JP2008070156A - Method for measuring current dependance of inductance and electric circuit thereof - Google Patents

Method for measuring current dependance of inductance and electric circuit thereof Download PDF

Info

Publication number
JP2008070156A
JP2008070156A JP2006246899A JP2006246899A JP2008070156A JP 2008070156 A JP2008070156 A JP 2008070156A JP 2006246899 A JP2006246899 A JP 2006246899A JP 2006246899 A JP2006246899 A JP 2006246899A JP 2008070156 A JP2008070156 A JP 2008070156A
Authority
JP
Japan
Prior art keywords
current
inductance
value
circuit
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006246899A
Other languages
Japanese (ja)
Inventor
Noboru Wakatsuki
若月昇
Hideaki Deguchi
出口秀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006246899A priority Critical patent/JP2008070156A/en
Publication of JP2008070156A publication Critical patent/JP2008070156A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure current dependance of inductance values of a choke coil, a transformer and the like. <P>SOLUTION: A current-carrying switch is disposed in series with a power supply and a load, and a transient current circuit which has a transient current switch, a diode and a capacitor being connected in series, is disposed in parallel with the current-carrying switch. The transient current which flows into the capacitor just after opening the current-carrying switch and decreases rapidly, and a voltage across the current-carrying switch, i.e., the sum of voltages of the power supply and the load, are measured. The capacitance of the capacitor is determined in accordance with the magnitude of the current such that a temporal change in the current can be easily measured. An equivalent circuit of the power supply and the load circuit is assumed, and a numerical solution is obtained from measurement data of the current and the voltage based on simultaneous equations associated with voltage drops of the equivalent circuit at a plurality of temporal points near a desired current level. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

電磁トランスやチョークコイルは、電源装置や動力装置など産業機器に多用されている。インバータ装置ではそれらトランスやコイルが大電流によりパルス駆動される。可動または固定コイルを有する電磁モータも、大電流パルスで駆動される。これらの装置の駆動効率を向上とサージノイズの抑制は、省電力と電磁環境問題の重要課題である。そのために、各種電力装置では、電源やスイッチングデバイスを含めた等価回路解析が行われている。これらのインダクタンス素子のインダクタンス値は磁気材料の磁気特性に依存するので、大電流になるとインダクタンス値は低下することになる。インダクタンス値の電流依存性を知ることは、回路解析の精度向上や電力機器などの正常動作のモニターとして必要である。    Electromagnetic transformers and choke coils are widely used in industrial equipment such as power supply devices and power devices. In the inverter device, these transformers and coils are pulse-driven by a large current. Electromagnetic motors with moving or fixed coils are also driven with large current pulses. Improving the driving efficiency of these devices and suppressing surge noise are important issues for power saving and electromagnetic environment problems. Therefore, in various power devices, equivalent circuit analysis including a power supply and a switching device is performed. Since the inductance value of these inductance elements depends on the magnetic characteristics of the magnetic material, the inductance value decreases when the current becomes large. Knowing the current dependence of the inductance value is necessary for improving the accuracy of circuit analysis and monitoring normal operation of power equipment and the like.

インダクタンス素子のインダクタンス値は、微小な正弦波電圧と電流との関係から、インピ−ダンスとして求められ、測定角周波数で割った値として測定されることが多い。電流依存性を測定する場合、直流電流に微小正弦波電流を重畳して求められることが多い。最近のインバータ電源やモータのPWM駆動では、素子の小形化からトランスやチョークの小型化が望まれ、磁性材料が磁気特性の非線形領域で使用されることも多くなっている。一方、最近のコンピュータ技術の進歩による等価回路技術の進歩・普及が進んで、インバータ回路、PWM制御回路の技術が多用されようになった。また、最近、電気接点デバイスの開離時のアーク放電を抑圧し、接点での開離動作を等価回路で設計・解析する手法も提案されている。〔非特許文献1〕   The inductance value of the inductance element is often obtained as an impedance from the relationship between a minute sine wave voltage and current, and is often measured as a value divided by the measurement angular frequency. When measuring current dependency, it is often obtained by superimposing a small sine wave current on a direct current. In recent PWM drive of inverter power supplies and motors, miniaturization of elements and transformers and chokes are desired, and magnetic materials are often used in a non-linear region of magnetic characteristics. On the other hand, with the recent progress in computer technology, the progress and spread of equivalent circuit technology has advanced, and the technology of inverter circuits and PWM control circuits has come to be widely used. Recently, a method has also been proposed in which arc discharge at the time of breaking of an electrical contact device is suppressed and the breaking operation at the contact is designed and analyzed with an equivalent circuit. [Non-Patent Document 1]

特開2006−194840号公報JP 2006-194840 A Yu Yonezawa and Noboru WAKATSUKI、“Relay contact of Multi−Electrodes with Timely controlled operation”、 P1324、IEICE TRANS. ELECTRON., VOL.E87−C,NO8 AUGUST 2004Yu Yonezawa and Noboru WAKATSUKI, “Relay contact of Multi-Electrodes with Timely controlled operation”, P1324, IEICE TRANS. ELECTRON. , VOL. E87-C, NO8 AUGUST 2004 Noboru WAKATSUKI and Yuuich AKIBA and Yu YONEZAWA、“Time−Coordinated Switching Relay for Arc Discharge Suppression”、P1324、IEICE TRANS. ELECTRON., VOL.E88−C,NO8 AUGUST 2005Noboru WAKATSUKI and Yuuichi AKIBA and Yu YONEZAWA, “Time-Coordinated Switching Relay for Arc Discharge Suppression”, P1324, IEICE TRANS. ELECTRON. , VOL. E88-C, NO8 AUGUST 2005

トランスやコイルなどの強磁性材料を用いたデバイスは、大電流領域においてB−H曲線の非線形などから、インダクタンス値が電流値に依存する。その依存性を等価回路解析に用いるために、正確に、簡易な方法で測定したい。また、実際の大電流動作中おけるインダクタンス値を正確で簡易に測定して、デバイスの正常動作のモニターを行いたい。正弦波によるにインピ−ダンス測定ではなく、実動作回路のスイッチによる電流遮断直後の過渡電流波形による測定が出来れば、素子の温度上昇による特性変化をふくめてモニターできることになる。   In a device using a ferromagnetic material such as a transformer or a coil, the inductance value depends on the current value due to nonlinearity of the BH curve in a large current region. In order to use this dependency for equivalent circuit analysis, we want to measure it accurately and in a simple manner. In addition, we want to monitor the normal operation of the device by accurately and easily measuring the inductance value during actual high current operation. If it is possible not to measure the impedance by using a sine wave but to measure by a transient current waveform immediately after the current is cut off by the switch of the actual operation circuit, it is possible to monitor the characteristic change due to the temperature rise of the element.

上記の課題を解決するために以下の方法を提案する。
インダクタンス素子と電源を含んだ回路が、図1のように通電電流を開閉する通電スイッチに直列に接続する。このスイッチに並列に過渡電流のみを流すコンデンサ回路を接続する。繰り返し動作のためには、コンデンサと直列にコンデンサからの電流の逆流を抑えるためのダイオード、コンデンサを電源と切り離すための過渡電流スイッチを配置する。さらにコンデンサに並列に充電電荷を放電する抵抗を配置する。このような構成では、過渡電流スイッチがオン状態で、通電スイッチがオン状態なら、通電スイッチのオン抵抗は小さく、コンデンサには電荷はなく、過渡電流回路にはほとんど電流は流れない。通電スイッチがオフされると、負荷を流れる電流はコンデンサに流れ込み、コンデンサは充電され、放電抵抗で決まる小さな電流値に収束する。この瞬間の電流と電圧の関係を測定する。図1のごとく、L性の負荷で電源の内部インピ−ダンスを含んだ等価回路を、抵抗rとインダクタンスLの直列接続と表現すれば、電流Iと電圧Vの関係は、
r×I+L×(dI/dt)=V
となる。電流値を多数点で測定して電流値の時間微分値と電圧値を数値計算によってrとLをもとめることができる。rを電流に依存した値と仮定すれば、計算はより単純になる。通電スイッチのオフ動作後、負荷回路を流れる電流は過渡的に減少の異なる電流値について、対応する時間データを測定してL値を導出すれば、インダクタンスの電流依存性が測定できる。
In order to solve the above problems, the following method is proposed.
A circuit including an inductance element and a power source is connected in series to an energization switch that opens and closes an energization current as shown in FIG. A capacitor circuit that allows only transient current to flow is connected in parallel to this switch. For repetitive operation, a diode for suppressing the backflow of current from the capacitor in series with the capacitor and a transient current switch for disconnecting the capacitor from the power source are arranged. Further, a resistor for discharging the charge is disposed in parallel with the capacitor. In such a configuration, when the transient current switch is on and the energization switch is on, the on-resistance of the energization switch is small, the capacitor has no charge, and almost no current flows in the transient current circuit. When the energization switch is turned off, the current flowing through the load flows into the capacitor, the capacitor is charged, and converges to a small current value determined by the discharge resistance. The relationship between current and voltage at this moment is measured. As shown in FIG. 1, when an equivalent circuit including an internal impedance of a power supply with an L-type load is expressed as a series connection of a resistor r and an inductance L, the relationship between the current I and the voltage V is
r × I + L × (dI / dt) = V
It becomes. It is possible to obtain r and L by measuring the current value at many points and numerically calculating the time differential value and voltage value of the current value. Assuming r is a current dependent value, the calculation is simpler. After the energization switch is turned off, the current dependence of the inductance can be measured by deriving the L value by measuring the corresponding time data for the current values that the current flowing through the load circuit decreases transiently.

発明の効果を以下(1)〜(5)にまとめる。
(1)インダクタンスの電流依存性を、簡単な回路で過渡電流の電流・電圧特性の測定結果から導出できる。
(2)実回路での通電電流遮断直後のインダクタンス値を測定できる。たとえば、定常運転状態の温度上昇などを踏まえたインダクタンス値が測定できる。
(3)過渡電流のみを測定するので、通電状態の回路にはまったく影響を与えない。
(4)負荷電流を通電スイッチでの遮断後も過渡電流を流し続けるので、急激な負荷電流変化を抑圧しながらの測定であり、負荷コイルでの大きなサージ電圧発生を抑えることができる。すなわち、通電スイッチでの不要な電力発生を抑え、回路のノイズ発生を抑える効果を持つ測定回路である。
(5)実時間での通電状態でのインダクタンスの電流依存性測定は、素子の正常動作の確認に有効であり、動作モニターとして有効である。
The effects of the invention are summarized in (1) to (5) below.
(1) The current dependency of the inductance can be derived from the measurement result of the current / voltage characteristics of the transient current with a simple circuit.
(2) It is possible to measure the inductance value immediately after the energization current is cut off in the actual circuit. For example, it is possible to measure an inductance value based on a temperature increase in a steady operation state.
(3) Since only the transient current is measured, there is no influence on the energized circuit.
(4) Since the transient current continues to flow even after the load current is cut off by the energizing switch, the measurement is performed while suppressing a sudden change in the load current, and generation of a large surge voltage in the load coil can be suppressed. That is, the measuring circuit has an effect of suppressing unnecessary power generation in the energization switch and suppressing noise generation of the circuit.
(5) The current dependency measurement of the inductance in the energized state in real time is effective for confirming the normal operation of the element and is effective as an operation monitor.

以下に具体的な実施例を示す。   Specific examples are shown below.

図2は電源回路などに用いられるチョークコイルである。1KHzでのLCRメータによる測定では、インダクタンスが97mHで直流抵抗値は6.8Ωである。このコイルを図3のような通電スイッチと過渡電流スイッチ回路を組み合わせた回路に、負荷として接続する。図5は、通電スイッチを開離した直後の過渡電流スイッチ回路に流れ込む電流Iとスイッチ間の電圧の測定結果と、図1の等価回路での数値解析結果をしめしたものである。通電スイッチ、過渡電流スイッチとしては、自動車のイグニッションスイッチを改造した電気接点とパワーMOSFETを用いた2種類で行った。回路解析には、開離時の各スイッチの開離動作をそれぞれのVI特性から等価的な抵抗値変化として表現し、Spice解析ソフトに因った。〔非特許文献2〕
LCRメータでの微小電流で測定したL値での解析結果は、実験結果と一致しない。
チョークなどのコア材であるソフトな強磁性材料のB−H曲線を図4に、モデル的に示した。電流に比例する磁界と電圧に比例する磁束との非線形であり、両者の関係を表すインダクタンス値は電流によって変化する。このような物性に依存するインダクタンスの電流による変化を、図5に示した測定結果から求める。たとえば、通電電流の85%の電流値に対するインダクタンスの求め方を図6に示した。87%と83%付近で電流値、電圧値、電流値の時間微分値をデータから読み取る。読み取ったデータからrとLに関する2個の方程式が求まり、rとLを特定できる。なお、電流の時間微分値を取り扱うので、測定波形のスムージング処理が必要となる。ここでは、移動平均法を採用し、10点平均操作を繰り返したデータを用いた。その結果得られた波形例を、図7に示す。そして図8に示すように、電流値を11等分して、それぞれの電流値に対するインダクタンスをもとめる。なお、ここでは直流抵抗値は電流値に依存しない数値とした。実験は、50V電源で通電電流5A、24V電源で3Aの2種類を行った。図9は電流値と求めたインダクタンス値関係である。2種類の測定結果が一致している。本測定では、小電流領域で、電流、電圧の変化が小さく、測定精度が悪かった。電流値が小さい場合のインダクタンスの測定は、コンデンサ容量値を小さくした測定がのぞましい。0.1A以下の微弱電流値の場合は、LCRメータの結果に一致するものと考える。本手法で求めたインダクタンス値の電流依存性をふくめた等価回路解析結果を図10に示す。図5と比較すると、解析結果は実験結果と良い一致を示している。
FIG. 2 shows a choke coil used in a power supply circuit or the like. In the measurement with an LCR meter at 1 KHz, the inductance is 97 mH and the DC resistance value is 6.8Ω. This coil is connected as a load to a circuit combining an energizing switch and a transient current switch circuit as shown in FIG. FIG. 5 shows the measurement result of the current I flowing into the transient current switch circuit immediately after the energizing switch is opened and the voltage between the switches, and the numerical analysis result in the equivalent circuit of FIG. As the energizing switch and the transient current switch, two kinds of switches using electric contacts and power MOSFETs modified from the ignition switch of the automobile were used. In the circuit analysis, the opening operation of each switch at the time of opening is expressed as an equivalent resistance value change from each VI characteristic, and is based on the Spice analysis software. [Non-Patent Document 2]
The analysis result at the L value measured by the minute current with the LCR meter does not agree with the experimental result.
A BH curve of a soft ferromagnetic material that is a core material such as chalk is shown in FIG. 4 as a model. The magnetic field proportional to the current and the magnetic flux proportional to the voltage are non-linear, and the inductance value representing the relationship varies depending on the current. A change due to the current of the inductance depending on such physical properties is obtained from the measurement result shown in FIG. For example, FIG. 6 shows how to determine the inductance for a current value of 85% of the energization current. Current values, voltage values, and time differential values of current values are read from data at around 87% and 83%. Two equations for r and L are obtained from the read data, and r and L can be specified. In addition, since the time differential value of an electric current is handled, the smoothing process of a measurement waveform is needed. Here, data obtained by adopting the moving average method and repeating the 10-point averaging operation was used. An example of the waveform obtained as a result is shown in FIG. Then, as shown in FIG. 8, the current value is divided into 11 equal parts, and the inductance for each current value is obtained. Here, the DC resistance value is a numerical value independent of the current value. In the experiment, two types of current of 5A with a 50V power source and 3A with a 24V power source were performed. FIG. 9 shows the relationship between the current value and the obtained inductance value. The two types of measurement results match. In this measurement, changes in current and voltage were small and the measurement accuracy was poor in a small current region. The inductance measurement when the current value is small is preferably a measurement with a small capacitance value. In the case of a weak current value of 0.1 A or less, it is considered that it matches the result of the LCR meter. FIG. 10 shows an equivalent circuit analysis result including the current dependency of the inductance value obtained by this method. Compared with FIG. 5, the analysis results are in good agreement with the experimental results.

電気接点の開離速度は10μsであった、次にターンオフ時間が300nsのパワーMOSFETを使用して定数算出を行う。実験は24V電源で通電電流3.5Aの実験を行った。図11では、イグニッションスイッチの結果も重ねているので、パワーMOSFETとイグニッションスイッチを含めた3種類の測定結果が一致している。また、本手法で求めたインダクタンス値の電流依存性をふくめた等価回路解析結果を図13に示す。LCRメータの数値を使用して解析した図12と比較すると、解析結果は実験結果と良い一致を示している。さらに1A以下のインピーダンスを使用した解析結果も図14に示す。   A constant calculation is performed using a power MOSFET having a breaking speed of 10 μs and a turn-off time of 300 ns. The experiment was conducted with a 24 V power supply and an energization current of 3.5 A. In FIG. 11, since the result of the ignition switch is also overlapped, the three types of measurement results including the power MOSFET and the ignition switch match. Further, FIG. 13 shows the equivalent circuit analysis result including the current dependency of the inductance value obtained by this method. Compared with FIG. 12 which analyzed using the numerical value of the LCR meter, the analysis result shows a good agreement with the experimental result. Further, an analysis result using an impedance of 1 A or less is also shown in FIG.

コイルなどのインダクタンスを測定する計測器への適用が考えられる。非常に単純な構成であり、機器のテスト回路として組み込むことができる。
電気接点のアーク放電を抑圧する過渡電流スイッチ回路と同じ構成であり、電気接点にモニター機能を包含することができる。
コイルやトランスに設計において、インダクタンス値の電流依存性を数値として容易に利用できるので、効率向上、ノイズ低減、小型化に寄与する。
It can be applied to measuring instruments that measure inductance such as coils. It has a very simple configuration and can be incorporated as a test circuit for equipment.
It has the same configuration as the transient current switch circuit that suppresses arc discharge of the electrical contact, and the electrical contact can include a monitoring function.
In designing coils and transformers, the current dependency of the inductance value can be easily used as a numerical value, contributing to efficiency improvement, noise reduction, and miniaturization.

過渡電流スイッチつき等価回路Equivalent circuit with transient current switch 測定対象コイル(6.8Ω+97mH)、数値はLCRメータ(1KHz)とテスターにて確認Coil to be measured (6.8Ω + 97mH), numerical values confirmed with LCR meter (1KHz) and tester スイッチに並列にコンデンサ(過渡電流スイッチ)を入れて過渡電流を測定して負荷のインダクタンス値を算出するための回路A circuit for calculating the inductance value of the load by measuring the transient current with a capacitor (transient current switch) in parallel with the switch 巻き線抵抗値を固定してインダクタンス値を変数として考えるためのB−H曲線BH curve for fixing winding resistance value and considering inductance value as a variable 電気接点を使用した実験波形(印加電圧50V 図2の測定コイルを使用)とLCRメータから求めた定数を使用したシミュレーションのグラフ、サージのレベルや電流値がほとんど一致していないThe waveform of the experiment using electrical contacts (applied voltage 50V, using the measuring coil in Fig. 2) and the simulation graph using the constants obtained from the LCR meter, the surge level and current value are almost the same 巻き線抵抗とインダクタンス値が変数として考えた場合の回路方法の算出方法、87%−83%で連立方程式を立ててインダクタンス値を出すCalculation method of circuit method when winding resistance and inductance value are considered as variables, set simultaneous equations at 87% -83% and output inductance value スムージングの適用例、10点平均をしたSmoothing application example, 10 points averaged 巻き線抵抗値を固定してインダクタンス値を変数として考えた場合の回路定数測定法、電流値をDC部と過渡部に分けてDC部(Aポイント)で巻き線抵抗を求める、過渡部の電流値を100%−90%:B、90%−80%:C…10%−0%:Kとして10ポイントに分けて、そこのポイントごとに微分方程式からインダクタンス値を求めるCircuit constant measurement method when the winding resistance value is fixed and the inductance value is considered as a variable, the current value is divided into the DC part and the transient part, and the winding resistance is obtained at the DC part (A point). The value is divided into 10 points as 100% -90%: B, 90% -80%: C ... 10% -0%: K, and the inductance value is obtained from the differential equation for each point. 電気接点を使用して測定したインダクタンス値と電流値の依存性のグラフGraph of dependence of inductance value and current value measured using electrical contacts 印加電圧50V,図2の測定コイルを使用して測定した実験のグラフと算出した数値を使ってシミュレーションした波形を組み合わせたグラフA graph that combines a graph of an experiment measured using an applied voltage of 50 V and the measurement coil of FIG. 2 and a waveform simulated using the calculated numerical value. 電気接点の結果にパワーMOSFETの結果を組み合わせたインダクタンス値と電流値の依存性のグラフGraph of dependency of inductance value and current value combining the result of power MOSFET with the result of electrical contact パワーMOSFETを使用した実験波形(印加電圧24V 図2の測定コイルを使用)とLCRメータから求めた定数を使用したシミュレーションのグラフ、サージのレベルや電流値がほとんど一致していないThe waveform of the experiment using the power MOSFET (applied voltage 24V, using the measuring coil of Fig. 2) and the simulation graph using the constants obtained from the LCR meter, the surge level and current value are almost the same スイッチをパワーMOSFETにして印加電圧24V,図2の測定コイルを使用して測定した実験のグラフと算出した数値を使ってシミュレーションした波形を組み合わせたグラフA graph combining an experimental graph measured using the measurement coil shown in FIG. 2 and a simulated waveform using the calculated numerical value with the switch set as a power MOSFET and an applied voltage of 24 V 図11に1A以下はシミュレーションに使用しないと図11に示したが、実際に使用しない部分も含めてシミュレーションした結果。スイッチはパワーMOSFETを使用し印加電圧24V,図2の測定コイルを使用して測定した実験のグラフと算出した数値を使ってシミュレーションした波形を組み合わせたグラフFIG. 11 shows that 1A or less is not used for the simulation, but FIG. 11 shows the result of simulation including the part that is not actually used. The switch uses a power MOSFET, the applied voltage is 24V, the graph of the experiment measured using the measurement coil of FIG. 2, and the graph combining the waveform simulated using the calculated value

Claims (5)

電流の大きさに依存するインダクタンスを有する素子の電流値に対するインダクタンス値を測定する方法であって、素子に正弦波でも直流でもない時間的に急激に変化する過渡電流を流し、その電流と端子電圧および電流の微分値を測定して、測定電流値の付近に複数の測定時間ポイントを指定し、測定するインダクタンスを含む等価回路を想定し、回路に対する連立方程式をたててその等価回路の素子値を数値計算によって求める方法。 A method for measuring an inductance value relative to a current value of an element having an inductance depending on the magnitude of the current, and passing a transient current that changes rapidly in time, neither a sine wave nor a direct current, to the element, and the current and terminal voltage And measuring the differential value of the current, specifying multiple measurement time points in the vicinity of the measured current value, assuming an equivalent circuit including the inductance to be measured, constructing simultaneous equations for the circuit, and setting the element value of the equivalent circuit Is obtained by numerical calculation. 請求項1の測定法であって、電源とインダクタンスを含む回路に直列に過渡電流スイッチを挿入し、その通電スイッチングデバイスに並列にコンデンサを挿入し、スイッチが開離するときの過渡電流とスイッチ間の電圧を測定し、電流値に依存するインダクタンスを測定する方法。 The measurement method according to claim 1, wherein a transient current switch is inserted in series with a circuit including a power source and an inductance, a capacitor is inserted in parallel with the energized switching device, and the transient current when the switch opens is between the switches. A method of measuring the voltage of and measuring the inductance depending on the current value. 請求項2のデバイスであって、スイッチの開閉を繰り返す時、コンデンサからスイッチへの電流の逆流を防ぐためのダイオードと過渡電流のみを流すための過渡電流スイッチをコンデンサに直列に配置し、コンデンサを放電するための抵抗をコンデンサに並列に配置した電気回路。 3. The device according to claim 2, wherein when the switch is repeatedly opened and closed, a diode for preventing a reverse flow of current from the capacitor to the switch and a transient current switch for allowing only the transient current to flow are arranged in series with the capacitor. An electric circuit in which a resistor for discharging is placed in parallel with a capacitor. 請求項1〜2の方法であって、インダクタンス素子の等価直列抵抗を予め直流で測定しておき、その値は電流に依存しないものと想定して、インダクタスの電流依存性を数値計算する方法。 3. The method according to claim 1, wherein the equivalent series resistance of the inductance element is measured in advance with a direct current, and the current dependence of the inductance is numerically calculated on the assumption that the value does not depend on the current. . 請求項1〜4の方法や回路を用いて、モータやチョークやトランスなどの大電流で動作するデバイスの等価回路定数を算出し、デバイスや回路の動作情報を連続的にモニターする電気回路。 An electric circuit that calculates an equivalent circuit constant of a device that operates with a large current, such as a motor, choke, or transformer, by using the method or circuit according to claims 1 to 4, and continuously monitors operation information of the device or circuit.
JP2006246899A 2006-09-12 2006-09-12 Method for measuring current dependance of inductance and electric circuit thereof Pending JP2008070156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006246899A JP2008070156A (en) 2006-09-12 2006-09-12 Method for measuring current dependance of inductance and electric circuit thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006246899A JP2008070156A (en) 2006-09-12 2006-09-12 Method for measuring current dependance of inductance and electric circuit thereof

Publications (1)

Publication Number Publication Date
JP2008070156A true JP2008070156A (en) 2008-03-27

Family

ID=39291877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246899A Pending JP2008070156A (en) 2006-09-12 2006-09-12 Method for measuring current dependance of inductance and electric circuit thereof

Country Status (1)

Country Link
JP (1) JP2008070156A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089937B1 (en) 2010-10-22 2011-12-05 영남대학교 산학협력단 Esr estimation method of electrolytic capacitor for pulse width modulation converter and system thereof
WO2014050792A1 (en) * 2012-09-25 2014-04-03 日本電産株式会社 Method and device for measuring impedance of permanent magnet synchronous motor, and permanent magnet synchronous motor
WO2016052487A1 (en) * 2014-10-02 2016-04-07 Ntn株式会社 Inductance measurement device and inductance measurement method
CN108052705A (en) * 2017-11-27 2018-05-18 中电普瑞电力工程有限公司 Based on the equivalent transformer electromagnetic conversion method and apparatus of Current Decomposition and winding
CN113156217A (en) * 2021-04-25 2021-07-23 山东交通学院 Measuring device and method for hollow large inductor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089937B1 (en) 2010-10-22 2011-12-05 영남대학교 산학협력단 Esr estimation method of electrolytic capacitor for pulse width modulation converter and system thereof
WO2014050792A1 (en) * 2012-09-25 2014-04-03 日本電産株式会社 Method and device for measuring impedance of permanent magnet synchronous motor, and permanent magnet synchronous motor
CN105164912A (en) * 2012-09-25 2015-12-16 日本电产株式会社 Method and device for measuring impedance of permanent magnet synchronous motor, and permanent magnet synchronous motor
WO2016052487A1 (en) * 2014-10-02 2016-04-07 Ntn株式会社 Inductance measurement device and inductance measurement method
CN108052705A (en) * 2017-11-27 2018-05-18 中电普瑞电力工程有限公司 Based on the equivalent transformer electromagnetic conversion method and apparatus of Current Decomposition and winding
CN108052705B (en) * 2017-11-27 2023-07-21 中电普瑞电力工程有限公司 Transformer electromagnetic conversion method and device based on current decomposition and winding equivalence
CN113156217A (en) * 2021-04-25 2021-07-23 山东交通学院 Measuring device and method for hollow large inductor

Similar Documents

Publication Publication Date Title
JP4015169B2 (en) Control circuit for switch mode power supply
De Leon et al. Elimination of residual flux in transformers by the application of an alternating polarity DC voltage source
US20170206297A1 (en) Simulation method and simulation device
CN204537794U (en) Electromagnet driving device
US8373960B2 (en) Driving circuit for AC contactor
JP2008070156A (en) Method for measuring current dependance of inductance and electric circuit thereof
Wang et al. Triple pulse test (TPT) for characterizing power loss in magnetic components in analogous to double pulse test (DPT) for power electronics devices
CN111886793A (en) Motor simulator
Górecki et al. Analysis of influence of losses in the core of the inductor on parameters of the buck converter
JP5300726B2 (en) Method and apparatus for driving a transformer
JP5002842B2 (en) How to adjust the ion balance
Ortiz et al. Application of the magnetic ear for flux balancing of a 160kW/20kHz DC-DC converter transformer
Stenglein et al. Novel gan half-bridge configuration for the measurement of core losses under rectangular voltages and dc-bias
JP2011247765A (en) Current detector
WO2016052487A1 (en) Inductance measurement device and inductance measurement method
JP2016075673A (en) Inductance measurement device and inductance measurement method
Bhide et al. Analysis of parallel operation of converters with interphase transformer
Tekgun et al. Design and implementation of a sinusoidal flux controller for core loss measurements
CN211478537U (en) Test circuit and test system
JP4635249B2 (en) Winding test equipment
JP5235151B2 (en) Transistor drive circuit, semiconductor circuit breaker, and transistor drive method
EP0580237A1 (en) Power factor correction circuit
Hwang et al. Voltage stresses on stator windings of induction motors driven by IGBT PWM inverters
Tang et al. A practical core loss calculation method of filter inductors in PWM inverters based on the modified Steinmetz equation
Kohlhepp et al. Test setup using DC metering approach for loss measurements of inductive components–principle, characterization, validation and application