JP2008078641A - Solid-state electrolytic capacitor - Google Patents

Solid-state electrolytic capacitor Download PDF

Info

Publication number
JP2008078641A
JP2008078641A JP2007217098A JP2007217098A JP2008078641A JP 2008078641 A JP2008078641 A JP 2008078641A JP 2007217098 A JP2007217098 A JP 2007217098A JP 2007217098 A JP2007217098 A JP 2007217098A JP 2008078641 A JP2008078641 A JP 2008078641A
Authority
JP
Japan
Prior art keywords
conductive polymer
polymer layer
electrolytic capacitor
solid electrolytic
oxide dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007217098A
Other languages
Japanese (ja)
Other versions
JP4831771B2 (en
Inventor
Kenji Araki
健二 荒木
Hiroki Herai
太樹 戸来
Setsu Mukono
節 向野
Yuichi Maruko
雄一 丸子
Kazuhiro Koike
和弘 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007217098A priority Critical patent/JP4831771B2/en
Publication of JP2008078641A publication Critical patent/JP2008078641A/en
Application granted granted Critical
Publication of JP4831771B2 publication Critical patent/JP4831771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state electrolytic capacitor whose defective fraction of leak current can be reduced without reduction in capacitance. <P>SOLUTION: The solid-state electrolytic capacitor includes: a positive electrode body 4 made from a valve action metal or a compound having an electric property of a valve action metal, which has an expanded surface; a first oxide dielectric layer 1 formed on the expanded surface of the positive electrode body 4; a second oxide dielectric layer 3 formed on an exposed end surface of a positive electrode body produced by cutting the positive electrode body with a surface on which the first oxide dielectric layer 1 is formed into a prescribed shape; a first electrically conductive polymer layer 5 formed on the first oxide dielectric layer 1; a second electrically conductive polymer layer 2 formed on the second oxide dielectric layer 3; and a negative electrode layer consisting of a graphite layer 6 formed on the first electrically conductive polymer layer 5 and/or the second electrically conductive polymer layer 2, and a silver layer 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体電解コンデンサに関し、特に電解質として導電性高分子を用いた固体電解コンデンサの構造に関する。   The present invention relates to a solid electrolytic capacitor, and more particularly to a structure of a solid electrolytic capacitor using a conductive polymer as an electrolyte.

導電性高分子を電解質として用いた固体電解コンデンサとしては、図8、図9に示すものが知られている。図8、図9は従来の固体電解コンデンサを示す断面図である。図5は従来の固体電解コンデンサ内部素子を示す図であり、図5(a)はその斜視図、図5(b)は図5(a)の固体電解コンデンサ内部素子500をA−A線で切断した断面図、図5(c)は図5(a)の固体電解コンデンサ内部素子500をB−B線で切断した断面図である。   As solid electrolytic capacitors using a conductive polymer as an electrolyte, those shown in FIGS. 8 and 9 are known. 8 and 9 are sectional views showing a conventional solid electrolytic capacitor. 5A and 5B are diagrams showing a conventional solid electrolytic capacitor internal element, FIG. 5A is a perspective view thereof, and FIG. 5B is a solid electrolytic capacitor internal element 500 of FIG. FIG. 5C is a cross-sectional view taken along the line BB of the solid electrolytic capacitor internal element 500 of FIG. 5A.

弁作用金属の陽極体4の表面に化成処理により第一の酸化物誘電体層1を形成する。第一の酸化物誘電体層1が形成された陽極体4を所定の大きさに切断した際に、切断した端面に陽極体4が露出する。この露出した陽極体4の表面に化成処理により再び酸化物誘電体層を形成し第二の酸化物誘電体層3とする。   The first oxide dielectric layer 1 is formed on the surface of the valve action metal anode body 4 by chemical conversion treatment. When the anode body 4 on which the first oxide dielectric layer 1 is formed is cut into a predetermined size, the anode body 4 is exposed at the cut end face. An oxide dielectric layer is formed again on the exposed surface of the anode body 4 by chemical conversion treatment to form a second oxide dielectric layer 3.

次に、第一の酸化物誘電体層1と第二の酸化物誘電体層3上に第一の導電性高分子層5を形成する。さらにその周囲にグラファイト層6、銀層7からなる陰極層を形成することにより固体電解コンデンサ内部素子500が得られる。   Next, the first conductive polymer layer 5 is formed on the first oxide dielectric layer 1 and the second oxide dielectric layer 3. Further, by forming a cathode layer composed of the graphite layer 6 and the silver layer 7 around it, the solid electrolytic capacitor internal element 500 is obtained.

次に、固体電解コンデンサ内部素子500の陽極体4に、陽極リード9を接続し、銀層7に陰極リード10を接続し、外装樹脂8でモールド外装することにより固体電解コンデンサが得られる。   Next, the anode lead 9 is connected to the anode body 4 of the solid electrolytic capacitor internal element 500, the cathode lead 10 is connected to the silver layer 7, and the exterior resin 8 is molded and packaged to obtain a solid electrolytic capacitor.

ここで、陽極体4の切断した端面に化成処理により形成された第二の酸化物誘電体層3は、切断にともなう潰れなどにより、第一の酸化物誘電体層1よりも均一性に欠ける。そのため、第一の酸化物誘電体層1に比べて絶縁性が悪い。この固体電解コンデンサ素子に電圧を印加すると、絶縁性の劣る第二の酸化物誘電体層3を通って大きな漏れ電流が流れやすい。   Here, the second oxide dielectric layer 3 formed on the cut end face of the anode body 4 by chemical conversion treatment is less uniform than the first oxide dielectric layer 1 due to crushing associated with the cutting. . Therefore, the insulating property is poor as compared with the first oxide dielectric layer 1. When a voltage is applied to the solid electrolytic capacitor element, a large leakage current tends to flow through the second oxide dielectric layer 3 having poor insulation.

また、図9の固体電解コンデンサは三端子型固体電解コンデンサと呼ばれるものであるが、固体電解コンデンサ内部素子の構造は陽極リード9を接続する陽極体4が内部素子の両側に存在するものである。   The solid electrolytic capacitor in FIG. 9 is called a three-terminal type solid electrolytic capacitor, but the structure of the internal element of the solid electrolytic capacitor is that the anode body 4 connecting the anode lead 9 exists on both sides of the internal element. .

特許文献1によれば、表面に酸化物誘電体層を有する陽極箔と集電陰極箔との間に多孔質セパレーターを介在させて巻回した素子を用い、定量的に化学重合を行うことによりポリピロールを巻回素子に含浸形成する固体電解コンデンサの製造方法において未化成部分を絶縁材料で被覆することが提案されている。しかし、この方法には絶縁樹脂が拡面化により生じた空孔内部に浸透し容量が減少してしまう欠点がある。また、これを改善した技術として特許文献2に第一の酸化物誘電体層が形成された陽極体の切断後の露出端面に形成された第二の酸化物誘電体層上に絶縁性樹脂層を形成する技術が提案されているがまだ改善の余地があった。さらに、非特許文献1〜5には導電性高分子の絶縁化反応について記載されている。   According to Patent Document 1, by using a device wound with a porous separator interposed between an anode foil having an oxide dielectric layer on the surface and a collector cathode foil, quantitative chemical polymerization is performed. In a method of manufacturing a solid electrolytic capacitor in which polypyrrole is impregnated into a winding element, it has been proposed to coat an unformed part with an insulating material. However, this method has a drawback that the insulating resin penetrates into the pores generated by the surface enlargement and the capacity is reduced. Further, as an improved technique, an insulating resin layer is formed on the second oxide dielectric layer formed on the exposed end face after cutting of the anode body in which the first oxide dielectric layer is formed in Patent Document 2. The technology that forms the image has been proposed, but there is still room for improvement. Further, Non-Patent Documents 1 to 5 describe an insulating reaction of a conductive polymer.

特開平3−95910号公報Japanese Patent Laid-Open No. 3-95910 特開2007−42932号公報JP 2007-42932 A F.Beck,P.Braun,and M.Oberst, Ber.Bunsenges.Phys.Chem.,91,p.9 67-974(1987年)F. Beck, P. Braun, and M. Oberst, Ber. Bunsenges. Phys. Chem., 91, p. 9 67-974 (1987) 山本秀雄 他3名 Electrochemistry,67,p.855-861(1999年)Hideo Yamamoto and 3 others Electrochemistry, 67, p.855-861 (1999) 谷ツ田雄司 他2名 日本化学会誌,1985,p.1331-1336(1985年)Yuji Yatsuta and 2 others The Journal of Chemical Society of Japan, 1985, p.1331-1336 (1985) H.Tang,A.Kitani,and M.Shiotani,Electrochimica Acta,41,p.1561 -1567(1996年)H. Tang, A. Kitani, and M. Shiotani, Electrochimica Acta, 41, p. 1561 -1567 (1996) A.Zykwinska,W.Domagala,B.Pilawa and M.Lapkowski,Electrochimica Acta,50,p.1625-1633(2005年)A. Zykwinska, W. Domagala, B. Pilawa and M. Lapkowski, Electrochimica Acta, 50, p. 1625-1633 (2005)

本発明の課題は、容量の減少なしに漏れ電流の不良率の小さい固体電解コンデンサを提供することにある。   An object of the present invention is to provide a solid electrolytic capacitor having a low leakage current failure rate without a reduction in capacitance.

本発明によれば、弁作用金属または弁作用金属の電気的性質を有する化合物からなる拡面化された表面を備えた陽極体と、前記拡面化された陽極体表面に形成された第一の酸化物誘電体層と、前記第一の酸化物誘電体層が表面に形成された陽極体の所定形状への切断により生じる陽極体露出端面に形成された第二の酸化物誘電体層と、前記第一の酸化物誘電体層上に形成された第一の導電性高分子層と、前記第二の酸化物誘電体層上に形成された第二の導電性高分子層と、前記第一の導電性高分子層および/または前記第二の導電性高分子層の上に形成された陰極層とを有することを特徴とする固体電解コンデンサが得られる。   According to the present invention, an anode body having a surface that is made of a valve action metal or a compound having electrical properties of the valve action metal, and a first electrode formed on the surface of the surface of the surface of the enlarged anode body. And a second oxide dielectric layer formed on the exposed end face of the anode body produced by cutting the anode body having the first oxide dielectric layer formed on the surface thereof into a predetermined shape; A first conductive polymer layer formed on the first oxide dielectric layer; a second conductive polymer layer formed on the second oxide dielectric layer; A solid electrolytic capacitor comprising a first conductive polymer layer and / or a cathode layer formed on the second conductive polymer layer is obtained.

また、本発明によれば弁作用金属または弁作用金属の電気的性質を有する化合物からなる拡面化された表面を備えた陽極体と、前記拡面化された陽極体表面に形成された第一の酸化物誘電体層と、前記第一の酸化物誘電体層が表面に形成された陽極体の所定形状への切断により生じる陽極体露出端面に形成された第二の酸化物誘電体層と、前記第一の酸化物誘電体層上に形成された第一の導電性高分子層と、前記第二の酸化物誘電体層上に前記第一の導電性高分子層の少なくとも一部を介して形成された第二の導電性高分子層と、前記第一の導電性高分子層および/または前記第二の導電性高分子層の上に形成された陰極層とを有することを特徴とする固体電解コンデンサが得られる。   In addition, according to the present invention, an anode body having a surface that is made of a valve action metal or a compound having an electrical property of the valve action metal, and a first electrode formed on the surface of the surface of the enlarged anode body. One oxide dielectric layer and a second oxide dielectric layer formed on the exposed end surface of the anode body produced by cutting the anode body having the first oxide dielectric layer formed on the surface into a predetermined shape A first conductive polymer layer formed on the first oxide dielectric layer; and at least a portion of the first conductive polymer layer on the second oxide dielectric layer. A second conductive polymer layer formed via the first conductive polymer layer and / or a cathode layer formed on the second conductive polymer layer. A characteristic solid electrolytic capacitor is obtained.

さらに、前記第二の導電性高分子層が前記第一の導電性高分子層よりも絶縁化が容易であることが好ましく、前記第一の導電性高分子層がポリピロール、ポリチオフェン、ポリアニリン、または、それらの誘導体からなることが好ましく、前記第二の導電性高分子層が少なくとも導電性高分子およびバインダーを含むことが好ましく、前記第二の導電性高分子層に含まれる導電性高分子がポリピロール、ポリチオフェン、ポリアニリン、ポリフラン、または、それらの誘導体から選択される少なくとも1種からなることが好ましく、前記第二の導電性高分子層に含まれるバインダーがアクリル、ポリウレタン、エポキシ、ポリフェノール、シリコン、ポリエステル、ポリプロピレン、ポリカーボネートまたはそれらの誘導体、エーテル、ラクトン、アミドまたはラクタムの基を有する化合物、スルホン、スルホキシド、糖、糖誘導体、糖アルコール、フラン誘導体またはジアルコール、ポリアルコールから選択される少なくとも1種からなることが好ましく、前記陽極体が、タンタル、ニオブ、アルミニウム、チタン、ジルコニウム、ハフニウム、バナジウム、またはそれらの少なくとも1種の金属を含む合金もしくは化合物、NbOまたはNbOを含む化合物であることが好ましい。   Further, the second conductive polymer layer is preferably easier to insulate than the first conductive polymer layer, and the first conductive polymer layer is polypyrrole, polythiophene, polyaniline, or The second conductive polymer layer preferably comprises at least a conductive polymer and a binder, and the conductive polymer contained in the second conductive polymer layer is preferably composed of a derivative thereof. It is preferably composed of at least one selected from polypyrrole, polythiophene, polyaniline, polyfuran, or derivatives thereof, and the binder contained in the second conductive polymer layer is acrylic, polyurethane, epoxy, polyphenol, silicon, Polyester, polypropylene, polycarbonate or their derivatives, ether, It is preferable that the anode body is composed of at least one selected from a compound having a group of sulfone, amide or lactam, sulfone, sulfoxide, sugar, sugar derivative, sugar alcohol, furan derivative or dialcohol, and polyalcohol. Nibium, aluminum, titanium, zirconium, hafnium, vanadium, or an alloy or compound containing at least one metal thereof, NbO or a compound containing NbO is preferable.

本発明によれば、所定の大きさに第一の酸化物誘電体層を切断した時に露出する陽極体の上に形成した耐電圧の低い酸化物誘電体層を第二の導電性高分子層で覆うことにより、第二の導電性高分子層が第二の酸化物誘電体層を通る電流により絶縁化され、容量の減少なしに漏れ電流の不良率の小さい固体電解コンデンサを提供することができる。   According to the present invention, the low dielectric strength oxide dielectric layer formed on the anode body exposed when the first oxide dielectric layer is cut to a predetermined size is formed into the second conductive polymer layer. By covering with, the second conductive polymer layer is insulated by the current passing through the second oxide dielectric layer, and a solid electrolytic capacitor having a low leakage current failure rate without reducing the capacitance can be provided. it can.

以下、本発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態1の固体電解コンデンサ内部素子を示す図であり、図1(a)はその斜視図、図1(b)は図1(a)の固体電解コンデンサ内部素子100をA−A線で切断した断面図、図1(c)は図1(a)の固体電解コンデンサ内部素子100をB−B線で切断した断面図である。
(Embodiment 1)
1A and 1B are diagrams showing a solid electrolytic capacitor internal element according to a first embodiment of the present invention. FIG. 1A is a perspective view thereof, and FIG. 1B is a solid electrolytic capacitor internal element 100 of FIG. FIG. 1C is a cross-sectional view of the solid electrolytic capacitor internal element 100 of FIG. 1A cut along the line BB.

タンタル、ニオブ、アルミニウム、チタン、ジルコニウム、ハフニウム、バナジウム、またはそれらの少なくとも1種の金属を含む合金もしくは化合物、NbOまたはNbOを含む化合物からなる弁作用金属または弁作用金属の電気的性質を有する化合物をエッチング等により拡面化した表面を備えた陽極体4の表面に電気化学的方法等により第一の酸化物誘電体層1を形成する。次に、第一の酸化物誘電体層が表面に形成された陽極体の所定形状への切断により生じる陽極体露出端面に電気化学的方法等により第二の酸化物誘電体層3を形成する。その後、第二の酸化物誘電体層3上に第二の導電性高分子層2を形成した後、第一の酸化物誘電体層1および第二の導電性高分子層2上に第一の導電性高分子層5を形成し、さらにグラファイト層6、銀層7を順次形成して陰極層とし固体電解コンデンサ素子を形成し、外装して固体電解コンデンサとする。   Valve action metal comprising tantalum, niobium, aluminum, titanium, zirconium, hafnium, vanadium, or an alloy or compound containing at least one metal thereof, a compound having NbO or a compound containing NbO, or a compound having electrical properties of the valve action metal The first oxide dielectric layer 1 is formed on the surface of the anode body 4 having a surface expanded by etching or the like by an electrochemical method or the like. Next, the second oxide dielectric layer 3 is formed by an electrochemical method or the like on the exposed end face of the anode body, which is generated by cutting the anode body having the first oxide dielectric layer formed on the surface into a predetermined shape. . Thereafter, the second conductive polymer layer 2 is formed on the second oxide dielectric layer 3, and then the first oxide dielectric layer 1 and the second conductive polymer layer 2 are first The conductive polymer layer 5 is formed, and the graphite layer 6 and the silver layer 7 are sequentially formed to form a cathode layer, and a solid electrolytic capacitor element is formed and packaged to form a solid electrolytic capacitor.

この第二の導電性高分子層は第一の導電性高分子層よりも絶縁化が容易であることが好ましい。ここで、第二の導電性高分子層が第一の導電性高分子層よりも絶縁化が容易であることが好ましいと記載したが非特許文献1〜5に導電性高分子の絶縁化反応についての記載があり、反応の詳細について記載されている。これらから導電性高分子の絶縁化反応は、過電圧の印加により、導電性高分子の電解酸化重合における重合電位より高い電位で起こると考えられ、ポリピロール、ポリアニリン、ポリチオフェンについて絶縁化反応の起こる電位を推定すると表1のようになる。ここで電位が低いほど絶縁化が容易となる。   This second conductive polymer layer is preferably easier to insulate than the first conductive polymer layer. Here, although it was described that the second conductive polymer layer is preferably easier to insulate than the first conductive polymer layer, Non-Patent Documents 1 to 5 describe the insulating reaction of the conductive polymer. The details of the reaction are described. From these, it is considered that the insulation reaction of the conductive polymer occurs at a potential higher than the polymerization potential in electrolytic oxidation polymerization of the conductive polymer by applying an overvoltage, and the potential at which the insulation reaction occurs for polypyrrole, polyaniline, and polythiophene. Table 1 shows the estimated values. Here, the lower the potential, the easier the insulation.

Figure 2008078641
Figure 2008078641

前記第一の導電性高分子層はポリピロール、ポリチオフェン、ポリアニリン、ポリフランまたは、それらの誘導体からなることが好ましい。   The first conductive polymer layer is preferably made of polypyrrole, polythiophene, polyaniline, polyfuran, or a derivative thereof.

(実施の形態2)
図2は本発明の実施の形態2の固体電解コンデンサ内部素子を示す図であり、図2(a)はその斜視図、図2(b)は図2(a)の固体電解コンデンサ内部素子200をA−A線で切断した断面図、図2(c)は図2(a)の固体電解コンデンサ内部素子200をB−B線で切断した断面図である。
(Embodiment 2)
2A and 2B are diagrams showing a solid electrolytic capacitor internal element according to Embodiment 2 of the present invention. FIG. 2A is a perspective view thereof, and FIG. 2B is a solid electrolytic capacitor internal element 200 of FIG. FIG. 2C is a cross-sectional view of the solid electrolytic capacitor internal element 200 of FIG. 2A cut along the line BB.

実施の形態1と同様に第一の酸化物誘電体層1が表面に形成された陽極体の所定形状への切断により生じる陽極体露出端面に電気化学的方法等により第二の酸化物誘電体層3を形成した後、第二の酸化物誘電体層3の上に第一の導電性高分子層5を介して第二の導電性高分子層2を形成する。   As in the first embodiment, the second oxide dielectric is formed on the exposed end face of the anode body formed by cutting the anode body having the first oxide dielectric layer 1 formed on the surface thereof into a predetermined shape by an electrochemical method or the like. After forming the layer 3, the second conductive polymer layer 2 is formed on the second oxide dielectric layer 3 via the first conductive polymer layer 5.

ここで、第二の導電性高分子層2は第一の導電性高分子層5よりも膜厚が大きいことが好ましい。第一の導電性高分子層の膜厚は1〜500nmであることが好ましい。より好ましくは5〜100nm、さらに好ましいのは10〜50nmである。前記第一の導電性高分子層は内部抵抗を小さくするためになるべく膜厚を小さくするのが望ましいが、小さすぎると界面抵抗が大きくなる恐れがある。前記第二の導電性高分子層の膜厚は1〜500μmであることが好ましい。より好ましくは2〜100μm、さらに好ましいのは5〜50μmである。前記第二の導電性高分子層の膜厚を大きくすることで陽極体露出端面にかかる機械ストレスを吸収させることが可能となるが、大きすぎると抵抗が大きくなる恐れがある。   Here, the second conductive polymer layer 2 is preferably thicker than the first conductive polymer layer 5. The film thickness of the first conductive polymer layer is preferably 1 to 500 nm. More preferably, it is 5-100 nm, More preferably, it is 10-50 nm. The first conductive polymer layer is desirably as thin as possible in order to reduce the internal resistance, but if it is too small, the interface resistance may increase. The film thickness of the second conductive polymer layer is preferably 1 to 500 μm. More preferably, it is 2-100 micrometers, More preferably, it is 5-50 micrometers. By increasing the film thickness of the second conductive polymer layer, it is possible to absorb the mechanical stress applied to the exposed end surface of the anode body. However, if it is too large, the resistance may increase.

さらに、第二の導電性高分子層は前記第一の導電性高分子層よりも導電性が低いことが好ましい。陽極体露出端面近傍のコンデンサエッジ部は電流が流れやすいためである。また、第二の導電性高分子層に導電性の低い高分子層を用いても表面を覆う第一の導電性高分子層と比較してコンデンサの抵抗値が上がりにくい。第一の導電性高分子層の導電率は1S/m以上であることが好ましい。より好ましくは10S/m以上、さらに好ましいのは50S/m以上である。前記第二の導電性高分子層の導電率は1S/m以上であることが好ましい。より好ましくは10S/m以上である。   Furthermore, the second conductive polymer layer preferably has lower conductivity than the first conductive polymer layer. This is because current flows easily in the capacitor edge portion in the vicinity of the exposed end surface of the anode body. Moreover, even if a low-conductivity polymer layer is used for the second conductive polymer layer, the resistance value of the capacitor is less likely to increase compared to the first conductive polymer layer covering the surface. The conductivity of the first conductive polymer layer is preferably 1 S / m or more. More preferably, it is 10 S / m or more, More preferably, it is 50 S / m or more. The conductivity of the second conductive polymer layer is preferably 1 S / m or more. More preferably, it is 10 S / m or more.

第二の導電性高分子層の鉛筆硬度(JISK5600−5−4準拠)はB以上であることが好ましい。より好ましくはH以上、さらに好ましくは2H以上、もっとも好ましいのは3H以上である。第二の導電性高分子層が固いことにより陽極体露出端面にかかる機械的ストレスを緩和することが可能となる。   The pencil hardness (conforming to JISK5600-5-4) of the second conductive polymer layer is preferably B or more. More preferably, it is H or more, More preferably, it is 2H or more, Most preferably, it is 3H or more. When the second conductive polymer layer is hard, mechanical stress applied to the exposed end surface of the anode body can be reduced.

第一の導電性高分子層はポリピロール、ポリチオフェン、ポリアニリン、ポリフランまたは、それらの誘導体を使用することができる。   As the first conductive polymer layer, polypyrrole, polythiophene, polyaniline, polyfuran, or a derivative thereof can be used.

第二の導電性高分子層が少なくとも導電性高分子およびバインダーを含むことが好ましく、前記第二の導電性高分子層を構成するバインダーの重量比は0.1〜90重量%が好ましい。より好ましくは1〜80重量%、さらに好ましいのは5〜60重量%である。バインダーの量を増やすと導電性高分子層の結合力は強化されるが導電性が著しく減少してしまうためである。   The second conductive polymer layer preferably contains at least a conductive polymer and a binder, and the weight ratio of the binder constituting the second conductive polymer layer is preferably 0.1 to 90% by weight. More preferably, it is 1-80 weight%, More preferably, it is 5-60 weight%. This is because when the amount of the binder is increased, the bonding force of the conductive polymer layer is enhanced, but the conductivity is remarkably reduced.

第二の導電性高分子層を構成する導電性高分子はポリピロール、ポリチオフェン、ポリアニリン、ポリフランまたは、それらの誘導体を使用することができる。   As the conductive polymer constituting the second conductive polymer layer, polypyrrole, polythiophene, polyaniline, polyfuran, or derivatives thereof can be used.

第二の導電性高分子層を構成するバインダーはアクリル、ポリウレタン、エポキシ、ポリフェノール、シリコン、ポリエステル、ポリプロピレン、ポリカーボネートまたはそれらの誘導体、エーテル、ラクトン、アミドまたはラクタムの基を有する化合物、スルホン、スルホキシド、糖、糖誘導体、糖アルコール、フラン誘導体またはジアルコール、ポリアルコールまたはそれらの誘導体を使用することができる。   The binder constituting the second conductive polymer layer is acrylic, polyurethane, epoxy, polyphenol, silicon, polyester, polypropylene, polycarbonate or a derivative thereof, a compound having an ether, lactone, amide or lactam group, sulfone, sulfoxide, Sugars, sugar derivatives, sugar alcohols, furan derivatives or dialcohols, polyalcohols or their derivatives can be used.

第二の導電性高分子層は前記第二の導電性高分子層を構成する導電性高分子、バインダー、添加物を溶媒中に分散させた溶液を塗布、乾燥することにより形成することができる。   The second conductive polymer layer can be formed by applying and drying a solution in which the conductive polymer, binder, and additives constituting the second conductive polymer layer are dispersed in a solvent. .

第二の導電性高分子層を構成する導電性高分子、バインダー、添加物を溶媒中に分散させた溶液の粘度は10mPa・s以上であることが好ましい。より好ましくは50mPa・s以上、さらに好ましくは100mPa・s以上、もっとも好ましいのは200mPa・s以上である。粘度が小さいとコンデンサ素子端部に第二の導電性高分子層を形成することが困難であるからである。   The viscosity of the solution in which the conductive polymer, the binder, and the additive constituting the second conductive polymer layer are dispersed in a solvent is preferably 10 mPa · s or more. More preferably, it is 50 mPa * s or more, More preferably, it is 100 mPa * s or more, Most preferably, it is 200 mPa * s or more. This is because if the viscosity is small, it is difficult to form the second conductive polymer layer at the end of the capacitor element.

前記第二の導電性高分子層を構成する導電性高分子、バインダー、添加物を溶媒中に分散させた溶液の固形分量は1重量%以上であることが好ましい。より好ましくは3重量%以上、さらに好ましいのは5重量%以上である。固形分量が小さいと高粘度の溶液を作製することが困難だからである。   The solid content of the solution in which the conductive polymer, binder, and additive constituting the second conductive polymer layer are dispersed in a solvent is preferably 1% by weight or more. More preferably, it is 3% by weight or more, and further preferably 5% by weight or more. This is because it is difficult to produce a highly viscous solution when the solid content is small.

(実施の形態3)
図3は本発明の実施の形態3の固体電解コンデンサ内部素子を示す図であり、図3(a)はその斜視図、図3(b)は図3(a)の固体電解コンデンサ内部素子300をA−A線で切断した断面図、図3(c)は図3(a)の固体電解コンデンサ内部素子300をB−B線で切断した断面図である。
(Embodiment 3)
3A and 3B are diagrams showing a solid electrolytic capacitor internal element according to Embodiment 3 of the present invention. FIG. 3A is a perspective view thereof, and FIG. 3B is a solid electrolytic capacitor internal element 300 of FIG. FIG. 3C is a cross-sectional view of the solid electrolytic capacitor internal element 300 of FIG. 3A cut along the line BB.

実施の形態1では陽極リードを接続する陽極体が内部素子の片側のみに存在するのに対して、実施の形態3では陽極リードを接続する陽極体4が内部素子の両側に存在する。それにより実施の形態1では陽極リードの接続が片側のみであるのに対し、実施の形態3では陽極リードの接続が両側ともにおこなう。以上の点以外は実施の形態1と構造、製造方法ともに同様である。これにより三端子型固体電解コンデンサを得る。   In the first embodiment, the anode body connecting the anode lead exists only on one side of the internal element, whereas in the third embodiment, the anode body 4 connecting the anode lead exists on both sides of the internal element. Thereby, in the first embodiment, the anode lead is connected on only one side, while in the third embodiment, the anode lead is connected on both sides. Except for the above points, the structure and the manufacturing method are the same as those of the first embodiment. As a result, a three-terminal solid electrolytic capacitor is obtained.

(実施の形態4)
図4は本発明の実施の形態4の固体電解コンデンサ内部素子を示す図であり、図4(a)はその斜視図、図4(b)は図4(a)の固体電解コンデンサ内部素子400をA−A線で切断した断面図、図4(c)は図4(a)の固体電解コンデンサ内部素子400をB−B線で切断した断面図である。
(Embodiment 4)
4A and 4B are diagrams showing a solid electrolytic capacitor internal element according to Embodiment 4 of the present invention. FIG. 4A is a perspective view thereof, and FIG. 4B is a solid electrolytic capacitor internal element 400 of FIG. FIG. 4C is a cross-sectional view of the solid electrolytic capacitor internal element 400 of FIG. 4A taken along the line BB.

実施の形態3では第二の酸化物誘電体層3の上に直接第二の導電性高分子層2を形成するのに対して、実施の形態4では第二の酸化物誘電体層3の上に第一の導電性高分子層5を介して第二の導電性高分子層2を形成する。以下に示す点以外は実施の形態3と構造、製造方法ともに同様にして三端子型固体電解コンデンサを得る。   In the third embodiment, the second conductive polymer layer 2 is formed directly on the second oxide dielectric layer 3, whereas in the fourth embodiment, the second oxide dielectric layer 3 is formed. A second conductive polymer layer 2 is formed thereon via a first conductive polymer layer 5. Except for the points described below, a three-terminal solid electrolytic capacitor is obtained in the same manner as in the third embodiment with the same structure and manufacturing method.

以下、本発明を実施例に基づき、図面を参照してさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically based on examples with reference to the drawings.

(実施例1)
実施例1について実施の形態1の説明で用いた図1を参照して説明する。
(Example 1)
Example 1 will be described with reference to FIG. 1 used in the description of the first embodiment.

エッチングにより拡面化し、結果として表面積が100倍に拡大された厚み100μmのアルミニウムを陽極体4とした。陽極体4にリン酸水溶液中にて6Vの電圧を印加することにより第一の酸化物誘電体層1を形成した。第一の酸化物誘電体層1が形成された陽極体4を長さ1.0cm、幅0.5cmの大きさに切断した。切断した端面に露出した陽極体4にリン酸水溶液中にて5Vの電圧を印加することにより第二の酸化物誘電体層3を形成した。   The anode body 4 was made of aluminum having a thickness of 100 μm, which was enlarged by etching and consequently the surface area was enlarged 100 times. The first oxide dielectric layer 1 was formed by applying a voltage of 6 V to the anode body 4 in an aqueous phosphoric acid solution. The anode body 4 on which the first oxide dielectric layer 1 was formed was cut into a length of 1.0 cm and a width of 0.5 cm. A second oxide dielectric layer 3 was formed by applying a voltage of 5 V in an aqueous phosphoric acid solution to the anode body 4 exposed at the cut end face.

第二の酸化物誘電体層3の上に重量比1:1に混合したポリチオフェン、アクリル樹脂を、ジエチレングリコール中に分散させ、固形分量を5重量%、粘度を100mPa・sに調整した溶液を塗布、乾燥することにより、第二の導電性高分子層2を膜厚が平均10μmとなるように形成した。第一の酸化物誘電体層1および第二の導電性高分子層2の上にポリチオフェンからなる第一の導電性高分子層5を化学重合により膜厚が平均10nmとなるように形成した。その上にグラファイト層6、銀層7からなる陰極層を膜厚がそれぞれ10μmとなるようにインクジェット塗布により順次形成して固体電解コンデンサ内部素子100を得た。   A solution in which polythiophene and acrylic resin mixed at a weight ratio of 1: 1 is dispersed in diethylene glycol on the second oxide dielectric layer 3 and the solid content is adjusted to 5% by weight and the viscosity is adjusted to 100 mPa · s. By drying, the second conductive polymer layer 2 was formed so as to have an average film thickness of 10 μm. A first conductive polymer layer 5 made of polythiophene was formed on the first oxide dielectric layer 1 and the second conductive polymer layer 2 by chemical polymerization so as to have an average thickness of 10 nm. A cathode layer composed of a graphite layer 6 and a silver layer 7 was sequentially formed thereon by ink jet coating so as to have a film thickness of 10 μm. Thus, a solid electrolytic capacitor internal element 100 was obtained.

固体電解コンデンサ内部素子100の陽極体4に陽極リードを、銀層7に陰極リードをそれぞれ接続して外装樹脂によりモールドすることにより固体電解コンデンサを得た。   A solid electrolytic capacitor was obtained by connecting an anode lead to the anode body 4 of the solid electrolytic capacitor internal element 100 and a cathode lead to the silver layer 7 and molding with an exterior resin.

(実施例2)
実施例2について実施の形態2の説明で用いた図2を参照して説明する。
(Example 2)
Example 2 will be described with reference to FIG. 2 used in the description of the second embodiment.

実施例1では第二の酸化物誘電体層3の上に直接第二の導電性高分子層を形成したのに対して、実施例2では第二の酸化物誘電体層3の上に第一の導電性高分子層5を介して第二の導電性高分子層2を形成した。以下に示す点以外は実施例1と構造、製造方法ともに同様である。   In Example 1, the second conductive polymer layer was formed directly on the second oxide dielectric layer 3, whereas in Example 2, the second oxide polymer layer 3 was formed on the second oxide dielectric layer 3. A second conductive polymer layer 2 was formed through one conductive polymer layer 5. Except for the following points, Example 1 is the same as the structure and the manufacturing method.

第一の酸化物誘電体層1および第二の導電性高分子層2の上にポリチオフェンからなる第一の導電性高分子層5を化学重合により膜厚が平均10nmとなるように形成した。重量比1:1に混合したポリチオフェン、アクリル樹脂を、ジエチレングリコール中に分散させ、固形分量を5重量%、粘度を100mPa・sに調整した溶液を塗布、乾燥することにより、第二の酸化物誘電体層3の上に第一の導電性高分子層5を介して第二の導電性高分子層2を膜厚が平均10μmとなるように形成した。   A first conductive polymer layer 5 made of polythiophene was formed on the first oxide dielectric layer 1 and the second conductive polymer layer 2 by chemical polymerization so as to have an average thickness of 10 nm. By dispersing polythiophene and acrylic resin mixed in a weight ratio of 1: 1 in diethylene glycol, applying a solid content of 5% by weight, and adjusting the viscosity to 100 mPa · s and drying, the second oxide dielectric The second conductive polymer layer 2 was formed on the body layer 3 via the first conductive polymer layer 5 so as to have an average thickness of 10 μm.

(実施例3)
実施例3について実施の形態3の説明で用いた図3を参照して説明する。
(Example 3)
Example 3 will be described with reference to FIG. 3 used in the description of the third embodiment.

実施例1では陽極リードを接続する陽極体が内部素子の片側のみに存在するのに対して、実施例3では陽極リード9を接続する陽極体4が内部素子の両側に存在する。それにより実施例1では陽極リードの接続が片側のみであるのに対し、実施例3では陽極リード9の接続が両側ともに行った。以上の点以外は実施例1と構造、製造方法ともに同様である。これにより三端子型固体電解コンデンサを得た。   In Example 1, the anode body for connecting the anode lead exists only on one side of the internal element, whereas in Example 3, the anode body 4 for connecting the anode lead 9 exists on both sides of the internal element. Thereby, in Example 1, the connection of the anode lead was only on one side, whereas in Example 3, the connection of the anode lead 9 was made on both sides. Except for the above points, the structure and the manufacturing method are the same as those of the first embodiment. As a result, a three-terminal solid electrolytic capacitor was obtained.

(実施例4)
実施例4について実施の形態4の説明で用いた図4を参照して説明する。
Example 4
Example 4 will be described with reference to FIG. 4 used in the description of the fourth embodiment.

実施例3では第二の酸化物誘電体層の上に直接第二の導電性高分子層を形成するのに対して、実施例4では第二の酸化物誘電体層3の上に第一の導電性高分子層5を介して第二の導電性高分子層を形成する。以下に示す点以外は実施例3と構造、製造方法ともに同様である。   In Example 3, the second conductive polymer layer is formed directly on the second oxide dielectric layer, whereas in Example 4, the first conductive polymer layer is formed on the second oxide dielectric layer 3. A second conductive polymer layer is formed through the conductive polymer layer 5. Except for the following points, Example 3 is the same as the structure and the manufacturing method.

第一の酸化物誘電体層1および第二の導電性高分子層2の上にポリチオフェンからなる第一の導電性高分子層5を化学重合により膜厚が平均10nmとなるように形成した。重量比1:1に混合したポリチオフェン、アクリル樹脂を、ジエチレングリコール中に分散させ、固形分量を5重量%、粘度を100mPa・sに調整した溶液を塗布、乾燥することにより、第二の酸化物誘電体層3の上に第一の導電性高分子層5を介して第二の導電性高分子層2を膜厚が平均10μmとなるように形成した。   A first conductive polymer layer 5 made of polythiophene was formed on the first oxide dielectric layer 1 and the second conductive polymer layer 2 by chemical polymerization so as to have an average thickness of 10 nm. By dispersing polythiophene and acrylic resin mixed in a weight ratio of 1: 1 in diethylene glycol, applying a solid content of 5% by weight, and adjusting the viscosity to 100 mPa · s and drying, the second oxide dielectric The second conductive polymer layer 2 was formed on the body layer 3 via the first conductive polymer layer 5 so as to have an average thickness of 10 μm.

(比較例1)
比較例1について図5を参照しながら説明する。図5は従来技術による比較例1の固体電解コンデンサ内部素子を示す図であり、図5(a)はその斜視図、図5(b)は図5(a)の固体電解コンデンサ内部素子500をA−A線で切断した断面図、図5(c)は図5(a)の固体電解コンデンサ内部素子500をB−B線で切断した断面図である。
(Comparative Example 1)
Comparative Example 1 will be described with reference to FIG. 5A and 5B are diagrams showing a solid electrolytic capacitor internal element of Comparative Example 1 according to the prior art. FIG. 5A is a perspective view thereof, and FIG. 5B is a diagram of the solid electrolytic capacitor internal element 500 of FIG. Sectional drawing cut | disconnected by the AA line, FIG.5 (c) is sectional drawing which cut | disconnected the solid electrolytic capacitor internal element 500 of Fig.5 (a) by the BB line.

実施例1では第二の導電性高分子層2を形成するのに対して、比較例1では第二の導電性高分子層2を形成しない。以上の点以外は実施例1と構造、製造方法ともに同様である。これにより固体電解コンデンサを得た。   In Example 1, the second conductive polymer layer 2 is formed, whereas in Comparative Example 1, the second conductive polymer layer 2 is not formed. Except for the above points, the structure and the manufacturing method are the same as those of the first embodiment. Thereby, a solid electrolytic capacitor was obtained.

(比較例2)
以下、比較例2について、図6を参照しながら説明する。図6は従来技術を基にした比較例2の固体電解コンデンサ内部素子を示す図であり、図6(a)はその斜視図、図6(b)は図6(a)の固体電解コンデンサ内部素子600をA−A線で切断した断面図、図6(c)は図6(a)の固体電解コンデンサ内部素子600をB−B線で切断した断面図である。
(Comparative Example 2)
Hereinafter, Comparative Example 2 will be described with reference to FIG. 6A and 6B are diagrams showing a solid electrolytic capacitor internal element of Comparative Example 2 based on the prior art, FIG. 6A is a perspective view thereof, and FIG. 6B is an internal view of the solid electrolytic capacitor of FIG. FIG. 6C is a cross-sectional view of the solid electrolytic capacitor internal element 600 of FIG. 6A taken along the line BB.

実施例1では第二の酸化物誘電体層3の上に重量比1:1に混合したポリチオフェン、アクリル樹脂を、ジエチレングリコール中に分散させ、固形分量を5重量%、粘度を100mPa・sに調整した溶液を塗布、乾燥することにより、第二の導電性高分子層2を膜厚が平均10μmとなるように形成するのに対し、比較例2では第二の酸化物誘電体層3の上にエポキシ樹脂からなる絶縁樹脂層11を膜厚が平均10μmとなるようにインクジェット塗布により形成する。以上の点以外は実施例1と構造、製造方法ともに同様である。これにより固体電解コンデンサを得た。   In Example 1, polythiophene and acrylic resin mixed at a weight ratio of 1: 1 on the second oxide dielectric layer 3 are dispersed in diethylene glycol, and the solid content is adjusted to 5 wt% and the viscosity is adjusted to 100 mPa · s. The second conductive polymer layer 2 is formed to have an average film thickness of 10 μm by applying and drying the prepared solution, whereas in Comparative Example 2, the second conductive polymer layer 2 is formed on the second oxide dielectric layer 3. An insulating resin layer 11 made of an epoxy resin is formed by inkjet coating so that the film thickness becomes an average of 10 μm. Except for the above points, the structure and the manufacturing method are the same as those of the first embodiment. Thereby, a solid electrolytic capacitor was obtained.

(比較例3)
以下、比較例3について、図7を参照しながら説明する。図7は従来技術を基にした比較例3の固体電解コンデンサ内部素子を示す図であり、図7(a)はその斜視図、図7(b)は図7(a)の固体電解コンデンサ内部素子700をA−A線で切断した断面図、図7(c)は図7(a)の固体電解コンデンサ内部素子700をB−B線で切断した断面図である。
(Comparative Example 3)
Hereinafter, Comparative Example 3 will be described with reference to FIG. FIG. 7 is a diagram showing a solid electrolytic capacitor internal element of Comparative Example 3 based on the prior art, FIG. 7 (a) is a perspective view thereof, and FIG. 7 (b) is an internal view of the solid electrolytic capacitor of FIG. 7 (a). FIG. 7C is a sectional view of the element 700 taken along the line AA, and FIG. 7C is a sectional view taken along the line BB of the solid electrolytic capacitor internal element 700 of FIG.

実施例1と同様の方法により陽極体4に第一の酸化物誘電体層1を形成し、第一の酸化物誘電体層1が形成された陽極体4を所定の大きさに切断する。切断面の陽極体4に第二の酸化物誘電体層を形成することなく直接第二の導電性高分子層2を形成する。その後、第一の酸化物誘電体層1および第二の導電性高分子層2の上に第一の導電性高分子層5を形成し、さらに陰極層を形成して得た固体電解コンデンサ内部素子を外装して固体電解コンデンサを得た。   The first oxide dielectric layer 1 is formed on the anode body 4 by the same method as in Example 1, and the anode body 4 on which the first oxide dielectric layer 1 is formed is cut into a predetermined size. The second conductive polymer layer 2 is formed directly on the cut-surface anode body 4 without forming the second oxide dielectric layer. Thereafter, the inside of the solid electrolytic capacitor obtained by forming the first conductive polymer layer 5 on the first oxide dielectric layer 1 and the second conductive polymer layer 2 and further forming the cathode layer The element was packaged to obtain a solid electrolytic capacitor.

表2に、本発明の実施例1、実施例2、実施例3、実施例4および従来の比較例1、比較例2、比較例3により作製した固体電解コンデンサそれぞれ100個の漏れ電流値の分布、平均、不良率および容量の分布、平均を示す。漏れ電流の測定条件は、印加電圧2.5V、印加時間60秒で15μA以上を不良とした。容量の測定条件は120Hzである。   Table 2 shows 100 leakage current values for each of the solid electrolytic capacitors produced in Example 1, Example 2, Example 3, Example 4 of the present invention and the conventional Comparative Example 1, Comparative Example 2, and Comparative Example 3. Distribution, average, defect rate and capacity distribution, average. The leakage current was measured under the condition of an applied voltage of 2.5 V and an application time of 60 seconds with a value of 15 μA or more being defective. The capacity measurement condition is 120 Hz.

Figure 2008078641
Figure 2008078641

実施例1、実施例2、実施例3および実施例4では、第二の導電性高分子層を形成しない比較例1と比較して漏れ電流の不良率が改善する。比較例2では、漏れ電流の不良率が実施例1、実施例2、実施例3および実施例4よりも小さいが、実施例1、実施例2、実施例3および実施例4と比べて容量の分布のばらつきが大きく、容量の平均が小さい。比較例3では、比較例1の漏れ電流の不良率よりも向上するが実施例1に比べて漏れ電流の不良率は大きい。   In Example 1, Example 2, Example 3 and Example 4, the defective rate of leakage current is improved as compared with Comparative Example 1 in which the second conductive polymer layer is not formed. In Comparative Example 2, the defect rate of leakage current is smaller than that of Example 1, Example 2, Example 3 and Example 4, but the capacity is higher than that of Example 1, Example 2, Example 3 and Example 4. The dispersion of the distribution is large and the average of the capacity is small. In Comparative Example 3, the defect rate of leakage current is higher than that of Comparative Example 1, but the leakage current defect rate is larger than that of Example 1.

本発明にかかる固体電解コンデンサは、電子部品や電気部品のプリント配線基板等の基板に実装されるタイプに適用することができる。   The solid electrolytic capacitor according to the present invention can be applied to a type mounted on a substrate such as a printed wiring board of an electronic component or an electrical component.

本発明の実施の形態1の固体電解コンデンサ内部素子を示す図、図1(a)はその斜視図、図1(b)は図1(a)の固体電解コンデンサ内部素子をA−A線で切断した断面図、図1(c)は図1(a)の固体電解コンデンサ内部素子をB−B線で切断した断面図。The figure which shows the solid electrolytic capacitor internal element of Embodiment 1 of this invention, FIG. 1 (a) is the perspective view, FIG.1 (b) is the solid electrolytic capacitor internal element of FIG. FIG. 1C is a cross-sectional view taken along the line B-B of the solid electrolytic capacitor internal element of FIG. 本発明の実施の形態2の固体電解コンデンサ内部素子を示す図、図2(a)はその斜視図、図2(b)は図2(a)の固体電解コンデンサ内部素子をA−A線で切断した断面図、図2(c)は図2(a)の固体電解コンデンサ内部素子をB−B線で切断した断面図。The figure which shows the solid electrolytic capacitor internal element of Embodiment 2 of this invention, FIG. 2 (a) is the perspective view, FIG.2 (b) is the solid electrolytic capacitor internal element of FIG. FIG. 2C is a cross-sectional view taken along the line B-B of the solid electrolytic capacitor internal element of FIG. 本発明の実施の形態3の固体電解コンデンサ内部素子を示す図、図3(a)はその斜視図、図3(b)は図3(a)の固体電解コンデンサ内部素子をA−A線で切断した断面図、図3(c)は図3(a)の固体電解コンデンサ内部素子をB−B線で切断した断面図。The figure which shows the solid electrolytic capacitor internal element of Embodiment 3 of this invention, FIG. 3 (a) is the perspective view, FIG.3 (b) is the solid electrolytic capacitor internal element of FIG. FIG. 3C is a cross-sectional view taken along the line B-B of the solid electrolytic capacitor internal element of FIG. 本発明の実施の形態4の固体電解コンデンサ内部素子を示す図、図4(a)はその斜視図、図4(b)は図4(a)の固体電解コンデンサ内部素子をA−A線で切断した断面図、図4(c)は図4(a)の固体電解コンデンサ内部素子をB−B線で切断した断面図。The figure which shows the solid electrolytic capacitor internal element of Embodiment 4 of this invention, FIG. 4 (a) is the perspective view, FIG.4 (b) is the solid electrolytic capacitor internal element of FIG. FIG. 4C is a cross-sectional view taken along the line BB of the solid electrolytic capacitor internal element of FIG. 4A. 従来技術による比較例1の固体電解コンデンサ内部素子を示す図、図5(a)はその斜視図、図5(b)は図5(a)の固体電解コンデンサ内部素子をA−A線で切断した断面図、図5(c)は図5(a)の固体電解コンデンサ内部素子をB−B線で切断した断面図。The figure which shows the solid electrolytic capacitor internal element of the comparative example 1 by a prior art, FIG.5 (a) is the perspective view, FIG.5 (b) is the solid electrolytic capacitor internal element of FIG.5 (a) cut | disconnected by the AA line | wire FIG. 5C is a cross-sectional view of the solid electrolytic capacitor internal element of FIG. 5A taken along line BB. 従来技術による比較例2の固体電解コンデンサ内部素子を示す図、図6(a)はその斜視図、図6(b)は図6(a)の固体電解コンデンサ内部素子をA−A線で切断した断面図、図6(c)は図6(a)の固体電解コンデンサ内部素子をB−B線で切断した断面図。The figure which shows the solid electrolytic capacitor internal element of the comparative example 2 by a prior art, FIG. 6 (a) is the perspective view, FIG.6 (b) is the solid electrolytic capacitor internal element of FIG. FIG. 6C is a cross-sectional view of the solid electrolytic capacitor internal element of FIG. 6A taken along line BB. 従来技術による比較例3の固体電解コンデンサ内部素子を示す図、図7(a)はその斜視図、図7(b)は図7(a)の固体電解コンデンサ内部素子をA−A線で切断した断面図、図7(c)は図7(a)の固体電解コンデンサ内部素子をB−B線で切断した断面図。The figure which shows the solid electrolytic capacitor internal element of the comparative example 3 by a prior art, FIG. 7 (a) is the perspective view, FIG.7 (b) is the solid electrolytic capacitor internal element of FIG. FIG. 7C is a cross-sectional view of the solid electrolytic capacitor internal element of FIG. 7A cut along the line BB. 従来の固体電解コンデンサを示す断面図。Sectional drawing which shows the conventional solid electrolytic capacitor. 従来の三端子型固体電解コンデンサを示す断面図。Sectional drawing which shows the conventional three terminal type solid electrolytic capacitor.

符号の説明Explanation of symbols

1 第一の酸化物誘電体層
2 第二の導電性高分子層
3 第二の酸化物誘電体層
4 陽極体
5 第一の導電性高分子層
6 グラファイト層
7 銀層
8 外装樹脂
9 陽極リード
10 陰極リード
11 絶縁樹脂層
100,200,300,400,500,600,700 固体電解コンデンサ内部素子
1 First oxide dielectric layer 2 Second conductive polymer layer 3 Second oxide dielectric layer 4 Anode body 5 First conductive polymer layer 6 Graphite layer 7 Silver layer 8 Exterior resin 9 Anode Lead 10 Cathode lead 11 Insulating resin layer 100, 200, 300, 400, 500, 600, 700 Solid electrolytic capacitor internal element

Claims (8)

弁作用金属または弁作用金属の電気的性質を有する化合物からなる拡面化された表面を備えた陽極体と、前記拡面化された陽極体表面に形成された第一の酸化物誘電体層と、前記第一の酸化物誘電体層が表面に形成された陽極体の所定形状への切断により生じる陽極体露出端面に形成された第二の酸化物誘電体層と、前記第一の酸化物誘電体層上に形成された第一の導電性高分子層と、前記第二の酸化物誘電体層上に形成された第二の導電性高分子層と、前記第一の導電性高分子層および/または前記第二の導電性高分子層の上に形成された陰極層とを有することを特徴とする固体電解コンデンサ。   An anode body having a surface made of a valve metal or a compound having electrical properties of the valve metal, and a first oxide dielectric layer formed on the surface of the surface of the anode A second oxide dielectric layer formed on the exposed end face of the anode body produced by cutting the anode body having the first oxide dielectric layer formed on the surface into a predetermined shape; and the first oxidation A first conductive polymer layer formed on the dielectric layer, a second conductive polymer layer formed on the second oxide dielectric layer, and the first conductive polymer layer. A solid electrolytic capacitor comprising a molecular layer and / or a cathode layer formed on the second conductive polymer layer. 弁作用金属または弁作用金属の電気的性質を有する化合物からなる拡面化された表面を備えた陽極体と、前記拡面化された陽極体表面に形成された第一の酸化物誘電体層と、前記第一の酸化物誘電体層が表面に形成された陽極体の所定形状への切断により生じる陽極体露出端面に形成された第二の酸化物誘電体層と、前記第一の酸化物誘電体層上に形成された第一の導電性高分子層と、前記第二の酸化物誘電体層上に前記第一の導電性高分子層の少なくとも一部を介して形成された第二の導電性高分子層と、前記第一の導電性高分子層および/または前記第二の導電性高分子層の上に形成された陰極層とを有することを特徴とする固体電解コンデンサ。   An anode body having a surface made of a valve metal or a compound having electrical properties of the valve metal, and a first oxide dielectric layer formed on the surface of the surface of the anode A second oxide dielectric layer formed on the exposed end face of the anode body produced by cutting the anode body having the first oxide dielectric layer formed on the surface into a predetermined shape; and the first oxidation A first conductive polymer layer formed on the dielectric layer, and a first conductive polymer layer formed on the second oxide dielectric layer via at least a part of the first conductive polymer layer. A solid electrolytic capacitor comprising: a second conductive polymer layer; and a cathode layer formed on the first conductive polymer layer and / or the second conductive polymer layer. 前記第二の導電性高分子層が前記第一の導電性高分子層よりも絶縁化が容易であることを特徴とする請求項1または2に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the second conductive polymer layer is more easily insulated than the first conductive polymer layer. 前記第一の導電性高分子層がポリピロール、ポリチオフェン、ポリアニリン、または、それらの誘導体からなることを特徴とする請求項1〜3のいずれか1項に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to any one of claims 1 to 3, wherein the first conductive polymer layer is made of polypyrrole, polythiophene, polyaniline, or a derivative thereof. 前記第二の導電性高分子層が少なくとも導電性高分子およびバインダーを含むことを特徴とする請求項1〜4のいずれか1項に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the second conductive polymer layer includes at least a conductive polymer and a binder. 前記第二の導電性高分子層に含まれる導電性高分子がポリピロール、ポリチオフェン、ポリアニリン、ポリフラン、または、それらの誘導体から選択される少なくとも1種からなることを特徴とする請求項1〜5のいずれか1項に記載の固体電解コンデンサ。   The conductive polymer contained in the second conductive polymer layer comprises at least one selected from polypyrrole, polythiophene, polyaniline, polyfuran, or derivatives thereof. The solid electrolytic capacitor according to any one of the above. 前記第二の導電性高分子層に含まれるバインダーがアクリル、ポリウレタン、エポキシ、ポリフェノール、シリコン、ポリエステル、ポリプロピレン、ポリカーボネートまたはそれらの誘導体、エーテル、ラクトン、アミドまたはラクタムの基を有する化合物、スルホン、スルホキシド、糖、糖誘導体、糖アルコール、フラン誘導体またはジアルコール、ポリアルコールから選択される少なくとも1種からなることを特徴とする請求項1〜6のいずれか1項に記載の固体電解コンデンサ。   The binder contained in the second conductive polymer layer is an acrylic, polyurethane, epoxy, polyphenol, silicon, polyester, polypropylene, polycarbonate or a derivative thereof, a compound having an ether, lactone, amide or lactam group, sulfone, sulfoxide The solid electrolytic capacitor according to claim 1, comprising at least one selected from the group consisting of saccharide, sugar derivative, sugar alcohol, furan derivative, dialcohol, and polyalcohol. 前記陽極体が、タンタル、ニオブ、アルミニウム、チタン、ジルコニウム、ハフニウム、バナジウム、またはそれらの少なくとも1種の金属を含む合金もしくは化合物、NbOまたはNbOを含む化合物であることを特徴とする請求項1〜7のいずれか1項に記載の固体電解コンデンサ。   The anode body is tantalum, niobium, aluminum, titanium, zirconium, hafnium, vanadium, or an alloy or compound containing at least one of these metals, NbO or a compound containing NbO. 8. The solid electrolytic capacitor according to any one of 7 above.
JP2007217098A 2006-08-24 2007-08-23 Solid electrolytic capacitor Active JP4831771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007217098A JP4831771B2 (en) 2006-08-24 2007-08-23 Solid electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006227797 2006-08-24
JP2006227797 2006-08-24
JP2007217098A JP4831771B2 (en) 2006-08-24 2007-08-23 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2008078641A true JP2008078641A (en) 2008-04-03
JP4831771B2 JP4831771B2 (en) 2011-12-07

Family

ID=39350333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007217098A Active JP4831771B2 (en) 2006-08-24 2007-08-23 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4831771B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122727A1 (en) 2009-04-20 2010-10-28 富士フイルム株式会社 Image processing apparatus, image processing method, and computer-readable medium
EP2283497A1 (en) 2008-05-23 2011-02-16 Heraeus Clevios GmbH Method for producing solid electrolyte capacitors
US8498483B2 (en) 2007-09-10 2013-07-30 Fujifilm Corporation Image processing apparatus, image processing method, and computer readable medium
CN110517891A (en) * 2019-08-16 2019-11-29 东莞东阳光科研发有限公司 A kind of aluminium electrolutic capacitor production method and aluminium electrolutic capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373832A (en) * 2001-06-14 2002-12-26 Matsushita Electric Ind Co Ltd Manufacturing method for solid electrolytic capacitor
JP2003151857A (en) * 2001-11-16 2003-05-23 Matsushita Electric Ind Co Ltd Solid-state electrolytic capacitor and method of manufacturing the same
JP2003158044A (en) * 2001-06-15 2003-05-30 Showa Denko Kk Chemically converted substrate for solid electrolytic capacitor and method of manufacturing the same, and solid electrolytic capacitor
JP2005322917A (en) * 2004-05-05 2005-11-17 Hc Starck Gmbh Electrolytic capacitor and manufacturing method of the same
WO2006075551A1 (en) * 2005-01-11 2006-07-20 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373832A (en) * 2001-06-14 2002-12-26 Matsushita Electric Ind Co Ltd Manufacturing method for solid electrolytic capacitor
JP2003158044A (en) * 2001-06-15 2003-05-30 Showa Denko Kk Chemically converted substrate for solid electrolytic capacitor and method of manufacturing the same, and solid electrolytic capacitor
JP2003151857A (en) * 2001-11-16 2003-05-23 Matsushita Electric Ind Co Ltd Solid-state electrolytic capacitor and method of manufacturing the same
JP2005322917A (en) * 2004-05-05 2005-11-17 Hc Starck Gmbh Electrolytic capacitor and manufacturing method of the same
WO2006075551A1 (en) * 2005-01-11 2006-07-20 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8498483B2 (en) 2007-09-10 2013-07-30 Fujifilm Corporation Image processing apparatus, image processing method, and computer readable medium
EP2283497A1 (en) 2008-05-23 2011-02-16 Heraeus Clevios GmbH Method for producing solid electrolyte capacitors
US8696768B2 (en) 2008-05-23 2014-04-15 Heraeus Precious Metals Gmbh & Co. Kg Method for producing solid electrolyte capacitors
EP2283497B1 (en) * 2008-05-23 2019-08-28 Heraeus Deutschland GmbH & Co. KG Method for producing solid electrolyte capacitors
WO2010122727A1 (en) 2009-04-20 2010-10-28 富士フイルム株式会社 Image processing apparatus, image processing method, and computer-readable medium
CN110517891A (en) * 2019-08-16 2019-11-29 东莞东阳光科研发有限公司 A kind of aluminium electrolutic capacitor production method and aluminium electrolutic capacitor
CN110517891B (en) * 2019-08-16 2021-12-03 东莞东阳光科研发有限公司 Aluminum electrolytic capacitor manufacturing method and aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JP4831771B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
KR101554049B1 (en) Solid Electrolytic Capacitor and Method of Manufacturing thereof
US7826200B2 (en) Electrolytic capacitor assembly containing a resettable fuse
KR100442073B1 (en) Solid Electrolyte Capacitor and its Manufacture
JP6681138B2 (en) Stable solid electrolytic capacitors containing nanocomposites
KR20150039580A (en) Solid electrolytic capacitor for use under high temperature and humidity conditions
JP6134917B2 (en) Capacitors
JP5073947B2 (en) Winding capacitor and method of manufacturing the same
KR20090080907A (en) Electrolytic capacitor anode treated with an organometallic compound
JP2007042932A (en) Solid-state electrolytic capacitor and distributed constant noise filter
JP2008244184A (en) Solid-state electrolytic capacitor and manufacturing method therefor
KR20150048703A (en) Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
JP5105479B2 (en) Solid electrolytic capacitor
JP4831771B2 (en) Solid electrolytic capacitor
JP3875705B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US11915886B2 (en) Solid electrolytic capacitor
JP4285523B2 (en) Electrode foil for solid electrolytic capacitor and manufacturing method thereof
CN102420052B (en) Solid electrolytic capacitor
JP2005223197A (en) Electrolytic capacitor
US8882857B2 (en) Solid electrolytic capacitor and method for manufacturing the same
US20220093344A1 (en) Solid Electrolytic Capacitor Containing A Deoxidized Anode
JP2007227485A (en) Solid electrolytic capacitor and its manufacturing method
JP2008010719A (en) Solid electrolytic capacitor, and its manufacturing method
JP4924128B2 (en) Solid electrolytic capacitor
JP4329800B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2007180404A (en) Solid electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110916

R150 Certificate of patent or registration of utility model

Ref document number: 4831771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250