JP2008076341A - Surface analysis method and secondary ion mass spectrometry - Google Patents

Surface analysis method and secondary ion mass spectrometry Download PDF

Info

Publication number
JP2008076341A
JP2008076341A JP2006258705A JP2006258705A JP2008076341A JP 2008076341 A JP2008076341 A JP 2008076341A JP 2006258705 A JP2006258705 A JP 2006258705A JP 2006258705 A JP2006258705 A JP 2006258705A JP 2008076341 A JP2008076341 A JP 2008076341A
Authority
JP
Japan
Prior art keywords
sample
measurement
mask
thin film
conductive thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006258705A
Other languages
Japanese (ja)
Inventor
Isato Ida
勇人 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006258705A priority Critical patent/JP2008076341A/en
Publication of JP2008076341A publication Critical patent/JP2008076341A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pretreating method which enables the measurement of a high-insulating sample while preventing the sample from being charged, without any contamination. <P>SOLUTION: A surface analysis method for irradiating a high-insulating object sample to be analyzed with energies of ionizing radiation, ion beams and the like and analyzes the surface of the sample by introducing energies of secondary electrons, secondary ions and the like emitted from the sample, comprises: forming a conductive thin film in the form of a mesh on the high-insulating object sample to be analyzed; and irradiating a portion of the sample on which no conductive thin film is formed, with energies of the ionizing radiation, the ion beams and the like. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、絶縁性の高い試料の表面分析にかかわり、特に固体表面の化学状態を分析する手段である二次イオン質量分析法、X線光電子分光分析法、オージェ電子分光分析法、電子線マイクロアナリシス等の表面分析方法に関する。   The present invention relates to surface analysis of a sample having high insulation properties, and in particular, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Auger electron spectroscopy, electron beam microanalysis, which are means for analyzing the chemical state of a solid surface. The present invention relates to a surface analysis method such as analysis.

固体表面の元素や化学状態を分析する方法としては、二次イオン質量分析法(SIMS)、X線光電子分光法(XPS)、オージェ電子分光分析法(AES)等が挙げられ、いずれも広く使用されている。   Examples of methods for analyzing elements and chemical states on solid surfaces include secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), etc., all of which are widely used. Has been.

これらの固体表面分析、観察手法は、いずれも測定対象試料にイオンビームやX線、電子線などのエネルギーを導入し、試料中の元素から発生する固有の信号を取得、解析することで固体表面に存在する元素の種類と量の同定や、表面の形状を観察する方法である。   Both of these solid surface analysis and observation methods introduce energy such as ion beams, X-rays, and electron beams into the sample to be measured, and acquire and analyze specific signals generated from the elements in the sample. This is a method of identifying the type and amount of elements present in the surface and observing the shape of the surface.

例えばオージェ電子分光分析法(AES)では、試料に励起用電子線を照射して、試料から放出されるオージェ電子の運動エネルギーを測定し、そのエネルギー値と強度から元素種、比率を求めている。   For example, in Auger electron spectroscopy (AES), a sample is irradiated with an electron beam for excitation, the kinetic energy of Auger electrons emitted from the sample is measured, and the element type and ratio are obtained from the energy value and intensity. .

ここで、測定試料の絶縁性が高い場合、照射した電子線が照射部に留まり試料表面が負に帯電する。これにより、励起用電子線が導入されなくなり、測定が出来なくなるといった問題がある。   Here, when the insulating property of the measurement sample is high, the irradiated electron beam stays in the irradiated portion and the sample surface is negatively charged. As a result, there is a problem in that the excitation electron beam is not introduced and measurement cannot be performed.

この問題を解決する方法として、励起電子線が試料内に留まらないように試料傾斜角度を大きく取る測定法や、試料にダメージを与えないレベルの低速の正イオンビームを試料表面に照射し帯電を防止するといった方法、あるいはこれらの手法を併用する方法がとられている。   To solve this problem, the sample surface is charged by irradiating the sample surface with a low-speed positive ion beam at a level that does not damage the sample so that the excitation electron beam does not stay in the sample. The method of preventing, or the method of using these methods together is taken.

しかしながら、試料傾斜角度を大きく取ると、測定ポイントが不明確になり、目的箇所の測定ができない場合がある。また、低速イオンビームによる中和法も、絶縁性が高い試料では十分な効果が得られない場合が多い。   However, if the sample tilt angle is increased, the measurement point becomes unclear and the target location may not be measured. In addition, the neutralization method using a low-speed ion beam often fails to obtain a sufficient effect with a sample having high insulation properties.

X線光電子分光分析法(XPS)は、試料にX線を照射して試料から放出される光電子の運動エネルギーを測定し、照射X線のエネルギーとの差から決定される光電子の束縛エネルギーから元素種を求める表面分析手法である。   X-ray photoelectron spectroscopy (XPS) measures the kinetic energy of photoelectrons emitted from a sample by irradiating the sample with X-rays, and determines the element from the binding energy of the photoelectron determined from the difference from the energy of the irradiated X-ray. It is a surface analysis technique for obtaining seeds.

XPSにおいても、測定試料の絶縁性が高い試料の場合、光電子の放出により試料表面が正に帯電するため、放出された光電子が減速され本来の運動エネルギーが測定できなくなるといった問題がある。   Even in XPS, in the case of a sample having a high insulation property of the measurement sample, the surface of the sample is positively charged by the emission of photoelectrons, so that the emitted photoelectrons are decelerated and the original kinetic energy cannot be measured.

また、アルゴンイオンなどのイオンビームを用いたドライエッチングによる深さ方向分析の際は、エッチングイオンビームによる帯電のため、試料表面にイオンビームが到達しなくなり、深さ方向分析が出来なくなる場合もある。   In addition, in the depth direction analysis by dry etching using an ion beam such as argon ions, the ion beam may not reach the sample surface due to charging by the etching ion beam, and the depth direction analysis may not be possible. .

二次イオン質量分析法(SIMS)は、試料に一次イオンビームを照射し、スパッタ現象により発生する二次イオンの質量を、質量分析計にて計測する表面分析手法である。二次イオン質量分析法のなかでも飛行時間型二次イオン質量分析装置では、二次イオンの質
量計測は、電位を試料台に印加し、生成した二次イオンにエネルギーを与えて、一定距離を飛行させ、その飛行時間から質量を算出している。
Secondary ion mass spectrometry (SIMS) is a surface analysis technique in which a sample is irradiated with a primary ion beam and the mass of secondary ions generated by a sputtering phenomenon is measured with a mass spectrometer. Among secondary ion mass spectrometry, in the time-of-flight secondary ion mass spectrometer, mass measurement of secondary ions is performed by applying a potential to the sample stage, applying energy to the generated secondary ions, and measuring a certain distance. It is made to fly and the mass is calculated from the flight time.

ここで、測定試料の絶縁性が高い場合、照射された一次イオンの電荷が試料表面に留まり表面が正に帯電する。正に帯電した部位には一次イオンビームが照射されにくくなるのに加えて、試料表面の電位が変わることで放出された二次イオンのエネルギーが変化するため、一定距離の飛行時間が変化し、正確な質量を算出できなくなるといった問題がある。   Here, when the measurement sample has high insulation, the charge of the irradiated primary ions stays on the sample surface and the surface is positively charged. In addition to making it difficult for the primary ion beam to be irradiated to the positively charged site, the energy of the secondary ions emitted changes due to the change in the potential of the sample surface. There is a problem that an accurate mass cannot be calculated.

XPS、SIMSの正への帯電を解決する方法として、試料表面に中和用の電子線を照射する方法が発案されている(例えば特許文献1)。この帯電防止法では、X線や一次イオンの照射による正への帯電電荷を電子線照射によって中和するとしている。   As a method for solving the positive charging of XPS and SIMS, a method of irradiating a sample surface with an electron beam for neutralization has been proposed (for example, Patent Document 1). In this antistatic method, the positively charged charge by X-ray or primary ion irradiation is neutralized by electron beam irradiation.

しかしながら、TOF−SIMSにおいては、測定用一次イオンビームと中和用電子線のバランスをとることが難しく、絶縁物試料サイズが大きいと中和用電子銃の効果が発揮されない場合が多い。   However, in TOF-SIMS, it is difficult to balance the primary ion beam for measurement and the electron beam for neutralization, and if the insulator sample size is large, the effect of the electron gun for neutralization is often not exhibited.

そこで、中和を確実にするため、窓の開いた導電性の金属マスクや金属製のメッシュを測定試料にかぶせて測定を行う。   Therefore, in order to ensure neutralization, measurement is performed by covering a measurement sample with a conductive metal mask having an open window or a metal mesh.

しかし、この金属製メッシュやマスクが試料表面に確実に接触していないと、試料帯電が緩和されず、測定が出来ないといった不具合があった。特に、試料表面に凹凸がある場合などは接触部分が限定され中和が十分にされない。   However, if the metal mesh or mask is not securely in contact with the sample surface, there is a problem that the sample charge is not relaxed and measurement cannot be performed. In particular, when the surface of the sample is uneven, the contact portion is limited and neutralization is not sufficiently performed.

また、TOF−SIMSでは、装置構成上、通常、一次イオンビーム入射方向は試料面に斜めに入射させ、二次イオンを試料法線方向で検出する。   Moreover, in TOF-SIMS, the primary ion beam incident direction is normally incident on the sample surface obliquely and the secondary ions are detected in the sample normal direction due to the apparatus configuration.

一次イオンが斜めから入射するので、メッシュ設定時は確認できていた測定箇所も、メッシュの影になり測定できない領域が出来てしまう。さらにメッシュ下部は当然ながら測定できない。   Since primary ions are incident at an angle, the measurement location that can be confirmed when the mesh is set also becomes a shadow of the mesh, resulting in an area that cannot be measured. Furthermore, the lower part of the mesh cannot be measured.

また、金属メッシュ、マスクが測定箇所に触れると、メッシュ、マスクの汚染成分が測定面に転移する場合がある。よって、一度セットしても測定箇所が隠れてしまうためメッシュの位置を移動するとマスクからの汚染成分が残存し、汚染を測定してしまうといった問題がある。このため、清浄なメッシュ、マスクを用意することや、試料上でのメッシュ、マスクの移動、再設置を避ける、などの注意が必要になってくるが、TOF−SIMSは非常に高感度な測定手法であり、微量な汚染でも高感度で測定されてしまうため上記のような注意は実際上非常に困難である。   Further, when the metal mesh or mask touches the measurement location, the contamination component of the mesh or mask may be transferred to the measurement surface. Therefore, since the measurement location is hidden even if it is set once, there is a problem that if the position of the mesh is moved, the contamination component from the mask remains and the contamination is measured. For this reason, care must be taken such as preparing a clean mesh and mask, and avoiding moving and re-installing the mesh and mask on the sample, but TOF-SIMS is a very sensitive measurement. This is a technique, and the above-mentioned attention is actually very difficult because even a very small amount of contamination is measured with high sensitivity.

なお、電離放射線やイオンビーム等のエネルギー照射領域よりもメッシュ状の導電性薄膜が形成されていない領域の方が少しだけ広いことで帯電防止効果を発現するものであるので、試料上に導電性薄膜を積層している発明が特許文献2で知られている。しかし、これでは、二次イオンビーム照射領域に対し導電性薄膜が形成されていない領域が広すぎるため、優れた帯電防止効果を得ることはできない。
特公昭54−6912号公報(特許第996233号) 特開平1−107446号公報
Since the area where the mesh-like conductive thin film is not formed is slightly wider than the area irradiated with energy such as ionizing radiation or ion beam, the antistatic effect is exhibited. An invention in which thin films are stacked is known from Patent Document 2. However, in this case, since the region where the conductive thin film is not formed is too wide with respect to the secondary ion beam irradiation region, an excellent antistatic effect cannot be obtained.
Japanese Patent Publication No.54-6912 (Patent No. 996233) JP-A-1-107446

本発明は、以上の問題に鑑み案出されたもので、TOF−SIMSをはじめとする表面
分析において、絶縁性の高い分析対象試料は、試料帯電のため測定しにくく、また、帯電防止のために使用するマスク材による汚染が懸念されるといった従来技術の問題を解決するためになされたものであり、絶縁性の高い試料を帯電することなく、また、汚染無く測定できる前処理法を提供することを目的とする。
The present invention has been devised in view of the above problems. In surface analysis such as TOF-SIMS, a sample to be analyzed with high insulation is difficult to measure because of sample charging, and also for prevention of charging. In order to solve the problems of the prior art, such as concern about contamination due to the mask material used in the process, it provides a pretreatment method that can measure a sample with high insulation without being charged and without contamination. For the purpose.

請求項1に記載の本発明は、絶縁性の高い分析対象試料に電離放射線やイオンビーム等のエネルギーを照射し、前記試料から放出される二次電子や二次イオン等のエネルギーを導いて前記試料表面を分析する表面分析方法において、
前記絶縁性の高い分析対象試料上に導電性薄膜を導電性コーティングなどの手段でメッシュ状に形成し、
前記導電性薄膜が形成されていない前記試料上に前記電離放射線やイオンビーム等のエネルギーを照射する
ことを特徴とする表面分析方法とした。
The present invention according to claim 1 irradiates energy such as ionizing radiation or ion beam to a sample having high insulating property, and guides energy such as secondary electrons and secondary ions emitted from the sample. In a surface analysis method for analyzing a sample surface,
A conductive thin film is formed in a mesh shape by means such as a conductive coating on the sample to be analyzed with high insulation,
The surface analysis method is characterized in that the sample on which the conductive thin film is not formed is irradiated with energy such as ionizing radiation or ion beam.

例えば、試料との接触部が測定面上の一部分である試料前処理法で用いる導電皮膜コーティング用マスクを使用することににより実施できる。   For example, it can be carried out by using a conductive film coating mask used in the sample pretreatment method in which the contact portion with the sample is a part on the measurement surface.

この場合、一次イオンの照射領域の径は10〜200μm程度であり、本発明のコーティングされなかった被測定部位の径は上記照射領域の径よりもすこし大きいことが好ましく、これにより良好な帯電防止効果が得られる。   In this case, the diameter of the irradiated region of primary ions is about 10 to 200 μm, and the diameter of the site to be measured of the present invention is preferably slightly larger than the diameter of the irradiated region, thereby providing good antistatic properties. An effect is obtained.

請求項2に記載の本発明は、絶縁性の高い分析対象試料に一次イオンを照射し、前記試料から放出される二次イオンを質量分析計に導いて質量分析する二次イオン質量分析法において、
前記絶縁性の高い分析対象試料上に導電性薄膜をメッシュ状に形成し、
前記導電性薄膜が形成されていない前記試料上に一次イオンを照射する
ことを特徴とする二次イオン質量分析法とした。
The present invention according to claim 2 is a secondary ion mass spectrometry method in which primary ion is irradiated to a sample to be analyzed with high insulation, and secondary ions released from the sample are guided to a mass spectrometer to perform mass analysis. ,
A conductive thin film is formed in a mesh shape on the analysis target sample having a high insulation property,
A secondary ion mass spectrometry method was characterized in that primary ions were irradiated onto the sample on which the conductive thin film was not formed.

本発明の試料前処理法を用いて試料前処理を行うことにより、絶縁性の高い試料にも導電性を確実に付与でき、帯電することなく測定することが可能になる。   By performing the sample pretreatment using the sample pretreatment method of the present invention, it is possible to reliably impart conductivity even to a highly insulating sample, and to perform measurement without charging.

次に本発明の帯電防止方法の手順について説明する。図1に本発明の導電皮膜コーティング用マスクの概略図を示す。   Next, the procedure of the antistatic method of the present invention will be described. FIG. 1 shows a schematic view of a conductive film coating mask of the present invention.

導電皮膜コーティング用マスク1には、長方形の開口部2が少なくとも2本以上が必要である。マスク全体、開口部のサイズは特に指定は無いが、幅200μmから1mm、長さ5mmから20mm程度の開口部が、ピッチ200μm程度で複数本存在するのが望ましい。   The conductive film coating mask 1 requires at least two rectangular openings 2. The size of the entire mask and the openings are not particularly specified, but it is desirable that a plurality of openings having a width of about 200 μm to 1 mm and a length of about 5 mm to 20 mm exist with a pitch of about 200 μm.

また、図1(b)の側面図中の箇所3に示すように、周囲が折れ曲がるなど、試料にセットした際に、測定面とマスク本体が直接、接触しない形状にする。図1では端部を曲げた概略図としたが、例えば湾曲形状にするなどでも良い。試料との接触箇所は2度目のコーティングでコーティングされる場所など、測定箇所と無関係の部位が望ましい。   In addition, as shown in a location 3 in the side view of FIG. 1B, the measurement surface and the mask main body are not in direct contact with each other when the sample is set on the sample, for example, the periphery is bent. Although FIG. 1 is a schematic diagram in which the end portion is bent, a curved shape may be used, for example. The contact point with the sample is preferably a part unrelated to the measurement part, such as a part coated with the second coating.

導電皮膜コーティング用マスク1を試料にかぶせてコーティングを行う。   Coating is performed by covering the sample with the conductive film coating mask 1.

導電性のコーティングは、電子顕微鏡観察用前処理などで使用されるマグネトロンスパ
ッタ装置や、蒸着装置を用いる。
For the conductive coating, a magnetron sputtering apparatus or a vapor deposition apparatus used for pretreatment for observation with an electron microscope or the like is used.

導電性のコーティング膜厚は10nmから1μm程度が望ましい。10nm以下では、導電性のコーティングが十分な膜形状を成さず、島状などになり期待する導電性が得られない可能性がある。また、1μm以上など、あまり厚いとコーティングに時間がかかり現実的でない。   The conductive coating thickness is preferably about 10 nm to 1 μm. If the thickness is 10 nm or less, the conductive coating does not form a sufficient film shape, and may have an island shape and the expected conductivity may not be obtained. On the other hand, if it is too thick, such as 1 μm or more, it takes time for coating and is not practical.

コーティングを行っているときはマスク材が動かないことが重要で、必要に応じて粘着テープなどで端部を固定するとよい。なお、固定に用いる粘着テープによる測定面への汚染が発生しないような注意は必要である。   When coating, it is important that the mask material does not move, and it is better to fix the edges with adhesive tape if necessary. It should be noted that the measurement surface is not contaminated by the adhesive tape used for fixing.

設定膜厚をコーティングした後、マスク、あるいは試料を90度回転させ、再度コーティングを行う。回転角度は特に指定しないが、導電性コーティングをメッシュ状でなく、ストライプ状にのみ形成した場合は帯電防止が不十分で測定が出来ない場合がある。   After coating the set film thickness, the mask or sample is rotated 90 degrees and coating is performed again. Although the rotation angle is not particularly specified, when the conductive coating is not formed in a mesh shape but only in a stripe shape, the measurement may not be possible due to insufficient antistatic properties.

図2に導電性のコーティングが終了した試料を示す。絶縁性の高い試料4の上面図で、コーティング2回ともマスクの陰になりコーティングされなかった部位5が並んでいる。   FIG. 2 shows a sample after the completion of the conductive coating. In the top view of the highly insulative sample 4, the uncoated portions 5 are lined up in the shadow of the mask in both coatings.

この導電性コーティングが終了し、メッシュ状にコーティングが行われた試料を、TOF−SIMSをはじめとする表面分析装置に導入し分析を行う。   After the conductive coating is finished, the sample coated in a mesh shape is introduced into a surface analyzer such as TOF-SIMS for analysis.

測定の際は、導電性試料と同様の条件で行っても良いが、各分析装置の電子線照射や低速正イオンビーム照射などの中和機構を併用した方が帯電防止を確実に実現できる。   The measurement may be performed under the same conditions as those for the conductive sample. However, the use of a neutralization mechanism such as electron beam irradiation or low-speed positive ion beam irradiation of each analyzer can surely realize antistatic.

本発明の実施例について示す。   Examples of the present invention will be described.

高抵抗試料として、合成石英ガラスを用いた。   Synthetic quartz glass was used as the high resistance sample.

コーティング用ストライプマスクは0.1mm厚のCu板に、幅0.5mm、長さ10mm、ピッチ0.5mmのストライプパターンをウェットエッチングにて作製したものを用いた。また、マスク端を折り曲げ、試料と面で接触しないようにした。   The stripe mask for coating used was a 0.1 mm thick Cu plate prepared by wet etching a stripe pattern having a width of 0.5 mm, a length of 10 mm, and a pitch of 0.5 mm. Also, the mask edge was bent so that it did not come into contact with the sample.

導電性コーティングには、真空デバイス社製の白金スパッタコーティング装置をもちいた。   For the conductive coating, a platinum sputter coating apparatus manufactured by Vacuum Device Co. was used.

試料にマスクを載せ、設定膜厚20nmにて白金スパッタコーティングを行った。   A mask was placed on the sample, and platinum sputter coating was performed at a set film thickness of 20 nm.

その後、マスクを90度回転させ、再度、設定膜厚20nmにて白金スパッタコーティングを行った。   Then, the mask was rotated 90 degrees, and platinum sputter coating was performed again with a set film thickness of 20 nm.

スパッタコーティングの結果、試料表面に格子状の導電性コーティングのパターンが形成され、マスクの影となっていた試料表面はスパッタコーティングされない試料表面が出現した。   As a result of the sputter coating, a lattice-like conductive coating pattern was formed on the sample surface, and a sample surface that was not sputter-coated appeared on the sample surface that was a shadow of the mask.

導電性コーティングの終了した試料をアルバック・ファイ製TOF−SIMS装置(TRIFT−2)に、メッシュマスクを取り付けない、導電性試料と同様の方法で導入した。   The sample after the completion of the conductive coating was introduced into a TOF-SIMS apparatus (TRIFT-2) manufactured by ULVAC-PHI in the same manner as the conductive sample without attaching a mesh mask.

中和電子線を併用して測定を行ったところ、格子内部のスパッタコーティングされてい
ない試料表面において、帯電による信号低下などは見られず、ピーク形状も良好なスペクトルが取得できた。さらに、マスク材やスパッタコーティング元素の白金も検出されず良好な絶縁試料表面測定が行えた。
When the measurement was performed in combination with a neutralized electron beam, no signal reduction due to charging was observed on the surface of the sample that was not sputter coated inside the lattice, and a spectrum with a good peak shape could be obtained. Furthermore, the mask material and the sputter coating element platinum were not detected, and the surface of the insulating sample could be measured well.

<比較例1>
本発明の比較例について示す。
<Comparative Example 1>
A comparative example of the present invention will be described.

高抵抗試料として、実施例1と同様の合成石英ガラスを用いた。   The same synthetic quartz glass as in Example 1 was used as the high resistance sample.

合成石英ガラスに、本発明の前処理を施すことなく、導電性試料と同様の方法で実施例1に記載のTOF−SIMS装置に導入し、中和電子線を併用して測定を行ったが、帯電による信号低下で十分な強度の良好なスペクトルが取得できなかった。   The synthetic quartz glass was introduced into the TOF-SIMS apparatus described in Example 1 in the same manner as the conductive sample without performing the pretreatment of the present invention, and measurement was performed using a neutralized electron beam in combination. As a result, a good spectrum with sufficient intensity could not be obtained due to a signal drop caused by charging.

<比較例2>
次に、金属製のメッシュ(Ni製 厚さ0.1mm メッシュ線幅0.5mm メッシュ間隔2mm)を試料にかぶせて実施例1に記載のTOF−SIMS装置に導入し、中和電子線を併用して測定を行った。
<Comparative example 2>
Next, a metal mesh (Ni thickness: 0.1 mm, mesh line width: 0.5 mm, mesh interval: 2 mm) was placed on the sample and introduced into the TOF-SIMS apparatus described in Example 1, and a neutralized electron beam was used in combination. And measured.

測定の結果、メッシュが接触している箇所近傍ではスペクトルが取得できたか、場所によっては帯電と思われる信号低下で信号が取得されない部位も多く見られ、任意箇所の測定は行えなかった。   As a result of the measurement, a spectrum could be obtained in the vicinity of the place where the mesh was in contact, or there were many parts where a signal was not obtained due to a signal drop that seems to be charged depending on the place, and measurement of an arbitrary place could not be performed.

具体的測定結果としては、図3のグラフで表され、上から実施例1(7)、比較例1(8)、比較例2(9)のTOF−SIMSスペクトルである。横軸は質量/電荷(m/z)、縦軸はトータルカウントを表している。実施例1では、Si(28)のピーク、SiOH(45)のピークがはっきり表示されている(30000カウント)が、比較例1、2では、Si(28)のピークのみわずかに確認できる(800カウント)。   Specific measurement results are represented by the graph of FIG. 3 and are the TOF-SIMS spectra of Example 1 (7), Comparative Example 1 (8), and Comparative Example 2 (9) from the top. The horizontal axis represents mass / charge (m / z), and the vertical axis represents total count. In Example 1, the Si (28) peak and the SiOH (45) peak are clearly displayed (30000 counts), but in Comparative Examples 1 and 2, only the Si (28) peak can be slightly confirmed (800). count).

本発明の導電皮膜コーティング用マスクの概略図である。It is the schematic of the mask for conductive film coating of this invention. 本発明の2回コーティング後の試料の概略図である。It is the schematic of the sample after the 2nd coating of this invention. 本発明を用いた実施例1、及び、比較例の測定結果TOF−SIMSスペクトルである。It is a measurement result TOF-SIMS spectrum of Example 1 using this invention, and a comparative example.

符号の説明Explanation of symbols

1…導電皮膜コーティング用マスク
2…導電皮膜コーティング用マスク開口部
3…マスク折れ曲り部
4…絶縁性試料
5…コーティングされなかった被測定部位
6…コーティング膜
7…実施例1記載の合成石英ガラスのTOF−SIMSスペクトル
8…比較例1に記載の方式で取得したTOF−SIMSスペクトル
9…比較例2に記載の方式で取得したTOF−SIMSスペクトル
DESCRIPTION OF SYMBOLS 1 ... Mask for conductive film coating 2 ... Mask opening part 3 for conductive film coating ... Mask bending part 4 ... Insulative sample 5 ... Measurement object part 6 not coated ... Coating film 7 ... Synthetic quartz glass of Example 1 TOF-SIMS spectrum 8 ... TOF-SIMS spectrum obtained by the method described in Comparative Example 1 9 ... TOF-SIMS spectrum obtained by the method described in Comparative Example 2

Claims (2)

絶縁性の高い分析対象試料に電離放射線やイオンビーム等のエネルギーを照射し、前記試料から放出される二次電子や二次イオン等のエネルギーを導いて前記試料表面を分析する表面分析方法において、
前記絶縁性の高い分析対象試料上に導電性薄膜をメッシュ状に形成し、
前記導電性薄膜が形成されていない前記試料上に前記電離放射線やイオンビーム等のエネルギーを照射する
ことを特徴とする表面分析方法。
In the surface analysis method for analyzing the sample surface by irradiating energy such as ionizing radiation or ion beam to the analysis target sample having high insulating property and guiding energy such as secondary electrons and secondary ions emitted from the sample,
A conductive thin film is formed in a mesh shape on the analysis target sample having a high insulation property,
A surface analysis method comprising irradiating the sample on which the conductive thin film is not formed with energy such as ionizing radiation or ion beam.
絶縁性の高い分析対象試料に一次イオンを照射し、前記試料から放出される二次イオンを質量分析計に導いて質量分析する二次イオン質量分析法において、
前記絶縁性の高い分析対象試料上に導電性薄膜をメッシュ状に形成し、
前記導電性薄膜が形成されていない前記試料上に一次イオンを照射する
ことを特徴とする二次イオン質量分析法。
In secondary ion mass spectrometry, in which a sample to be analyzed with high insulation is irradiated with primary ions, and secondary ions released from the sample are guided to a mass spectrometer to perform mass analysis.
A conductive thin film is formed in a mesh shape on the analysis target sample having a high insulation property,
Secondary ion mass spectrometry, wherein the sample on which the conductive thin film is not formed is irradiated with primary ions.
JP2006258705A 2006-09-25 2006-09-25 Surface analysis method and secondary ion mass spectrometry Pending JP2008076341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258705A JP2008076341A (en) 2006-09-25 2006-09-25 Surface analysis method and secondary ion mass spectrometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006258705A JP2008076341A (en) 2006-09-25 2006-09-25 Surface analysis method and secondary ion mass spectrometry

Publications (1)

Publication Number Publication Date
JP2008076341A true JP2008076341A (en) 2008-04-03

Family

ID=39348552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258705A Pending JP2008076341A (en) 2006-09-25 2006-09-25 Surface analysis method and secondary ion mass spectrometry

Country Status (1)

Country Link
JP (1) JP2008076341A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818721A (en) * 2012-08-20 2012-12-12 中国科学院上海光学精密机械研究所 Preparation method of non-conductive sample used for X-ray photoelectron spectroscopy measurement
JP2014143150A (en) * 2013-01-25 2014-08-07 Gigaphoton Inc Target supply device and euv light generation chamber
CN114047215A (en) * 2021-10-20 2022-02-15 北京科技大学顺德研究生院 Device and method for eliminating uneven charge on surface of measured sample

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818721A (en) * 2012-08-20 2012-12-12 中国科学院上海光学精密机械研究所 Preparation method of non-conductive sample used for X-ray photoelectron spectroscopy measurement
JP2014143150A (en) * 2013-01-25 2014-08-07 Gigaphoton Inc Target supply device and euv light generation chamber
CN114047215A (en) * 2021-10-20 2022-02-15 北京科技大学顺德研究生院 Device and method for eliminating uneven charge on surface of measured sample
CN114047215B (en) * 2021-10-20 2023-08-15 北京科技大学顺德研究生院 Device and method for eliminating uneven charge on surface of sample to be measured

Similar Documents

Publication Publication Date Title
Greczynski et al. X-ray photoelectron spectroscopy of thin films
Heiland et al. Oxygen adsorption on (110) silver
US5087815A (en) High resolution mass spectrometry of recoiled ions for isotopic and trace elemental analysis
Brongersma Low-energy ion scattering
Wieczerzak et al. Practical aspects of focused ion beam time-of-flight secondary ion mass spectrometry analysis enhanced by fluorine gas coinjection
Baker Secondary ion mass spectrometry
Marchut et al. Surface structure analysis using low energy ion scattering: I. Clean Fe (001)
Stilhano Vilas Boas et al. Oxidation of metal thin films by atomic oxygen: A low energy ion scattering study
Terlier et al. Investigation of block depth distribution in PS‐b‐PMMA block copolymer using ultra‐low‐energy cesium sputtering in ToF‐SIMS
Greene et al. Focused ion beam fabrication of solidified ferritin into nanoscale volumes for compositional analysis using atom probe tomography
JP2008076341A (en) Surface analysis method and secondary ion mass spectrometry
JP2004361405A (en) Sample holder for laser desorption/ionization mass spectrometry and manufacturing method therefor
JP2010197272A (en) Sample coating method of electron microscope
JPH08313244A (en) Method of measuring thickness of thin film
Kolasinski et al. Application of multi-angle scattering maps to stepped surfaces
JP2022137164A (en) Secondary ion mass spectroscopic method, and mass spectrometer
Struyf et al. The Fourier‐transform laser microprobe mass spectrometer with external ion source as a tool for inorganic micro‐analysis
Holloway et al. Chemical characterization of coatings by analytical techniques sensitive to the surface and near-surface
US8633457B2 (en) Background reduction system including louver
JP6020825B2 (en) Depth direction analysis method for organic samples
Cutroneo et al. Ta-ion implantation induced by a high-intensity laser for plasma diagnostics and target preparation
US4855596A (en) Photo ion spectrometer
Scheithauer Sputter-induced cross-contamination in analytical AES and XPS instrumentation: utilization of the effect for the in situ deposition of ultrathin functional layers
KR101618982B1 (en) Quantitative analyzing method for elemetal distribution using grazing incidence of x-ray
Sakai et al. Auger crater edge profiling by water droplet impact