JP2008066259A - Battery constituent material - Google Patents

Battery constituent material Download PDF

Info

Publication number
JP2008066259A
JP2008066259A JP2006274478A JP2006274478A JP2008066259A JP 2008066259 A JP2008066259 A JP 2008066259A JP 2006274478 A JP2006274478 A JP 2006274478A JP 2006274478 A JP2006274478 A JP 2006274478A JP 2008066259 A JP2008066259 A JP 2008066259A
Authority
JP
Japan
Prior art keywords
carbon
xylene resin
lithium ion
precursor
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006274478A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Fujii
光廣 藤井
Masaru Sugita
勝 杉田
Tokio Yamabe
時雄 山邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Institute of Applied Science
Original Assignee
Nagasaki Institute of Applied Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Institute of Applied Science filed Critical Nagasaki Institute of Applied Science
Priority to JP2006274478A priority Critical patent/JP2008066259A/en
Publication of JP2008066259A publication Critical patent/JP2008066259A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost and energy-savingly a high-purity anode carbon material for a lithium ion secondary battery which exhibits high performance, i.e. high capacity, and does not have impurities of metals and others. <P>SOLUTION: A low-temperature baked carbon is obtained by using a xylene resin as a raw material and baking the resin in an inert atmosphere at 550 to 750°C for 4 hours. The low-temperature baked carbon, baked at a baking temperature of 550°C, is a condensed polycyclic hydrocarbon having a spacing of 0.405 nm and a crystallite length of 0.74 nm, and exhibits a capacity of 680 mAh/g as a lithium ion secondary battery anode material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウムイオン二次電池負極材料、電気二重層キャパシター電極材料およびその他の電池構造電極材料に使用される高純度の炭素および当該炭素の製造法に関する。The present invention relates to high-purity carbon used for lithium ion secondary battery negative electrode materials, electric double layer capacitor electrode materials and other battery structure electrode materials, and a method for producing the carbon.

リチウムイオン二次電池においては、金属酸化物リチウム塩を正極とし、本発明の炭素粉末を各種の結着剤および主として炭素系電子伝導剤とを混合したものを負極とし、ここに電解液は電解質と非プロトン溶剤からなりたっているか、若しくは電解質と高分子、若しくは電解液と高分子と非プロトン溶剤からなりたっており、正極と負極との中間に分離膜を介在させて構成したリチウムイオン二次電池である。In a lithium ion secondary battery, a metal oxide lithium salt is used as a positive electrode, and the carbon powder of the present invention is mixed with various binders and mainly a carbon-based electron conductive agent, and a negative electrode, where the electrolyte is an electrolyte. Lithium ion secondary battery consisting of an electrolyte and a polymer, or an electrolyte and a polymer, or an electrolyte, a polymer and an aprotic solvent, with a separation membrane interposed between the positive electrode and the negative electrode It is.

近年、電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型軽量で、高エネルギー密度を要する二次電池への要望が高い。このような点で、非水系二次電池、特にリチウムイオン二次電池は、とりわけ高電圧、高エネルギー密度を有する電池として期待が大きい。2. Description of the Related Art In recent years, electronic devices have become rapidly portable and cordless, and there is a strong demand for secondary batteries that are compact and lightweight and require high energy density as power sources for driving these devices. In this respect, non-aqueous secondary batteries, particularly lithium ion secondary batteries, are particularly expected as batteries having high voltage and high energy density.

特に、最近LiCoO2,LiNiO2などのリチウム複合酸化物を正極活物質とし負極活物質に炭素材料を用いた電池系が、高エネルギー密度のリチウムイオン二次電池として注目を集めている。この電池系の特徴は、電池電圧が高いことと、正負極ともにインターカーレーション反応を利用していることである。すでに、LiCoO2を正極に、黒鉛系炭素材料を負極に用いた電池が商品化されている。このようなリチウムイオン二次電池の場合には、充放電反応を均一に行なうことが重要な要素であり、多くの場合、正極も負極も金属箔の集電体に活物質を含む合剤層を塗布したシート状の極板を用いている。また集電体の素材は、電池に使用される場合の各々の作動電位で電気化学的に安定であるという理由で正極の集電用金属箔にはアルミニウム、負極の集電用金属箔には銅などが使用されている。  In particular, a battery system using a lithium composite oxide such as LiCoO 2 or LiNiO 2 as a positive electrode active material and a carbon material as a negative electrode active material has recently attracted attention as a high energy density lithium ion secondary battery. The characteristics of this battery system are that the battery voltage is high and that both positive and negative electrodes utilize an intercalation reaction. Batteries using LiCoO 2 as a positive electrode and a graphite-based carbon material as a negative electrode have already been commercialized. In the case of such a lithium ion secondary battery, it is an important factor to perform the charge / discharge reaction uniformly, and in many cases, a mixture layer containing an active material in the current collector of the metal foil for both the positive electrode and the negative electrode A sheet-like electrode plate coated with is used. In addition, the current collector material is aluminum for the current collector metal foil for the positive electrode and the metal foil for current collector for the negative electrode because it is electrochemically stable at each operating potential when used in a battery. Copper or the like is used.

高純度で高黒鉛化度の炭素としてはピッチコークスを粉砕したものが用いられ、また高純度の高黒鉛化黒鉛には天然黒鉛から金属などの不純物を除去、精製し、粉砕したものが使用される。一般には製品化されているものは天然黒鉛、メソカーボンマイクロビーズ、ミルド化黒鉛化繊維などのグラファイト系材料がリチウムイオン二次電池用負極材料として開発され実用化がすすめられている。
同時に一層の低価格化および高性能化に向けて精力的な研究が進められている。
しかしながら、現在においてもリチウムイオン二次電池が本来有する特性を充分に発現しておらず、性能面でも必ずしも満足すべきレベルに達していない。
リチウムイオン電池負極用炭素は、黒鉛化度の高いソフトカーボン、低黒鉛化度のソフトカーボン、高温焼成ハードカーボンおよび低温焼成炭素がある。
Pitch coke pulverized carbon is used as high-purity and high-graphitized carbon, and high-purity highly graphitized graphite is obtained by removing impurities such as metals from natural graphite, purifying and pulverizing. The In general, graphite-based materials such as natural graphite, mesocarbon microbeads, and milled graphitized fibers have been developed and put into practical use as negative electrode materials for lithium ion secondary batteries.
At the same time, energetic research is being promoted for further price reduction and higher performance.
However, even today, the characteristics inherent to the lithium ion secondary battery are not sufficiently developed, and the level of performance is not always satisfactory.
Carbon for lithium ion battery negative electrodes includes soft carbon having a high degree of graphitization, soft carbon having a low degree of graphitization, high-temperature fired hard carbon, and low-temperature fired carbon.

炭素負極の先ず改良するべきは、高性能化でありその内容として、まずは高容量化であり、そのための工程に使用するエネルギーの低減および作製された炭素が高純度であって金属およびその他の不純物を原料面および工程面から低減する必要がある。The first thing that should be improved in the carbon negative electrode is to improve the performance, and firstly, to increase the capacity, to reduce the energy used for the process, and to make the produced carbon highly pure, so that metals and other impurities Must be reduced from the raw material side and the process side.

上記の高容量化等のために、例えばメソカーボンマイクロビーズにホウ素を添加する技術が開発されている。ピッチ溶融時に生成するメソフェーズの制御により、粒子径や形状および結晶子は配向性を制御可能であるがメソフェーズピッチ系黒鉛は極めて高温でも黒鉛化されないために高容量化が維持出来ない。そのためにホウ素を添加して高容量を維持するという技術である。In order to increase the capacity, for example, a technique for adding boron to mesocarbon microbeads has been developed. By controlling the mesophase generated during pitch melting, the particle diameter, shape and crystallites can be controlled in orientation, but the mesophase pitch graphite cannot be graphitized even at extremely high temperatures, so that the increase in capacity cannot be maintained. For this purpose, boron is added to maintain a high capacity.

また鱗片状黒鉛の形状的課題を解決するために、鱗片状黒鉛の表面をタールピッチ被覆して約千度程度にて焼成することによりピッチ被覆黒鉛を形成させて高容量を維持しながら電解液の分解抑制を可能にする開発もされている。In order to solve the shape problem of flake graphite, the surface of the flake graphite is tar pitch coated and fired at about 1000 degrees to form pitch coated graphite, while maintaining a high capacity while maintaining the electrolyte. Development has also been made to enable the suppression of decomposition.

さらに高容量化のためにメソフェーズピッチ系炭素繊維が開発されており、タールピッチを400℃前後の温度で加熱溶融して得られるメソフェーズピッチを紡糸する工程で繊維断面方向の結晶子の配向性を制御することが出来、したがって繊維端と側面に結晶子端が露出した黒鉛材料を得ることが出来る。In addition, mesophase pitch-based carbon fibers have been developed for higher capacities, and the orientation of crystallites in the fiber cross-sectional direction is improved in the process of spinning mesophase pitch obtained by heating and melting tar pitch at a temperature of about 400 ° C. Therefore, it is possible to obtain a graphite material in which the crystallite ends are exposed on the fiber ends and side surfaces.

しかしながら、リチウムイオン二次電池負極材料としての炭素の高性能化のためには、高容量化および高純度化および原料から製造する工程を得て生成されて得られる炭素に至る工程の省エネルギーも重要な課題である。However, in order to improve the performance of carbon as a negative electrode material for lithium ion secondary batteries, it is important to increase the capacity and purity, and to save energy in the process that leads to the carbon that is produced from the production process from raw materials. It is a difficult task.

発明者達は鋭意研究した結果、すでに商品として製造されており純度、分子量さらには金属等の不純物や毒性等が既知である素材を原料にすることを考慮しながら高容量化および製造工程の省エネルギーのために低温焼成炭素を新規に開発した。As a result of diligent research, the inventors have already made products that are already manufactured as products and have known purity, molecular weight, impurities such as metals, toxicity, etc. Newly developed low-temperature calcined carbon for this purpose.

焼成温度1000℃以下、具体的には300℃から800℃で焼成された炭素前駆体というべき低温焼成炭素は、例えば700℃で焼成されたメソカーボンマイクロビーズは、750mAh/gの可逆容量を持つことが報告されており、フェノール樹脂の低温焼成物は、ポリアセンとして価値ある850mAh/gの容量が報告されている。このような低温焼成炭素の充電放電曲線の特徴として電気二重層キャパシター的な電位挙動を示している。Low-temperature calcined carbon that should be called a carbon precursor calcined at a calcining temperature of 1000 ° C. or less, specifically 300 to 800 ° C., for example, mesocarbon microbeads calcined at 700 ° C. has a reversible capacity of 750 mAh / g. It has been reported that a low-temperature fired product of a phenol resin has a capacity of 850 mAh / g, which is valuable as a polyacene. As a characteristic of the charge-discharge curve of such low-temperature calcined carbon, electric potential behavior like an electric double layer capacitor is shown.

発明者達は、上記の高性能化、特に高容量化のために原料としてキシレン樹脂を選定した。三菱ガス化学社製キシレン樹脂前駆体ニカノールを選定して製造原料とした。The inventors selected xylene resin as a raw material for the above-mentioned high performance, particularly high capacity. A xylene resin precursor Nikanol manufactured by Mitsubishi Gas Chemical Co., Ltd. was selected as a production raw material.

上記三菱ガス化学社製キシレン樹脂前駆体ニカノールのレゾール型キシレン樹脂前駆体を原料とした。A resol type xylene resin precursor of the above-mentioned Mitsubishi Gas Chemical Co., Ltd. xylene resin precursor Nicanol was used as a raw material.

原料を磁器製トレイーに入れ、不活性雰囲気(窒素ガス)中にて550℃乃至750度にて4時間焼成を行った。The raw material was placed in a porcelain tray and baked at 550 ° C. to 750 ° C. for 4 hours in an inert atmosphere (nitrogen gas).

焼成された焼成炭素前駆体をボールミルにて粉砕し、篩により粒度を選別した。The calcined carbon precursor that had been calcined was pulverized with a ball mill, and the particle size was selected with a sieve.

得られた炭素前駆体を分析したところ、焼成温度550度においては、面間隔0.405nmの結晶子0.74nmである縮合多環炭化水素であった。When the obtained carbon precursor was analyzed, it was a condensed polycyclic hydrocarbon having a crystallite of 0.74 nm with a face spacing of 0.405 nm at a firing temperature of 550 degrees.

得られた炭素前駆体を分析したところ、焼成温度650℃においては、面間隔0.397nmの結晶子1.00nmである縮合多環炭化水素であった(技術文献1)。When the obtained carbon precursor was analyzed, it was a condensed polycyclic hydrocarbon having a crystallite of 1.00 nm with a face spacing of 0.397 nm at a firing temperature of 650 ° C. (Technical Document 1).

技術文献1Technical Literature 1

The structural analysis of various hydro−graphene species,Synthetic Metals 145(2004)31−36The structural analysis of various hydro-graphene specifications, Synthetic Metals 145 (2004) 31-36.

上記炭素前駆体をリチウムイオン二次電池負極材料として実験を行った。
先ず、上記炭素前駆体を結着剤としてPVDFを使用した場合には溶剤としてNメチルピロリドン(NMP)を使用し、導電剤アセチレンブラックを混合して負極材料を調整した。上記炭素前駆体の結着剤としてカルボキシメチルセルロース(CMC)および/またはスチレンブタジエンゴム(SBR)を使用する場合には溶剤として水を使用した。ただし、使用される結着剤についてはここに説明した各種高分子に限定されるものではない。
得られた負極活物質と導電剤と結着剤との混合液をスクリーン印刷方式やロールコーター方式により銅箔に塗布した。
An experiment was conducted using the carbon precursor as a negative electrode material for a lithium ion secondary battery.
First, when PVDF was used with the carbon precursor as a binder, N methylpyrrolidone (NMP) was used as a solvent, and a conductive agent acetylene black was mixed to prepare a negative electrode material. When carboxymethyl cellulose (CMC) and / or styrene butadiene rubber (SBR) was used as the binder for the carbon precursor, water was used as the solvent. However, the binder used is not limited to the various polymers described here.
The obtained mixed liquid of the negative electrode active material, the conductive agent and the binder was applied to the copper foil by a screen printing method or a roll coater method.

対極にはリチウム金属を使用し、電解液として各種電解質/非プロトン溶剤配合液を使用し、ポリエチレン製またはポリプロピレン製またはグラスウール製等の分離膜を用いて、リチウム金属/分離膜/炭素前駆体を積層してリチウムイオン電池構造を作製した。Lithium metal is used for the counter electrode, various electrolyte / aprotic solvent blends are used as the electrolyte, and a lithium metal / separation membrane / carbon precursor is made using a separation membrane such as polyethylene, polypropylene, or glass wool. The lithium ion battery structure was produced by stacking.

本発明で用いられる正極活物質としては、例えば、LiCoO2,LiNiO2,LiMn2O4等のリチウム酸化物、TiO2,MnO2,MoO3,V2O5等のカルコゲン化合物のうちの一種、あるいは複数種が組合せて用いることが出来る。As the positive electrode active material used in the present invention, for example, lithium oxides such as LiCoO2, LiNiO2, and LiMn2O4, one kind of chalcogen compounds such as TiO2, MnO2, MoO3, and V2O5, or a combination of plural kinds can be used. .

本発明で使用する活物質が含有された塗布液の具体的な調整方法について説明する。先ず、上記に挙げたような材料から適宜に選定された結着剤と粉末状負極活物質とを水、軽溶剤等の溶媒からなる分散媒体中に入れ更に必要に応じて導電剤を混合させた組成物を、従来公知のホモジナイザー、ボールミル、サンドミル、ロールミル等の分散機を用いて混合分散することにより調製する。  A specific method for adjusting the coating solution containing the active material used in the present invention will be described. First, a binder appropriately selected from the materials listed above and a powdered negative electrode active material are placed in a dispersion medium composed of a solvent such as water or a light solvent, and a conductive agent is mixed as necessary. The above composition is prepared by mixing and dispersing using a conventional dispersing machine such as a homogenizer, a ball mill, a sand mill, or a roll mill.

この活物質塗布液を前記金属箔集電体の面上に、各種塗布方法を用いて乾燥厚みで10−200ミクロンメートル、好ましくは50−180ミクロンメートルの範囲で塗布した後、加熱乾燥させる。This active material coating solution is applied on the surface of the metal foil current collector in a dry thickness range of 10 to 200 microns, preferably 50 to 180 microns using various coating methods, and then dried by heating.

更に、上記のようにして塗布および乾燥処理により形成された塗布層の均質性をより向上させるために、当該塗布層に金属ロール、加熱ロール、シートプレス機等を用いてプレス処理を施し、本発明の電極板を形成することが好ましい。更に、上記の電極板を用いて電池の組み立て工程に移る前に、電極板の活物質層中の水分を除去するために、更に加熱処理や減圧処理等を行なうことが好ましい。Further, in order to further improve the homogeneity of the coating layer formed by coating and drying as described above, the coating layer is subjected to a press treatment using a metal roll, a heating roll, a sheet press machine, etc. It is preferable to form the electrode plate of the invention. Furthermore, before the battery assembly process using the above electrode plate, in order to remove moisture in the active material layer of the electrode plate, it is preferable to further perform heat treatment, decompression treatment, or the like.

以上のようにして作製した本発明の負極の非水電解液二次電池用電極板を用いて、例えば、リチウム系二次電池を作製する場合には、電解液として、溶質のリチウム塩を有機溶剤に溶解させた非水電解液が用いられる。非水電解液を形成する溶質のリチウム塩としては、例えば、LiCLO4,LiBF4,LiPF6,LiAsF6,LiCl,LiBr等の無機リチウム塩、およびLiB(C6H5)4,LiN(SO2CF3)2,LiC(SO2CF3)3,LiOSO2CF3,LiOSO2C2F5,LiOSO2C3F7,LiOSO2C4F9,LiOSO2C5F11,LiOSO2C6F13,LiOSO2C7F15等の有機リチウム塩が使用される。When, for example, a lithium-based secondary battery is produced using the negative electrode nonaqueous electrolyte secondary battery electrode plate of the present invention produced as described above, a solute lithium salt is used as the electrolyte. A nonaqueous electrolytic solution dissolved in a solvent is used. Examples of the solute lithium salt that forms the non-aqueous electrolyte include inorganic lithium salts such as LiCLO4, LiBF4, LiPF6, LiAsF6, LiCl, and LiBr, and LiB (C6H5) 4, LiN (SO2CF3) 2, LiC (SO2CF3). Organolithium salts such as 3, LiOSO2CF3, LiOSO2C2F5, LiOSO2C3F7, LiOSO2C4F9, LiOSO2C5F11, LiOSO2C6F13, LiOSO2C7F15 are used.

この際に使用される有機溶媒としては、環状エステル類、鎖状エステル類、環状エーテル類、鎖状エーテル類等挙げられる。環状エステル類としては、例えば、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2−メチルーガンマブチロラクトン、アセチルーガンマブチロラクトン、ガンマバレロラクトン等挙げられる。Examples of the organic solvent used in this case include cyclic esters, chain esters, cyclic ethers, chain ethers and the like. Examples of the cyclic esters include propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone.

鎖状エステル類としては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカ−ボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等が挙げられる。Examples of chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester.

環状エーテル類としては、例えばテトラハイドロキノン、アルキルテトラハイドロフラン、ジアルキルテトラハイドロフラン、アルコキシテトラハイドロフラン、ジアルコキシテトラハイドロフラン、1,3−ジオキソラン、アルキルー1,3−ジオキソラン、1,4−ジオキソラン等が挙げられる。
鎖状エーテル類としては、例えば、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエ−テル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル等が挙げられる。
Examples of cyclic ethers include tetrahydroquinone, alkyltetrahydrofuran, dialkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, 1,4-dioxolane, and the like. Is mentioned.
Examples of chain ethers include 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, tetraethylene glycol dialkyl ether, and the like. Is mentioned.

当該実施例を説明する。The embodiment will be described.

三菱ガス化学社製キシレン樹脂前駆体ニカノールのレゾール型前駆体を原料として、窒素雰囲気中にて温度650℃にて4時間焼成した。焼成された炭素前駆体をボールミル粉砕機で粉砕し、篩を使用して微粒子を選定しリチウムイオン電池負極活物質の供試材料とした。Using a resole type precursor of a xylene resin precursor Nicanol manufactured by Mitsubishi Gas Chemical Co., Ltd. as a raw material, it was calcined at a temperature of 650 ° C. for 4 hours in a nitrogen atmosphere. The calcined carbon precursor was pulverized with a ball mill pulverizer, fine particles were selected using a sieve, and used as a test material for a lithium ion battery negative electrode active material.

電池構造の構成材料を以下とした。これら構成材料で電池を構成し充電放電試験を行った。
負極:炭素前駆体92.4wt%、結着剤:PVDF7.6wt%
溶剤:NMP
対極:リチウム金属
電解液:EC/DEC/LiPF6(1vol/1vol/1モル/L)
分離膜:グラスファイバー
初期充電放電サイクル試験条件
対極に対し0.71mA/cm2の定電流充電放電サイクル試験を行った。
初期充電放電サイクル試験の測定結果から、
放電容量:1040mAh/g, 充電容量:680mAh/gであった。
The constituent materials of the battery structure were as follows. A battery was constructed with these constituent materials and a charge / discharge test was conducted.
Negative electrode: carbon precursor 92.4 wt%, binder: PVDF 7.6 wt%
Solvent: NMP
Counter electrode: lithium metal electrolyte: EC / DEC / LiPF6 (1 vol / 1 vol / 1 mol / L)
Separation membrane: Glass fiber initial charge / discharge cycle test condition A constant current charge / discharge cycle test of 0.71 mA / cm 2 was performed against the counter electrode.
From the measurement results of the initial charge / discharge cycle test,
The discharge capacity was 1040 mAh / g, and the charge capacity was 680 mAh / g.

当該実施例3を説明する。
実施例3 電池構造の構成材料を以下とした。これら構成材料で電池を構成し、充放電試験を行った。
負極:実施例1と同じ650℃焼成の炭素前駆体 85.0wt%、
導電剤:アセチレンブラック 7.0wt%
結着剤:PVDF8.0wt%
溶剤: NMP
対極:リチウム金属
分離膜:グラスファイバー
電解液:EC/DMC/LiPF6(1vol/1vol/1モル/L)
初期充放電サイクル特性試験条件
対極に対し0.71mAh/cm2の定電流充放電サイクル試験を行った。
初期充放電サイクル試験の測定結果から、
放電容量720mAh/g, 充電容量680mAh/gであった。
The third embodiment will be described.
Example 3 The constituent materials of the battery structure were as follows. A battery was composed of these constituent materials, and a charge / discharge test was performed.
Negative electrode: 85.0 wt% of carbon precursor fired at 650 ° C. as in Example 1
Conductive agent: Acetylene black 7.0 wt%
Binder: PVDF 8.0 wt%
Solvent: NMP
Counter electrode: Lithium metal separation membrane: Glass fiber electrolyte: EC / DMC / LiPF6 (1 vol / 1 vol / 1 mol / L)
Initial charge / discharge cycle characteristics test conditions A constant current charge / discharge cycle test of 0.71 mAh / cm 2 was performed on the counter electrode.
From the measurement results of the initial charge / discharge cycle test,
The discharge capacity was 720 mAh / g, and the charge capacity was 680 mAh / g.

発明の効果The invention's effect

市場に供給されている低価格の汎用樹脂原料(キシレン樹脂レゾール型前駆体)を550℃乃至750℃の温度範囲で窒素雰囲気において焼成して得られる重合した炭素前駆体を粉砕し、篩により分級して得られる炭素前駆体粉末は、リチウムイオン二次電池負極材料として極めて高容量である680mAh/gを示した。原料が精製されているために金属等不純物含有量が低減することが出来、目的の炭素材料を製造する温度は、1000℃以下の低温の熱処理工程であり省エネルギーである。A polymerized carbon precursor obtained by firing a low-cost general-purpose resin raw material (xylene resin resol type precursor) supplied to the market in a nitrogen atmosphere at a temperature range of 550 ° C. to 750 ° C. is pulverized and classified by a sieve. The carbon precursor powder obtained in this manner exhibited a very high capacity of 680 mAh / g as a negative electrode material for a lithium ion secondary battery. Since the raw material is refined, the content of impurities such as metals can be reduced, and the temperature for producing the target carbon material is a low-temperature heat treatment step of 1000 ° C. or less, which saves energy.

Claims (8)

キシレン樹脂前駆体を不活性雰囲気で300℃乃至800℃に加熱重合して得られる炭素前駆体を特徴とするリチウムイオン二次電池用電極材料An electrode material for a lithium ion secondary battery comprising a carbon precursor obtained by heating and polymerizing a xylene resin precursor at 300 ° C. to 800 ° C. in an inert atmosphere キシレン樹脂前駆体を不活性雰囲気で300℃乃至800℃に加熱重合して得られる炭素前駆体を特徴とする電気二重層キャパシター用電極材料An electrode material for an electric double layer capacitor, characterized by a carbon precursor obtained by heating and polymerizing a xylene resin precursor at 300 ° C. to 800 ° C. in an inert atmosphere キシレン樹脂前駆体がレゾール型キシレン樹脂前駆体である請求項1および請求項2The xylene resin precursor is a resol type xylene resin precursor. キシレン樹脂前駆体がノボラック型キシレン樹脂前駆体である請求項1および請求項2The xylene resin precursor is a novolak type xylene resin precursor. 請求項3のキシレン樹脂前駆体にフェノール類またはロジンまたは脂肪酸または乾性油またはアルキッド樹脂を含有した請求項1および請求項2The xylene resin precursor of claim 3 contains phenols, rosin, fatty acid, drying oil or alkyd resin. 請求項4のキシレン樹脂前駆体にフェノール類またはロジンまたは脂肪酸または乾性油またはアルキッド樹脂を含有した請求項1および請求項2The xylene resin precursor of claim 4 contains phenols, rosin, fatty acid, drying oil or alkyd resin. 請求項1に記載されたリチウムイオン二次電池用電極材料の製造方法The manufacturing method of the electrode material for lithium ion secondary batteries described in Claim 1 請求項2に記載された電気二重層キャパシター用電極材料の製造方法The manufacturing method of the electrode material for electric double layer capacitors described in Claim 2
JP2006274478A 2006-09-08 2006-09-08 Battery constituent material Pending JP2008066259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006274478A JP2008066259A (en) 2006-09-08 2006-09-08 Battery constituent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006274478A JP2008066259A (en) 2006-09-08 2006-09-08 Battery constituent material

Publications (1)

Publication Number Publication Date
JP2008066259A true JP2008066259A (en) 2008-03-21

Family

ID=39288763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274478A Pending JP2008066259A (en) 2006-09-08 2006-09-08 Battery constituent material

Country Status (1)

Country Link
JP (1) JP2008066259A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330702A (en) * 1996-06-07 1997-12-22 Kanebo Ltd Organic electrolyte battery
JPH10188978A (en) * 1996-12-19 1998-07-21 Sumitomo Durez Co Ltd Composition for electrode material for lithium ion secondary battery
JP2001143973A (en) * 1999-11-15 2001-05-25 Asahi Glass Co Ltd High density electrode made mainly of spherical activated carbon and electric double layer capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330702A (en) * 1996-06-07 1997-12-22 Kanebo Ltd Organic electrolyte battery
JPH10188978A (en) * 1996-12-19 1998-07-21 Sumitomo Durez Co Ltd Composition for electrode material for lithium ion secondary battery
JP2001143973A (en) * 1999-11-15 2001-05-25 Asahi Glass Co Ltd High density electrode made mainly of spherical activated carbon and electric double layer capacitor

Similar Documents

Publication Publication Date Title
KR101131937B1 (en) Negative active material for lithium rechargeable battery, method of preparing the same, and lithium rechargeable battery comprising the same
KR101361567B1 (en) Composite graphite particles and use of same
TWI533495B (en) Negative-electrode active material for lithium secondary cell
JP4104829B2 (en) Carbonaceous material and lithium secondary battery
JP6429172B2 (en) Positive electrode active material having excellent electrochemical performance and lithium secondary battery including the same
TWI499119B (en) Graphite based negative-electrode active material for lithium secondary cell
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
KR101609459B1 (en) Carbon-silicon composite and manufacturing mehtod of the same
JP7288198B2 (en) Negative electrode active material and manufacturing method thereof
JP3709987B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material
WO2018110263A1 (en) Composite graphite particles, method for producing same, and use thereof
JP2019012646A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2003223892A (en) Lithium secondary battery and method for manufacturing negative electrode material therefor
JP2007141677A (en) Compound graphite and lithium secondary cell using same
WO2023065909A1 (en) Electrochemical device and electronic device
KR101417588B1 (en) Anode active material with high electrical conductivity and method for preparing the same
KR101592773B1 (en) Anode active material and secondary battery comprising the same
CN113193182A (en) Negative electrode material composition, negative electrode for lithium ion battery, and lithium ion battery
JP2009187924A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode
WO2022172585A1 (en) Negative electrode active material, method for manufacturing negative electrode active material, and non-aqueous electrolyte secondary battery
JPH1111919A (en) Production method of conjugated carbon particle, conjugated carbon particle obtained by this production method, carbon paste using the conjugated carbon particle, negative pole for lithium secondary battery and lithium secondary battery
JP2004059386A (en) Production method for carbon-coated graphite particle, carbon-coated graphite particle, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2001126762A (en) Nonaqueous electrolyte secondary battery
JP4872234B2 (en) Lithium primary battery
JP2007095641A (en) Battery constructing material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061121

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703