JP2008076307A - Apparatus and method for viscosity measurement - Google Patents

Apparatus and method for viscosity measurement Download PDF

Info

Publication number
JP2008076307A
JP2008076307A JP2006257872A JP2006257872A JP2008076307A JP 2008076307 A JP2008076307 A JP 2008076307A JP 2006257872 A JP2006257872 A JP 2006257872A JP 2006257872 A JP2006257872 A JP 2006257872A JP 2008076307 A JP2008076307 A JP 2008076307A
Authority
JP
Japan
Prior art keywords
pressure
coating liquid
viscosity
time
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006257872A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hayashi
信之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Sunac Corp
Original Assignee
Asahi Sunac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Sunac Corp filed Critical Asahi Sunac Corp
Priority to JP2006257872A priority Critical patent/JP2008076307A/en
Publication of JP2008076307A publication Critical patent/JP2008076307A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously measure changes in viscosity. <P>SOLUTION: A viscosity measuring apparatus A computes the viscosity μ of a solution (a) for coatings by substituting a pressure loss ΔP of the solution (a) for coatings between the upstream end and the downstream end of a conduit 16 and the time T required for a prescribed number of pulse signals, which are outputted every time the quantity of flow of the solution (a) for coatings flowing through the conduit 16 reaches a prescribed quantity, to be outputted into the expression μ=k×ΔP×T (wherein, k is a coefficient based on the quantity of flow corresponding to the output interval of the pulse signals). Since the viscosity is measured on the basis of the pressure and the quantity of flow of the solution (a) for coatings actually flowing through the conduit 16, it is possible to continuously measure changes in viscosity in real time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、粘度測定装置及び方法に関するものである。   The present invention relates to a viscosity measuring apparatus and method.

特許文献1には、塗料の粘度をブルックフィールド型粘度計で測定する技術が記載されている。ブルックフィールド型粘度計を用いて塗料の粘度を測定する手段としては、塗料を測定用のカップに貯留し、そのカップ内にブルックフィールド型粘度計のローターを浸漬させて、ローターに作用する回転抵抗に基づいて粘度を測定する方法が考えられる。
特開2001−129454公報
Patent Document 1 describes a technique for measuring the viscosity of a paint with a Brookfield viscometer. As a means of measuring the viscosity of a paint using a Brookfield type viscometer, the paint is stored in a measuring cup, and the rotor of the Brookfield type viscometer is immersed in the cup, and the rotational resistance acting on the rotor A method for measuring the viscosity based on the above can be considered.
JP 2001-129454 A

上記の測定方法では、測定対象となるカップ内の塗料が、実際に塗料供給源から塗装ガンに供給されて塗装に供される塗料ではないため、塗装に供される粘度の変化をリアルタイムで連続的に測定することができない。
本発明は上記のような事情に基づいて完成されたものであって、粘度の変化を連続的に測定できるようにすることを目的とする。
In the measurement method above, the paint in the cup to be measured is not actually supplied from the paint supply source to the paint gun and used for painting. Cannot be measured automatically.
The present invention has been completed based on the above circumstances, and an object thereof is to enable continuous measurement of changes in viscosity.

上記の目的を達成するための手段として、請求項1の発明は、塗装用液剤が流動する管路と、前記管路の上流端における前記塗装用液剤の圧力と前記管路の下流端における前記塗装用液剤の圧力との差である圧力損失を検出する差圧検出手段と、前記管路を流れる前記塗装用液剤の流量が所定量に達する毎にパルス信号を出力する流量計と、前記差圧検出手段によって検出された圧力損失ΔPの値と、前記流量計から所定数のパルス信号が出力されるのに要する時間Tの値を、μ=k・ΔP・T(kは、パルス信号の出力間隔と対応する流量に基づく係数)の式に代入することで、前記塗装用液剤の粘度μを演算する演算手段とを備えているところに特徴を有する。
請求項2の発明は、請求項1に記載のものにおいて、前記管路の下流端が大気中に開放されているところに特徴を有する。
As means for achieving the above-mentioned object, the invention of claim 1 is characterized in that the pipe line through which the coating liquid flows, the pressure of the coating liquid at the upstream end of the pipe line, and the pressure at the downstream end of the pipe line are as follows. A differential pressure detecting means for detecting a pressure loss that is a difference from the pressure of the coating liquid, a flowmeter that outputs a pulse signal each time the flow rate of the coating liquid flowing through the pipe reaches a predetermined amount, and the difference The value of the pressure loss ΔP detected by the pressure detecting means and the value of the time T required to output a predetermined number of pulse signals from the flow meter are expressed as μ = k · ΔP · T (k is the pulse signal It is characterized in that it is provided with a calculation means for calculating the viscosity μ of the coating liquid by substituting it into the equation of the coefficient based on the flow rate corresponding to the output interval.
The invention of claim 2 is characterized in that, in the invention of claim 1, the downstream end of the conduit is open to the atmosphere.

請求項3の発明は、塗装用液剤が流動する管路の上流端における前記塗装用液剤の圧力と前記管路の下流端における前記塗装用液剤の圧力との差である圧力損失ΔPを検出し、前記管路を流れる前記塗装用液剤の流量が所定量に達する毎に流量計から出力されるパルス信号の出力数が、所定数に達するのに要する時間Tを測定し、前記圧力損失ΔPの値と、前記時間Tの値を、μ=k・ΔP・T(kは、パルス信号の出力間隔と対応する流量に基づく係数)の式に代入することで、前記塗装用液剤の粘度μを演算するところに特徴を有する。   The invention of claim 3 detects a pressure loss ΔP, which is a difference between the pressure of the coating liquid at the upstream end of the pipeline through which the coating liquid flows and the pressure of the coating liquid at the downstream end of the pipeline. When the flow rate of the coating liquid flowing through the pipe line reaches a predetermined amount, the time T required for the number of pulse signals output from the flow meter to reach the predetermined number is measured, and the pressure loss ΔP By substituting the value and the value of time T into the equation of μ = k · ΔP · T (k is a coefficient based on the flow rate corresponding to the output interval of the pulse signal), the viscosity μ of the coating liquid is obtained. It has a characteristic in the place to calculate.

<請求項1及び請求項3の発明>
本発明では、実際に管路を流れている塗装用液剤の圧力と流量とに基づいて粘度を測定しているので、粘度の変化をリアルタイムで連続的に測定することができる。
<Invention of Claims 1 and 3>
In the present invention, since the viscosity is measured based on the pressure and flow rate of the coating liquid actually flowing through the pipeline, the change in viscosity can be continuously measured in real time.

<請求項2の発明>
管路の下流端を大気中に開放したので、圧力計は管路の上流端のみに設ければよく、管路の上流端と下流端の両方に圧力計を設ける形態に比べて、圧力計の数が少なくて済む。
<Invention of Claim 2>
Since the downstream end of the pipe line is open to the atmosphere, the pressure gauge only needs to be provided at the upstream end of the pipe line. Compared with the configuration in which pressure gauges are provided at both the upstream end and the downstream end of the pipe line, the pressure gauge The number of is small.

<実施形態1>
以下、本発明を具体化した実施形態1を図1及び図2を参照して説明する。本実施形態の粘度測定装置Aは、塗装用液剤a(例えば、塗料、主剤、硬化剤など)の圧送源10と、液剤流路14と、ドレンタンク18とを備えている。圧送源10は、エア供給源11からレギュレータ12を介して圧送した作動エアを、気密状に密閉されている貯留タンク13内に送り込み、その作動エアの圧力により、貯留タンク13内に貯留されている塗装用液剤aを液剤流路14へ押し出すようになっている。
<Embodiment 1>
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. The viscosity measuring apparatus A according to the present embodiment includes a pumping source 10 for a coating liquid a (for example, a paint, a main agent, a curing agent, etc.), a liquid flow path 14, and a drain tank 18. The pressure supply source 10 sends the working air pressure-fed from the air supply source 11 through the regulator 12 into a storage tank 13 that is hermetically sealed, and is stored in the storage tank 13 by the pressure of the working air. The coating liquid “a” is pushed out to the liquid flow path 14.

液剤流路14は、上流端が圧送源10に接続された第1供給路15と、第1供給路15の下流端に接続された管路16と、管路16の下流端に接続された第2供給路17とから構成され、第2供給路17の下流端に上記ドレンタンク18が設けられている。また、管路16の断面積は全長に亘って一定である。   The liquid agent flow path 14 is connected to the first supply path 15 whose upstream end is connected to the pressure source 10, the pipe line 16 connected to the downstream end of the first supply path 15, and the downstream end of the pipe line 16. The drain tank 18 is provided at the downstream end of the second supply path 17. Moreover, the cross-sectional area of the pipe line 16 is constant over the entire length.

第1供給路15の途中には容積式の流量計19が設けられている。流量計19は、圧送源10からドレンタンク18に至る液剤流路14(流量計19よりも下流側の管路16を含む流路)を流れる塗装用液剤aの流量を計測するものであり、流量計19を通過する(即ち、管路16を流れる)塗装用液剤aの体積が所定量Voに達する毎に、パルス信号を制御部20へ出力するようになっている。   A positive displacement meter 19 is provided in the middle of the first supply path 15. The flow meter 19 measures the flow rate of the coating liquid a flowing in the liquid agent flow path 14 (flow path including the pipe line 16 on the downstream side of the flow meter 19) from the pressure supply source 10 to the drain tank 18. Each time the volume of the coating liquid a passing through the flow meter 19 (that is, flowing through the conduit 16) reaches a predetermined amount Vo, a pulse signal is output to the control unit 20.

また、管路16の上流端には第1圧力計21が設けられ、この第1圧力計21は管路16の上流端における塗装用液剤aの圧力を測定し、その測定値を差圧検出部23(本発明の構成要件である差圧検出手段)へ出力するようになっている。管路16の下流端には第2圧力計22が設けられ、この第2圧力計22は管路16の下流端における塗装用液剤aの圧力を測定し、その測定値を差圧検出部23へ出力するようになっている。差圧検出部23においては、第1圧力計21から入力される測定値と第2圧力計22から入力される測定値との差が算出され、その算出された差圧の値、即ち圧力損失ΔPが制御部20に入力されるようになっている。   A first pressure gauge 21 is provided at the upstream end of the pipe line 16, and the first pressure gauge 21 measures the pressure of the coating liquid a at the upstream end of the pipe line 16 and detects the measured value as a differential pressure. It outputs to the part 23 (differential pressure detection means which is a component of the present invention). A second pressure gauge 22 is provided at the downstream end of the pipe line 16. The second pressure gauge 22 measures the pressure of the coating liquid a at the downstream end of the pipe line 16, and uses the measured value as a differential pressure detection unit 23. Output. In the differential pressure detection unit 23, the difference between the measurement value input from the first pressure gauge 21 and the measurement value input from the second pressure gauge 22 is calculated, and the calculated differential pressure value, that is, pressure loss. ΔP is input to the control unit 20.

制御部20では、流量計19から入力されるパルス信号の数がカウントされ、入力されたパルス信号の数が所定の数nに達するまでに要する時間Tを得る。また、制御部20には、演算部24(本発明の構成要件である演算手段)が接続されている。演算部24では、差圧検出部23で検出された圧力損失ΔPの値と、流量計19から所定数nのパルス信号が出力されるのに要する時間Tの値を、μ=k・ΔP・Tの演算式に代入することにより、塗装用液剤aの粘度μを演算する。尚、kは、パルス信号の出力間隔To(=T/n)の間に流量計19を通過する塗装用液剤aの体積Voに基づく係数である。   In the control unit 20, the number of pulse signals input from the flow meter 19 is counted, and a time T required for the number of input pulse signals to reach a predetermined number n is obtained. The control unit 20 is connected to a calculation unit 24 (calculation means that is a constituent of the present invention). In the calculation unit 24, the value of the pressure loss ΔP detected by the differential pressure detection unit 23 and the value of the time T required for outputting a predetermined number n of pulse signals from the flow meter 19 are expressed as μ = k · ΔP · By substituting into the T expression, the viscosity μ of the coating liquid a is calculated. Note that k is a coefficient based on the volume Vo of the coating liquid a passing through the flow meter 19 during the output interval To (= T / n) of the pulse signal.

ここで、上記式の意義について説明する。
管路16の断面積が全長に亘って一定である場合、管路16の上流端と下流端との間の圧力損失(圧力差)ΔPが、粘度μと塗装用液剤aの単位時間当たりの流量Qとの積の値μ・Qに概ね比例することは周知である。また、単位時間当たりの流量Qは、上記の時間Tが経過する間に流量計19を通過する塗装用液剤aの総体積n×Voを、時間Tで除した値であり、Q=n・Vo/Tであらわされる。制御部20でカウントされるパルス信号の数nと、パルス信号の出力間隔Toの間に流量計19を通過する塗装用液剤aの体積Voは、いずれも定数であるから、流量Qは時間Tに反比例することになる。したがって、粘度μは、ΔP/Qの値に比例し、換言すると圧力損失ΔPと時間Tの積の値に比例することになり、以上により、上記演算式が得られる。
Here, the significance of the above formula will be described.
When the cross-sectional area of the pipe line 16 is constant over the entire length, the pressure loss (pressure difference) ΔP between the upstream end and the downstream end of the pipe line 16 is equal to the viscosity μ and the coating liquid a per unit time. It is well known that it is generally proportional to the product value μ · Q with the flow rate Q. Further, the flow rate Q per unit time is a value obtained by dividing the total volume n × Vo of the coating liquid a passing through the flow meter 19 while the time T is elapsed by the time T, and Q = n · Expressed as Vo / T. Since the number n of pulse signals counted by the control unit 20 and the volume Vo of the coating liquid a passing through the flow meter 19 during the pulse signal output interval To are both constants, the flow rate Q is equal to the time T. Is inversely proportional to. Accordingly, the viscosity μ is proportional to the value of ΔP / Q, in other words, proportional to the value of the product of the pressure loss ΔP and the time T, and the above calculation formula is obtained.

本実施形態では、実際に管路16を流れている塗装用液剤aの圧力と流量とに基づいて粘度を測定しているので、粘度の変化をリアルタイムで連続的に測定することができる。   In the present embodiment, since the viscosity is measured based on the pressure and flow rate of the coating liquid a actually flowing through the pipe line 16, the change in viscosity can be continuously measured in real time.

<実施形態2>
以下、本発明を具体化した実施形態2を図3を参照して説明する。本実施形態2の粘度測定装置Bは、塗装装置に適用したものであって、塗料b(本発明の構成要件である塗装用液剤)の圧送源30と、塗料流路31とを備えており、塗料流路31は、上流端が圧送源30に接続された供給路32と、供給路32の下流端に接続された管路33とからなり、管路33の下流端には、塗料bを噴出するためのノズル34が設けられている。
<Embodiment 2>
Hereinafter, a second embodiment of the present invention will be described with reference to FIG. The viscosity measuring apparatus B according to the second embodiment is applied to a coating apparatus, and includes a pumping source 30 for a paint b (a coating liquid that is a constituent of the present invention) and a paint flow path 31. The paint flow path 31 is composed of a supply path 32 whose upstream end is connected to the pressure feed source 30 and a pipe line 33 connected to the downstream end of the supply path 32. Nozzle 34 is provided for ejecting the gas.

供給路32の途中には、容積式の流量計35が設けられている。流量計35は、圧送源30からノズル34に至る塗料流路31を流れる塗料bの流量を計測するものであり、流量計35を通過する(即ち、管路33を流れる)塗料bの体積が所定量Voに達する毎に、パルス信号を制御部36へ出力するようになっている。   In the middle of the supply path 32, a positive displacement flow meter 35 is provided. The flow meter 35 measures the flow rate of the paint b flowing through the paint flow path 31 from the pressure source 30 to the nozzle 34, and the volume of the paint b passing through the flow meter 35 (that is, flowing through the pipe line 33) is the volume. Each time the predetermined amount Vo is reached, a pulse signal is output to the control unit 36.

また、管路33の上流端には圧力計37が設けられ、この圧力計37は管路33の上流端における塗料bの圧力を測定する。一方、ノズル34から塗料bが噴出する状態では、管路33の下流端のノズル34が大気に開放されているため、この圧力計37の測定値が、管路33の上流端における塗料bの圧力と管路33の下流端(ノズル34)における塗料bの圧力(大気圧)との差である圧力損失となる。つまり、圧力計37は、本発明の構成要件である差圧検出手段となっている。そして、この圧力計37で測定された値、即ち圧力損失ΔPの値が制御部36に入力されるようになっている。   A pressure gauge 37 is provided at the upstream end of the pipe line 33, and the pressure gauge 37 measures the pressure of the paint b at the upstream end of the pipe line 33. On the other hand, in the state in which the paint b is ejected from the nozzle 34, the nozzle 34 at the downstream end of the pipe line 33 is open to the atmosphere, so that the measured value of the pressure gauge 37 is the value of the paint b at the upstream end of the pipe line 33. The pressure loss is a difference between the pressure and the pressure (atmospheric pressure) of the paint b at the downstream end (nozzle 34) of the pipe 33. That is, the pressure gauge 37 is a differential pressure detecting means that is a constituent of the present invention. The value measured by the pressure gauge 37, that is, the value of the pressure loss ΔP is input to the control unit 36.

制御部36では、流量計35から入力されるパルス信号の数がカウントされ、入力されたパルス信号の数が所定の数nに達するまでに要する時間Tを得る。また、制御部36には、演算部38(本発明の構成要件である演算手段)が接続されている。演算部38では、圧力損失ΔPの値と、流量計35から所定数nのパルス信号が出力されるのに要する時間Tの値を、μ=k・ΔP・Tの演算式に代入することにより、塗料bの粘度μを演算する。尚、kは、パルス信号の出力間隔To(=T/n)の間に流量計35を通過する塗料bの体積Voに基づく係数である。上記式の意義については、実施形態1で説明したとおりである。   In the control unit 36, the number of pulse signals input from the flow meter 35 is counted, and a time T required for the number of input pulse signals to reach a predetermined number n is obtained. The control unit 36 is connected to a calculation unit 38 (calculation means that is a constituent of the present invention). The calculation unit 38 substitutes the value of the pressure loss ΔP and the value of the time T required for outputting a predetermined number n of pulse signals from the flow meter 35 into the calculation formula of μ = k · ΔP · T. The viscosity μ of the paint b is calculated. Note that k is a coefficient based on the volume Vo of the paint b passing through the flow meter 35 during the output interval To (= T / n) of the pulse signal. The significance of the above formula is as described in the first embodiment.

本実施形態2では、実際に管路33を流れている塗料bの圧力と流量とに基づいて粘度を測定しているので、粘度の変化をリアルタイムで連続的に測定することができる。
また、管路33の下流端(ノズル34)を大気中に開放したので、圧力計37は管路33の上流端だけに設ければよくなっている。したがって、管路33の上流端と下流端の両方に圧力計を設ける形態に比べて、圧力計37の数が1つだけで済んでいる。
In the second embodiment, since the viscosity is measured based on the pressure and flow rate of the paint b actually flowing through the conduit 33, the change in viscosity can be continuously measured in real time.
Further, since the downstream end (nozzle 34) of the pipe line 33 is opened to the atmosphere, the pressure gauge 37 may be provided only at the upstream end of the pipe line 33. Therefore, the number of pressure gauges 37 is only one as compared with a configuration in which pressure gauges are provided at both the upstream end and the downstream end of the conduit 33.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施態様も本発明の技術的範囲に含まれる。
(1)上記実施形態1では管路の上下両端間の圧力差を検出する手段として、管路の上流端と下流端の両方に圧力計を設けたが、本発明によれば、管路の下流端を大気圧に開放するとともに、圧力計を管路の上流端のみに設ける構成としてもよい。
(2)上記実施形態2では管路の下流端(塗装ガンのノズル)を大気圧に開放することで、必要な圧力計の数を1つとしたが、本発明によれば、管路の下流端をノズルよりも上流側に設定して、管路の上流端と下流端の双方に圧力計を設け、この2つの圧力計の計測値に基づいて圧力損失を検出してもよい。
(3)上記実施形態1,2では流量計を管路よりも上流側に配置したが、本発明によれば、流量計は、管路の途中に設けてもよく、管路よりも下流側に配置してもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In the first embodiment, as a means for detecting the pressure difference between the upper and lower ends of the pipe, pressure gauges are provided at both the upstream end and the downstream end of the pipe. The downstream end may be opened to atmospheric pressure, and the pressure gauge may be provided only at the upstream end of the pipeline.
(2) In Embodiment 2 described above, the number of necessary pressure gauges is reduced to one by opening the downstream end of the pipeline (the nozzle of the coating gun) to atmospheric pressure, but according to the present invention, the downstream of the pipeline The end may be set upstream of the nozzle, pressure gauges may be provided at both the upstream end and the downstream end of the pipe, and the pressure loss may be detected based on the measured values of the two pressure gauges.
(3) In the first and second embodiments, the flowmeter is arranged upstream of the pipe. However, according to the present invention, the flowmeter may be provided in the middle of the pipe and downstream of the pipe. You may arrange in.

実施形態1の構成図Configuration diagram of Embodiment 1 流量計から出力されるパルス信号の波形をあらわすグラフGraph showing the waveform of the pulse signal output from the flow meter 実施形態2の構成図Configuration diagram of Embodiment 2

符号の説明Explanation of symbols

A…粘度測定装置
a…塗装用液剤
16…管路
19…流量計
23…差圧検出部(差圧検出手段)
24…演算部(演算手段)
B…粘度測定装置
b…塗料(塗装用液剤)
33…管路
35…流量計
37…圧力計(差圧検出手段)
38…演算部(演算手段)
A ... Viscosity measuring device a ... Coating liquid 16 ... Pipe line 19 ... Flow meter 23 ... Differential pressure detection part (Differential pressure detection means)
24 ... Calculation unit (calculation means)
B ... Viscosity measuring device b ... Paint (Liquid for coating)
33 ... Pipe line 35 ... Flow meter 37 ... Pressure gauge (Differential pressure detection means)
38 ... Calculation unit (calculation means)

Claims (3)

塗装用液剤が流動する管路と、
前記管路の上流端における前記塗装用液剤の圧力と前記管路の下流端における前記塗装用液剤の圧力との差である圧力損失を検出する差圧検出手段と、
前記管路を流れる前記塗装用液剤の流量が所定量に達する毎にパルス信号を出力する流量計と、
前記差圧検出手段によって検出された圧力損失ΔPの値と、前記流量計から所定数のパルス信号が出力されるのに要する時間Tの値を、μ=k・ΔP・T(kは、パルス信号の出力間隔と対応する流量に基づく係数)の式に代入することで、前記塗装用液剤の粘度μを演算する演算手段とを備えていることを特徴とする粘度測定装置。
A pipeline through which the coating liquid flows;
Differential pressure detecting means for detecting a pressure loss which is a difference between the pressure of the coating liquid at the upstream end of the pipe and the pressure of the coating liquid at the downstream end of the pipe;
A flowmeter that outputs a pulse signal each time the flow rate of the coating liquid flowing through the pipeline reaches a predetermined amount;
The value of the pressure loss ΔP detected by the differential pressure detecting means and the value of the time T required to output a predetermined number of pulse signals from the flow meter are expressed as μ = k · ΔP · T (k is a pulse A viscosity measuring apparatus comprising: a calculating means for calculating the viscosity μ of the coating liquid by substituting it into an equation of a coefficient based on a flow rate corresponding to a signal output interval.
前記管路の下流端が大気中に開放されていることを特徴とする請求項1記載の粘度測定装置。 The viscosity measuring apparatus according to claim 1, wherein the downstream end of the pipe is open to the atmosphere. 塗装用液剤が流動する管路の上流端における前記塗装用液剤の圧力と前記管路の下流端における前記塗装用液剤の圧力との差である圧力損失ΔPを検出し、
前記管路を流れる前記塗装用液剤の流量が所定量に達する毎に流量計から出力されるパルス信号の出力数が、所定数に達するのに要する時間Tを測定し、
前記圧力損失ΔPの値と、前記時間Tの値を、μ=k・ΔP・T(kは、パルス信号の出力間隔と対応する流量に基づく係数)の式に代入することで、前記塗装用液剤の粘度μを演算することを特徴とする粘度測定方法。
Detecting a pressure loss ΔP which is a difference between the pressure of the coating liquid at the upstream end of the pipeline through which the coating liquid flows and the pressure of the coating liquid at the downstream end of the pipeline;
Measuring the time T required for the number of pulse signals output from the flow meter to reach a predetermined number each time the flow rate of the coating liquid flowing through the pipe line reaches a predetermined amount;
By substituting the value of the pressure loss ΔP and the value of the time T into the formula of μ = k · ΔP · T (k is a coefficient based on the flow rate corresponding to the output interval of the pulse signal), A viscosity measuring method characterized by calculating a viscosity μ of a liquid agent.
JP2006257872A 2006-09-22 2006-09-22 Apparatus and method for viscosity measurement Pending JP2008076307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006257872A JP2008076307A (en) 2006-09-22 2006-09-22 Apparatus and method for viscosity measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006257872A JP2008076307A (en) 2006-09-22 2006-09-22 Apparatus and method for viscosity measurement

Publications (1)

Publication Number Publication Date
JP2008076307A true JP2008076307A (en) 2008-04-03

Family

ID=39348523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006257872A Pending JP2008076307A (en) 2006-09-22 2006-09-22 Apparatus and method for viscosity measurement

Country Status (1)

Country Link
JP (1) JP2008076307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102374961A (en) * 2010-08-06 2012-03-14 克朗斯股份公司 Method and device for determining viscosity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195136A (en) * 1982-05-08 1983-11-14 Oval Eng Co Ltd Measuring device of fluidity
JPH0378245U (en) * 1989-11-30 1991-08-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195136A (en) * 1982-05-08 1983-11-14 Oval Eng Co Ltd Measuring device of fluidity
JPH0378245U (en) * 1989-11-30 1991-08-07

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102374961A (en) * 2010-08-06 2012-03-14 克朗斯股份公司 Method and device for determining viscosity

Similar Documents

Publication Publication Date Title
JP6702923B2 (en) Mass flow controller
CN102483344B (en) Upstream volume mass flow verification system and method
KR101994373B1 (en) Flow rate control device, diagnostic device for use in flow rate measuring mechanism or for use in flow rate control device including the flow rate measuring mechanism and recording medium having diagnostic program recorded thereon for use in the same
JPWO2003034169A1 (en) Pulse shot type flow control device and pulse shot type flow control method
WO2008009719A3 (en) Measuring system for a medium flowing in a process line
US20100305882A1 (en) Method and apparatus for monitoring multiphase fluid flow
EP2535688A3 (en) Method for generating a diagnostic from a deviation of a flow meter parameter
WO2008136189A1 (en) Flow rate measuring device and program for the device, method of measuring flow rate, and fluid feed system
WO2005080924A8 (en) Unsteady flow meter
CN108700445B (en) Measuring device for monitoring oil addition of large ship
CN103282748A (en) Flow rate measurement device and flow rate measurement method of flow rate controller for gas feeder
WO2008095836A3 (en) Method and device for continuously measuring dynamic fluid consumption
US20100138168A1 (en) Apparatus and a method of measuring the flow of a fluid
CN104156009A (en) Liquid small-flow precision measurement and control method
WO2009083533A3 (en) Measuring system for a medium flowing in a process line
CN103837215B (en) Commutation valve type p.V.T.t method gas flow meter
KR101178038B1 (en) Differential pressure-type mass flow meter with double nozzles
EP3535551A1 (en) Improvements in or relating to the monitoring of fluid flow
CN103900665B (en) Container combination and commutation valve type pVTt method gas flow meter
WO2009146817A3 (en) Temperature device having flow measurement
JP2008076307A (en) Apparatus and method for viscosity measurement
JP4929069B2 (en) Viscosity measuring device, viscosity measuring method
JPWO2019031056A1 (en) Flowmeter
JP6006950B2 (en) Flow test equipment
US20140195173A1 (en) Method for Ascertaining Flow by Means of Ultrasound

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090528

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090907

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

A131 Notification of reasons for refusal

Effective date: 20110719

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111117

Free format text: JAPANESE INTERMEDIATE CODE: A02