JP2008069442A - Method for forming electrodeposition coating film - Google Patents

Method for forming electrodeposition coating film Download PDF

Info

Publication number
JP2008069442A
JP2008069442A JP2006251720A JP2006251720A JP2008069442A JP 2008069442 A JP2008069442 A JP 2008069442A JP 2006251720 A JP2006251720 A JP 2006251720A JP 2006251720 A JP2006251720 A JP 2006251720A JP 2008069442 A JP2008069442 A JP 2008069442A
Authority
JP
Japan
Prior art keywords
electrodeposition
coating film
coating
deposited
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006251720A
Other languages
Japanese (ja)
Inventor
Masanori Fujii
政徳 藤井
Hiromasa Honjo
宏昌 本城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2006251720A priority Critical patent/JP2008069442A/en
Publication of JP2008069442A publication Critical patent/JP2008069442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming an electrodeposition coating film in which the thickness of an insulation coating film can be high-dimensionally uniformized even in the case of a compact product. <P>SOLUTION: In the method for forming an electrodeposition coating film on the object to be coated, the electrically conductive object to be coated is subjected to electrodeposition treatment using a nonemulsion type electrodeposition coating material while controlling voltage, then, the fact that electric current reaches a prescribed value or below is detected, and the electrodeposition treatment is finished. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被着対象物への電着塗膜の形成方法に関する。   The present invention relates to a method for forming an electrodeposition coating film on an object to be deposited.

モーターやトランスなどの電子部品に用いられるコイルとしては、従来から、エナメル線を磁性体コアに巻きつけた巻線コイルなどが用いられてきた。しかし、ハイブリッド車用モーターなどといった複雑な形状のモーターコイルを用いる場合には、エナメル線の巻き付けを手作業で行う必要が生じてしまい、結果的に生産性の低下がもたらされている。   As a coil used for electronic parts such as a motor and a transformer, a winding coil obtained by winding an enameled wire around a magnetic core has been conventionally used. However, when a motor coil having a complicated shape such as a hybrid vehicle motor is used, it is necessary to manually wind the enamel wire, resulting in a decrease in productivity.

一方、コイル巻き工程を不要とした、銅鋼板を打抜き成型したコイル板を積層してなるコイルが提案されている。このようなコイルを構成するコイル板は導体部が既に所定の形状に成型されていて、表面を絶縁処理することで所定の磁性機能を付与することができる。
上記絶縁処理の方法としては、従来よりコイル板表面にフィルム状の絶縁層を貼り付ける方法が一般的であるが、複雑な形状のコイル板への貼り付けは製造工程を複雑にし、それゆえ製造コストを増大させるという問題がある。さらに、このような貼り付けには、通常、フィルム状の接着層が用いられるが、接着層および絶縁層を薄肉化することには限界があり、従って、得られるコイルの小型化、軽量化に限界がある。
On the other hand, there has been proposed a coil obtained by laminating a coil plate obtained by punching and molding a copper steel plate, which does not require a coil winding process. The coil plate constituting such a coil has a conductor portion already molded into a predetermined shape, and can provide a predetermined magnetic function by insulating the surface.
As a method for the above-mentioned insulation treatment, a method of pasting a film-like insulating layer on the surface of a coil plate is generally used. However, affixing to a coil plate having a complicated shape complicates the manufacturing process, and therefore is a production method. There is a problem of increasing costs. Furthermore, a film-like adhesive layer is usually used for such attachment, but there is a limit to reducing the thickness of the adhesive layer and the insulating layer. Therefore, the resulting coil can be reduced in size and weight. There is a limit.

一般的に、電着やディッピングによって板材に絶縁層の被覆を行った場合、断面コーナー部やスリット部などといった複雑な形状を呈する部分における被覆厚さは、平坦部の被覆厚さよりも薄くなる傾向にあるため、ある程度の耐電圧特性を維持させるためには、平坦部の被覆を厚くして、平坦部以外の部分における被覆を厚くすることで対応せざるを得なかった。その結果、平坦部の被覆を薄膜化することができず、製品(コイル)の小型化が困難であった。
こういった課題に対して、本出願人は特許文献1において、アクリル系溶液型のカチオン電着塗料を使用することによって、リング状の導電板の断面のコーナー部の被覆性が向上し、すなわち、断面のコーナー部が平坦部よりも厚肉に被覆され、かつ得られるリング状絶縁コイル板の耐熱性が向上することを開示した。
特開2004−152622号公報
In general, when an insulating layer is coated on a plate material by electrodeposition or dipping, the coating thickness in a portion having a complicated shape such as a corner section or a slit section tends to be thinner than the coating thickness of a flat portion. Therefore, in order to maintain a certain withstand voltage characteristic, it has been necessary to increase the thickness of the coating on the flat portion and increase the thickness of the coating on portions other than the flat portion. As a result, the coating on the flat part cannot be made thin, and it is difficult to reduce the size of the product (coil).
In order to solve these problems, the applicant of the present invention in Patent Document 1 uses an acrylic solution-type cationic electrodeposition paint to improve the coverage of the corner portion of the cross-section of the ring-shaped conductive plate. It has been disclosed that the corner portion of the cross section is covered with a thicker wall than the flat portion, and the heat resistance of the obtained ring-shaped insulating coil plate is improved.
JP 2004-152622 A

近時の電子機器の小型化にともない、コイル板も小型化し、電着処理を施すときの電解密度の不均一性が大きくなっている。とりわけ、コイル板の角部やスリット部付近などにおいて電解密度が低くなり、特許文献1の技術を適用しても絶縁被覆層の厚さが変動しがちである。本発明の課題は、小型の製品であっても絶縁被覆層の厚さが高い次元で均一化し得る、電着塗膜の形成方法を提供することである。   Along with the recent miniaturization of electronic devices, the coil plate is also miniaturized, and the non-uniformity of the electrolytic density when the electrodeposition process is performed has increased. In particular, the electrolytic density is low near the corners and slits of the coil plate, and the thickness of the insulating coating layer tends to fluctuate even when the technique of Patent Document 1 is applied. The subject of this invention is providing the formation method of the electrodeposition coating film which can equalize the thickness of an insulation coating layer in a high dimension even if it is a small product.

本発明は以下の特徴を有する。
(1)導電性の被着対象物に非エマルジョン型の電着塗料を用いて電圧を制御しながら電着処理を行い、電流が所定の値以下になることを検知して前記電着処理を終了する、被着対象物への電着塗膜の形成方法。
(2)被着対象物がスリットを有する櫛歯状の銅板である(1)に記載の形成方法。
The present invention has the following features.
(1) Electrodeposition treatment is performed while controlling the voltage using a non-emulsion-type electrodeposition paint on the conductive object to be deposited, and the electrodeposition treatment is performed by detecting that the current is below a predetermined value. A method for forming an electrodeposition coating film on an adherend to be finished.
(2) The forming method according to (1), wherein the adherend is a comb-like copper plate having a slit.

絶縁被覆層を非エマルジョン型の電着塗料を用いて形成すると、電着によって析出した樹脂塗膜が絶縁として働くため、電解密度の変化を伴いながら電着プロセスが進行する。電着塗装の初期の段階では電解密度の高い部位において集中的に塗膜が形成されるが、塗膜が成長してきた部位は絶縁性が高まって徐々に電解密度が低下する。その結果、塗膜が所定の厚さになると電流が遮断されてその部位の成膜が停止する。このような段階を経て、電着塗装の後半の段階では、当初、電解密度が低かった領域で成膜成長が見られるようになる。そして、最終的には、導電板全面に所定の厚さの絶縁被膜が形成されたときに系の電流値が非常に小さくなる。よって、本発明の方法によれば、電圧をコントロールしかつ電流をモニターしながら電着作業を進めて、モニターしている電流が低下すれば電着作業を終了すべきであると容易に判断することができる。このようにして、塗膜均一性およびピンホール性に優れる絶縁被膜を得ることができる。   When the insulating coating layer is formed using a non-emulsion type electrodeposition paint, the resin coating film deposited by electrodeposition serves as insulation, so that the electrodeposition process proceeds with a change in electrolytic density. In the initial stage of electrodeposition coating, a coating film is intensively formed at a site where the electrolytic density is high. However, at the site where the coating film has grown, the insulating property increases and the electrolytic density gradually decreases. As a result, when the coating film reaches a predetermined thickness, the current is interrupted and film formation at that portion stops. Through these steps, film growth is observed in the region where the electrolytic density was initially low in the latter half of the electrodeposition coating. Finally, the current value of the system becomes very small when an insulating film having a predetermined thickness is formed on the entire surface of the conductive plate. Therefore, according to the method of the present invention, the electrodeposition operation is performed while controlling the voltage and monitoring the current, and it is easily determined that the electrodeposition operation should be terminated if the monitored current decreases. be able to. In this way, an insulating coating excellent in coating uniformity and pinhole properties can be obtained.

本発明で用いることのできる電着塗料としては、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリアミド樹脂またはポリウレタン樹脂の少なくとも1種を含む塗料が挙げられる。電着塗料では、これらの樹脂をカチオン属性またはアニオン属性のいずれかに調整することによって得られる。電着とは、被塗物を水溶性塗料中に浸積してその被塗物を陰極(または陽極)として、そして塗料を被塗物の反対電極として直流電圧を印加し、被塗物に塗膜を形成させる電着法である。   Examples of the electrodeposition paint that can be used in the present invention include paints containing at least one of acrylic resin, epoxy resin, polyester resin, polyamideimide resin, polyimide resin, polyamide resin, or polyurethane resin. Electrodeposition paints can be obtained by adjusting these resins to either cationic or anionic attributes. Electrodeposition involves immersing a coating in a water-soluble paint, applying the DC voltage to the coating as a cathode (or an anode) and applying the paint as the opposite electrode of the coating. This is an electrodeposition method for forming a coating film.

本発明では、「非エマルジョン型」の電着塗料を用いる。本明細書では、「非エマルジョン型の電着塗料」は、有機樹脂を水に分散させて得られる電着塗料であって乳化剤を含まないものを意味する。水に不溶である有機樹脂を分散させるためには一般的には乳化剤を用いてエマルジョンを形成することが多いが、本発明で用いる非エマルジョン型の電着塗料では、例えば、懸濁重合法、溶液重合法などの手法によって分散を達成している。   In the present invention, a “non-emulsion type” electrodeposition paint is used. In the present specification, the “non-emulsion type electrodeposition paint” means an electrodeposition paint obtained by dispersing an organic resin in water and does not contain an emulsifier. In order to disperse an organic resin that is insoluble in water, an emulsion is generally formed using an emulsifier. However, in the non-emulsion type electrodeposition paint used in the present invention, for example, a suspension polymerization method, Dispersion is achieved by methods such as solution polymerization.

非エマルジョン型のカチオン電着塗料の具体例としては、エポキシ樹脂を含むインシュリード(日本ペイント製)、ポリイミド樹脂を含むエレコート(シミズ製)、ウレタン電着塗料PSQ(日本ペイント製)などが挙げられ、非エマルジョン型のアニオン電着塗料の具体例としては、ポリイミド樹脂を含むQ−ED−MC001(PI技術研究所製)、ポリウレタン樹脂を含むスーパーフレックス(第一工業製薬製)、アクリル系樹脂を含むエレコート(シミズ製)などが挙げられる。   Specific examples of non-emulsion type cationic electrodeposition paints include Insuled containing epoxy resin (made by Nippon Paint), Elecoat containing polyimide resin (made by Shimizu), and urethane electrodeposition paint PSQ (made by Nippon Paint). Specific examples of non-emulsion-type anionic electrodeposition paints include Q-ED-MC001 (made by PI Technical Research Institute) containing polyimide resin, Superflex (made by Daiichi Kogyo Seiyaku) containing polyurethane resin, and acrylic resin. Elecoat containing (made by Shimizu) etc. are mentioned.

本発明の方法では、電圧を制御しながら電着処理を行う。ここで、電圧を制御するとは、電着処理中に印加する電圧の目標値を定め、実際に印加される電圧がその目標値に近づくように電源の出力を調節するなどして電圧値を上下させることをいう。電圧の目標値は電着処理中にわたって一定であってもよいし、時々刻々と変化させてもよい。   In the method of the present invention, the electrodeposition process is performed while controlling the voltage. Here, controlling the voltage refers to determining the target value of the voltage to be applied during the electrodeposition process, and adjusting the output of the power supply so that the actually applied voltage approaches the target value. It means to make it. The target value of the voltage may be constant throughout the electrodeposition process, or may be changed from moment to moment.

電着処理中の電圧は、好ましくは0.5〜250Vであり、より好ましくは5〜100Vであり、電着の際の塗料の温度は、好ましくは4〜40℃であり、より好ましくは15〜30℃であり、電着層の焼付け温度は、好ましくは80〜300℃であり、より好ましくは100〜200℃である。電着電圧が上記範囲内であれば均一な厚みの絶縁被覆層を形成しやすく、電着の際の塗料の温度が上記範囲内であれば生産コストが過大になることなく容易に絶縁被覆層を形成させることができ、焼付け温度が上記範囲内であれば短時間で高品質な絶縁被覆層を形成することができる。   The voltage during the electrodeposition treatment is preferably 0.5 to 250 V, more preferably 5 to 100 V, and the temperature of the paint during electrodeposition is preferably 4 to 40 ° C., more preferably 15 It is -30 degreeC, The baking temperature of an electrodeposition layer becomes like this. Preferably it is 80-300 degreeC, More preferably, it is 100-200 degreeC. If the electrodeposition voltage is within the above range, it is easy to form an insulating coating layer having a uniform thickness, and if the temperature of the paint during electrodeposition is within the above range, the insulating coating layer can be easily formed without excessive production costs. If the baking temperature is within the above range, a high-quality insulating coating layer can be formed in a short time.

本発明の方法では、電着処理中の電流をモニターして、電流が所定の値以下になることを検知して電着処理を終了する。上記「発明の効果」の欄の記載したとおり、本発明では被着対象物の全面に絶縁被膜が形成されたときに系の電流値が非常に小さくなる。そのように電流値が非常に小さくなったときに電着処理を終了すれば、絶縁被膜の形成が十分であるとともに、電着処理の時間を必要最小限にすることができ、効率よく目的の被膜を得ることができる。電着処理を終了するべき電流値としては、例えば、10mA/cm以下、好ましくは1mA/cm以下、より好ましくは0.1mA/cm以下である。 In the method of the present invention, the current during the electrodeposition process is monitored, and it is detected that the current falls below a predetermined value, and the electrodeposition process is terminated. As described in the column “Effects of the Invention”, in the present invention, the current value of the system becomes very small when an insulating film is formed on the entire surface of the object to be deposited. If the electrodeposition process is terminated when the current value becomes very small in this way, the formation of the insulating film is sufficient and the time for the electrodeposition process can be minimized, and the target can be efficiently obtained. A coating can be obtained. The current value at which the electrodeposition process should be terminated is, for example, 10 mA / cm 2 or less, preferably 1 mA / cm 2 or less, more preferably 0.1 mA / cm 2 or less.

本発明では、被着対象物は電着が可能な程度の導電性を有していればよく、形状などは特に限定されない。被着対象物の材質としては、導電性が良好であることから金属材料が好ましく、特に、銀、銀合金、電気銅、銅、銅合金、銅クラッドアルミニウム、アルミニウム、アルミニウム合金、鉄、鉄合金などが、電気伝導性が高い点で好ましい。   In the present invention, the object to be deposited is not particularly limited as long as it has conductivity that allows electrodeposition. The material of the object to be deposited is preferably a metal material because of its good conductivity, and in particular, silver, silver alloy, electrolytic copper, copper, copper alloy, copper clad aluminum, aluminum, aluminum alloy, iron, iron alloy Are preferable in terms of high electrical conductivity.

好適には、被着対象物はスリットを有する櫛歯状の銅板である。
図1は、スリットを有する櫛歯状の銅板の模式図である。この銅板は、その一辺からスリット11が形成されて、全体として櫛歯状を呈している。複雑な形状である場合に本発明の効果が顕著にあらわれることから、被着対象物が図1のような形状である場合には、厚さTが2mm以上であったり、スリットの幅W2が1mm以下である場合に、本発明の方法の優位性が顕著になる。
Preferably, the adherend is a comb-shaped copper plate having a slit.
FIG. 1 is a schematic view of a comb-like copper plate having slits. The copper plate has a slit 11 formed from one side thereof, and has a comb-like shape as a whole. Since the effect of the present invention is remarkably exhibited when the shape is complicated, when the adherend has a shape as shown in FIG. 1, the thickness T is 2 mm or more, or the width W2 of the slit is When it is 1 mm or less, the superiority of the method of the present invention becomes remarkable.

本発明の製造方法を、一例を挙げてさらに詳細に説明する。ただし、本発明の製造方法は以下の例に限定されない。
D.C.電源の陰極側に接続された被着対象物を、非エマルジョン型のカチオン電着塗料で満たされた電着バス中を通過させる。円筒状の陽極が電着バス中に配置されており、陰極である被着対象物と陽極間の電位差により樹脂が被着対象物上に均一に析出し、電着層が形成する。電着層は、被着対象物全体を被覆してもよいし、被着対象物の一部分にのみ電着してもよい。このとき、電圧を制御しながら電着処理を行い、電流が所定の値以下になることを検知して前記電着処理を終了するのが本発明の特徴である。
The production method of the present invention will be described in more detail with an example. However, the production method of the present invention is not limited to the following examples.
D. C. An object to be deposited connected to the cathode side of the power supply is passed through an electrodeposition bath filled with a non-emulsion type cationic electrodeposition paint. A cylindrical anode is disposed in the electrodeposition bath, and the resin is uniformly deposited on the deposition target due to a potential difference between the deposition target as the cathode and the anode, thereby forming an electrodeposition layer. The electrodeposition layer may cover the entire object to be deposited, or may be electrodeposited only on a part of the object to be deposited. At this time, the electrodeposition process is performed while controlling the voltage, and it is a feature of the present invention that the electrodeposition process is terminated when it is detected that the current is below a predetermined value.

次に、電着槽および有機溶剤槽の出口に、例えば、エアーワイパー、ローラーワイパー等のワイピング装置を設け、電着層上に付着した電着槽液などの過剰分を連続的に除去してもよい。特に高速にて電着塗装を行った際、付着した槽液が焼付け工程にて発泡作用し、高速作業を妨げることがある。このため、上記したワイピング方法により槽液を除去すれば、発泡が防止される。   Next, at the outlet of the electrodeposition tank and organic solvent tank, for example, a wiping device such as an air wiper or a roller wiper is provided to continuously remove excess components such as the electrodeposition tank liquid adhering to the electrodeposition layer. Also good. In particular, when electrodeposition coating is performed at a high speed, the tank liquid that has adhered may foam during the baking process, hindering high-speed work. For this reason, if the tank liquid is removed by the wiping method described above, foaming is prevented.

その後、被着対象物を乾燥装置に入れる。そこで被着対象物は加熱され、電着層中の有機溶剤および水が蒸発除去される。乾燥装置の温度は、有機溶剤の種類により変わるが、一般に80〜300℃、好ましくは100〜200℃である。乾燥装置において、液体の蒸発除去の促進と被着対象物上の電着樹脂の半硬化または完全硬化とを同時に行うために、200〜300℃といった高温度が適用されてもよい。換言すれば、乾燥装置の最後の部分を、電着樹脂を硬化し得るような高温に維持してもよいし、また、乾燥装置の後に別の焼付け、硬化装置を設けてもよい。この場合、電着層は最初80〜150℃程度の比較的低温にて乾燥し、その後高温にて焼付け、硬化する。   Thereafter, the object to be deposited is put into a drying apparatus. Therefore, the object to be deposited is heated, and the organic solvent and water in the electrodeposition layer are removed by evaporation. Although the temperature of a drying apparatus changes with the kind of organic solvent, generally it is 80-300 degreeC, Preferably it is 100-200 degreeC. In the drying apparatus, a high temperature of 200 to 300 ° C. may be applied in order to simultaneously promote the evaporation removal of the liquid and the semi-curing or complete curing of the electrodeposition resin on the object to be deposited. In other words, the last part of the drying apparatus may be maintained at a high temperature at which the electrodeposition resin can be cured, or another baking and curing apparatus may be provided after the drying apparatus. In this case, the electrodeposition layer is first dried at a relatively low temperature of about 80 to 150 ° C., and then baked and cured at a high temperature.

乾燥終了後、被着対象物は焼付け炉に移送され、上述した温度にて焼付け、硬化が行われる。乾燥時に焼付け硬化まで充分行われたものは、焼付け炉での焼付け、硬化を省略してもよい場合がある。   After completion of drying, the object to be deposited is transferred to a baking furnace, and is baked and cured at the temperature described above. In some cases, baking and hardening in a baking furnace may be omitted if the baking and hardening are sufficiently performed at the time of drying.

本発明の製造方法によって、被着対象物の表面に絶縁被覆層を均一の厚さで形成することができる。ここで、本発明の方法は上述の例に限定されるわけではなく、例えば、カチオン電着塗料の代わりにアニオン電着塗料を用いるのであれば、被着対象物をD.C.電源の陽極側に接続すればよい。   By the manufacturing method of the present invention, the insulating coating layer can be formed on the surface of the adherend with a uniform thickness. Here, the method of the present invention is not limited to the above-described example. For example, if an anionic electrodeposition paint is used instead of the cationic electrodeposition paint, the object to be deposited is a D.P. C. What is necessary is just to connect to the anode side of a power supply.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

<実施例1>
以下の電着塗料、被着対象物を用いて電着を行った。
(電着塗料)
エポキシ系カチオン電着塗料として、インシュリードNo.3120(日本ペイント)を用いた。この塗料の固形分濃度約20%である。
(被着対象物)
図1のようにスリットを有する銅板を使用した。寸法としては、幅W1が30mmであり、奥行きDが50mmであり、厚さTが3.0mmであり、スリットの幅W2が0.5mmであり、スリットの長さが30mmである。なお、スリットは1本だけ設けた。
<Example 1>
Electrodeposition was performed using the following electrodeposition paints and objects to be deposited.
(Electrodeposition paint)
As an epoxy-based cationic electrodeposition coating, Insuled No. 3120 (Nippon Paint) was used. The solids concentration of this paint is about 20%.
(Subject to be deposited)
The copper plate which has a slit like FIG. 1 was used. As dimensions, the width W1 is 30 mm, the depth D is 50 mm, the thickness T is 3.0 mm, the slit width W2 is 0.5 mm, and the slit length is 30 mm. Only one slit was provided.

(電着条件)
被着対象物を電着塗料中に浸漬して50Vにて60秒間電流を流した。その後、電圧を120Vに上げて電流値をモニターしたところ、当初は3.0mA/cm程度であったが、時間の経過とともに電流値は徐々に低下して、約120秒経過したときに、電流値が0.1mA/cm以下になったので、電着処理を終了した。電着の後に、200℃におて20分間、焼付け処理を行った。
(Electrodeposition conditions)
The object to be deposited was immersed in an electrodeposition paint and a current was applied at 50 V for 60 seconds. After that, when the voltage was raised to 120V and the current value was monitored, it was about 3.0 mA / cm 2 initially, but the current value gradually decreased with the passage of time, and when about 120 seconds passed, Since the current value was 0.1 mA / cm 2 or less, the electrodeposition process was terminated. After electrodeposition, a baking treatment was performed at 200 ° C. for 20 minutes.

(結果と考察)
得られた電着塗膜の断面写真を図2〜4に示す。図2は、銅板1の互いに隣合う外周の2辺およびそこに電着された塗膜2を示している。図3は、銅板1の外周の1辺およびそこに電着された塗膜2を示している。図4は、銅版1の外周の1辺(紙面上下方向)およびスリットを構成する1辺(紙面左右方向)ならびにそれらの周囲に電着された塗膜2を示している。図面から明らかなように、銅板1の外周に沿ってほぼ均一な電着塗膜2が形成され、塗膜の厚さは銅板1が平坦な部分において25〜27μmであり、スリットの内面では22〜26μmとなった。
この結果を考察すると、電着開始直後はスリットコーナー部への電界集中が支配的となり、その後、電着が進行して塗膜が成長すると、析出した塗膜が絶縁体として働くため、コーナー部への電界集中が徐々に緩和され、より塗膜の薄いスリット内面の電流密度が高くなる。本例では、電流値が0.1mA/cm以下になったことを検知して電着を終了したために、銅板1の全面がほぼ均一となるのに十分であり、かつ、無駄な電着時間を費やすことなく、電着塗膜を形成することができた。
(Results and discussion)
Cross-sectional photographs of the obtained electrodeposition coating film are shown in FIGS. FIG. 2 shows two adjacent outer peripheral sides of the copper plate 1 and the coating film 2 electrodeposited thereon. FIG. 3 shows one side of the outer periphery of the copper plate 1 and the coating film 2 electrodeposited thereon. FIG. 4 shows one side of the outer periphery of the copper plate 1 (the vertical direction on the paper surface), one side constituting the slit (the horizontal direction on the paper surface), and the coating film 2 electrodeposited around them. As is apparent from the drawing, a substantially uniform electrodeposition coating film 2 is formed along the outer periphery of the copper plate 1, and the thickness of the coating film is 25 to 27 μm at the portion where the copper plate 1 is flat, and 22 on the inner surface of the slit. It was -26 micrometers.
Considering this result, immediately after the start of electrodeposition, the electric field concentration at the slit corner becomes dominant, and after that, when the electrodeposition proceeds and the coating grows, the deposited coating works as an insulator. The electric field concentration on the slit is gradually relaxed, and the current density on the inner surface of the slit with a thinner coating film becomes higher. In this example, since it was detected that the current value was 0.1 mA / cm 2 or less and the electrodeposition was terminated, it was sufficient for the entire surface of the copper plate 1 to be substantially uniform, and wasted electrodeposition. An electrodeposition coating could be formed without spending time.

スリットを有する櫛歯状の銅板の模式図である。It is a schematic diagram of the comb-tooth shaped copper plate which has a slit. 実施例において得られた電着塗膜の断面写真である。It is a cross-sectional photograph of the electrodeposition coating film obtained in the Example. 実施例において得られた電着塗膜の断面写真である。It is a cross-sectional photograph of the electrodeposition coating film obtained in the Example. 実施例において得られた電着塗膜の断面写真である。It is a cross-sectional photograph of the electrodeposition coating film obtained in the Example.

符号の説明Explanation of symbols

1 銅板
11 スリット
2 電着塗膜
1 Copper plate 11 Slit 2 Electrodeposition coating

Claims (2)

導電性の被着対象物に非エマルジョン型の電着塗料を用いて電圧を制御しながら電着処理を行い、電流が所定の値以下になることを検知して前記電着処理を終了する、被着対象物への電着塗膜の形成方法。   The electrodeposition process is performed while controlling the voltage using a non-emulsion type electrodeposition paint on the conductive deposition object, and the electrodeposition process is terminated by detecting that the current falls below a predetermined value. A method for forming an electrodeposition coating on an object to be deposited. 被着対象物がスリットを有する櫛歯状の銅板である請求項1記載の形成方法。   The forming method according to claim 1, wherein the adherend is a comb-shaped copper plate having a slit.
JP2006251720A 2006-09-15 2006-09-15 Method for forming electrodeposition coating film Pending JP2008069442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006251720A JP2008069442A (en) 2006-09-15 2006-09-15 Method for forming electrodeposition coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006251720A JP2008069442A (en) 2006-09-15 2006-09-15 Method for forming electrodeposition coating film

Publications (1)

Publication Number Publication Date
JP2008069442A true JP2008069442A (en) 2008-03-27

Family

ID=39291282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251720A Pending JP2008069442A (en) 2006-09-15 2006-09-15 Method for forming electrodeposition coating film

Country Status (1)

Country Link
JP (1) JP2008069442A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137714A (en) * 1990-09-28 1992-05-12 Ryoda Sato Transformer and its assembling method
JPH0745505A (en) * 1993-07-30 1995-02-14 Nippon Paint Co Ltd Electrodeposition coating method of photosensitive resist
JPH07228997A (en) * 1994-02-15 1995-08-29 Sekisui House Ltd Method for controlling coating film thickness in electrodeposition coating
JPH08225994A (en) * 1995-02-21 1996-09-03 Nippon Paint Co Ltd Formation of metal surface treatment coating film
JP2000141999A (en) * 1998-11-05 2000-05-23 Seiko Epson Corp Decorative member and manufacture thereof
JP2003197430A (en) * 2001-12-25 2003-07-11 Nippon Ceramic Co Ltd Laminated type sheet coil and transformer
JP2004018881A (en) * 2002-06-12 2004-01-22 Sankyo Seiki Mfg Co Ltd Method for producing diecast product
JP2004152622A (en) * 2002-10-30 2004-05-27 Mitsubishi Cable Ind Ltd Coil with insulating layer formed by electrophoretic coating
JP2005002359A (en) * 2003-06-09 2005-01-06 Canon Inc Method for forming insulation film, and structure
JP2006037157A (en) * 2004-07-26 2006-02-09 Seiko Epson Corp Method for manufacturing decoration parts, decoration parts and clock

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137714A (en) * 1990-09-28 1992-05-12 Ryoda Sato Transformer and its assembling method
JPH0745505A (en) * 1993-07-30 1995-02-14 Nippon Paint Co Ltd Electrodeposition coating method of photosensitive resist
JPH07228997A (en) * 1994-02-15 1995-08-29 Sekisui House Ltd Method for controlling coating film thickness in electrodeposition coating
JPH08225994A (en) * 1995-02-21 1996-09-03 Nippon Paint Co Ltd Formation of metal surface treatment coating film
JP2000141999A (en) * 1998-11-05 2000-05-23 Seiko Epson Corp Decorative member and manufacture thereof
JP2003197430A (en) * 2001-12-25 2003-07-11 Nippon Ceramic Co Ltd Laminated type sheet coil and transformer
JP2004018881A (en) * 2002-06-12 2004-01-22 Sankyo Seiki Mfg Co Ltd Method for producing diecast product
JP2004152622A (en) * 2002-10-30 2004-05-27 Mitsubishi Cable Ind Ltd Coil with insulating layer formed by electrophoretic coating
JP2005002359A (en) * 2003-06-09 2005-01-06 Canon Inc Method for forming insulation film, and structure
JP2006037157A (en) * 2004-07-26 2006-02-09 Seiko Epson Corp Method for manufacturing decoration parts, decoration parts and clock

Similar Documents

Publication Publication Date Title
US7572980B2 (en) Copper conductor with anodized aluminum dielectric layer
US9508461B2 (en) Polymeric overcoated anodized wire
CN110352463B (en) Insulated wire, method for producing same, method for producing coil using same, and coil
CN108448775A (en) Electrical isolation heat transfer coating and its deposition method for electric system
JP2008085077A (en) Ring-shaped insulating coil board and its manufacturing method
US3547788A (en) Insulated wire and method of making the same
JP2008069442A (en) Method for forming electrodeposition coating film
JP5619591B2 (en) Magnet wire manufacturing method and magnet wire manufacturing apparatus
JP2018147582A (en) Insulation wire, manufacturing method therefor and coil
US20120064233A1 (en) Apparatus And Method For Manufacturing MMO Anode Using Continuous Coating And Heat Treatment Process
JP4197605B2 (en) Manufacturing method of painted electric wire
US3401058A (en) Method of coating electrical conductors
JP2008276963A (en) Insulated wire
JP2002298674A (en) Manufacturing method of insulation wire and insulation wire
US6632341B1 (en) Method for producing a self-supporting metal film
EP3093376B1 (en) Process for continuous electrochemical tinning of an aluminium wire
JP2004134324A (en) Manufacturing method of painted electric wire
CN103779066A (en) Anodized coil and method for making same
RU2526988C2 (en) Method of applying electroinsulating coating on metal base
JP6760236B2 (en) Insulated wire manufacturing method and electrodeposition coating equipment used for it
CN208477984U (en) 180 grades of polyesterimide enameled copper round wire of automobile window motor
JP2017059335A (en) Insulation film
WO2021020386A1 (en) Insulating superconducting wire material, method of manufacturing insulating superconducting wire material, and superconducting coil
JPH02112206A (en) Treatment of insulating ground coil and aluminum coil for linear-motor car
JP2023032642A (en) Insulated conductor manufacturing method, electrodeposition device, and insulated conductor manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090831

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A02 Decision of refusal

Effective date: 20120417

Free format text: JAPANESE INTERMEDIATE CODE: A02