JP2008075967A - Water-cooled duct - Google Patents

Water-cooled duct Download PDF

Info

Publication number
JP2008075967A
JP2008075967A JP2006255756A JP2006255756A JP2008075967A JP 2008075967 A JP2008075967 A JP 2008075967A JP 2006255756 A JP2006255756 A JP 2006255756A JP 2006255756 A JP2006255756 A JP 2006255756A JP 2008075967 A JP2008075967 A JP 2008075967A
Authority
JP
Japan
Prior art keywords
water
cooling
guide
duct
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006255756A
Other languages
Japanese (ja)
Inventor
Keisuke Yamamoto
敬介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Spindle Manufacturing Co Ltd
Original Assignee
Nihon Spindle Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Spindle Manufacturing Co Ltd filed Critical Nihon Spindle Manufacturing Co Ltd
Priority to JP2006255756A priority Critical patent/JP2008075967A/en
Publication of JP2008075967A publication Critical patent/JP2008075967A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-cooled duct having the high heat radiating effect, and having the long product service life. <P>SOLUTION: This water-cooled duct 3 is composed of an inner cylinder 31 and an outer cylinder 32, and has a flowing water guide 33 in a clearance between both cylinders for forming a flow passage for flowing cooling water over between a water supply port 3a and a drain port 3b while revolving the cooling water. A heat radiating flowing water guide 34 is arranged between the adjacent flowing water guides 33 and 33 so as to branch off the flow passage. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水冷ダクトに関し、例えば、電気炉等から排出される排ガスを直接吸引し、集塵機で浄化処理するシステムの配管経路に用いられる水冷ダクトの改良に関するものである。   The present invention relates to a water cooling duct, for example, to an improvement in a water cooling duct used in a piping path of a system that directly sucks exhaust gas discharged from an electric furnace or the like and purifies it with a dust collector.

従来、電気炉等から排出される塵埃等を含む高温の排ガスを直接吸引し、所定温度に冷却し、集塵機で浄化処理するシステムにおいては、図4に示すように、電気炉1から排出される1400〜1500℃程度の排ガスを通す燃焼塔2や水冷ダクト3を含む配管ダクトに二重構造(図4において、破線で示す。)を採用し、二重構造の間隙に冷却装置6(例えば、クーリングタワー等)によって調整された冷却水を循環させることによって、排ガスを、400℃(好ましくは250℃)以下に冷却した状態で、配管4を介して集塵機5に導入するようにしている。
そして、このような高温の排ガスを所定温度に冷却するための水冷ダクト3として、図5〜図6に示す水冷ダクトが提案され、実用化されている。
この水冷ダクト3は、円筒状の配管である内筒31と外筒32との二重構造として、その間隙に冷却水を流し、内筒31内を通過する排ガスを冷却するものである。
Conventionally, in a system in which high-temperature exhaust gas including dust discharged from an electric furnace or the like is directly sucked, cooled to a predetermined temperature, and purified by a dust collector, it is discharged from the electric furnace 1 as shown in FIG. Adopting a double structure (indicated by a broken line in FIG. 4) in the piping duct including the combustion tower 2 and the water cooling duct 3 through which the exhaust gas of about 1400 to 1500 ° C. passes, the cooling device 6 (for example, By circulating the cooling water adjusted by a cooling tower or the like, the exhaust gas is cooled to 400 ° C. (preferably 250 ° C.) or less and introduced into the dust collector 5 through the pipe 4.
And the water cooling duct shown in FIGS. 5-6 is proposed and put to practical use as the water cooling duct 3 for cooling such high temperature exhaust gas to a predetermined temperature.
The water cooling duct 3 has a double structure of an inner cylinder 31 and an outer cylinder 32 which are cylindrical pipes, and cools exhaust gas passing through the inner cylinder 31 by flowing cooling water through the gap.

この場合、内筒31と外筒32の間隙に、給水口3aから排水口3bにわたって冷却水を周回しながら流通させる流路を形成する流水ガイド33を配設し、内筒31の内面から伝わる排ガスの熱を冷却水側に放熱させ、排ガスによって加熱された内筒31を、その外面から冷却するようにしている。
流水ガイド33は、図6の展開図に示すように、給水口3aから供給される冷却水を、図示下側から上側に流れるように(組み立てられた水冷ダクト3においては、排水口3b側から見て時計回りに旋回するように)配設し、左上の流路a’から左下の流路a’に、次いで、b’からb’に、・・・、g’からg’に流れ、最後に、右上のh’から、右下のh’と、Uターンして流れる冷却水に分かれ、排水口3bを介して水槽Wに返還される。
In this case, in the gap between the inner cylinder 31 and the outer cylinder 32, a running water guide 33 that forms a flow path for circulating cooling water from the water supply port 3 a to the drainage port 3 b is disposed and transmitted from the inner surface of the inner cylinder 31. The heat of the exhaust gas is radiated to the cooling water side, and the inner cylinder 31 heated by the exhaust gas is cooled from the outer surface.
As shown in the development view of FIG. 6, the running water guide 33 allows the cooling water supplied from the water supply port 3 a to flow from the lower side to the upper side in the drawing (in the assembled water cooling duct 3, from the drain port 3 b side). Arranged so that it turns clockwise as viewed, and flows from the upper left channel a ′ to the lower left channel a ′, then from b ′ to b ′,..., G ′ to g ′, Finally, the upper right h ′ is divided into the lower right h ′ and the cooling water flowing in a U-turn, and returned to the water tank W through the drain port 3b.

ところで、水冷ダクト3の内筒31と外筒32との間隙に配設する流水ガイド33の取り付けピッチは、通常、冷却水の流速のみを考慮して決定するため、その幅は、内筒31の展開図である図6に示すように、内筒31の全長の約10%程度と、比較的広いピッチとなっている。
このため、内筒31を通過する排ガスの放熱効果が十分に得にくく、内筒31内を通過する排ガスの熱負荷による内筒31の内面の高温酸化による減耗を抑制できず、また、冷却効果を高めようとすると、冷却水の水圧によって流水ガイド33間で亀裂が生じ、水漏れが発生することがあり、水冷ダクト3自体の製品寿命が短く、頻繁に交換作業が必要になるといった問題があった。
By the way, since the mounting pitch of the running water guide 33 disposed in the gap between the inner cylinder 31 and the outer cylinder 32 of the water cooling duct 3 is usually determined in consideration of only the flow rate of the cooling water, the width thereof is determined by the inner cylinder 31. As shown in FIG. 6 which is a development view of FIG. 6, the pitch is a relatively wide pitch of about 10% of the total length of the inner cylinder 31.
For this reason, it is difficult to sufficiently obtain the heat dissipation effect of the exhaust gas passing through the inner cylinder 31, and it is not possible to suppress the wear due to high-temperature oxidation of the inner surface of the inner cylinder 31 due to the heat load of the exhaust gas passing through the inner cylinder 31. If the pressure of the cooling water is increased, cracks may occur between the running water guides 33 due to the water pressure of the cooling water, and water leakage may occur. The product life of the water cooling duct 3 itself is short, and frequent replacement work is required. there were.

本発明は、上記従来の水冷ダクトの有する問題点に鑑み、放熱効果が高く、製品寿命の長い水冷ダクトを提供することを目的とする。   In view of the problems of the conventional water-cooled duct, an object of the present invention is to provide a water-cooled duct having a high heat dissipation effect and a long product life.

上記目的を達成するため、本発明の水冷ダクトは、内筒と外筒とからなり、両筒間の間隙に、給水口から排水口間にわたって冷却水を周回しながら流通させる流路を形成する流水ガイドを有する水冷ダクトにおいて、隣り合う流水ガイド間に、放熱用の流水ガイドを流路を分岐するように配設したことを特徴とする。   In order to achieve the above object, the water-cooled duct of the present invention comprises an inner cylinder and an outer cylinder, and forms a flow path through which cooling water circulates between the water supply port and the drainage port in the gap between the two tubes. A water cooling duct having a running water guide is characterized in that a running water guide for heat radiation is disposed between adjacent running water guides so as to branch the flow path.

この場合において、放熱用の流水ガイドに、分岐した流路間を連通させる切欠部を所定の間隔をあけて設けることができる。   In this case, it is possible to provide a notch portion for communicating between the branched flow paths with a predetermined interval in the running water guide for heat dissipation.

本発明の水冷ダクトによれば、隣り合う流水ガイド間に、放熱用の流水ガイドを流路を分岐するように配設することにより、単に流水ガイドのピッチを細かくして冷却水の流速を速くして放熱効率を上げる方法に比べて、冷却水の流速変化を抑制し、放熱用の流水ガイドからも放熱することにより放熱効果を向上することができる。これによって、熱負荷が生じたときに発生する高温酸化による内筒の減耗を抑制できるとともに、冷却水の水圧を必要以上に高める必要がなく、冷却水の水圧によって亀裂が生じることを有効に防止することができる。   According to the water cooling duct of the present invention, by disposing a heat radiating water flow guide between adjacent flow water guides so as to branch the flow path, the pitch of the water flow guide is simply made finer and the flow rate of the cooling water is increased. As compared with the method of increasing the heat dissipation efficiency, the heat dissipation effect can be improved by suppressing the change in the flow rate of the cooling water and dissipating heat from the waterflow guide for heat dissipation. As a result, the wear of the inner cylinder due to high-temperature oxidation that occurs when a thermal load is generated can be suppressed, and it is not necessary to increase the water pressure of the cooling water more than necessary, and effectively prevents cracks caused by the water pressure of the cooling water. can do.

また、放熱用の流水ガイドに、分岐した流路間を連通させる切欠部を所定の間隔をあけて設けることにより、放熱用の流水ガイドを挟む流路間での冷却水の水圧に差が生じることを防止し、放熱効率を向上することができる。これによって、熱負荷が生じたときに発生する高温酸化による内筒の減耗を抑制できるとともに、冷却水の水圧の偏りによって亀裂が生じることを防止することができる。   Further, by providing a notch portion for communicating between the branched flow paths in the water flow guide for heat dissipation with a predetermined interval, a difference occurs in the water pressure of the cooling water between the flow paths sandwiching the water flow guide for heat dissipation. This can be prevented and the heat dissipation efficiency can be improved. As a result, it is possible to suppress the inner cylinder from being depleted due to high-temperature oxidation that occurs when a thermal load is generated, and to prevent the occurrence of cracks due to uneven water pressure of the cooling water.

以下、本発明の水冷ダクトの実施の形態を、図面に基づいて説明する。なお、従来装置と同様の構造については同一の符号、一連の符号を付し説明を省略する。   Embodiments of a water cooling duct according to the present invention will be described below with reference to the drawings. In addition, about the structure similar to a conventional apparatus, the same code | symbol and a series of code | symbol are attached | subjected, and description is abbreviate | omitted.

図1〜図3に、本発明の水冷ダクトの一実施例を示す。
この水冷ダクト3は、従来例と同様、電気炉1から排出される1400〜1500℃程度の排ガスを400℃(好ましくは250℃程度)以下に冷却するためのもので、冷却された排ガスは集塵機5で処理された後、清浄空気として排出管5aを通過し外部に放出される。
1 to 3 show an embodiment of the water cooling duct of the present invention.
This water-cooled duct 3 is for cooling the exhaust gas of about 1400 to 1500 ° C. discharged from the electric furnace 1 to 400 ° C. (preferably about 250 ° C.) or less, as in the conventional example. After being processed in 5, it passes through the discharge pipe 5a as clean air and is discharged to the outside.

水冷ダクト3に送られる冷却水は、水槽Wから冷却装置6(例えば、クーリングタワー)によって冷却され、循環ポンプPによって給水口3aを介して内筒31と外筒32との間隙内に送水され、内筒31の内側を通過する排ガスとの間で熱交換を行った後、排水口3bを介し水槽Wに返還される。   The cooling water sent to the water cooling duct 3 is cooled by the cooling device 6 (for example, a cooling tower) from the water tank W, and is sent by the circulation pump P into the gap between the inner cylinder 31 and the outer cylinder 32 through the water supply port 3a. After exchanging heat with the exhaust gas passing through the inside of the inner cylinder 31, it is returned to the water tank W through the drain port 3b.

水冷ダクト3の内筒31の外周面には、従来例と同様のピッチで給水口3aから排水口3b間にわたって冷却水を周回しながら流通させる流路を形成する流水ガイド33を配設する。
そして、水冷ダクト3においては、隣り合う流水ガイド33、33間に、放熱用の流水ガイド34を流路を分岐するように配設するようにしている。通常、流水ガイド33のピッチは、上流側(給水口3a側)から下流側(排水口3b側)に向かって徐々にピッチを小さく設定するのが一般的であるが、放熱用の流水ガイド34は、図2に示すように、隣り合う流水ガイド33、33間の略中間に配設することが好ましい。
なお、本実施例においては、流水ガイド33、33の間に1つの放熱用の流水ガイド34を配設するようにしたが、流水ガイド33、33の間に2つ又はそれ以上の放熱用の流水ガイド34を配設するようにすることもできる。
On the outer peripheral surface of the inner cylinder 31 of the water cooling duct 3, a running water guide 33 is provided that forms a flow path for circulating cooling water from the water supply port 3a to the drainage port 3b at the same pitch as in the conventional example.
And in the water cooling duct 3, between the adjacent flowing water guides 33 and 33, the flowing water guide 34 for thermal radiation is arrange | positioned so that a flow path may be branched. Normally, the pitch of the running water guide 33 is generally set to gradually decrease from the upstream side (water supply port 3a side) to the downstream side (drain port 3b side). As shown in FIG. 2, it is preferable to dispose them approximately in the middle between adjacent running water guides 33, 33.
In this embodiment, one radiating water flow guide 34 is disposed between the water flow guides 33, 33, but two or more heat radiating guides 34 are disposed between the water flow guides 33, 33. A running water guide 34 may be provided.

この流水ガイド33と放熱用の流水ガイド34とは、図2の展開図に示すように、給水口3aから供給される冷却水を、図示下側から上側に流れるように(組み立てられた水冷ダクト3においては、排水口3b側から見て時計回りに旋回するように)配設し、流路幅の広くなる図示右下側では、流水ガイド33を1箇所、その下流側に放熱用の流水ガイド34を1箇所配設しているが、特にその配設方法を限定するものではない。
冷却水は、給水口3aから給水され、左上の流路a、bから左下の流路a、bに、次いで、c、dからc、dに、・・・、m、nからm、nに流れ、最後に、右上のoから、右下のoと、Uターンして流れる冷却水に分かれ、排水口3bを介して水槽Wに返還される。
流水ガイド33と放熱用の流水ガイド34とは、図2に示すように、傾斜部分と直線部分を交互に連続させることによって流路をほぼ螺旋状に形成するほか、すべての部分を傾斜させて螺旋状に構成しても構わない。
As shown in the development view of FIG. 2, the flowing water guide 33 and the radiating flowing water guide 34 are configured so that the cooling water supplied from the water supply port 3a flows from the lower side to the upper side in the drawing (assembled water cooling duct). 3 is arranged so as to rotate clockwise as viewed from the drain outlet 3b side, and in the lower right side of the figure where the flow path width is wide, one flowing water guide 33 is provided, and the flowing water for heat radiation is provided downstream thereof. Although the guide 34 is disposed at one place, the arrangement method is not particularly limited.
The cooling water is supplied from the water supply port 3a, from the upper left channels a, b to the lower left channels a, b, then from c, d to c, d,..., M, n to m, n Finally, the upper right o is divided into the lower right o and the U-turned cooling water, which is returned to the water tank W through the drain port 3b.
As shown in FIG. 2, the flowing water guide 33 and the heat radiating water flow guide 34 are formed such that the flow path is formed in a substantially spiral shape by alternately inclining portions and linear portions, and all the portions are inclined. You may comprise helically.

また、放熱用の流水ガイド34には、図2に示すように、この放熱用の流水ガイド34によって分岐された流路間を連通させる切欠部35を所定の間隔をあけて設けることが好ましい。
この切欠部35は、例えば、図例下側のaから上側のcへ流れる冷却水と、下側のbから上側のdへ流れる冷却水とが、途中に2箇所の切欠部35を介して、往き来することができるように設けられている。
なお、本実施例においては、切欠部35を、流路1周(360°)当たり2箇所に設けるようにしているが、切欠部35を設ける箇所と長さは、特に限定するものではなく、放熱用の流水ガイド34によって分岐された流路を流れる冷却水の水圧の差をできるだけ小さくすることができるものであればよい。
これにより、放熱用の流水ガイド34によって分岐された流路を流れる冷却水の水圧の差が小さくなり、放熱用の流水ガイド34を挟む流路間での冷却水の水圧に差が生じることを防止し、放熱効率を向上することができる。これによって、熱負荷が生じたときに発生する高温酸化による内筒31の減耗を抑制できるとともに、冷却水の水圧の偏りによって亀裂が生じることを防止することができる。
In addition, as shown in FIG. 2, it is preferable that the heat-dissipating running water guide 34 is provided with a notch 35 that communicates between the flow paths branched by the heat-dissipating running water guide 34 at a predetermined interval.
The notch 35 has, for example, cooling water flowing from the lower side a to the upper side c and cooling water flowing from the lower side b to the upper side d via two notch portions 35 in the middle. , So that you can come and go.
In the present embodiment, the notch portions 35 are provided at two locations per one circumference (360 °) of the flow path, but the location and length of the notch portions 35 are not particularly limited, What is necessary is just to be able to make the difference of the water pressure of the cooling water flowing through the flow path branched by the flow guide 34 for heat radiation as small as possible.
Thereby, the difference in the water pressure of the cooling water flowing through the flow path branched by the heat radiating water flow guide 34 is reduced, and the difference in the water pressure of the cooling water between the flow paths sandwiching the heat radiating water flow guide 34 occurs. It is possible to prevent and improve the heat radiation efficiency. As a result, it is possible to suppress depletion of the inner cylinder 31 due to high-temperature oxidation that occurs when a thermal load is generated, and it is possible to prevent a crack from being generated due to an uneven water pressure of the cooling water.

この水冷ダクトにおいて、電気炉1から排出される排ガスは、水冷ダクト3を通過する際、内筒31の内面から外面に熱が伝達し、従来例と同様に、流水ガイド33から放熱するとともに、隣り合う流水ガイド33、33間に配設した放熱用の流水ガイド34からも放熱し、高い放熱効果を得ることができる。
また、隣り合う流水ガイド33、33間に、放熱用の流水ガイド34を配設することによって、内筒31の強度が向上するとともに、単に流水ガイドのピッチを細かくして冷却水の流速を速くして放熱効率を上げる方法に比べて、冷却水の流速変化を抑制し、放熱用の流水ガイド34からも放熱することにより放熱効果を向上することができる。これによって、熱負荷が生じたときに発生する高温酸化による内筒31の減耗を抑制できるとともに、冷却水の水圧を必要以上に高める必要がなく、冷却水の水圧によって亀裂が生じることを有効に防止することができる。
In this water-cooled duct, when the exhaust gas discharged from the electric furnace 1 passes through the water-cooled duct 3, heat is transferred from the inner surface of the inner cylinder 31 to the outer surface, and as in the conventional example, heat is radiated from the flowing water guide 33, Heat is radiated from the radiating water flow guides 34 disposed between the adjacent water flow guides 33, 33, and a high heat radiating effect can be obtained.
In addition, by disposing the heat-dissipating water guide 34 between the adjacent water-flow guides 33, 33, the strength of the inner cylinder 31 is improved, and the pitch of the water-flow guides is simply reduced to increase the flow rate of the cooling water. As compared with the method of increasing the heat dissipation efficiency, the heat dissipation effect can be improved by suppressing the change in the flow rate of the cooling water and dissipating heat from the flowing water guide 34 for heat dissipation. As a result, it is possible to suppress the depletion of the inner cylinder 31 due to high-temperature oxidation that occurs when a thermal load occurs, and it is not necessary to increase the water pressure of the cooling water more than necessary, and it is effective that cracks are generated by the water pressure of the cooling water. Can be prevented.

以上、本発明の水冷ダクトについて、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   As mentioned above, although the water-cooled duct of this invention was demonstrated based on the Example, this invention is not limited to the structure described in the said Example, The structure is suitably changed in the range which does not deviate from the meaning. It is something that can be done.

本発明の水冷ダクトは、隣り合う流水ガイド間に、放熱用の流水ガイドを配設することによって、高い放熱効果と、水冷ダクト内筒の強度を向上することができるという特性を有していることから、新規の電気炉集塵システムに用いることができるほか、既設の電気炉集塵システムにおける水冷ダクトの代替の用途にも用いることができる。   The water-cooled duct of the present invention has the characteristics that a high heat-dissipating effect and the strength of the inner tube of the water-cooled duct can be improved by disposing a water-flow guide for heat dissipation between adjacent water-flow guides. Therefore, it can be used for a new electric furnace dust collection system, and can also be used for an alternative use of a water-cooled duct in an existing electric furnace dust collection system.

本発明の水冷ダクトの一実施例を示す平面図である。It is a top view which shows one Example of the water cooling duct of this invention. 同水冷ダクトの内筒の展開図である。It is an expanded view of the inner cylinder of the water cooling duct. 同水冷ダクトの流水ガイドの説明図で、(a)は、図2のA−A断面図を、(b)は、図2のB−B断面図を示す。It is explanatory drawing of the flowing water guide of the water cooling duct, (a) is AA sectional drawing of FIG. 2, (b) shows BB sectional drawing of FIG. 水冷ダクト使用する、電気炉集塵システムの全体図である。It is a general view of an electric furnace dust collection system using a water cooling duct. 従来の水冷ダクトの平面図である。It is a top view of the conventional water cooling duct. 従来の水冷ダクトの内筒の展開図である。It is an expanded view of the inner cylinder of the conventional water cooling duct.

符号の説明Explanation of symbols

3 水冷ダクト
31 内筒
32 外筒
33 流水ガイド
34 放熱用の流水ガイド
35 切欠部
3 Water-cooled duct 31 Inner cylinder 32 Outer cylinder 33 Flow guide 34 Flow guide 35 for heat dissipation 35 Notch

Claims (2)

内筒と外筒とからなり、両筒間の間隙に、給水口から排水口間にわたって冷却水を周回しながら流通させる流路を形成する流水ガイドを有する水冷ダクトにおいて、隣り合う流水ガイド間に、放熱用の流水ガイドを流路を分岐するように配設したことを特徴とする水冷ダクト。   In a water cooling duct comprising an inner cylinder and an outer cylinder, and having a flow guide that forms a flow path for circulating cooling water from the water supply port to the drainage port in the gap between the two tubes, between the adjacent water flow guides A water-cooled duct characterized in that a running water guide for heat radiation is arranged so as to branch the flow path. 放熱用の流水ガイドに、分岐した流路間を連通させる切欠部を所定の間隔をあけて設けたことを特徴とする請求項1記載の水冷ダクト。   2. A water-cooled duct according to claim 1, wherein a cutout portion for communicating between the branched flow paths is provided at a predetermined interval in the flowing water guide for heat radiation.
JP2006255756A 2006-09-21 2006-09-21 Water-cooled duct Pending JP2008075967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255756A JP2008075967A (en) 2006-09-21 2006-09-21 Water-cooled duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255756A JP2008075967A (en) 2006-09-21 2006-09-21 Water-cooled duct

Publications (1)

Publication Number Publication Date
JP2008075967A true JP2008075967A (en) 2008-04-03

Family

ID=39348232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255756A Pending JP2008075967A (en) 2006-09-21 2006-09-21 Water-cooled duct

Country Status (1)

Country Link
JP (1) JP2008075967A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103047870A (en) * 2012-12-19 2013-04-17 苏州工业园区姑苏科技有限公司 Waste heat recycling device
CN105004191A (en) * 2015-07-27 2015-10-28 浙江尚鼎工业炉有限公司 Box-type fuel gas thermal treatment furnace
JP2015213966A (en) * 2014-05-07 2015-12-03 高松機械工業株式会社 Spindle base cooling tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103047870A (en) * 2012-12-19 2013-04-17 苏州工业园区姑苏科技有限公司 Waste heat recycling device
JP2015213966A (en) * 2014-05-07 2015-12-03 高松機械工業株式会社 Spindle base cooling tank
CN105004191A (en) * 2015-07-27 2015-10-28 浙江尚鼎工业炉有限公司 Box-type fuel gas thermal treatment furnace
CN105004191B (en) * 2015-07-27 2017-07-18 浙江尚鼎工业炉有限公司 A kind of box type gas heat-treatment furnace

Similar Documents

Publication Publication Date Title
TWI455461B (en) Cooling jacket
TW201322606A (en) Cooling jacket
KR20060063884A (en) Egr cooler
KR20140005865A (en) Waste heat boiler
JP2008075967A (en) Water-cooled duct
JP2007154683A (en) Exhaust gas recirculation cooler
CN101689473A (en) Light source device
JP2010215993A (en) Inner part water-cooling type tuyere in blast furnace
JP2015203376A (en) turbine housing
KR100900504B1 (en) Air cooled heat exchanger
CN210296072U (en) Water cooling device of lifting electromagnet
CN109357277B (en) Industrial waste smoke condenser
JP4789154B2 (en) Cooling system
KR101009702B1 (en) Cooling roller for continuous annealing line
CN113236572B (en) High-temperature pump
JP2010144999A (en) Multitubular heat exchanger
JP2005164094A (en) Kiln type external heating furnace
JP2003161209A (en) Egr cooler
JP5234578B2 (en) Water cooling duct
JP2009002300A (en) Egr cooler
JP2005241211A (en) Method for preventing dew condensation in piping
JP2004124808A (en) Exhaust gas recirculation cooler
CN101545569A (en) Water cooled pipeline
JP2008122033A (en) Gas cooler for hot water supply system
KR100747739B1 (en) Gas cooler vibration reduction structure of boiler desulfurization equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091014