<SB>2</SB>is repeated many times, and can correspond to a cycle operation repeating the absorption/discharge of CO<SB>2</SB>stably, a carbon dioxide separating method using the carbon dioxide absorber, and a carbon dioxide separation apparatus. <P>SOLUTION: Ni is contained at a rate of 0.2 wt.% or more when considered in terms of metals, in the carbon dioxide absorber containing mainly a composite oxide containing a component material X being at least one kind of Sr and Ba, and Ti at a rate of a molar ratio (X/Ti):1.8-2.2. Further, Ni is contained at a rate of 0.4-6.0 wt.% when considered in terms of metals. Using the carbon dioxide absorber, the absorption of the carbon dioxide is carried out under the following conditions: pressure:1.0×10<SP>4</SP>-1.0×10<SP>6</SP>Pa and temperature:500-900°C, and the discharge of the carbon dioxide is carried out under the following conditions: pressure:1,000 Pa or less and temperature:750°C or more. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、高温条件下で炭酸ガスを吸収し、所定の条件下で吸収した炭酸ガスを放出させて再生することにより、繰り返して使用することが可能な炭酸ガス吸収材、それを用いた炭酸ガス分離方法、および炭酸ガス分離装置に関する。   The present invention relates to a carbon dioxide absorbent that can be used repeatedly by absorbing carbon dioxide under a high temperature condition, releasing the carbon dioxide absorbed under a predetermined condition, and regenerating the carbon dioxide. The present invention relates to a gas separation method and a carbon dioxide separation device.

500℃を超える温度域で炭酸ガスを吸収する材料としては、例えば、一般式:LixSiyzで表されるリチウムシリケートからなる群より選ばれる少なくとも1種以上を含有する炭酸ガス吸収材が知られている。 Examples of the material that absorbs carbon dioxide in a temperature range exceeding 500 ° C. include a carbon dioxide absorbent containing at least one selected from the group consisting of lithium silicate represented by the general formula: Li x Si y O z It has been known.

しかしながら、リチウムシリケートを用いた場合、燃焼排ガスなどの700℃を超えるような高温のガスから炭酸ガスを効率よく吸収することは困難であるのが実情である。   However, when lithium silicate is used, it is difficult to efficiently absorb carbon dioxide gas from a high-temperature gas exceeding 700 ° C. such as combustion exhaust gas.

そこで、本願の出願人は、高温のガスから炭酸ガスを効率よく吸収することが可能な炭酸ガス吸収材として、SrおよびBaの少なくとも1種である成分物質Xと、Tiとを、モル比(X/Ti):1.8〜2.2の割合で含む複合酸化物(例えば、Ba2TiO4(オルソチタン酸バリウム)や、(Sr,Ba)xTiO4(x=1.8〜2.2))を主成分とする炭酸ガス吸収材を提案している(特許文献1参照)。 Therefore, the applicant of the present application, as a carbon dioxide absorbing material capable of efficiently absorbing carbon dioxide from a high-temperature gas, contains a component substance X, which is at least one of Sr and Ba, and Ti in a molar ratio ( X / Ti): a composite oxide containing a ratio of 1.8 to 2.2 (for example, Ba 2 TiO 4 (barium orthotitanate) or (Sr, Ba) x TiO 4 (x = 1.8 to 2. 2)) has been proposed as a main component (see Patent Document 1).

この特許文献1の炭酸ガス吸収材(例えば、Ba2TiO4)は、下記の式(1)の反応によりCO2を吸収してBaTiO3になり、常圧付近で500〜900℃というような高温下で炭酸ガスを吸収する能力を備えている。
Ba2TiO4+CO2 → BaTiO3+BaCO3 ……(1)
The carbon dioxide gas absorbing material (for example, Ba 2 TiO 4 ) of Patent Document 1 absorbs CO 2 by the reaction of the following formula (1) to become BaTiO 3 , such as 500 to 900 ° C. near normal pressure. It has the ability to absorb carbon dioxide at high temperatures.
Ba 2 TiO 4 + CO 2 → BaTiO 3 + BaCO 3 (1)

また、特許文献1の炭酸ガス吸収材は、例えば、積層コンデンサの廃棄シートを原料として製造することが可能であり、その際には、Ca、Zr、Mg、Si、Mn、Na、Niなどが微量混入してもよいとされている。   In addition, the carbon dioxide absorbent of Patent Document 1 can be manufactured using, for example, a waste sheet of a multilayer capacitor as a raw material, and in that case, Ca, Zr, Mg, Si, Mn, Na, Ni, etc. It is said that a trace amount may be mixed.

しかしながら、この特許文献1の炭酸ガス吸収材は、CO2吸収・放出(CO2 20%、N2 80%条件)のサイクル数が多くなると、CO2吸収率が低下する傾向がある。そのため、さらに安定的にCO2の吸収・放出を繰り返して行うことが可能な炭酸ガス吸収材が求められている。
国際公開第2006/013695号パンフレット
However, the carbon dioxide absorbent of Patent Document 1 has a tendency that the CO 2 absorption rate decreases when the number of cycles of CO 2 absorption / release (CO 2 20%, N 2 80% condition) increases. Therefore, there is a demand for a carbon dioxide gas absorbent that can repeatedly absorb and release CO 2 more stably.
International Publication No. 2006/013695 Pamphlet

本願発明は、上記問題点を解決するものであり、高い温度域において炭酸ガスを吸収することが可能で、かつ、CO2の吸収・放出のサイクル数が多くなった場合にも、CO2吸収による最大重量変化量の減衰率が小さく、安定的にCO2の吸収・放出を繰り返して行うことが可能な炭酸ガス吸収材、それを用いた炭酸ガス分離方法、および炭酸ガス分離装置を提供することを課題とする。 The present invention solves the above-mentioned problems, and can absorb carbon dioxide in a high temperature range, and can absorb CO 2 even when the number of CO 2 absorption / release cycles increases. Provided is a carbon dioxide absorbing material that has a small attenuation rate of the maximum weight change amount due to CO2 and can repeatedly perform absorption and release of CO 2 , a carbon dioxide separation method using the same, and a carbon dioxide separation device This is the issue.

上記課題を解決するために、本願発明(請求項1)の炭酸ガス吸収材は、
SrおよびBaの少なくとも1種である成分物質Xと、Tiとを、モル比(X/Ti):1.8〜2.2の割合で含む複合酸化物を主成分とし、
Niを金属換算で0.2重量%以上含有すること
を特徴としている。
In order to solve the above problems, the carbon dioxide absorbent of the present invention (Claim 1) is:
The main component is a composite oxide containing a component substance X, which is at least one of Sr and Ba, and Ti at a molar ratio (X / Ti): 1.8 to 2.2,
Ni is contained in an amount of 0.2% by weight or more in terms of metal.

また、請求項2の炭酸ガス吸収材は、
SrおよびBaの少なくとも1種である成分物質Xと、Tiとを、モル比(X/Ti):1.8〜2.2の割合で含む複合酸化物を主成分とし、
Niを金属換算で0.4〜6.0重量%の割合で含有すること
を特徴としている。
In addition, the carbon dioxide absorbent of claim 2
The main component is a composite oxide containing a component substance X, which is at least one of Sr and Ba, and Ti at a molar ratio (X / Ti): 1.8 to 2.2,
Ni is contained in a proportion of 0.4 to 6.0% by weight in terms of metal.

また、請求項3の炭酸ガス分離方法は、
請求項1または2記載の炭酸ガス吸収材を用い、
圧力:1.0×104〜1.0×106Pa、
温度:500〜900℃
の条件で炭酸ガスを吸収させる工程と、
前記炭酸ガス吸収材に吸収させた炭酸ガスを、
圧力:1000Pa以下、
温度:750℃以上
の条件で放出させる工程と
を具備することを特徴としている。
Further, the carbon dioxide separation method of claim 3
Using the carbon dioxide absorbent according to claim 1 or 2,
Pressure: 1.0 × 10 4 to 1.0 × 10 6 Pa,
Temperature: 500-900 ° C
A step of absorbing carbon dioxide under the conditions of
The carbon dioxide absorbed by the carbon dioxide absorbent is
Pressure: 1000 Pa or less,
And a step of releasing at a temperature of 750 ° C. or higher.

また、請求項4の炭酸ガス分離装置は、
請求項1または2記載の炭酸ガス吸収材を、
圧力:1.0×104〜1.0×106Pa、
温度:500〜900℃
の条件で炭酸ガスを含む気流と接触させて炭酸ガスを前記炭酸ガス吸収材に吸収させる炭酸ガス吸収機構部と、
炭酸ガスを含む気流と接触して炭酸ガスを吸収した炭酸ガス吸収材を、
圧力:1000Pa以下の減圧下、
温度:750℃以上
の条件で加熱して、炭酸ガスを放出させる炭酸ガス放出機構部と
を具備することを特徴としている。
Further, the carbon dioxide separator according to claim 4 is:
The carbon dioxide absorbent according to claim 1 or 2,
Pressure: 1.0 × 10 4 to 1.0 × 10 6 Pa,
Temperature: 500-900 ° C
A carbon dioxide absorption mechanism that allows carbon dioxide to be absorbed by the carbon dioxide absorbent by contacting with an air stream containing carbon dioxide under the conditions of
A carbon dioxide absorbent that absorbs carbon dioxide in contact with an air stream containing carbon dioxide,
Pressure: Under reduced pressure of 1000 Pa or less,
A temperature: 750 ° C. or higher, and a carbon dioxide gas release mechanism for releasing carbon dioxide gas.

本願発明(請求項1)の炭酸ガス吸収材は、SrおよびBaの少なくとも1種である成分物質Xと、Tiとを、モル比(X/Ti):1.8〜2.2の割合で含む複合酸化物を主成分とし、これにNiを金属換算で0.2重量%以上含有させたものであり、CO2の吸収・放出のサイクルを繰り返すサイクル運転において、サイクル数が多くなった場合にも、CO2吸収による最大重量変化量の減衰率が小さく、耐用性に優れている。
SrおよびBaの少なくとも1種である成分物質Xと、Tiとを、モル比(X/Ti):1.8〜2.2の割合で含む複合酸化物(すなわち、(Sr1-y,Bay)xTiO4、ただし、x=1.8〜2.2)を主成分とし、
The carbon dioxide gas absorbent of the present invention (Claim 1) is composed of a component substance X, which is at least one of Sr and Ba, and Ti at a molar ratio (X / Ti): 1.8 to 2.2. In the case where the number of cycles is increased in a cycle operation in which a complex oxide containing is contained as a main component and Ni is contained in an amount of 0.2% by weight or more in terms of metal and the cycle of CO 2 absorption / release is repeated. In addition, the attenuation rate of the maximum weight change due to CO 2 absorption is small, and the durability is excellent.
A composite oxide (ie, (Sr 1-y , Ba) containing component material X, which is at least one of Sr and Ba, and Ti in a molar ratio (X / Ti): 1.8 to 2.2. y ) xTiO 4 , where x = 1.8 to 2.2) is the main component,

例えば、上述のような複合酸化物(例えば、(Sr1-y,Bay)xTiO4、ただし、x=1.8〜2.2)に、Niを金属換算で約0.2重量%以上含有させた場合、被処理ガス組成が、CO2:20%、N2:80%の条件で、CO2の吸収・放出のサイクル運転を繰り返して行った場合における、CO2吸収による最大重量変化量の減衰率を3%以内に抑えることが可能になる。 For example, the composite oxide as described above (e.g., (Sr 1-y, Ba y) xTiO 4, however, x = 1.8 to 2.2) to about 0.2% by weight or more of Ni in terms of metal When contained, maximum weight change due to CO 2 absorption when the gas composition to be treated is repeatedly CO 2 absorption / release cycle operation under the conditions of CO 2 : 20% and N 2 : 80%. It is possible to suppress the amount of attenuation within 3%.

また、請求項2の炭酸ガス吸収材のように、Niを金属換算で0.4重量%以上含有させるようにした場合、CO2吸収による最大重量変化量の減衰率を1%以内に抑えることが可能になり、長期間にわたってより安定的に炭酸ガスの吸収を行うことが可能になる。 In addition, when the Ni content is 0.4% by weight or more in terms of metal as in the carbon dioxide absorbent of Claim 2, the attenuation rate of the maximum weight change due to CO 2 absorption is suppressed to within 1%. It becomes possible to absorb carbon dioxide gas more stably over a long period of time.

さらに、Niを金属換算で0.4〜6.0重量%の範囲内で含有させるようにした場合、CO2吸収による最大重量変化量を10%以上にすることが可能になり、炭酸ガス吸収材の単位量あたりの炭酸ガス吸収量を多く保ち、安定的に、効率よく炭酸ガスの吸収を行うことが可能になる。 Furthermore, when Ni is contained in the range of 0.4 to 6.0% by weight in terms of metal, the maximum weight change due to CO 2 absorption can be made 10% or more, and carbon dioxide absorption A large amount of carbon dioxide absorption per unit amount of the material can be maintained, and carbon dioxide can be stably and efficiently absorbed.

また、請求項3の炭酸ガス分離方法は、請求項1または2記載の炭酸ガス吸収材を用いて、圧力:1.0×104〜1.0×106Pa、温度:500〜900℃の条件で炭酸ガスを吸収させる工程と、前記炭酸ガス吸収材に吸収させた炭酸ガスを、圧力:1000Pa以下、温度:750℃以上の条件で放出させる工程とを具備しており、高温下での炭酸ガスの吸収と、吸収した炭酸ガスの放出(炭酸ガス吸収材の再生)を効率よく行うことが可能で、この方法を用いることにより、例えば、リチウムシリケートを炭酸ガス吸収材として用いた従来の方法では炭酸ガスの吸収を行うことができないような、高い温度条件下において、効率よく炭酸ガスの分離を行うことが可能になる。 Moreover, the carbon dioxide separation method of Claim 3 uses the carbon dioxide absorbent of Claim 1 or 2, Pressure: 1.0 * 10 < 4 > -1.0 * 10 < 6 > Pa, Temperature: 500-900 degreeC. And a step of releasing the carbon dioxide absorbed by the carbon dioxide absorbent under the conditions of pressure: 1000 Pa or less and temperature: 750 ° C. or more at a high temperature. It is possible to efficiently absorb the carbon dioxide gas and release the absorbed carbon dioxide gas (regeneration of the carbon dioxide gas absorbing material). By using this method, for example, conventional lithium silicate is used as the carbon dioxide gas absorbing material. In this method, carbon dioxide can be efficiently separated under high temperature conditions where carbon dioxide cannot be absorbed.

なお、本願発明の炭酸ガス吸収材を、TG−DTA分析機を用い、例えば、CO2とN2の割合が、体積比でCO2:20、N2:80の割合の混合ガス雰囲気中で、TG−DTA分析(熱重量分析−示差熱分析)を行った場合、炭酸ガス吸収材の重量は炭酸ガスの吸収により増大し、約800〜1000℃で最大値となり、温度が1021℃以上になると炭酸ガスの放出により重量が低下し、約1050℃以上で元の重量に戻る。それゆえ、800〜1050℃の間の温度条件下に炭酸ガスの吸収と放出とを行うことにより、最も効率よく炭酸ガスの分離を行うことが可能になる。
ただし、炭酸ガスの吸収および放出を減圧下で行うようにした場合には、好適な操作温度が低下し、加圧下で行うようにした場合には、好適な操作温度が上昇する。したがって、本願請求項3に規定するような条件下で吸収、放出を行うことにより、効率よく炭酸ガスの分離を行うことが可能になる。
なお、吸収した炭酸ガスを放出させる際の操作温度が1300℃を超えると、炭酸ガス吸収材の焼結が進み、炭酸ガスの吸収能力を失うため好ましくない。
本願発明の炭酸ガスの分離方法は、例えば、燃料電池などに使用される水素製造プロセスにおける、燃焼前炭酸ガス分離への利用が可能である。
The carbon dioxide absorbent of the present invention is used in a mixed gas atmosphere using a TG-DTA analyzer, for example, in which the ratio of CO 2 and N 2 is a volume ratio of CO 2 : 20 and N 2 : 80. When TG-DTA analysis (thermogravimetric analysis-differential thermal analysis) is performed, the weight of the carbon dioxide absorbent increases due to the absorption of carbon dioxide, reaches a maximum value at about 800 to 1000 ° C., and the temperature is over 1021 ° C. Then, the weight decreases due to the release of carbon dioxide gas, and returns to the original weight at about 1050 ° C. or higher. Therefore, the carbon dioxide gas can be separated most efficiently by absorbing and releasing the carbon dioxide gas under a temperature condition of 800 to 1050 ° C.
However, when carbon dioxide is absorbed and released under reduced pressure, the preferred operating temperature decreases, and when it is carried out under increased pressure, the preferred operating temperature increases. Therefore, carbon dioxide gas can be efficiently separated by absorbing and releasing under the conditions specified in claim 3 of the present application.
In addition, when the operating temperature at the time of releasing the absorbed carbon dioxide gas exceeds 1300 ° C., sintering of the carbon dioxide gas absorbing material proceeds and the carbon dioxide gas absorbing ability is lost.
The carbon dioxide separation method of the present invention can be used for pre-combustion carbon dioxide separation in a hydrogen production process used in, for example, a fuel cell.

また、請求項4の炭酸ガス分離装置は、請求項1または2記載の炭酸ガス吸収材を、圧力:1.0×104〜1.0×106Pa、温度:500〜900℃の条件で炭酸ガスを含む気流と接触させて炭酸ガスを炭酸ガス吸収材に吸収させる炭酸ガス吸収機構部と、炭酸ガスを含む気流と接触して炭酸ガスを吸収した炭酸ガス吸収材を、圧力:1000Pa以下の減圧下、温度:750℃以上の条件で加熱して、炭酸ガスを放出させる炭酸ガス放出機構部とを具備しており、炭酸ガス吸収機構部において、高温下での炭酸ガスの吸収を確実に行い、炭酸ガス放出機構部において、吸収した炭酸ガスの放出(炭酸ガス吸収材の再生)を確実に行うことができることから、この炭酸ガス分離装置を用いることにより、高温下での炭酸ガスの分離を経済的に、しかも効率よく行うことが可能になる。 Moreover, the carbon dioxide separator of claim 4 is the carbon dioxide absorbent according to claim 1 or 2 under the conditions of pressure: 1.0 × 10 4 to 1.0 × 10 6 Pa, temperature: 500 to 900 ° C. A carbon dioxide absorption mechanism that allows carbon dioxide gas to be absorbed by the carbon dioxide absorber by contacting with a gas stream containing carbon dioxide, and a carbon dioxide absorber that absorbs carbon dioxide by contacting the gas stream containing carbon dioxide, pressure: 1000 Pa A carbon dioxide gas release mechanism that releases carbon dioxide by heating at a temperature of 750 ° C. or higher under the following reduced pressure. The carbon dioxide absorption mechanism absorbs carbon dioxide at a high temperature. Since the carbon dioxide gas release mechanism can reliably release the absorbed carbon dioxide gas (regeneration of the carbon dioxide gas absorbent), carbon dioxide gas at high temperatures can be obtained by using this carbon dioxide gas separator. Economy of separation Moreover, it becomes possible to carry out efficiently.

以下に本願発明の実施例を示して、本願発明の特徴とするところをさらに詳しく説明する。   The features of the present invention will be described in more detail below with reference to examples of the present invention.

BaTiO3粉末に対して、BaTiO3とBaCO3のモル比が1対1になる量のBaCO3粉末を添加した。 An amount of BaCO 3 powder in which the molar ratio of BaTiO 3 and BaCO 3 was 1: 1 was added to the BaTiO 3 powder.

さらに、上述のように、モル比が1:1となるように配合されたBaTiO3とBaCO3のすべてがBa2TiO4となるように反応が生じるとした場合の理論量のBa2TiO4に対して、Niの含有割合が金属換算で0〜12.0重量%となるようにNi金属粉末を添加した。 Further, as mentioned above, the molar ratio of 1: 1 to become so formulated BaTiO 3 and Ba 2 TiO 4 weight theory if all BaCO 3 was a reaction so that Ba 2 TiO 4 occurs On the other hand, Ni metal powder was added so that the Ni content would be 0 to 12.0% by weight in terms of metal.

それから、純水、PSZ玉石、分散剤、消泡剤を加え、樹脂製のポットを用いたボールミルにて16〜20時間の混合・粉砕を行い、原料粉末が分散したスラリーを得た。   Then, pure water, PSZ boulder, a dispersant and an antifoaming agent were added, and mixing and pulverization were performed for 16 to 20 hours in a ball mill using a resin pot to obtain a slurry in which raw material powder was dispersed.

次に、このスラリーを120℃で10時間乾燥した後、得られた粉末を1000〜1200℃、2時間保持の条件で焼成し、複合酸化物であるBa2TiO4を主成分とする炭酸ガス吸収材(セラミックス粉末)を得た。 Next, this slurry was dried at 120 ° C. for 10 hours, and then the obtained powder was fired at 1000 to 1200 ° C. for 2 hours, and carbon dioxide gas containing Ba 2 TiO 4 as a main component was a composite oxide. An absorbent material (ceramic powder) was obtained.

それから、この炭酸ガス吸収材を用い、CO2とN2の割合が、体積比でCO2:20、N2:80の割合の混合ガス雰囲気中で、TG−DTA分析(熱重量分析−示差熱分析)を行った。 Then, using this carbon dioxide absorbing material, TG-DTA analysis (thermogravimetric analysis-differential) in a mixed gas atmosphere in which the ratio of CO 2 and N 2 is a volume ratio of CO 2 : 20, N 2 : 80 Thermal analysis).

図1に、Ni金属を添加していない炭酸ガス吸収材を室温から1300℃まで測定したTG−DTA分析結果を示す。
図1に示すように、CO2とN2の割合が、体積比でCO2:20、N2:80の雰囲気ガス中で、上記炭酸ガス吸収材の重量は、約400℃から炭酸ガスの吸収により増大し、約800〜1000℃で最大値となる。そして、温度が1021℃以上になると炭酸ガスの放出により重量が低下し、約1050℃以上で元の重量に戻る。
なお、図1では、具体的には、吸収開始温度は618℃、放出開始温度は1021℃、TG最大値は10.63%となっている。
FIG. 1 shows a TG-DTA analysis result obtained by measuring a carbon dioxide absorbent not added with Ni metal from room temperature to 1300 ° C.
As shown in FIG. 1, the weight of the carbon dioxide absorbent is from about 400 ° C. to the amount of carbon dioxide in an atmosphere gas in which the ratio of CO 2 and N 2 is CO 2 : 20 and N 2 : 80 by volume. It increases due to absorption, and reaches a maximum value at about 800 to 1000 ° C. When the temperature reaches 1021 ° C. or higher, the weight decreases due to the release of carbon dioxide, and returns to the original weight at about 1050 ° C. or higher.
In FIG. 1, specifically, the absorption start temperature is 618 ° C., the release start temperature is 1021 ° C., and the TG maximum value is 10.63%.

ここで、約800℃と約1050℃の間で、重量変化量が最大(すなわち、TG最大変化量)となり、炭酸ガスの最大吸収変化量を示す。したがって、約800℃と約1050℃の間で炭酸ガスを吸収・放出させれば、効率よく、炭酸ガスを分離・回収できることになる。   Here, between about 800 ° C. and about 1050 ° C., the weight change amount becomes maximum (that is, TG maximum change amount), which indicates the maximum absorption change amount of carbon dioxide gas. Therefore, if carbon dioxide is absorbed and released between about 800 ° C. and about 1050 ° C., carbon dioxide can be efficiently separated and recovered.

また、Ni金属換算で0〜12.0重量%の割合でNi金属粉末を添加した炭酸ガス吸収材について、同一条件でTG−DTA分析(熱重量分析−示差熱分析)を行ったところ、上記のNi金属を添加していない炭酸ガス吸収材の場合と同様に、800℃と1050℃の間でTG変化量が最大になることが確認された。   Moreover, about the carbon dioxide absorber which added Ni metal powder in the ratio of 0-12.0 weight% in conversion of Ni metal, when the TG-DTA analysis (thermogravimetric analysis-differential thermal analysis) was performed on the same conditions, the above-mentioned It was confirmed that the amount of change in TG was the maximum between 800 ° C. and 1050 ° C., as in the case of the carbon dioxide absorbent to which no Ni metal was added.

また、Ni金属を添加していない炭酸ガス吸収材について、TG−DTA分析機を用い、800〜1050℃間で炭酸ガスを連続的に吸収・放出させて熱重量分析を行った。その結果を図2に示す。   Moreover, about the carbon dioxide gas absorption material which has not added Ni metal, the thermogravimetric analysis was performed by making carbon dioxide gas absorb and discharge | release continuously between 800-1050 degreeC using the TG-DTA analyzer. The result is shown in FIG.

また、Ni金属換算で1.5重量%の割合でNi金属粉末を添加した炭酸ガス吸収材について、TG−DTA分析機を用い、上記のNi金属を添加していない炭酸ガス吸収材の場合と同一の条件で炭酸ガスを連続的に吸収・放出させ、熱重量分析を行った。その結果を図3に示す。   Moreover, about the carbon dioxide absorber which added Ni metal powder in the ratio of 1.5 weight% in Ni metal conversion, the case of the carbon dioxide absorber which does not add said Ni metal using a TG-DTA analyzer Under the same conditions, carbon dioxide was continuously absorbed and released, and thermogravimetric analysis was performed. The result is shown in FIG.

図2に示すように、Niを添加していない炭酸ガス吸収材は、3サイクル目からTG最大変化量が減少し始めることが確認された。
これに対して、Ni金属換算で1.5重量%の割合でNi金属粉末を添加した炭酸ガス吸収材の場合には、図3に示すように、炭酸ガスの吸収・放出のサイクルが増えても、TG最大変化量は減少しないことが確認された。
As shown in FIG. 2, it was confirmed that the maximum amount of change in TG started to decrease from the third cycle in the carbon dioxide absorbent to which Ni was not added.
On the other hand, in the case of a carbon dioxide absorbent to which Ni metal powder is added at a rate of 1.5% by weight in terms of Ni metal, the cycle of carbon dioxide absorption / release is increased as shown in FIG. It was also confirmed that the maximum change in TG did not decrease.

また、Ni金属換算で0〜12.0重量%の割合でNi金属粉末を添加した炭酸ガス吸収材について、炭酸ガスを連続的に吸収・放出させるサイクルを8回行い、1回目と8回目のTG最大変化量[%]を調べた。
表1に、炭酸ガスを8回まで連続的に吸収・放出させた場合における、1回目と8回目のTG最大変化量[%]を示す。
In addition, for the carbon dioxide absorbent to which Ni metal powder is added at a rate of 0 to 12.0% by weight in terms of Ni metal, the cycle for continuously absorbing and releasing carbon dioxide is performed 8 times, and the first and eighth times. TG maximum change [%] was examined.
Table 1 shows the TG maximum change amount [%] for the first and eighth times when carbon dioxide gas is absorbed and released continuously up to eight times.

また、下記の式(2)により、TG最大重量変化量の減衰率[%]を算出した。 減衰率[%]={(8回目のTG最大変化量[%])−(1回目のTG最大変化量[%])}/(8回目のTG最大変化量[%])×100 ……(2)
その結果を表1に併せて示す。
Further, the attenuation rate [%] of the TG maximum weight change amount was calculated by the following equation (2). Decay rate [%] = {(8th TG maximum change [%]) − (1st TG maximum change [%])} / (8th TG maximum change [%]) × 100 (2)
The results are also shown in Table 1.

Figure 2008080211
Figure 2008080211

ただし、表1において、試料番号に*印を付した試料は本願発明の範囲外の試料である。
表1より、Ni金属換算で0.2重量%未満の割合でNi金属粉末を添加した炭酸ガス吸収材(試料番号1,2)の場合、減衰率が3%以上と大きくなることが確認された。
また、Ni金属換算で0.2重量%の割合でNi金属粉末を添加した炭酸ガス吸収材(試料番号3)の場合、減衰率が2.6%と小さくなることが確認された。
また、Ni金属換算で0.4重量%以上の割合でNi金属粉末を添加した炭酸ガス吸収材(試料番号4〜9)の場合、減衰率が1%未満(表1では0%)に抑えられることが確認された。
However, in Table 1, a sample numbered with * is a sample outside the scope of the present invention.
From Table 1, it is confirmed that the attenuation rate increases to 3% or more in the case of the carbon dioxide absorbent (sample numbers 1 and 2) to which Ni metal powder is added in a proportion of less than 0.2% by weight in terms of Ni metal. It was.
In addition, in the case of the carbon dioxide absorbent (sample number 3) to which Ni metal powder was added at a rate of 0.2% by weight in terms of Ni metal, it was confirmed that the attenuation rate was as small as 2.6%.
Further, in the case of a carbon dioxide absorbent (sample numbers 4 to 9) to which Ni metal powder is added in a proportion of 0.4% by weight or more in terms of Ni metal, the attenuation rate is suppressed to less than 1% (0% in Table 1). It was confirmed that

一方、Ni金属換算で12.0重量%の割合でNi金属粉末を添加した炭酸ガス吸収材(試料番号9)の場合、減衰率は0%であったが、CO2吸収による最大重量変化量が10%以下と小さくなることが確認された。 On the other hand, in the case of the carbon dioxide absorbent (sample number 9) to which Ni metal powder was added at a rate of 12.0% by weight in terms of Ni metal, the decay rate was 0%, but the maximum weight change due to CO 2 absorption Was confirmed to be as small as 10% or less.

これに対し、Ni金属換算で0.2〜6.0重量%の割合でNi金属粉末を添加した炭酸ガス吸収材(試料番号3〜8)の場合、CO2吸収による最大重量変化量が10%以上と大きく、安定して長期間の吸収・放出を行わせることが可能で、より望ましいことが確認された。 On the other hand, in the case of the carbon dioxide absorbent (sample numbers 3 to 8) to which Ni metal powder is added at a rate of 0.2 to 6.0% by weight in terms of Ni metal, the maximum weight change due to CO 2 absorption is 10%. It is confirmed that it is more desirable because it can absorb and release for a long period of time stably.

上記実施例1より、
(1)Ni金属を添加することにより、Ba2TiO4を主成分とする炭酸ガス吸収材の炭酸ガス吸収・放出量を安定的に確保できること、
(2)Ni金属の添加量が0.2重量%未満になると、減衰率が3%以上となり、好ましくないこと、
(3)Ni金属の添加量が0.4重量%以上になると、減衰率を1%未満(表1では0%)に抑えることが可能になること、
(4)また、Ni金属の添加量を0.2〜6.0重量%の範囲とすることにより、CO2吸収による最大重量変化量が10%以上と大きく、安定して長期間の吸収・放出を行わせることが可能になり望ましいこと
が確認された。
From Example 1 above,
(1) By adding Ni metal, it is possible to stably secure the carbon dioxide absorption / release amount of the carbon dioxide absorbent mainly composed of Ba 2 TiO 4 ;
(2) When the addition amount of Ni metal is less than 0.2% by weight, the attenuation factor is 3% or more, which is not preferable.
(3) When the amount of Ni metal added is 0.4% by weight or more, the attenuation rate can be suppressed to less than 1% (0% in Table 1).
(4) In addition, by making the amount of Ni metal added in the range of 0.2 to 6.0% by weight, the maximum change in weight due to CO 2 absorption is as large as 10% or more, and stable absorption over a long period of time. It was confirmed that it would be desirable to be able to release.

この結果から、本願発明の炭酸ガス吸収材を用いることにより、炭酸ガス分離・回収装置システムなどにおいて、炭酸ガスを安定的に分離・回収することが可能になることが理解される。
なお、Ni金属として添加されたNiは、熱処理工程を経て得られる本願発明の炭酸ガス吸収材中では、主としてNiOとして存在することが確認されている。
From this result, it is understood that by using the carbon dioxide absorbent of the present invention, it is possible to stably separate and collect carbon dioxide in a carbon dioxide separation / recovery device system and the like.
It has been confirmed that Ni added as Ni metal exists mainly as NiO in the carbon dioxide absorbent of the present invention obtained through the heat treatment step.

BaTiO3粉末に対して、BaTiO3とBaCO3のモル比が1対1になる量のBaCO3粉末を添加した。 An amount of BaCO 3 powder in which the molar ratio of BaTiO 3 and BaCO 3 was 1: 1 was added to the BaTiO 3 powder.

さらに、上述のように、モル比が1:1となるように配合されたBaTiO3とBaCO3のすべてがBa2TiO4となるように反応が生じるとした場合の理論量のBa2TiO4に対して、酸化ニッケル(NiO)を、含有割合が1.5重量%となるように添加した。このときのNiOの割合を金属Niに換算すると1.18重量%となる。 Further, as mentioned above, the molar ratio of 1: 1 to become so formulated BaTiO 3 and Ba 2 TiO 4 weight theory if all BaCO 3 was a reaction so that Ba 2 TiO 4 occurs On the other hand, nickel oxide (NiO) was added so that a content rate might be 1.5 weight%. When the ratio of NiO at this time is converted to metal Ni, it is 1.18% by weight.

それから、純水、PSZ玉石、分散剤、消泡剤を加え、樹脂製のポットを用いたボールミルにて16〜20時間の混合・粉砕を行い、原料粉末が分散したスラリーを得た。   Then, pure water, PSZ boulder, a dispersant and an antifoaming agent were added, and mixing and pulverization were performed for 16 to 20 hours in a ball mill using a resin pot to obtain a slurry in which raw material powder was dispersed.

次に、このスラリーを120℃で10時間乾燥した後、得られた粉末を1000〜1200℃、2時間保持の条件で焼成し、複合酸化物であるBa2TiO4を主成分とする炭酸ガス吸収材(セラミックス粉末)を得た。 Next, this slurry was dried at 120 ° C. for 10 hours, and then the obtained powder was fired at 1000 to 1200 ° C. for 2 hours, and carbon dioxide gas containing Ba 2 TiO 4 as a main component was a composite oxide. An absorbent material (ceramic powder) was obtained.

それから、このNiOを1.5重量%(Niとして1.18重量%)の割合で添加した炭酸ガス吸収材について、TG−DTA分析機を用い、800〜1050℃間で炭酸ガスを連続的に吸収・放出させ、熱重量分析を行った。その結果を図4に示す。   Then, carbon dioxide gas was continuously added between 800 and 1050 ° C. using a TG-DTA analyzer for the carbon dioxide absorbent to which NiO was added at a ratio of 1.5 wt% (1.18 wt% as Ni). Absorption and release were performed, and thermogravimetric analysis was performed. The result is shown in FIG.

この実施例2の、NiOを1.5重量%(Ni金属換算で1.18重量%)の割合で添加した炭酸ガス吸収材においても、図4に示すように、炭酸ガスの吸収・放出のサイクルが増えた場合におけるTG最大変化量の減少は認められないことが確認された。
なお、図2に示すように、Niを添加していない炭酸ガス吸収材では、3サイクル目からTG最大変化量が減少し始めることは、上記実施例1で説明したとおりである。
また、この実施例2の炭酸ガス吸収材については、その他の点においても、上記実施例1の炭酸ガス吸収材と同等の性能を有していることが確認された。
Also in the carbon dioxide absorbing material added with NiO at a ratio of 1.5 wt% (Ni metal equivalent: 1.18 wt%) in Example 2, as shown in FIG. It was confirmed that no decrease in the maximum change in TG was observed when the cycle increased.
As shown in FIG. 2, the carbon dioxide absorbing material to which Ni is not added starts to decrease the TG maximum change amount from the third cycle as described in the first embodiment.
In addition, the carbon dioxide absorbent of Example 2 was confirmed to have the same performance as the carbon dioxide absorbent of Example 1 in other respects.

上述のように、Niを酸化物(NiO)のかたちで添加するようにした実施例2の炭酸ガス吸収材の場合にも、Ba2TiO4を主成分とする炭酸ガス吸収材の炭酸ガス吸収・放出量を安定的に確保できることが確認された。
したがって、この実施例2の炭酸ガス吸収材を用いた場合にも、炭酸ガス分離・回収装置システムなどにおいて、炭酸ガスを安定的に分離・回収することが可能になる。
As described above, in the case of the carbon dioxide absorbent of Example 2 in which Ni is added in the form of an oxide (NiO), the carbon dioxide absorption of the carbon dioxide absorbent containing Ba 2 TiO 4 as the main component.・ It was confirmed that the release amount could be secured stably.
Therefore, even when the carbon dioxide absorbent of Example 2 is used, carbon dioxide can be stably separated and collected in a carbon dioxide separation / recovery device system or the like.

SrTiO3粉末に対して、SrTiO3とSrCO3のモル比が1対1になる量のSrCO3粉末を添加した。 An amount of SrCO 3 powder in which the molar ratio of SrTiO 3 and SrCO 3 was 1: 1 was added to the SrTiO 3 powder.

さらに、上述のように、モル比が1:1となるように配合されたSrTiO3とSrCO3のすべてがSr2TiO4となるように反応が生じるとした場合の理論量のSr2TiO4に対して、Niの含有割合が金属換算で1.5重量%となるようにNi金属粉末を添加した。 Further, as mentioned above, the molar ratio of 1: 1 to become so formulated SrTiO 3 and Sr 2 TiO 4 weight theory if all SrCO 3 was a reaction such that the Sr 2 TiO 4 occurs On the other hand, Ni metal powder was added so that the Ni content was 1.5% by weight in terms of metal.

それから、純水、PSZ玉石、分散剤、消泡剤を加え、樹脂製のポットを用いたボールミルにて16〜20時間の混合・粉砕を行い、原料粉末が分散したスラリーを得た。   Then, pure water, PSZ boulder, a dispersant and an antifoaming agent were added, and mixing and pulverization were performed for 16 to 20 hours in a ball mill using a resin pot to obtain a slurry in which raw material powder was dispersed.

次に、このスラリーを120℃で10時間乾燥した後、得られた粉末を1000〜1200℃、2時間保持の条件で焼成し、複合酸化物であるSr2TiO4を主成分とする炭酸ガス吸収材(セラミックス粉末)を得た。 Next, this slurry was dried at 120 ° C. for 10 hours, and then the obtained powder was fired at 1000 to 1200 ° C. for 2 hours, and carbon dioxide gas containing Sr 2 TiO 4 which is a composite oxide as a main component. An absorbent material (ceramic powder) was obtained.

それから、この炭酸ガス吸収材について、TG−DTA分析機を用い、800〜1050℃間で炭酸ガスを連続的に吸収・放出させて熱重量分析を行った。その結果を図5に示す。   The carbon dioxide absorbent was subjected to thermogravimetric analysis by continuously absorbing and releasing carbon dioxide between 800 and 1050 ° C. using a TG-DTA analyzer. The result is shown in FIG.

複合酸化物であるSr2TiO4を主成分とする炭酸ガス吸収材についても、Niを上述の割合で添加したものについては、図5に示すように、炭酸ガスの吸収・放出のサイクルが増えた場合にも、TG最大変化量は減少しないことが確認された。 As for the carbon dioxide absorbing material mainly composed of Sr 2 TiO 4 , which is a composite oxide, with the addition of Ni at the above-mentioned ratio, as shown in FIG. In this case, it was confirmed that the maximum change in TG did not decrease.

なお、複合酸化物であるSr2TiO4を主成分とする炭酸ガス吸収材についても、Niを添加していないものは、3サイクル目からTG最大変化量が減少し始めることが確認されている。
また、この実施例3の炭酸ガス吸収材については、その他の点においても、上記実施例1および2の炭酸ガス吸収材と同等の性能を有していることが確認されている。
It is confirmed that the carbon dioxide absorption material mainly composed of Sr 2 TiO 4 , which is a composite oxide, also begins to decrease the maximum TG change amount from the third cycle when no Ni is added. .
In addition, the carbon dioxide absorbent of Example 3 was confirmed to have the same performance as the carbon dioxide absorbents of Examples 1 and 2 in other respects.

上述のように、Sr2TiO4を主成分とする実施例3の炭酸ガス吸収材においても、上述の割合でNiを添加することにより、炭酸ガスの吸収・放出量を安定的に確保できることが確認された。 As described above, also in the carbon dioxide absorbent of Example 3 containing Sr 2 TiO 4 as a main component, the amount of carbon dioxide absorbed and released can be stably secured by adding Ni at the above-described ratio. confirmed.

したがって、この実施例3の炭酸ガス吸収材を用いた場合にも、炭酸ガス分離・回収装置システムなどにおいて、炭酸ガスを安定的に分離・回収することができる。   Therefore, even when the carbon dioxide absorbent of Example 3 is used, carbon dioxide can be stably separated and recovered in a carbon dioxide separator / collector system or the like.

図6は本願発明の一実施例にかかる炭酸ガス分離方法を用いた炭酸ガスの分離装置の概略構成を示す図である。   FIG. 6 is a diagram showing a schematic configuration of a carbon dioxide separation device using the carbon dioxide separation method according to one embodiment of the present invention.

この炭酸ガス分離装置は、燃焼排ガス(炭酸ガス含有ガス)中の炭酸ガスを本願発明の炭酸ガス吸収材により吸収、分離した後、炭酸ガスを吸収した炭酸ガス吸収材から炭酸ガスを放出させて回収するための炭酸ガス分離装置であり、炭酸ガス吸収機構部および炭酸ガス放出機構部として機能する二つの機構部A,Bと、燃焼排ガスの流れを切り替える切替弁Cとを備えている。   This carbon dioxide separator separates carbon dioxide in combustion exhaust gas (carbon dioxide-containing gas) with the carbon dioxide absorbent of the present invention, and then releases carbon dioxide from the carbon dioxide absorbent that has absorbed carbon dioxide. This is a carbon dioxide separator for recovery, and includes two mechanism parts A and B that function as a carbon dioxide absorption mechanism part and a carbon dioxide release mechanism part, and a switching valve C that switches the flow of combustion exhaust gas.

なお、図6は、切替弁Cにより、左側の機構部Aに炭酸ガス含有ガス(原料ガス)が供給されるように設定された状態を示しており、左側の機構部Aが炭酸ガス吸収機構部として機能し、右側の機構部Bが炭酸ガスを放出させる炭酸ガス放出機構部として機能する状態を示している。
各機構部AおよびBはいずれも、容器1と、ヒータ2と、容器1の内部に充填された本願発明にかかる炭酸ガス吸収材3(ここでは上記実施例1の、Ni金属換算で1.5重量%の割合でNi金属粉末を添加した炭酸ガス吸収材)とを備えている。
FIG. 6 shows a state in which the switching valve C is set so that carbon dioxide-containing gas (raw material gas) is supplied to the left mechanism A, and the left mechanism A is the carbon dioxide absorption mechanism. It shows a state in which the right mechanism part B functions as a carbon dioxide gas releasing mechanism part that releases carbon dioxide gas.
Each mechanism part A and B is a container 1, a heater 2, and a carbon dioxide absorbent 3 according to the present invention filled in the container 1 (here, 1. in terms of Ni metal in Example 1 above). Carbon dioxide absorbing material to which Ni metal powder is added at a ratio of 5% by weight).

そして、図6に示すように、左側の機構部Aに燃焼排ガスが供給されるように切替弁Cを切り替えた状態で、燃焼排ガス(この実施例4では、圧力:常圧、温度:約800℃、炭酸ガス(CO2)含有率:20vol%の燃焼排ガス)を供給することにより、機構部(炭酸ガス吸収機構部)Aで炭酸ガスの吸収が行なわれる。 Then, as shown in FIG. 6, in the state where the switching valve C is switched so that the combustion exhaust gas is supplied to the mechanism A on the left side, the combustion exhaust gas (in Example 4, pressure: normal pressure, temperature: about 800 Carbon dioxide gas is absorbed by the mechanism part (carbon dioxide absorption mechanism part) A by supplying a combustion gas (carbon dioxide gas (CO 2 ) content rate: 20 vol%) at ℃.

一方、機構部(炭酸ガス放出機構部)Bでは、容器1の出口側から真空吸引して、圧力を10kPa以下の減圧状態(例えば1000Pa)とし、ヒータ2により容器1内の炭酸ガスを吸収した炭酸ガス吸収材3を1050℃に加熱することにより、炭酸ガス吸収材3から炭酸ガスが放出され、放出された炭酸ガスが高濃度で回収されるとともに、炭酸ガスを吸収した炭酸ガス吸収材3が再生され、再使用に供されることになる。   On the other hand, in the mechanism part (carbon dioxide gas release mechanism part) B, vacuum suction is performed from the outlet side of the container 1, the pressure is reduced to 10 kPa or less (for example, 1000 Pa), and the carbon dioxide gas in the container 1 is absorbed by the heater 2. By heating the carbon dioxide absorbent 3 to 1050 ° C., carbon dioxide is released from the carbon dioxide absorbent 3, and the released carbon dioxide is recovered at a high concentration, and the carbon dioxide absorbent 3 that has absorbed carbon dioxide is absorbed. Will be recycled and reused.

なお、炭酸ガス分離装置における、炭酸ガス吸収材による炭酸ガスの吸収反応は下記の化学式(1)の通りであり、
Ba2TiO4+CO2 → BaTiO3+BaCO3 ……(1)
また、炭酸ガスを吸収した炭酸ガス吸収材からの炭酸ガスの放出反応は、下記の化学式(3)の通りである。
BaTiO3+BaCO3 → Ba2TiO4 +CO2↑ ……(3)
The carbon dioxide absorption reaction by the carbon dioxide absorbent in the carbon dioxide separator is as shown in the following chemical formula (1).
Ba 2 TiO 4 + CO 2 → BaTiO 3 + BaCO 3 (1)
The release reaction of carbon dioxide from the carbon dioxide absorbent that has absorbed carbon dioxide is represented by the following chemical formula (3).
BaTiO 3 + BaCO 3 → Ba 2 TiO 4 + CO 2 ↑ (3)

そして、機構部(炭酸ガス吸収機構部)Aに充填された炭酸ガス吸収材3の炭酸ガス吸収性能が低下すると、右側の機構部Bに燃焼排ガスが供給されるように切替弁Cを切り替え、燃焼排ガスを機構部Bに供給し、機構部(炭酸ガス吸収機構部)Bに充填された炭酸ガス吸収材3により炭酸ガスの吸収を行う。   Then, when the carbon dioxide absorption performance of the carbon dioxide absorbent 3 filled in the mechanism part (carbon dioxide absorption mechanism part) A is lowered, the switching valve C is switched so that the combustion exhaust gas is supplied to the right mechanism part B, Combustion exhaust gas is supplied to the mechanism B, and carbon dioxide is absorbed by the carbon dioxide absorbent 3 filled in the mechanism (carbon dioxide absorption mechanism) B.

一方、機構部Aでは、容器1の出口側から真空吸引して、圧力を10kPa以下の減圧状態(例えば1000Pa)とし、ヒータ2により容器1内の、炭酸ガスを吸収した炭酸ガス吸収材3を900℃に加熱して、炭酸ガス吸収材3から炭酸ガスを放出させ、放出させた炭酸ガスを回収するとともに、炭酸ガスを吸収した炭酸ガス吸収材3を再生させる。なお、この実施例4では前記実施例1の炭酸ガス吸収材を用いており、この炭酸ガス吸収材は、常温では1021℃を超える温度条件で効率よく炭酸ガスの放出が行われるような材料であるが、上述のように、減圧状態(例えば1000Pa)とすることにより、900℃程度の温度でも炭酸ガスを効率よく放出させることができる。   On the other hand, in the mechanism part A, vacuum suction is performed from the outlet side of the container 1, the pressure is reduced to a pressure of 10 kPa or less (for example, 1000 Pa), and the carbon dioxide absorbing material 3 that absorbs carbon dioxide in the container 1 is heated by the heater 2. Heating to 900 ° C. releases carbon dioxide from the carbon dioxide absorbent 3, collects the released carbon dioxide, and regenerates the carbon dioxide absorbent 3 that has absorbed carbon dioxide. In Example 4, the carbon dioxide absorbent of Example 1 is used. This carbon dioxide absorbent is a material that can efficiently release carbon dioxide at a temperature exceeding 1021 ° C. at room temperature. However, as described above, the carbon dioxide gas can be efficiently released even at a temperature of about 900 ° C. by using a reduced pressure state (for example, 1000 Pa).

そして、これを繰り返すことにより、長期間にわたって、安定して炭酸ガスの分離、回収を行うことが可能になる。
なお、機構部Aと機構部Bを交互に炭酸ガス吸収機構部と炭酸ガス放出機構部に切り替える際の、各機構部A、Bから排出されるガスの流路の切り替えは、切替弁Cを設けることで容易に行うことが可能である。
なお、図6の概略構成図では、機構部Aと機構部Bが1つずつ設けられているが、少なくともいずれかを複数にして機構部を3個以上にしてもよい。
By repeating this, carbon dioxide gas can be stably separated and recovered over a long period of time.
In addition, when switching the mechanism part A and the mechanism part B to the carbon dioxide absorption mechanism part and the carbon dioxide gas release mechanism part alternately, the switching of the flow path of the gas discharged from each mechanism part A, B is performed by the switching valve C. It can be easily performed by providing.
In the schematic configuration diagram of FIG. 6, one mechanism part A and one mechanism part B are provided. However, at least one of them may be plural, and the number of mechanism parts may be three or more.

上述のように、図6に示すような炭酸ガス分離装置を用い、実施例1の炭酸ガス吸収材(主要な結晶相がBa2Fe25である炭酸ガス吸収材)を、圧力:常圧、温度:約800℃の条件下で炭酸ガス20vol%の燃焼排ガスと接触させて炭酸ガスを炭酸ガス吸収材に吸収させるとともに、炭酸ガスを吸収した炭酸ガス吸収材を、減圧下(1000Pa)で所定の温度(900℃)に加熱して、炭酸ガスを放出させるようにしているので、炭酸ガス吸収機構部において、高温下での炭酸ガスの吸収を確実に行い、炭酸ガス放出機構部において、吸収した炭酸ガスの放出(炭酸ガス吸収材の再生)を確実に行うことができることから、LixSiyzで表されるリチウムシリケート系の炭酸ガス吸収材では対応することができないような高温下での炭酸ガスの分離、回収を経済的に、かつ、安定して効率よく行うことができる。 As described above, using the carbon dioxide separator as shown in FIG. 6, the carbon dioxide absorbent of Example 1 (carbon dioxide absorbent whose main crystal phase is Ba 2 Fe 2 O 5 ) is used under pressure: ordinary Pressure and temperature: The carbon dioxide absorbent is absorbed by the carbon dioxide absorbent by contacting it with the combustion exhaust gas of 20 vol% carbon dioxide under the condition of about 800 ° C., and the carbon dioxide absorbent that has absorbed the carbon dioxide is reduced in pressure (1000 Pa). The carbon dioxide gas is released by heating to a predetermined temperature (900 ° C.), so that the carbon dioxide absorption mechanism portion reliably absorbs the carbon dioxide gas at a high temperature. , such as the fact that it is possible to perform the absorption release of carbon dioxide gas (regeneration of carbon dioxide-absorbing material) securely, can not cope with the Li x Si y O z carbon dioxide gas absorbent of lithium silicate system represented by Under high temperature The separation and recovery of carbon dioxide gas can be carried out economically, stably and efficiently.

なお、上記実施例では、炭酸ガス吸収材が粉末状態である場合を例にとって説明したが、本願発明の炭酸ガス吸収材は、粉末の形態に限らず、ある程度大きな粒状の形態でも用いることが可能であり、さらには、例えば、立方体、直方体、球状などの種々の形状の成形体、シート状の成形体、さらには、それらを組み合わせた形状を有する構造体などの形態で使用することも可能である。   In the above embodiment, the case where the carbon dioxide absorbent is in a powder state has been described as an example. However, the carbon dioxide absorbent of the present invention is not limited to a powder form, and can be used in a somewhat large granular form. Furthermore, it can be used in the form of, for example, a molded body having various shapes such as a cube, a rectangular parallelepiped, and a sphere, a sheet-shaped molded body, and a structure having a combined shape. is there.

なお、本願発明は上記の各実施例の構成に限定されるものではなく、炭酸ガス吸収材の出発原料の種類、具体的な合成方法、合成条件、本願発明の炭酸ガス吸収材を用いて行う炭酸ガスの吸収条件などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。   In addition, this invention is not limited to the structure of said each Example, It carries out using the kind of starting material of a carbon dioxide absorber, a specific synthesis method, synthesis conditions, and the carbon dioxide absorber of this invention. Various applications and modifications can be made within the scope of the invention with respect to carbon dioxide absorption conditions and the like.

上述のように、本願発明の炭酸ガス吸収材は、SrおよびBaの少なくとも1種である成分物質Xと、Tiとを、モル比(X/Ti):1.8〜2.2の割合で含む複合酸化物を主成分とし、Niを金属換算で0.2重量%以上、好ましくは、0.4〜6.0重量%の割合で含有するものであり、圧力:1.0×104〜1.0×106Pa、温度:500〜900℃の条件で炭酸ガスの吸収を効率よく行い、炭酸ガス吸収材に吸収させた炭酸ガスの放出(炭酸ガス吸収材の再生)を、圧力:1000Pa以下、温度:750℃以上の条件で効率よく行うことが可能であり、特に、約800℃〜1050℃の間では、炭酸ガスの吸収・放出をより効率よく行うことができる。
また、この炭酸ガス吸収材は、材料自体の蒸気圧が低く、耐久性にも優れており、長期間安定して使用することができる。
したがって、本願発明は、水素製造プロセスにおける燃焼前の炭酸ガスの分離、工場において発生する燃焼排ガス中の炭酸ガスの除去、自動車エンジンからの排ガス中の炭酸ガスの除去をはじめ、種々の分野で発生する炭酸ガスを含むガスからの炭酸ガスの分離に広く適用することが可能である。
As described above, the carbon dioxide absorbent of the present invention comprises component substance X, which is at least one of Sr and Ba, and Ti at a molar ratio (X / Ti): 1.8 to 2.2. And containing Ni in a proportion of 0.2% by weight or more, preferably 0.4 to 6.0% by weight in terms of metal, pressure: 1.0 × 10 4 Up to 1.0 × 10 6 Pa, temperature: Carbon dioxide is efficiently absorbed under the conditions of 500 to 900 ° C., and the release of carbon dioxide absorbed by the carbon dioxide absorbent (regeneration of carbon dioxide absorbent) is performed under pressure. : 1000 Pa or less, temperature: 750 ° C. or more can be carried out efficiently. In particular, carbon dioxide gas can be absorbed and released more efficiently between about 800 ° C. and 1050 ° C.
In addition, this carbon dioxide absorbing material has a low vapor pressure of the material itself, is excellent in durability, and can be used stably for a long period of time.
Therefore, the present invention is generated in various fields such as separation of carbon dioxide before combustion in the hydrogen production process, removal of carbon dioxide in combustion exhaust gas generated in a factory, removal of carbon dioxide in exhaust gas from an automobile engine. The present invention can be widely applied to the separation of carbon dioxide from a gas containing carbon dioxide.

本願発明の実施例において、Niを含有していない炭酸ガス吸収材について行った、TG−DTA分析の結果を示す図である。In the Example of this invention, it is a figure which shows the result of the TG-DTA analysis performed about the carbon dioxide gas absorbent which does not contain Ni. 本願発明の実施例において、Ni金属を添加していない炭酸ガス吸収材について800〜1050℃間で炭酸ガスを連続的に吸収・放出させて熱重量分析を行った結果を示す図である。In the Example of this invention, it is a figure which shows the result of having carried out the thermogravimetric analysis by making carbon dioxide gas absorb and discharge | release continuously between 800-1050 degreeC about the carbon dioxide absorber which has not added Ni metal. 本願発明の一実施例にかかる、Ni金属1.5重量%を添加した炭酸ガス吸収材について800〜1050℃間で炭酸ガスを連続的に吸収・放出させて熱重量分析を行った結果を示す図である。The result of carrying out the thermogravimetric analysis by absorbing and releasing carbon dioxide continuously between 800 to 1050 ° C. for the carbon dioxide absorbent to which 1.5% by weight of Ni metal is added according to one embodiment of the present invention is shown. FIG. 本願発明の他の実施例にかかる、NiOを1.5重量%(Niとして1.18重量%)添加した炭酸ガス吸収材について800〜1050℃間で炭酸ガスを連続的に吸収・放出させて熱重量分析を行った結果を示す図である。According to another embodiment of the present invention, carbon dioxide absorbing material added with 1.5% by weight of NiO (1.18% by weight as Ni) is allowed to continuously absorb and release carbon dioxide between 800-1050 ° C. It is a figure which shows the result of having performed the thermogravimetric analysis. 本願発明のさらに他の実施例にかかる炭酸ガス吸収材について800〜1050℃間で炭酸ガスを連続的に吸収・放出させて熱重量分析を行った結果を示す図である。It is a figure which shows the result of having performed the thermogravimetric analysis by making carbon dioxide gas absorb and discharge | release continuously between 800-1050 degreeC about the carbon dioxide absorber concerning the further another Example of this invention. 本願発明の実施例にかかる炭酸ガス分離装置の概略構成を示す図である。It is a figure which shows schematic structure of the carbon dioxide gas separation device concerning the Example of this invention.

符号の説明Explanation of symbols

1 容器
2 ヒータ
3 炭酸ガス吸収材
A,B 機構部
C 切替弁
1 Container 2 Heater 3 Carbon Dioxide Absorber A, B Mechanism C Switch Valve

Claims (4)

SrおよびBaの少なくとも1種である成分物質Xと、Tiとを、モル比(X/Ti):1.8〜2.2の割合で含む複合酸化物を主成分とし、
Niを金属換算で0.2重量%以上含有すること
を特徴とする炭酸ガス吸収材。
The main component is a composite oxide containing a component substance X, which is at least one of Sr and Ba, and Ti at a molar ratio (X / Ti): 1.8 to 2.2,
A carbon dioxide absorbent comprising Ni in an amount of 0.2% by weight or more in terms of metal.
SrおよびBaの少なくとも1種である成分物質Xと、Tiとを、モル比(X/Ti):1.8〜2.2の割合で含む複合酸化物を主成分とし、
Niを金属換算で0.4〜6.0重量%の割合で含有すること
を特徴とする炭酸ガス吸収材。
The main component is a composite oxide containing a component substance X, which is at least one of Sr and Ba, and Ti at a molar ratio (X / Ti): 1.8 to 2.2,
A carbon dioxide absorbent comprising Ni in a proportion of 0.4 to 6.0% by weight in terms of metal.
請求項1または2記載の炭酸ガス吸収材を用い、
圧力:1.0×104〜1.0×106Pa、
温度:500〜900℃
の条件で炭酸ガスを吸収させる工程と、
前記炭酸ガス吸収材に吸収させた炭酸ガスを、
圧力:1000Pa以下、
温度:750℃以上
の条件で放出させる工程と
を具備することを特徴とする炭酸ガス分離方法。
Using the carbon dioxide absorbent according to claim 1 or 2,
Pressure: 1.0 × 10 4 to 1.0 × 10 6 Pa,
Temperature: 500-900 ° C
A step of absorbing carbon dioxide under the conditions of
The carbon dioxide absorbed by the carbon dioxide absorbent is
Pressure: 1000 Pa or less,
And a step of releasing at a temperature of 750 ° C. or higher.
請求項1または2記載の炭酸ガス吸収材を、
圧力:1.0×104〜1.0×106Pa、
温度:500〜900℃
の条件で炭酸ガスを含む気流と接触させて炭酸ガスを前記炭酸ガス吸収材に吸収させる炭酸ガス吸収機構部と、
炭酸ガスを含む気流と接触して炭酸ガスを吸収した炭酸ガス吸収材を、
圧力:1000Pa以下の減圧下、
温度:750℃以上
の条件で加熱して、炭酸ガスを放出させる炭酸ガス放出機構部と
を具備することを特徴とする炭酸ガス分離装置。
The carbon dioxide absorbent according to claim 1 or 2,
Pressure: 1.0 × 10 4 to 1.0 × 10 6 Pa,
Temperature: 500-900 ° C
A carbon dioxide absorption mechanism that allows carbon dioxide to be absorbed by the carbon dioxide absorbent by contacting with an air stream containing carbon dioxide under the conditions of
A carbon dioxide absorbent that absorbs carbon dioxide in contact with an air stream containing carbon dioxide,
Pressure: Under reduced pressure of 1000 Pa or less,
A carbon dioxide gas separation device comprising: a carbon dioxide gas release mechanism for releasing carbon dioxide gas by heating at a temperature of 750 ° C. or higher.
JP2006261369A 2006-09-26 2006-09-26 Carbon dioxide absorber, carbon dioxide separating method using the same, and carbon dioxide separation apparatus Withdrawn JP2008080211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006261369A JP2008080211A (en) 2006-09-26 2006-09-26 Carbon dioxide absorber, carbon dioxide separating method using the same, and carbon dioxide separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006261369A JP2008080211A (en) 2006-09-26 2006-09-26 Carbon dioxide absorber, carbon dioxide separating method using the same, and carbon dioxide separation apparatus

Publications (1)

Publication Number Publication Date
JP2008080211A true JP2008080211A (en) 2008-04-10

Family

ID=39351606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261369A Withdrawn JP2008080211A (en) 2006-09-26 2006-09-26 Carbon dioxide absorber, carbon dioxide separating method using the same, and carbon dioxide separation apparatus

Country Status (1)

Country Link
JP (1) JP2008080211A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189006A1 (en) * 2013-05-21 2014-11-27 株式会社村田製作所 Catalyst for reforming hydrocarbon-based gas and method for reforming hydrocarbon-based gas using same
US20190308134A1 (en) * 2018-04-05 2019-10-10 Hamilton Sundstrand Corporation Fuel tank inerting system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189006A1 (en) * 2013-05-21 2014-11-27 株式会社村田製作所 Catalyst for reforming hydrocarbon-based gas and method for reforming hydrocarbon-based gas using same
US20190308134A1 (en) * 2018-04-05 2019-10-10 Hamilton Sundstrand Corporation Fuel tank inerting system
US11040306B2 (en) * 2018-04-05 2021-06-22 Hamilton Sunstrand Corporation Fuel tank inerting system

Similar Documents

Publication Publication Date Title
JP3988787B2 (en) Carbon dioxide absorbing material and carbon dioxide absorbing method using the same
JP3938212B2 (en) Carbon dioxide absorbent, carbon dioxide separation method using the same, and carbon dioxide separator
Romero-Ibarra et al. Microstructural and CO2 chemisorption analyses of Li4SiO4: Effect of surface modification by the ball milling process
JP5589996B2 (en) Carbon dioxide capture material
JP5457962B2 (en) Carbon dioxide capture material
WO2004091774A1 (en) Material and apparatus for adsorbing and desorbing carbon dioxide
WO2018227081A1 (en) Carbon dioxide removal using lithium borate
Zhang et al. Simultaneous CO 2 capture and heat storage by a Ca/Mg-based composite in coupling calcium looping and CaO/Ca (OH) 2 cycles using air as a heat transfer fluid
JPH10272336A (en) Carbon dioxide-absorbing material, and method for separating and recovering carbon dioxide in exhaust gas
JP5044973B2 (en) Carbon dioxide absorbing material, method for producing the same, and carbon dioxide absorbing method
JP2008080211A (en) Carbon dioxide absorber, carbon dioxide separating method using the same, and carbon dioxide separation apparatus
JP4819099B2 (en) Carbon dioxide absorbent, carbon dioxide separation and recovery device, and carbon dioxide separation and recovery method
JP2007253116A (en) Carbon dioxide absorbing material, apparatus for separating carbon dioxide and reforming apparatus
JP2004358390A (en) Carbon dioxide absorbing material
JP5681460B2 (en) Carbon dioxide capture material
JP2008104992A (en) Carbon dioxide absorber, carbon dioxide separation method and carbon dioxide separation apparatus using the same
JP3857667B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing material manufacturing method, carbon dioxide absorbing method, carbon dioxide separating method and carbon dioxide separating device
Yazdanbakhsh et al. Cu–Cr–O Functionalized ETS-2 Nanoparticles for Hot Gas Desulfurization
KR101869461B1 (en) Method for removing oxygen in methane mixture gas by using oxygen catalyst, perovskite type oxygen removing catalyst used in the same, and land fill gas refine device applying land fill gas mathane direct converting technology using the same
JP2008142635A (en) Carbon dioxide gas-absorbing material, and carbon dioxide gas separation method and apparatus using the gas-absorbing material
JP3850843B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing method, carbon dioxide absorbing device, carbon dioxide separating device, and method for producing lithium composite oxide
RU2745486C1 (en) Method for producing high-temperature co2 sorbents
Kumakiri et al. Enhanced High-temperature Carbon Sequestration with Ceramic-based Sorbents
Vera et al. Alkaline Ceramics-based High-temperature CO2 Sorbents
WO2008038484A1 (en) Method of separating/recovering carbon dioxide

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201