JP2008075128A - Film deposition system, and film deposition method using the film deposition system - Google Patents

Film deposition system, and film deposition method using the film deposition system Download PDF

Info

Publication number
JP2008075128A
JP2008075128A JP2006255528A JP2006255528A JP2008075128A JP 2008075128 A JP2008075128 A JP 2008075128A JP 2006255528 A JP2006255528 A JP 2006255528A JP 2006255528 A JP2006255528 A JP 2006255528A JP 2008075128 A JP2008075128 A JP 2008075128A
Authority
JP
Japan
Prior art keywords
magnetic flux
substrate
magnetic
film
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006255528A
Other languages
Japanese (ja)
Inventor
Nozomi Izumi
望 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006255528A priority Critical patent/JP2008075128A/en
Publication of JP2008075128A publication Critical patent/JP2008075128A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film deposition system where, even in the case of film deposition by a sputtering process, a plasma CVD (chemical vapor deposition) process, a vapor deposition process or the like using charged particles, a constituted film free from film thickness spots can be deposited in a prescribed film deposition region. <P>SOLUTION: A film deposition mask is provided with a ferromagnetic member. The body part is provided with a magnetic flux generation member corresponding to the ferromagnetic member. The magnetic flux generation member has a pair of magnetic poles, and a magnetic flux generated from either magnetic pole in the magnetic flux generation means allows a substrate inserted between the magnetic flux generation member and the ferromagnetic member to pass through, so as to be made to flow to the ferromagnetic member, again allow the substrate to pass through, so as to be absorbed in the magnetic flux generation member. The magnetic flux passing through the ferromagnetic member is set so as to be lower than the product between the saturation magnetic flux density of the ferromagnetic member and the horizontal cross-sectional area of the magnetic flux. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は成膜装置及び同成膜装置を用いた成膜方法に関する。   The present invention relates to a film forming apparatus and a film forming method using the film forming apparatus.

有機EL素子等の水分により劣化が発生する素子の作製においては、フォトリソグラフィ工程を用いることが困難であるため、一般的にメタルマスク等の成膜マスクを用いて各構成膜の成膜領域を規定する成膜方法が用いられている。また、欠陥要因となるパーティクルの基板への付着を防止するために、一般的にデポアップ型の成膜方法が用いられている。   Since it is difficult to use a photolithography process in the production of an element such as an organic EL element that deteriorates due to moisture, the film formation region of each constituent film is generally set using a film formation mask such as a metal mask. A prescribed film forming method is used. Further, in order to prevent the particles that cause defects from adhering to the substrate, a deposition type film forming method is generally used.

近年の表示素子の高精彩化に伴い、成膜マスクと基板との密着性を向上させる必要性が高まっている。一方、表示素子或いは基板の大判化に伴い、成膜マスク或いは基板の撓みが発生し、密着性の低下の要因となっている。この様な問題に対して、成膜マスクを強磁性材料で形成し、基板を介して前記成膜マスクとは反対側に磁束発生部材を設けることで、成膜マスクを磁力で吸引し、前記成膜マスクと基板との密着性を高める方法が提案されている(特許文献1を参照)。   With the recent increase in the resolution of display elements, the need to improve the adhesion between the film formation mask and the substrate is increasing. On the other hand, with an increase in the size of the display element or the substrate, the film formation mask or the substrate is bent, which causes a decrease in adhesion. To solve such a problem, the film formation mask is formed of a ferromagnetic material, and a magnetic flux generating member is provided on the opposite side of the film formation mask through the substrate. A method for improving the adhesion between the film formation mask and the substrate has been proposed (see Patent Document 1).

特開平11−158605号公報JP-A-11-158605

従来の磁力によって基板と成膜マスクとを密着させる技術は、抵抗加熱蒸着法等の非荷電粒子を用いた成膜方法に対してなされたものである。従って、漏洩磁束に対する設計がなされておらず、スパッタ法或いはプラズマCVD法等の荷電粒子を用いた成膜方法においては、荷電粒子が漏洩磁束に影響を受けることによって膜厚斑或いは膜質斑が発生するという課題がある。   A conventional technique for bringing a substrate and a film formation mask into close contact with each other by a magnetic force has been made with respect to a film formation method using uncharged particles such as a resistance heating vapor deposition method. Therefore, the leakage flux is not designed, and in film formation methods using charged particles such as sputtering or plasma CVD, film thickness spots or film quality spots are generated when charged particles are affected by leakage flux. There is a problem of doing.

また、抵抗加熱蒸着法であっても、イオン化する等のように蒸着材料が電荷を帯びる場合には、上記と同様の課題が生じる。   Even in the resistance heating vapor deposition method, when the vapor deposition material is charged, such as ionized, the same problem as described above occurs.

そこで本発明は、荷電粒子を用いるスパッタ法或いはプラズマCVD法、更には蒸着法等を用いた成膜の際にも膜厚斑のない構成膜を規定された成膜領域に成膜することが可能な成膜装置及び同成膜装置を用いた成膜方法を提供することを目的とする。   Therefore, the present invention can form a constituent film having no film thickness unevenness in a prescribed film formation region even during film formation using sputtering method or plasma CVD method using charged particles, or vapor deposition method. An object of the present invention is to provide a possible film forming apparatus and a film forming method using the film forming apparatus.

上記背景技術の課題を解決するための手段として、請求項1に記載した発明に係る成膜装置は、
成膜マスクと本体部とから成り、基板に素子の構成膜を成膜する成膜装置であって、
成膜マスクに強磁性部材が設けられていること、
本体部に、前記強磁性部材と対応する磁束発生部材が設けられており、同磁束発生部材は一対の磁極を有し、磁束発生部材の一方の磁極から発生させた磁束は、前記磁束発生部材と強磁性部材との間に挟み込んだ基板を貫通させて強磁性部材に流し、再び前記基板を貫通させて磁束発生部材に吸収させること、
強磁性部材を通る磁束は、強磁性部材の飽和磁束密度と、前記磁束の水平断面積との積よりも小さくなるように設計されていることを特徴とする。
As a means for solving the problems of the background art, a film forming apparatus according to the invention described in claim 1 includes:
A film forming apparatus that includes a film forming mask and a main body, and forms a constituent film of an element on a substrate,
A ferromagnetic member is provided on the deposition mask;
A magnetic flux generating member corresponding to the ferromagnetic member is provided in the main body, the magnetic flux generating member has a pair of magnetic poles, and the magnetic flux generated from one magnetic pole of the magnetic flux generating member is the magnetic flux generating member Through the substrate sandwiched between the magnetic member and the ferromagnetic member to flow through the ferromagnetic member, and again through the substrate to be absorbed by the magnetic flux generating member,
The magnetic flux passing through the ferromagnetic member is designed to be smaller than the product of the saturation magnetic flux density of the ferromagnetic member and the horizontal sectional area of the magnetic flux.

本発明によれば、磁気吸着によって成膜マスクと基板とを密着させる際に、磁気吸着に用いる磁束が外部に略漏洩することがない。そのため、荷電粒子を用いるスパッタ法或いはプラズマCVD法、更には蒸着法等を用いた成膜の際にも膜厚斑のない構成膜を規定された成膜領域に成膜することが可能となる。   According to the present invention, when the film formation mask and the substrate are brought into close contact with each other by magnetic attraction, magnetic flux used for magnetic attraction does not substantially leak to the outside. For this reason, it is possible to form a constituent film having no film thickness unevenness in a prescribed film formation region even during film formation using sputtering method or plasma CVD method using charged particles, or vapor deposition method. .

<実施形態1>
本発明の第1の実施形態を説明する。
<Embodiment 1>
A first embodiment of the present invention will be described.

先ず、成膜装置について詳細に説明する。本発明に係る成膜装置は、従来の成膜装置と略同様に、成膜マスク11と本体部(但し、後述する磁束発生部材を除いて、図示は省略している。)とから成り、磁気吸着によって成膜マスク11と基板21とを密着させて前記基板21に素子の構成膜を成膜するものである。   First, the film forming apparatus will be described in detail. A film forming apparatus according to the present invention includes a film forming mask 11 and a main body (however, illustration is omitted except for a magnetic flux generating member to be described later), as in a conventional film forming apparatus. The film forming mask 11 and the substrate 21 are brought into close contact with each other by magnetic adsorption, and a constituent film of the element is formed on the substrate 21.

本成膜装置の成膜手法としては、スパッタ法、CVD法等を用いることができる。   A sputtering method, a CVD method, or the like can be used as a film forming method of the film forming apparatus.

成膜手法がスパッタ法の場合は、真空チャンバー内で成膜マスク支持部(磁束発生部材)と対向する面にスパッタターゲットが配置される。基板は、成膜面をスパッタターゲット側に向けて、成膜面とスパッタ−ターゲットとの間に成膜マスクが配置されるように固定される。更に、基板を挟んでスパッタターゲットと反対側の面にはアース電極が配置される。更に、真空チャンバーにはスパッタガス流入口、ベントガス流入口、排気口が接続される。つまり、スパッタ法の場合、本体部は真空チャンバー、スパッタターゲット、アース電極、磁気発生部材等の部材のことである。   When the film forming method is the sputtering method, the sputtering target is disposed on the surface facing the film forming mask support (magnetic flux generating member) in the vacuum chamber. The substrate is fixed such that a film formation mask is disposed between the film formation surface and the sputter target with the film formation surface facing the sputtering target. Furthermore, a ground electrode is disposed on the surface opposite to the sputtering target across the substrate. Further, a sputtering gas inlet, a vent gas inlet, and an exhaust outlet are connected to the vacuum chamber. That is, in the case of the sputtering method, the main body is a member such as a vacuum chamber, a sputtering target, a ground electrode, and a magnetic generation member.

また、成膜手法がCVD法の場合は、真空チャンバー内で成膜マスク支持部(磁束発生部材)と対向する面に、反応ガスが噴射されるシャワーカソードが配置される。基板は、成膜面をシャワーカソード側に向けて、成膜面とシャワーカソードとの間に成膜マスクが配置されるように固定される。更に、基板を挟んでシャワーカソードと反対側の面にはアース電極が配置される。更に、真空チャンバーにはベントガス流入口、排気口が接続される。つまり、CVD法の場合、本体部は真空チャンバー、シャワーカソード、アース電極、磁気発生部材等の部材のことである。   Further, when the film forming method is the CVD method, a shower cathode to which a reactive gas is injected is disposed on the surface facing the film forming mask support (magnetic flux generating member) in the vacuum chamber. The substrate is fixed such that a film formation mask is disposed between the film formation surface and the shower cathode with the film formation surface facing the shower cathode. Furthermore, a ground electrode is disposed on the surface opposite to the shower cathode across the substrate. Further, a vent gas inflow port and an exhaust port are connected to the vacuum chamber. That is, in the case of the CVD method, the main body portion is a member such as a vacuum chamber, a shower cathode, a ground electrode, and a magnetism generating member.

成膜マスク11は格子状に形成された薄板部13と、同薄板部13の下面に設けられた補強部14とから成り、前記補強部14の内部が成膜領域と成る開口部12とされている(図1を参照)。   The film formation mask 11 includes a thin plate portion 13 formed in a lattice shape and a reinforcement portion 14 provided on the lower surface of the thin plate portion 13, and the inside of the reinforcement portion 14 serves as an opening portion 12 serving as a film formation region. (See FIG. 1).

開口部12の内部は更に精細な複数の開口部に分割されていても良い。また、補強部14は薄板部13の形状に倣って格子状に形成されているが、この限りでなく、要するに薄板部13の撓みを防止することができる厚さ、形状に形成されていれば良い。   The inside of the opening 12 may be divided into a plurality of finer openings. Further, the reinforcing portion 14 is formed in a lattice shape following the shape of the thin plate portion 13, but is not limited to this, and in short, if it is formed in a thickness and shape that can prevent the thin plate portion 13 from bending. good.

薄板部13は素子形成に適応する部材であれば、金属部材を用いても良いし、非金属部材を用いても良い。また、薄板部13は素子形成に適応する部材であれば、磁性部材を用いても良いし、非磁性部材を用いても良い。   The thin plate portion 13 may be a metal member or a non-metal member as long as it is a member suitable for element formation. The thin plate portion 13 may be a magnetic member or a non-magnetic member as long as it is a member that is suitable for element formation.

補強部14は磁気吸着を行うために強磁性材料から成るが、軟磁性材料から成ることが好ましい。   The reinforcing portion 14 is made of a ferromagnetic material in order to perform magnetic adsorption, but is preferably made of a soft magnetic material.

本体部には、前記補強部14(強磁性部材)と対応するように、つまり成膜マスク11を用いて成膜する際に前記補強部14の直上位置に配置されるように、複数の磁束発生部材22…が設けられている(図2を参照)。   A plurality of magnetic fluxes are provided on the main body so as to correspond to the reinforcing portion 14 (ferromagnetic member), that is, to be disposed at a position immediately above the reinforcing portion 14 when forming a film using the film forming mask 11. Generation members 22 are provided (see FIG. 2).

磁束発生部材22は一対の磁極を有しており、コイル41と磁心42から成る(図3を参照)。ちなみに、電磁石の磁極面44、45は、磁束密度の減少及び磁束の発散を最小限に止めることができるように、強磁性部材14と磁束発生部材22との間に挟み込まれる基板21と平行に配置されている。   The magnetic flux generating member 22 has a pair of magnetic poles, and includes a coil 41 and a magnetic core 42 (see FIG. 3). Incidentally, the magnetic pole surfaces 44 and 45 of the electromagnet are parallel to the substrate 21 sandwiched between the ferromagnetic member 14 and the magnetic flux generating member 22 so that the decrease of the magnetic flux density and the divergence of the magnetic flux can be minimized. Has been placed.

この電磁石のN極面44から発生させた磁束43は、基板21を貫通させて補強部14に通し、再び基板21を貫通させてS極面45に吸収させる。その結果、磁気吸着によって成膜マスク11と基板21とを良好に密着させることができ、成膜領域を厳密に規定することが可能となる。また、基板21の脱着時には電磁石をOFFとすることで、容易に基板21の脱着を行うことができる。   The magnetic flux 43 generated from the N pole surface 44 of the electromagnet penetrates the substrate 21 and passes through the reinforcing portion 14, and penetrates the substrate 21 again and is absorbed by the S pole surface 45. As a result, the film formation mask 11 and the substrate 21 can be satisfactorily adhered by magnetic adsorption, and the film formation region can be strictly defined. Further, when the substrate 21 is detached, the substrate 21 can be easily detached by turning off the electromagnet.

なお、成膜マスク11と基板21とは磁気吸着によってのみ支持される必要はなく、本体部に支持部材(図示は省略)を設けて成膜マスク11の外周部を支持することもできる。   The film formation mask 11 and the substrate 21 do not need to be supported only by magnetic attraction, and a support member (not shown) can be provided on the main body to support the outer peripheral portion of the film formation mask 11.

補強部14を通る磁束43は、補強部14の飽和磁束密度と、前記磁束43の水平断面積との積よりも小さくなるように設計されている。その結果、概ね全ての磁束43は補強部14内を通り、外部に漏洩することはない。   The magnetic flux 43 passing through the reinforcing portion 14 is designed to be smaller than the product of the saturation magnetic flux density of the reinforcing portion 14 and the horizontal sectional area of the magnetic flux 43. As a result, almost all the magnetic flux 43 passes through the reinforcing portion 14 and does not leak to the outside.

つまり、磁気吸着によって成膜マスク11と基板21とを密着させた際に、磁気吸着に用いる磁束が外部に略漏洩しない。したがって、荷電粒子を用いるスパッタ法或いはプラズマCVD法、更には蒸着法等を用いた成膜の際にも膜厚斑のない構成膜を規定された成膜領域に成膜することが可能となり、ひいては均一な構成膜を成膜することができる。   That is, when the film formation mask 11 and the substrate 21 are brought into close contact with each other by magnetic attraction, the magnetic flux used for magnetic attraction hardly leaks to the outside. Therefore, it becomes possible to form a constituent film having no film thickness unevenness in a prescribed film formation region even during film formation using sputtering method or plasma CVD method using charged particles, or vapor deposition method. As a result, a uniform constituent film can be formed.

次に、上記成膜装置を用いた成膜方法を詳細に説明する。   Next, a film forming method using the film forming apparatus will be described in detail.

成膜マスク11で基板21への成膜領域を規制する際に、成膜装置の本体部の磁束発生部材22と成膜マスク11の補強部(強磁性部材)14との間に基板21を挟み込む(図4を参照)。その状態で、前記磁束発生部材22の一方の磁極から発生させた磁束は、基板21を貫通させて補強部14に流し、再び前記基板21を貫通させて他方の磁極に吸収させることで、成膜マスク11と基板21とを密着させる。このとき、本発明の成膜方法に用いる成膜装置は、補強部14を通る磁束43が、補強部14の飽和磁束密度と、前記磁束43の水平断面積との積よりも小さくなるように設計している。そのため、概ね全ての磁束43は補強部14内を通り、外部に漏洩することはない。   When the film formation region on the substrate 21 is regulated by the film formation mask 11, the substrate 21 is placed between the magnetic flux generation member 22 of the main body of the film formation apparatus and the reinforcing portion (ferromagnetic member) 14 of the film formation mask 11. (See FIG. 4). In this state, the magnetic flux generated from one magnetic pole of the magnetic flux generating member 22 passes through the substrate 21 and flows to the reinforcing portion 14, and again penetrates the substrate 21 and is absorbed by the other magnetic pole. The film mask 11 and the substrate 21 are brought into close contact with each other. At this time, in the film forming apparatus used in the film forming method of the present invention, the magnetic flux 43 passing through the reinforcing portion 14 is smaller than the product of the saturation magnetic flux density of the reinforcing portion 14 and the horizontal sectional area of the magnetic flux 43. Designing. Therefore, almost all the magnetic flux 43 does not leak outside through the reinforcing portion 14.

その後、通例の成膜方法と同様に、基板21に対して成膜マスク11側から素子の構成膜を成膜する。   After that, in the same manner as the usual film formation method, the constituent film of the element is formed on the substrate 21 from the film formation mask 11 side.

ちなみに、磁束発生部材22、22の間には、成膜時の電界を制御するためのアース板23及び成膜中の基板21の温度上昇を防止するための冷却機構24を設けていることが好ましい。冷却機構24によって効率的に基板21を冷却することができる。また、磁力によってアース板23と基板21との距離を均一とすることで、全ての開口部12で電圧斑が発生せず、したがって、電圧を印加する成膜方法を用いても全ての開口部12内で均一な膜質の構成膜を成膜することができる。   Incidentally, a grounding plate 23 for controlling the electric field during film formation and a cooling mechanism 24 for preventing a temperature rise of the substrate 21 during film formation are provided between the magnetic flux generating members 22 and 22. preferable. The substrate 21 can be efficiently cooled by the cooling mechanism 24. In addition, since the distance between the ground plate 23 and the substrate 21 is made uniform by the magnetic force, voltage spots do not occur in all the openings 12, and therefore all openings can be formed even by using a film forming method for applying a voltage. 12 can form a film having a uniform film quality.

前記冷却機構24は、基板21の温度上昇が問題にならない場合は必ずしも設ける必要はない。また、基板21の加熱が必要となる場合には冷却機構24の位置に基板加熱機構を設けることもできる。また、冷却機構24を金属材料で形成してアース板23とすることもできる。   The cooling mechanism 24 is not necessarily provided when the temperature rise of the substrate 21 does not become a problem. In addition, when the substrate 21 needs to be heated, a substrate heating mechanism can be provided at the position of the cooling mechanism 24. Alternatively, the cooling mechanism 24 may be formed of a metal material to form the ground plate 23.

電磁石の形状及び配置方法に関しては、本実施形態の形状及び配置方法に限らず、実効的な磁気閉回路を形成可能であれば、他の形状及び配置方法を用いてもよい。   The shape and arrangement method of the electromagnet are not limited to the shape and arrangement method of the present embodiment, and other shapes and arrangement methods may be used as long as an effective magnetic closed circuit can be formed.

<実施形態2>
本発明の第2の実施形態を説明する。なお、本実施形態は、上記実施形態1と磁束発生部材のみが異なるだけで、その他は同様であるため、磁束発生部材の説明を詳細にする。
<Embodiment 2>
A second embodiment of the present invention will be described. Note that this embodiment is the same as the first embodiment except for the magnetic flux generation member, and the others are the same, so the description of the magnetic flux generation member will be made in detail.

本実施形態の磁束発生部材は、永久磁石51とヨーク52とから成る。永久磁石51の磁極44、45は、後述するように基板21に対して位置が可変となるよう設計されている。ヨークとは、磁路(磁束の経路)を規定する部材のことであり、ヨークを用いることによって任意の経路に磁束を通すことができる。   The magnetic flux generating member of this embodiment includes a permanent magnet 51 and a yoke 52. The magnetic poles 44 and 45 of the permanent magnet 51 are designed so that their positions are variable with respect to the substrate 21 as will be described later. The yoke is a member that defines a magnetic path (magnetic flux path), and the magnetic flux can be passed through an arbitrary path by using the yoke.

永久磁石51の磁極44、45を基板21に対して垂直に配置した場合、永久磁石51のN極面44から発生させた磁束43は、ヨーク52(a)及び基板21を貫通させて補強部14に通す。そして、再び基板21及びヨーク52(b)を貫通させてS極面45に吸収させる(図5(a)を参照)。その結果、磁気吸着によって成膜マスク11と基板21とを良好に密着させることができ、成膜領域を厳密に規定することが可能となる。   When the magnetic poles 44 and 45 of the permanent magnet 51 are arranged perpendicular to the substrate 21, the magnetic flux 43 generated from the N-pole surface 44 of the permanent magnet 51 penetrates the yoke 52 (a) and the substrate 21 and reinforces the reinforcing portion. 14 Then, the substrate 21 and the yoke 52 (b) are again penetrated and absorbed by the S pole face 45 (see FIG. 5A). As a result, the film formation mask 11 and the substrate 21 can be satisfactorily adhered by magnetic adsorption, and the film formation region can be strictly defined.

補強部14を通る磁束43は、補強部14の飽和磁束密度と、前記磁束43の水平断面積との積よりも小さくなるように設計されている。その結果、概ね全ての磁束43は補強部14内を通り、外部に漏洩することはない。   The magnetic flux 43 passing through the reinforcing portion 14 is designed to be smaller than the product of the saturation magnetic flux density of the reinforcing portion 14 and the horizontal sectional area of the magnetic flux 43. As a result, almost all the magnetic flux 43 passes through the reinforcing portion 14 and does not leak to the outside.

基板21の脱着時には、永久磁石51を90°回転させる(図5(b)を参照)。こうすることで磁束43は永久磁石51とヨーク52との間で閉回路を形成するため、補強部14に加わる磁力を弱めることができ、したがって容易に基板21の脱着を行うことができる。   When the substrate 21 is detached, the permanent magnet 51 is rotated by 90 ° (see FIG. 5B). By doing so, since the magnetic flux 43 forms a closed circuit between the permanent magnet 51 and the yoke 52, the magnetic force applied to the reinforcing portion 14 can be weakened, and therefore the substrate 21 can be easily detached.

本実施形態においてはヨーク52を用いたが、ヨーク52は必ずしも用いる必要はない。   Although the yoke 52 is used in this embodiment, the yoke 52 is not necessarily used.

永久磁石の形状及び配置方法に関しては、本実施形態の形状及び配置方法に限らず、実効的な磁気閉回路を形成可能な形状であれば、他の形状及び配置方法を用いてもよい。   The shape and arrangement method of the permanent magnet are not limited to the shape and arrangement method of the present embodiment, and other shapes and arrangement methods may be used as long as an effective magnetic closed circuit can be formed.

本発明の実施例を説明する。   Examples of the present invention will be described.

先ず、一辺500mmの正方形で、厚さ0.2mmのステンレス製の薄板に、一辺10mmの正方形の開口部12を16ヶ所設けて成膜マスク11の薄板部13とする。この開口部12が成膜領域となる。薄板部13の外周下面に幅21mmで、厚さ1mmの炭素鋼からなる補強部14を設け、さらに開口部12と12の間の下面に幅10mmで厚さ1mmの補強部14を設け、成膜マスク11を得る。この際、全ての開口部12と補強部14との距離が5mmとなるように前記補強部14を設ける。なお、補強部14の炭素鋼には飽和磁束密度が1.6Wb/m2のものを用いる。 First, a square plate with a side of 500 mm and a stainless steel thin plate with a thickness of 0.2 mm is provided with 16 square openings 12 with a side of 10 mm to form the thin plate portion 13 of the film formation mask 11. This opening 12 becomes a film formation region. A reinforcing portion 14 made of carbon steel having a width of 21 mm and a thickness of 1 mm is provided on the lower peripheral surface of the thin plate portion 13, and a reinforcing portion 14 having a width of 10 mm and a thickness of 1 mm is further provided on the lower surface between the openings 12 and 12. A film mask 11 is obtained. At this time, the reinforcing portions 14 are provided so that the distances between all the openings 12 and the reinforcing portions 14 are 5 mm. In addition, the carbon steel of the reinforcement part 14 uses that whose saturation magnetic flux density is 1.6 Wb / m 2 .

成膜マスク11は、成膜装置の本体部に設けられた支持部材によって外周部10mm幅の部分が支持される。基板21には一辺50mmの正方形で、厚さ0.7mmのガラス基板を用い、前記基板21を成膜マスク11上に設置する。   The film forming mask 11 is supported at a portion having a width of 10 mm on the outer peripheral portion by a support member provided on the main body of the film forming apparatus. A glass substrate with a side of 50 mm and a thickness of 0.7 mm is used as the substrate 21, and the substrate 21 is placed on the deposition mask 11.

基板21上に、成膜装置の本体部に設けられた複数の電磁石から成る磁束発生部材22を2mmの間隔を開けて配置する(図2を参照)。このとき、前記電磁石は磁極面が基板21の成膜面と平行になるように配置される。また、前記磁極面は直径3mmの円形の磁極面とし、N極面44とS極面45とが2mmの間隔を開けて対となるように配置される(図3を参照)。   A magnetic flux generating member 22 made of a plurality of electromagnets provided in the main body of the film forming apparatus is disposed on the substrate 21 with an interval of 2 mm (see FIG. 2). At this time, the electromagnet is disposed such that the magnetic pole surface is parallel to the film formation surface of the substrate 21. The magnetic pole surface is a circular magnetic pole surface having a diameter of 3 mm, and the N pole surface 44 and the S pole surface 45 are arranged in pairs with an interval of 2 mm (see FIG. 3).

基板21を介して成膜マスク11の開口部12と対応する位置に冷却機構24及びアース板23が設置される(図4を参照)。   A cooling mechanism 24 and a ground plate 23 are installed at a position corresponding to the opening 12 of the film formation mask 11 through the substrate 21 (see FIG. 4).

基板21を成膜マスク11と磁束発生部材22で挟み込むことによって、磁束発生部材22の電磁石から発生させた磁力で成膜マスク11を吸着させ、同成膜マスク11と基板21とを密着させる。   By sandwiching the substrate 21 between the deposition mask 11 and the magnetic flux generation member 22, the deposition mask 11 is attracted by the magnetic force generated from the electromagnet of the magnetic flux generation member 22, and the deposition mask 11 and the substrate 21 are brought into close contact with each other.

上記のように密着させて支持した基板21に、プラズマCVD法を用いて窒化珪素膜(構成膜)を成膜する。ここで成膜装置のCVDチャンバーは内径800mmφの円柱状のチャンバーとする。基板21は前記CVDチャンバーの上部に支持されており、基板21と前記CVDチャンバーの底部のカソードとの距離は100mmとする。成膜時には電磁石の磁極面の表面磁束密度が0.3Wb/m2となるように電流を与えて成膜マスク11と基板21とを磁束発生部材に密着させる。 A silicon nitride film (constituent film) is formed on the substrate 21 that is supported in close contact as described above, using a plasma CVD method. Here, the CVD chamber of the film forming apparatus is a cylindrical chamber having an inner diameter of 800 mmφ. The substrate 21 is supported on the top of the CVD chamber, and the distance between the substrate 21 and the cathode at the bottom of the CVD chamber is 100 mm. At the time of film formation, an electric current is applied so that the surface magnetic flux density of the magnetic pole surface of the electromagnet is 0.3 Wb / m 2 to bring the film formation mask 11 and the substrate 21 into close contact with the magnetic flux generating member.

窒化珪素膜は、成膜マスク11と基板21とが磁力によって密着しているため、成膜マスク11の一辺10mmの正方形の開口部12に対して、一辺10.2mmの正方形領域に成膜される。また、N極面44から発生させた3.0×10-6Wbの磁束は、全て成膜マスク11の補強部14を貫通し、S極面45から吸収されるため、成膜マスク11より下方の成膜空間に漏洩することがない。そのため、荷電粒子が磁束による影響を受けることがなく、従って膜厚斑のない均質な窒化珪素膜が得られる。 Since the deposition mask 11 and the substrate 21 are in close contact with each other by magnetic force, the silicon nitride film is deposited in a square region having a side of 10.2 mm with respect to the square opening 12 having a side of 10 mm. The Further, since all the magnetic flux of 3.0 × 10 −6 Wb generated from the N pole face 44 penetrates the reinforcing portion 14 of the film formation mask 11 and is absorbed from the S pole face 45, the film formation mask 11. There is no leakage into the lower deposition space. Therefore, the charged particles are not affected by the magnetic flux, so that a uniform silicon nitride film free from film thickness unevenness can be obtained.

本発明に係る成膜装置及び同成膜装置を用いた成膜方法に使用する成膜マスクを示した底面図である。It is the bottom view which showed the film-forming mask used for the film-forming apparatus which concerns on this invention, and the film-forming method using the film-forming apparatus. 図1のC部分を示した拡大概略図である。It is the expansion schematic which showed the C section of FIG. 磁気吸着の様子を示した概略図である。It is the schematic which showed the mode of magnetic adsorption. 図1のA線断面を示した拡大概略図である。It is the expansion schematic which showed the A line cross section of FIG. 異なる磁気吸着の様子を示した概略図である。It is the schematic which showed the mode of different magnetic adsorption.

符号の説明Explanation of symbols

11 成膜マスク
12 開口部
13 薄板部
14 補強部
21 基板
22 磁束発生部材
23 アース板
24 冷却機構
41 コイル
42 磁心
43 磁束
44 N極面
45 S極面
51 永久磁石
52 ヨーク
DESCRIPTION OF SYMBOLS 11 Film-forming mask 12 Opening part 13 Thin plate part 14 Reinforcement part 21 Substrate 22 Magnetic flux generating member 23 Ground plate 24 Cooling mechanism 41 Coil 42 Magnetic core 43 Magnetic flux 44 N pole face 45 S pole face 51 Permanent magnet 52 Yoke

Claims (4)

成膜マスクと本体部とから成り、基板に素子の構成膜を成膜する成膜装置であって、
成膜マスクに強磁性部材が設けられていること、
本体部に、前記強磁性部材と対応する磁束発生部材が設けられており、同磁束発生部材は一対の磁極を有し、磁束発生部材の一方の磁極から発生させた磁束は、前記磁束発生部材と強磁性部材との間に挟み込んだ基板を貫通させて強磁性部材に流し、再び前記基板を貫通させて磁束発生部材に吸収させること、
強磁性部材を通る磁束は、強磁性部材の飽和磁束密度と、前記磁束の水平断面積との積よりも小さくなるように設計されていることを特徴とする、成膜装置。
A film forming apparatus that includes a film forming mask and a main body, and forms a constituent film of an element on a substrate,
A ferromagnetic member is provided on the deposition mask;
A magnetic flux generating member corresponding to the ferromagnetic member is provided in the main body, the magnetic flux generating member has a pair of magnetic poles, and the magnetic flux generated from one magnetic pole of the magnetic flux generating member is the magnetic flux generating member Through the substrate sandwiched between the magnetic member and the ferromagnetic member to flow through the ferromagnetic member, and again through the substrate to be absorbed by the magnetic flux generating member,
The film forming apparatus, wherein the magnetic flux passing through the ferromagnetic member is designed to be smaller than a product of a saturation magnetic flux density of the ferromagnetic member and a horizontal sectional area of the magnetic flux.
磁束発生部材は磁極面を基板に向けた電磁石からなることを特徴とする、請求項1に記載の成膜装置。   The film forming apparatus according to claim 1, wherein the magnetic flux generating member is made of an electromagnet having a magnetic pole surface facing the substrate. 磁束発生部材は、基板に対する磁極面の位置が可変な永久磁石からなることを特徴とする、請求項1に記載の成膜装置。   The film forming apparatus according to claim 1, wherein the magnetic flux generating member is made of a permanent magnet whose position of the magnetic pole surface with respect to the substrate is variable. 成膜マスクと本体部とから成る成膜装置を用いて、基板に素子の構成膜を成膜する方法であって、
成膜装置は、成膜マスクに強磁性部材を設けていると共に、本体部に前記強磁性部材と対応する磁束発生部材を設けており、同磁束発生部材は一対の磁極を有し、
強磁性部材を通る磁束は、強磁性部材の飽和磁束密度と、前記磁束の水平断面積との積よりも小さくなるように設計した構成であること、
成膜マスクで基板への成膜領域を規制する際に、本体部の磁束発生部材と成膜マスクの強磁性部材との間に基板を挟み込んだ状態で、前記磁束発生部材の一方の磁極から発生させた磁束は、基板を貫通させて強磁性部材に流し、再び前記基板を貫通させて磁束発生部材に吸収させることで、成膜マスクと基板とを密着させることを特徴とする、成膜方法。
A method of forming a component film of an element on a substrate using a film forming apparatus including a film forming mask and a main body,
The film forming apparatus is provided with a ferromagnetic member in the film forming mask, and a magnetic flux generating member corresponding to the ferromagnetic member is provided in the main body, and the magnetic flux generating member has a pair of magnetic poles,
The magnetic flux passing through the ferromagnetic member is a configuration designed to be smaller than the product of the saturation magnetic flux density of the ferromagnetic member and the horizontal cross-sectional area of the magnetic flux,
When the film formation area on the substrate is regulated by the film formation mask, the substrate is sandwiched between the magnetic flux generation member of the main body and the ferromagnetic member of the film formation mask, and one magnetic pole of the magnetic flux generation member is The generated magnetic flux penetrates the substrate and flows through the ferromagnetic member, and again penetrates the substrate and is absorbed by the magnetic flux generating member, thereby bringing the deposition mask and the substrate into close contact with each other. Method.
JP2006255528A 2006-09-21 2006-09-21 Film deposition system, and film deposition method using the film deposition system Withdrawn JP2008075128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255528A JP2008075128A (en) 2006-09-21 2006-09-21 Film deposition system, and film deposition method using the film deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255528A JP2008075128A (en) 2006-09-21 2006-09-21 Film deposition system, and film deposition method using the film deposition system

Publications (1)

Publication Number Publication Date
JP2008075128A true JP2008075128A (en) 2008-04-03

Family

ID=39347484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255528A Withdrawn JP2008075128A (en) 2006-09-21 2006-09-21 Film deposition system, and film deposition method using the film deposition system

Country Status (1)

Country Link
JP (1) JP2008075128A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503714A (en) * 2008-09-24 2012-02-09 アイクストロン、エスイー Shadow mask magnetically held on a substrate support
JP2014214367A (en) * 2013-04-26 2014-11-17 コニカミノルタ株式会社 Plasma cvd film depositing mask, plasma cvd film depositing method, and organic electroluminescent element
JP2014214366A (en) * 2013-04-26 2014-11-17 コニカミノルタ株式会社 Plasma cvd film depositing mask, plasma cvd film depositing method, and organic electroluminescent element
CN106637087A (en) * 2016-11-18 2017-05-10 上海天马微电子有限公司 Vapor deposition equipment
JP2017155338A (en) * 2016-03-03 2017-09-07 エルジー ディスプレイ カンパニー リミテッド Vapor deposition apparatus for organic light-emitting element
US11024488B2 (en) 2017-03-08 2021-06-01 The Japan Steel Works, Ltd. Film-forming method, manufacturing method of electronic device, and plasma atomic layer deposition apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503714A (en) * 2008-09-24 2012-02-09 アイクストロン、エスイー Shadow mask magnetically held on a substrate support
JP2014214367A (en) * 2013-04-26 2014-11-17 コニカミノルタ株式会社 Plasma cvd film depositing mask, plasma cvd film depositing method, and organic electroluminescent element
JP2014214366A (en) * 2013-04-26 2014-11-17 コニカミノルタ株式会社 Plasma cvd film depositing mask, plasma cvd film depositing method, and organic electroluminescent element
JP2017155338A (en) * 2016-03-03 2017-09-07 エルジー ディスプレイ カンパニー リミテッド Vapor deposition apparatus for organic light-emitting element
US10581025B2 (en) 2016-03-03 2020-03-03 Lg Display Co., Ltd. Deposition apparatus for organic light-emitting diodes
CN106637087A (en) * 2016-11-18 2017-05-10 上海天马微电子有限公司 Vapor deposition equipment
CN106637087B (en) * 2016-11-18 2019-05-17 上海天马微电子有限公司 Evaporated device
US10689747B2 (en) 2016-11-18 2020-06-23 Shanghai Tianma Micro-electronics Co., Ltd. Evaporation device
US11024488B2 (en) 2017-03-08 2021-06-01 The Japan Steel Works, Ltd. Film-forming method, manufacturing method of electronic device, and plasma atomic layer deposition apparatus

Similar Documents

Publication Publication Date Title
JP2008075128A (en) Film deposition system, and film deposition method using the film deposition system
JP2005019606A (en) Device for fixing gas shower head or target plate to electrode in plasma treatment apparatus
JP5835235B2 (en) Magnetic field generator for magnetron sputtering
JP4526582B2 (en) Sputtering apparatus and sputtering method
US20080260966A1 (en) Plasma processing method
US20100243620A1 (en) Plasma processing apparatus
JP4906331B2 (en) Sheet plasma deposition system
JP5461264B2 (en) Magnetron sputtering apparatus and sputtering method
TWI396762B (en) A magnet structure and a cathode electrode unit for magnetron sputtering apparatus, and a magnetron sputtering apparatus
JPS6274073A (en) Sputtering device
JP2009144236A (en) Evaporation source for arc ion plating device and arc ion plating device
TWI548766B (en) Sputtering device
JP2012234930A5 (en)
JPWO2009040892A1 (en) Magnet assembly capable of generating magnetic field having uniform direction and changing direction, and sputtering apparatus using the same
JP5496223B2 (en) Arc evaporator and operating method of arc evaporator
JP2005235970A (en) Wafer stage
JP2009256711A (en) Plasma-generating device, film-forming apparatus, and film-forming method
JP2010248576A (en) Magnetron sputtering apparatus
JP5934427B2 (en) Sputtering equipment
JP2009170355A (en) Ion gun and film-forming device
JP2007169705A (en) Cathode for unbalanced magnetron sputtering
JP2009277889A (en) Plasma treatment apparatus and control method of plasma treatment apparatus
Kosari Mehr et al. Magnetron sputtering issues concerning growth of magnetic films: a technical approach to background, solutions, and outlook
CN107447195B (en) Magnetron and magnetron sputtering system
JP2002069631A (en) Sputtering method and equipment therefor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201