JP2008064477A - Led destruction detection apparatus - Google Patents

Led destruction detection apparatus Download PDF

Info

Publication number
JP2008064477A
JP2008064477A JP2006239663A JP2006239663A JP2008064477A JP 2008064477 A JP2008064477 A JP 2008064477A JP 2006239663 A JP2006239663 A JP 2006239663A JP 2006239663 A JP2006239663 A JP 2006239663A JP 2008064477 A JP2008064477 A JP 2008064477A
Authority
JP
Japan
Prior art keywords
led
circuit
detection
reference voltage
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006239663A
Other languages
Japanese (ja)
Other versions
JP4791299B2 (en
Inventor
Kenichi Oba
堅一 大庭
Masahito Mizusaki
雅人 水崎
Katsuhiro Ito
勝啓 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Electric Co Ltd
Original Assignee
Nissei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Electric Co Ltd filed Critical Nissei Electric Co Ltd
Priority to JP2006239663A priority Critical patent/JP4791299B2/en
Publication of JP2008064477A publication Critical patent/JP2008064477A/en
Application granted granted Critical
Publication of JP4791299B2 publication Critical patent/JP4791299B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect the destruction of LEDs even in the case that a driving voltage of a LED is changed due to light modulation. <P>SOLUTION: A plurality of LEDs (D1-1 to D12-9) are divided into two groups (C1-C9) or more. In each group, two LEDs or more are serially connected. A LED destruction detection apparatus (1) comprises the plurality of groups of LEDs and a detection circuit. Each group of LEDs is connected to a drive power source (VL) in parallel. With some LEDs (D1-1 to D12-9) of each group of LEDs as a detection element (2), the continuity of the serial circuit is detected for every group. Its detection signals (V1-V12) are outputted to a detection circuit comprising a comparison circuit (3); a reference voltage circuit (4); a destruction determination circuit (5); a driving circuit (6); and a destruction display/alarm sound processing circuit (7). The detection circuit is provided with a function capable of adapting to voltage changes of the drive power source (VL)applied to the group of LEDs. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、LED破壊検出装置に関し、就中、画像処理用照明器具あるいは機器検査用照明器具に組み込むのに有用なLED破壊検出装置に関する。   The present invention relates to an LED breakage detection apparatus, and more particularly to an LED breakage detection apparatus useful for incorporation in an image processing lighting apparatus or an apparatus inspection lighting apparatus.

従来、LED照明器具のオープン(断線)破壊検出装置がLED信号灯の場合について知られている(例えば、特許文献1参照。)。この装置では、同文献1の図3に示されるように、直列接続されたLED素子群を一直列単位とし、この直列単位の複数組が駆動電源に並列接続されている。その際、各直列単位には、さらにフォトカプラを検知素子として直列接続することにより、直列単位毎のオープン破壊を検知可能としている。つまり、この装置は、LEDの駆動電圧が一定のときに限り、LED素子群のオープン破壊に対応できるように設定されている。 2. Description of the Related Art Conventionally, it has been known that an LED lighting fixture is an LED signal lamp (see, for example, Patent Document 1). In this apparatus, as shown in FIG. 3 of the document 1, a group of LED elements connected in series is used as one series unit, and a plurality of sets of the series units are connected in parallel to a drive power source. At that time, each series unit is further connected in series with a photocoupler as a detection element, so that an open breakdown for each series unit can be detected. That is, this device is set so as to cope with open destruction of the LED element group only when the LED drive voltage is constant.

一方、画像処理用照明器具あるいは機器検査用照明器具では、検査物の色、サイズ、および反射率などに応じて、LEDの駆動電圧を変化させて所望の照射光量を得ることが多い。しかし、従来の検出装置では、LEDの駆動電圧が大きく変化した際に、LED破壊を確実に検知することは困難である。しかも、LED破壊モードには、オープン破壊に加えてショート(短絡)破壊も高い確率で含まれるので、ショート破壊の検知も重要になる。ちなみに、上記文献1では、オープン破壊の検知に終始し、ショート破壊の検知についての解決策は何等開示されていない。 On the other hand, in the image processing lighting apparatus or the apparatus inspection lighting apparatus, a desired amount of irradiation light is often obtained by changing the driving voltage of the LED in accordance with the color, size, reflectance, and the like of the inspection object. However, with the conventional detection device, it is difficult to reliably detect the LED breakdown when the LED drive voltage changes greatly. In addition, since the LED destruction mode includes not only open destruction but also short-circuit (short-circuit) destruction with a high probability, detection of short-circuit destruction is also important. Incidentally, in the above-mentioned document 1, since the detection of the open breakage is always performed, no solution for the detection of the short breakage is disclosed.

特開平7−287043号公報JP-A-7-287043

したがって、本発明の課題は、調光によりLEDの駆動電圧が変化した際にも、LED破壊を正確に検知できるLED破壊検出装置を提供することにある。さらに、本発明の他の課題は、LEDのオープン破壊検知機能に加えて、LEDのショート破壊をも検知できるLED破壊検出装置を提供することにある。 Therefore, the subject of this invention is providing the LED destruction detection apparatus which can detect LED destruction correctly, even when the drive voltage of LED changes by light control. Furthermore, another object of the present invention is to provide an LED break detection device that can detect not only LED open break detection but also LED short break.

本発明者等は、直列接続されたLED素子群を一直列単位とし、この直列単位の複数組を駆動電源に並列接続した際に、各直列単位中の一部のLED素子を導通検知用素子として兼用させることに注目した。そして、該検知素子から出力されるアノード側電位を、該直列単位に印加される最大駆動電圧および最小駆動電圧(いずれも固定電圧)に対応する2つの固定基準電圧と比較することにより、従来の問題を解消するに至った。また、本発明のさらに好ましい態様によれば、該最大駆動電圧および最小駆動電圧を維持しながら、これら2つの基準電圧に対応する最大側可変駆動電圧および最小側可変駆動電圧を併用することにより、全てのLED破壊が破壊モード毎に特定される。   The present inventors set a group of LED elements connected in series as one series unit, and when a plurality of sets of the series units are connected in parallel to a drive power source, some of the LED elements in each series unit are elements for detecting continuity. We paid attention to let it be used as both. Then, by comparing the anode-side potential output from the sensing element with two fixed reference voltages corresponding to the maximum drive voltage and the minimum drive voltage (both fixed voltages) applied in the series unit, The problem was solved. Further, according to a further preferred aspect of the present invention, the maximum variable drive voltage and the minimum variable drive voltage corresponding to these two reference voltages are used in combination while maintaining the maximum drive voltage and the minimum drive voltage. All LED breakdowns are identified for each breakdown mode.

本発明のLED破壊検出装置にあっては、以下のような顕著な効果が奏される。
(1)調光時にLEDの駆動電圧を変化させた場合でも、LED破壊を正確に検知できる。
(2)各直列単位中の一部のLED素子を検知素子として兼用しているので、追加的検出素子を必要とせず、装置が簡略化される。
(3)該2つの基準電圧に加えて、さらに対応する2つの可変基準電圧を併用することにより、ショート破壊およびオープン破壊が区別されて検知される。
(4)上記(3)において、破壊モード毎の破壊表示素子ないし破壊警告ブザーを併用することにより、LED破壊が瞬時にしかも破壊モードまでが判別できるので、修複等の対処が迅速になる。
In the LED breakage detection device of the present invention, the following remarkable effects are exhibited.
(1) Even when the LED drive voltage is changed during dimming, LED destruction can be detected accurately.
(2) Since some of the LED elements in each series unit are also used as detection elements, an additional detection element is not required and the apparatus is simplified.
(3) In addition to the two reference voltages, two corresponding variable reference voltages are used in combination, so that the short breakdown and the open breakdown are distinguished and detected.
(4) In (3) above, by using a destructive display element or a destructive warning buzzer for each destructive mode, it is possible to determine whether the LED is destructed instantaneously and up to the destructive mode, so that measures such as repairs can be taken quickly.

以下、本発明のLED破壊検出装置の一例について、添付図面を参照しながら述べる。
図1は、本発明のLED破壊検出装置の一例を示すブロック図である。
図2は、図1のLED破壊検出装置の回路図である。
図3は、図1〜図2の装置において、モニタ信号と基準電圧の関係を示すグラフである。
図4は、本発明の別の態様において、モニタ信号と基準電圧の関係を示すグラフである。
図5は、本発明のさらに別の態様において、モニタ信号と基準電圧の関係を示すグラフである。
図6は、上記のさらに別の態様における回路図である。
図7は、本発明のLED破壊検出装置を組込んだ検査用のライン状LED照明装置用の斜視図である。
Hereinafter, an example of the LED breakage detection apparatus of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a block diagram showing an example of an LED breakage detection apparatus according to the present invention.
FIG. 2 is a circuit diagram of the LED breakage detection apparatus of FIG.
FIG. 3 is a graph showing the relationship between the monitor signal and the reference voltage in the apparatus of FIGS.
FIG. 4 is a graph showing the relationship between the monitor signal and the reference voltage in another aspect of the present invention.
FIG. 5 is a graph showing the relationship between the monitor signal and the reference voltage in still another aspect of the present invention.
FIG. 6 is a circuit diagram in still another embodiment described above.
FIG. 7 is a perspective view for an inspection line-shaped LED illumination device incorporating the LED breakage detection device of the present invention.

図1〜図2には、本発明の第一の態様が示されている。これらの図において、(1)はLED破壊検出部で、検知素子(2)と比較回路(3)と基準電圧回路(4)と破壊判定回路(5)と駆動回路(6)と破壊表示・警告音処理回路(7)とを含む検知回路、ならびに破壊表示素子(8)および/または破壊警告ブザー(9)から構成されている。また、図1のLED素子直並列回路では、直列接続されたLED素子群を一直列単位とし、この直列単位の複数組が駆動電源に並列接続されている。そして、各直列単位の導通検知素子(2)としては、その直列単位の終端(最下段)のLED素子が兼用されている。 1 to 2 show a first embodiment of the present invention. In these drawings, (1) is an LED breakdown detection unit, which includes a detection element (2), a comparison circuit (3), a reference voltage circuit (4), a breakdown determination circuit (5), a drive circuit (6), and a breakdown display. It comprises a detection circuit including a warning sound processing circuit (7), a destruction display element (8) and / or a destruction warning buzzer (9). Further, in the LED element series-parallel circuit of FIG. 1, a group of LED elements connected in series is set as one series unit, and a plurality of sets of the series units are connected in parallel to the drive power supply. And as a conduction | electrical_connection detection element (2) of each series unit, the LED element of the termination | terminus (bottom stage) of the series unit is combined.

図1のLED素子直並列回路、さらには導通検知素子(2)、比較回路(3)、および基準電圧回路(4)の詳細は、図2に示されている。 Details of the LED element series-parallel circuit of FIG. 1, and further the continuity detecting element (2), the comparison circuit (3), and the reference voltage circuit (4) are shown in FIG.

図2において、(C1)〜(C12)は各直列単位、(D1−1〜D1−9)〜(D12−1〜D12−9)は、各直列単位(C1)〜(C12)で直列接続されたLED素子群で、その際、各直列単位の終端の(D1−9)〜(D12−9)がそれぞれに導通検知素子(2)として機能する。したがって、ここでは、各直列単位(一列)に9個のLED素子が直列接続され、さらに、この直列単位が12個並列配置されている。なお、各直列単位(C1)〜(C12)のLED素子群には、図示するように、電流制限抵抗(R1)〜(R12)が直列接続されている。これらは、LED駆動電圧との兼ね合いで、通常数十Ω〜数百Ωに設定される。 In FIG. 2, (C1) to (C12) are serial units, and (D1-1 to D1-9) to (D12-1 to D12-9) are serially connected in series units (C1) to (C12). In this case, the terminal units (D1-9) to (D12-9) of each series unit function as the conduction detecting elements (2), respectively. Therefore, here, nine LED elements are connected in series to each series unit (one row), and 12 series units are arranged in parallel. In addition, as shown in the drawing, current limiting resistors (R1) to (R12) are connected in series to the LED element groups of the series units (C1) to (C12). These are usually set to several tens of ohms to several hundreds of ohms in consideration of the LED driving voltage.

さらに、(V1)〜(V12)は各直列単位(C1)〜(C12)において、導通検知素子(2)のアノード(陽極)側電位を示すモニタ信号、(01)〜(012)は比較回路(3)からの出力信号、(VR1)および(VR2)はそれぞれに、比較回路(3)内にてモニタ信号(V1)〜(V12)との比較を行なう最大基準電圧および最小基準電圧、そして、(VL)は各直列単位(C1)〜(C12)に印加される駆動電圧である。 Further, (V1) to (V12) are monitor signals indicating the anode (anode) side potential of the conduction detecting element (2) in each of the serial units (C1) to (C12), and (01) to (012) are comparison circuits. The output signals (VR1) and (VR2) from (3) are respectively the maximum reference voltage and the minimum reference voltage for comparison with the monitor signals (V1) to (V12) in the comparison circuit (3), and , (VL) are drive voltages applied to the respective series units (C1) to (C12).

各直列単位の最下段に位置するLED(D1−9)〜(D12−9)をそれぞれに導通検知素子(2)として兼用するには、例えば、それらのアノード電位(V1)〜(V12)をモニタ信号として常時出力させればよい。このモニタ信号が入力される検知回路には、調光時に各直列単位(C1)〜(C12)への印加電圧が変化したときでも、LED破壊検出に対応できる機能が付与されている。具体的には、調光度合いに応じて各直列単位(C1)〜(C12)に印加される駆動電圧(VL)の最大駆動電圧(VLmax)および最小駆動電圧(VLmin)に対応して、基準電圧回路(4)内に2つの基準電圧、すなわち最大基準電圧(VR1)および最小基準電圧(VR2)を設けている。このような最大基準電圧(VR1)および最小基準電圧(VR2)は、電源電圧(VCC)を、グランド(G)に接続された高精度の抵抗(Ra〜Rd)にて抵抗分圧して固定電圧にすればよい。 In order to use the LEDs (D1-9) to (D12-9) positioned at the bottom of each series unit as the continuity detecting element (2), for example, their anode potentials (V1) to (V12) are used. What is necessary is just to always output as a monitor signal. The detection circuit to which this monitor signal is input is provided with a function that can cope with LED breakage detection even when the applied voltage to each of the series units (C1) to (C12) changes during dimming. Specifically, in accordance with the maximum drive voltage (VLmax) and the minimum drive voltage (VLmin) of the drive voltage (VL) applied to each series unit (C1) to (C12) according to the dimming degree, the reference Two reference voltages, that is, a maximum reference voltage (VR1) and a minimum reference voltage (VR2) are provided in the voltage circuit (4). The maximum reference voltage (VR1) and the minimum reference voltage (VR2) are obtained by dividing the power supply voltage (VCC) by high-precision resistors (Ra to Rd) connected to the ground (G). You can do it.

上述したモニタ信号の電圧(V1)〜(V12)はそれぞれに、最大基準電圧(VR1)および最小基準電圧(VR2)と比較される。この動作は、図2に示すような、汎用のコンパレータからなる比較回路(3)によりなされる。 The monitor signal voltages (V1) to (V12) are compared with the maximum reference voltage (VR1) and the minimum reference voltage (VR2), respectively. This operation is performed by a comparison circuit (3) composed of a general-purpose comparator as shown in FIG.

モニタ信号の電圧(V1)を例にとって説明すると、この電圧(V1)は、比較回路(3)内でウインドウコンパレータを構成している2つのコンパレータ(CP1−1)および(CP1−2)にてそれぞれ最大基準電圧(VR1)および最小基準電圧(VR2)と比較される。比較回路(3)の出力電圧は、正常な場合をHレベル、LED破壊時をLレベルとして出力端子から出力される。このとき、モニタ信号の電圧(V1)レベルが最大基準電圧(VR1)と最小基準電圧(VR2)との間に入り、その出力電圧(01)がHレベルとなった場合を全てのLED素子が正常状態にあると判定する。逆に、その出力電圧(01)がLレベルになった場合は、オープン破壊やショート破壊が発生したものと判定する。このオープン破壊やショート破壊の詳細については、後述する。 The voltage (V1) of the monitor signal will be described as an example. This voltage (V1) is generated by the two comparators (CP1-1) and (CP1-2) constituting the window comparator in the comparison circuit (3). Each is compared with the maximum reference voltage (VR1) and the minimum reference voltage (VR2). The output voltage of the comparison circuit (3) is output from the output terminal with the H level when normal and the L level when the LED is broken. At this time, when the voltage (V1) level of the monitor signal is between the maximum reference voltage (VR1) and the minimum reference voltage (VR2) and the output voltage (01) becomes H level, all the LED elements Determined to be in a normal state. On the contrary, when the output voltage (01) becomes L level, it is determined that an open breakdown or a short breakdown has occurred. Details of the open break and short break will be described later.

以上の態様は、直列単位(C1)についての破壊検知例であるが、他の直列単位(C2)〜(C12)も同様に適用される。したがって、各直列単位(C2)〜(C12)に対応する各モニタ信号の電圧(V2)〜(V12)を最大基準電圧(VR1)および最小基準電圧(VR2)と比較することにより、同様にLED破壊が検知される。 Although the above aspect is an example of the destruction detection about the serial unit (C1), the other serial units (C2) to (C12) are similarly applied. Therefore, by comparing the voltage (V2) to (V12) of each monitor signal corresponding to each series unit (C2) to (C12) with the maximum reference voltage (VR1) and the minimum reference voltage (VR2), the LED similarly Destruction is detected.

そして、比較回路(3)からの各出力電圧(01)〜(012)は、次段の12入力1出力AND回路からなる破壊判定回路(5)に入力される。したがって、この破壊判定回路(5)では、入力する出力電圧(01)〜(012)の内、一つでもLレベルがあれば破壊の判定がなされる。さらに、この破壊判定回路(5)からの破壊判定出力電圧(Lレベル)は、次段の駆動回路(6)を経由して破壊表示・破壊警告音処理回路(7)にて処理され、破壊表示用素子、例えばLED(8)を点灯させ、あるいは破壊警告ブザー(9)を作動させる。 The output voltages (01) to (012) from the comparison circuit (3) are input to the destruction determination circuit (5) including a 12-input 1-output AND circuit in the next stage. Therefore, in this destruction determination circuit (5), if at least one of the input output voltages (01) to (012) is at L level, the destruction is determined. Further, the destruction determination output voltage (L level) from the destruction determination circuit (5) is processed by the destruction display / destruction warning sound processing circuit (7) via the drive circuit (6) in the next stage, The display element, for example, the LED (8) is turned on, or the destruction warning buzzer (9) is activated.

図3には、図2の直列単位(C1)に印加する駆動電圧(VL)と、導通検出素子であるLED素子(D1−9)のモニタ信号の電圧(V1)との一般的関係が示されている。図3における直線A〜Eはそれぞれに、以下のケースに該当する。
a.直線(A):直列単位(C1)の全てのLE素子(D1−1)〜(D1−9)がオープン破壊もショート破壊も無い、すなわち正常な点灯状態のケース。
b.直線(B):LED素子群(D1−1)〜(D1−8)のいずれかの素子がショート破壊したケース。
c.直線(C):検出素子を兼用するLED(D1−9)がオープン破壊したケース。
d.直線(D):LED素子群(D1−1)〜(D1−8)のいずれかの素子がオープン破壊したケース。
e.直線(E):検出素子を兼用するLED素子(D1−9)がショート破壊したケース。
FIG. 3 shows a general relationship between the drive voltage (VL) applied to the series unit (C1) of FIG. 2 and the monitor signal voltage (V1) of the LED element (D1-9) which is a continuity detecting element. Has been. The straight lines A to E in FIG. 3 correspond to the following cases, respectively.
a. Straight line (A): A case where all the LE elements (D1-1) to (D1-9) in the series unit (C1) are free from open breakdown and short-circuit breakdown, that is, in a normal lighting state.
b. Straight line (B): a case in which any one of the LED element groups (D1-1) to (D1-8) is short-circuited.
c. Straight line (C): A case where the LED (D1-9), which also serves as a detection element, is open broken.
d. Straight line (D): a case where any one of the LED element groups (D1-1) to (D1-8) is open broken.
e. Straight line (E): A case where the LED element (D1-9), which also serves as a detection element, is short-circuited.

この図3から、以下のaおよびbの判定がなされる。
a.直線(B)および(C)におけるモニタ信号の電圧(V1)は、全調光範囲(駆動電圧VL)で最大基準電圧(VR1)を上回っている。これに対して、正常状態のモニタ信号の電圧(V1)は、直線(A)で示すように、全調光範囲(駆動電圧VL)で、この最大基準電圧(VR1)と最小基準電圧(VR2)の間にある。このことから、モニタ信号の電圧(V1)と最大基準電圧(VR1)とを比較し、モニタ信号の電圧(V1)>最大基準電圧(VR1)を満足する場合には、直線(B)、(C)のいずれかのケースであることが検知できる。なお、直線(B)のケースが発生する確率は、他の直線(C)、(D)、および直線(E)のケースに比べて、極めて低い。
b.一方、直線(D)、直線(E)のケースでは、モニタ信号の電圧(V1)は、全調光範囲(駆動電圧VL)で最小基準電圧(VR2)を下回っている。このことから、モニタ信号の電圧(V1)と最小基準電圧(VR2)とを比較し、モニタ信号の電圧(V1)<最小基準電圧(VR2)を満足する場合には、直線(D)、あるいは直線(E)のいずれかのケースであることが検知できる。
From FIG. 3, the following determinations a and b are made.
a. The voltage (V1) of the monitor signal in the straight lines (B) and (C) exceeds the maximum reference voltage (VR1) in the entire dimming range (drive voltage VL). On the other hand, the voltage (V1) of the monitor signal in the normal state is the maximum reference voltage (VR1) and the minimum reference voltage (VR2) in the entire dimming range (drive voltage VL) as shown by the straight line (A). ) Therefore, the voltage (V1) of the monitor signal is compared with the maximum reference voltage (VR1), and when the monitor signal voltage (V1)> the maximum reference voltage (VR1) is satisfied, the straight lines (B), ( It can be detected that the case is any one of C). Note that the probability of occurrence of the straight line (B) case is extremely low compared to the cases of the other straight lines (C), (D), and the straight line (E).
b. On the other hand, in the case of the straight line (D) and the straight line (E), the voltage (V1) of the monitor signal is lower than the minimum reference voltage (VR2) in the entire dimming range (drive voltage VL). Therefore, the voltage (V1) of the monitor signal is compared with the minimum reference voltage (VR2), and when the voltage (V1) of the monitor signal <minimum reference voltage (VR2) is satisfied, the straight line (D) or It can be detected that the case is one of the straight lines (E).

以上に述べた第一の態様で特徴的なことは、各直列単位(C1)〜(C12)において、一部のLED素子が検出回路へモニタ信号を出力する導通検知素子(2)として兼用され、且つ該検出回路には、各直列単位(C1)〜(C12)に印加される駆動電源の電圧(VL)の変化に対応できる機能が付与されていることに在る。こうすることにより、照射光量を変化させる調光モードにおいて、LEDの駆動電圧が変化しても、LED破壊が検知できる。また、一部のLED素子を導通検知素子として兼用しているので、フォトカプラのような追加的検出素子を必要とせず、構成が簡略化される。 What is characteristic in the first aspect described above is that, in each of the series units (C1) to (C12), some LED elements are also used as continuity detection elements (2) for outputting a monitor signal to the detection circuit. In addition, the detection circuit is provided with a function capable of responding to changes in the voltage (VL) of the drive power supply applied to each of the series units (C1) to (C12). By doing so, even in the dimming mode in which the irradiation light quantity is changed, the LED breakage can be detected even if the LED drive voltage changes. In addition, since some LED elements are also used as continuity detection elements, an additional detection element such as a photocoupler is not required, and the configuration is simplified.

上述の第一の態様においては、LED素子間の電圧―電流特性の違い、素子のばらつき、さらには駆動電圧の影響等で、図4に示すように、直線(A)と直線(B)の間隔が接近してしまうことがある。この場合には、固定された最大基準電圧(VR1)では両者を区別するのが困難になる。この区別が必要なときは、以下に述べる第二の態様を採用される。 In the first aspect described above, the difference between the voltage-current characteristics between the LED elements, the element variation, and the influence of the drive voltage, etc., as shown in FIG. 4, the straight lines (A) and (B) The interval may approach. In this case, it becomes difficult to distinguish the two with the fixed maximum reference voltage (VR1). When this distinction is necessary, the second mode described below is adopted.

本発明の第二の態様にあっては、図4に示すように、最大基準電圧(VR1)を各直列単位(C1)〜(C12)に印加される駆動電圧(VL)に連動した最大側可変基準電圧(VR3)に変更する。 In the second aspect of the present invention, as shown in FIG. 4, the maximum reference voltage (VR1) is linked to the drive voltage (VL) applied to each series unit (C1) to (C12). Change to variable reference voltage (VR3).

この際、この最大側可変基準電圧(VR3)は、直線(A)と直線(B)のケースを判別するために、同図に示すように全調光範囲で、直線(A)と直線(B)のほぼ中間の値に設定する。図4の場合のように、直線(A)と直線(B)が互いに平行な場合には、駆動電圧(VL)を高精度の抵抗で抵抗分圧するだけで、直線(A)と直線(B)のほぼ中間に最大側可変基準電圧(VR3)を容易に設定できる。また、直線(A)と直線(B)が曲線の場合には、各曲線の形状に応じて、公知のオペアンプ等による曲線補正回路を利用して、曲線状の最大側可変基準電圧(VR3)を直線(A)と直線(B)のほぼ中間に入るように設定すればよい。これにともない、図1および図2の比較回路(3)では、最大基準電圧(VR1)のみ最大側可変基準電圧(VR3)に変更されるとともに、基準電圧回路(4)の最大基準電圧(VR1)側の電源端子(VCC)のみ駆動電圧(VL)に変更される。 At this time, the maximum variable reference voltage (VR3) is used to determine the case of the straight line (A) and the straight line (B), as shown in FIG. B) is set to an approximately middle value. As in the case of FIG. 4, when the straight line (A) and the straight line (B) are parallel to each other, the drive voltage (VL) is simply divided by a resistor with high precision, and the straight line (A) and the straight line (B ) Can be easily set to the maximum variable reference voltage (VR3). Further, when the straight line (A) and the straight line (B) are curves, a curved maximum variable reference voltage (VR3) is used by using a curve correction circuit such as a known operational amplifier according to the shape of each curve. May be set so as to fall approximately between the straight line (A) and the straight line (B). Accordingly, in the comparison circuit (3) of FIGS. 1 and 2, only the maximum reference voltage (VR1) is changed to the maximum variable reference voltage (VR3), and the maximum reference voltage (VR1) of the reference voltage circuit (4) is changed. ) Side power supply terminal (VCC) only is changed to the drive voltage (VL).

同様にして、他の直列単位列(C2)〜(C12)についても、最大基準電圧(VR1)を最大側可変基準電圧(VR3)に変更することにより、LED破壊が検知される。 Similarly, with respect to the other series unit columns (C2) to (C12), LED breakdown is detected by changing the maximum reference voltage (VR1) to the maximum variable reference voltage (VR3).

この第二の態様では、ショート破壊とオープン破壊は一括検知される。すなわち、直線(B)と直線(C)は共に、最大側可変基準電圧(VR3)の上側に位置しているので、ショート破壊(直線(B))とオープン破壊(直線(C))の区別はされない。同様に、直線(D)と直線(E)は共に最小基準電圧(VR2)の下側に位置しているので、両者も互いに区別されない。これらの破壊モード毎に区別が必要な際には、以下に述べる第三の態様が採用される。 In this second aspect, short breaks and open breaks are collectively detected. That is, since both the straight line (B) and the straight line (C) are located on the upper side of the maximum variable reference voltage (VR3), the distinction between short-circuit breakdown (straight line (B)) and open breakdown (straight line (C)). Not done. Similarly, since both the straight line (D) and the straight line (E) are located below the minimum reference voltage (VR2), they are not distinguished from each other. When distinction is necessary for each of these destruction modes, the third mode described below is adopted.

本発明の第三の態様にあっては、図5において、最大基準電圧(VR1)を維持しながら、その下側にさらに最大側可変基準電圧(VR3)を設け、且つ最小基準電圧(VR2)を維持しながら、その下側にさらに最小側可変基準電圧(VR4)が追加・併用される。この際、最小側可変基準電圧(VR4)の電圧レベルは、全調光範囲で直線(D)と直線(E)との中間に設ける。最大側可変基準電圧(VR3)については、第二の態様の場合と同じである。 In the third aspect of the present invention, in FIG. 5, while maintaining the maximum reference voltage (VR1), a maximum variable reference voltage (VR3) is further provided below the minimum reference voltage (VR2). The minimum side variable reference voltage (VR4) is further added and used in the lower side while maintaining the above. At this time, the voltage level of the minimum variable reference voltage (VR4) is provided between the straight line (D) and the straight line (E) in the entire dimming range. The maximum variable reference voltage (VR3) is the same as in the second embodiment.

要するに、第三の態様では、最大基準電圧(VR1)および最小基準電圧(VR2)に加えて、最大側可変基準電圧(VR3)と最小側可変基準電圧(VR4)を併用し、これら4個の基準電圧を組み込んだ比較回路が採用される。これにより、破壊モード(直線(B)〜直線(E))毎の判別が可能になり、より高精度な破壊検出が実現される。 In short, in the third aspect, in addition to the maximum reference voltage (VR1) and the minimum reference voltage (VR2), the maximum variable reference voltage (VR3) and the minimum variable reference voltage (VR4) are used in combination. A comparison circuit incorporating a reference voltage is employed. Thereby, it becomes possible to discriminate for each destruction mode (straight line (B) to straight line (E)), and more accurate destruction detection is realized.

この場合の検知回路の例は図6に示されている。この例では、4段のコンパレータ(CP1−1)〜(CP1−4)と3個のアナログスイッチ(SW1)〜(SW3)とからなる比較回路(3)、ならびに最大基準電圧(VR1)および最小基準電圧(VR2)に加えて、LED駆動電圧(VL)を高精度の4個の抵抗(Re〜Rh)にて抵抗分圧した最大側可変基準電圧(VR3)および最小側可変基準電圧(VR4)からなる基準電圧回路(4)により実現できる。 An example of the detection circuit in this case is shown in FIG. In this example, a comparator circuit (3) comprising four stages of comparators (CP1-1) to (CP1-4) and three analog switches (SW1) to (SW3), a maximum reference voltage (VR1) and a minimum In addition to the reference voltage (VR2), the LED variable voltage (VR3) and the minimum variable reference voltage (VR4) are obtained by dividing the LED driving voltage (VL) by four resistors (Re to Rh) with high accuracy. The reference voltage circuit (4) can be realized.

この図6の回路では、各破壊モード(直線(B)〜直線(E))の破壊状態が4段のコンパレータ(CP1−1)〜(CP1−4)から出力されるので、破壊モード毎の識別が可能になる。具体的に言えば、初段のコンパレータ(CP1−1)の出力(0P1)がLレベルの場合には、直線(E)に関するショート破壊と識別でき、二段目のコンパレータ(CP1−2)の出力(0P2)がLレベルの場合には、直線(D)に関するオープン破壊と識別できる。同様に、3段目のコンパレータ(CP1−3)の出力(0P3)がLレベルの場合には、正常と識別でき、逆にHレベルの場合には、直線(B)に関するショート破壊あるいは直線(C)に関するオープン破壊と識別できる。さらに、4段目のコンパレータ(CP1−4)の出力(0P4)がLレベルの場合には、直線(B)に関するショート破壊と識別でき他方、Hレベルの場合には直線(C)に関するオープン破壊と識別できる。その結果、全ての破壊モード毎が検知され、より高精度なLED破壊検出が実現する。 In the circuit of FIG. 6, the destruction state of each destruction mode (straight line (B) to straight line (E)) is output from the four-stage comparators (CP1-1) to (CP1-4). Identification becomes possible. Specifically, when the output (0P1) of the first-stage comparator (CP1-1) is at the L level, it can be identified as a short-circuit breakdown related to the straight line (E), and the output of the second-stage comparator (CP1-2). When (0P2) is at the L level, it can be identified as an open break with respect to the straight line (D). Similarly, when the output (0P3) of the third-stage comparator (CP1-3) is at L level, it can be identified as normal, and conversely, when it is at H level, a short break or straight line (B C) can be distinguished from open destruction. Further, when the output (0P4) of the comparator (CP1-4) at the fourth stage is at the L level, it can be distinguished from a short-circuit failure with respect to the straight line (B). Can be identified. As a result, every destruction mode is detected, and more accurate LED destruction detection is realized.

さらに、比較回路(3)から出力される、破壊モード毎の出力信号を利用して検出時の破壊内容に応じて多色LED素子あるいは複数色のLED素子を用い、破壊モード毎に色を変えて表示し、あるいは破壊内容に応じて圧電ブザー等の警告音を変えることにより、さらに高機能化が図られる。 Furthermore, using the output signal for each destruction mode output from the comparison circuit (3), a multi-color LED element or a multi-color LED element is used according to the destruction contents at the time of detection, and the color is changed for each destruction mode. By displaying a warning sound such as a piezoelectric buzzer or the like according to the contents of destruction, the function can be further enhanced.

そして、上記の回路を他の直列単位(C2)〜(C12)に適用することにより、全ての直列単位毎に全ての破壊モードについてオープン破壊とショート破壊を区別しながら検知できる。 Then, by applying the above circuit to the other series units (C2) to (C12), it is possible to detect all breakdown modes while distinguishing open breakdown and short breakdown for every series unit.

図7には、本発明のLED破壊検出装置を組込んだ検査用のライン状LED照明装置(10)の斜視図が示されている。この例では、パネル前面に破壊表示素子(8)、破壊警告ブザー(9)、調光(光量調整)ボリューム(11)、および、ライン状のLED照射部(12)が設けてある。このLED照射部(12)は、図1のLED素子直並列回路に対応し、ここでは、横2段に直列単位(C1)および(C2)が配されている。 FIG. 7 shows a perspective view of a line LED illumination device (10) for inspection incorporating the LED breakage detection device of the present invention. In this example, a destructive display element (8), a destructive warning buzzer (9), a dimming (light quantity adjustment) volume (11), and a line-shaped LED irradiation section (12) are provided on the front surface of the panel. This LED irradiation part (12) respond | corresponds to the LED element serial / parallel circuit of FIG. 1, and here, the serial units (C1) and (C2) are arranged by two horizontal steps.

本発明において、各直列単位におけるLEDの接続数、および直列単位の並列配置数は、最終製品の仕様に応じて任意に設定すればよいことは言うまでもない。また、導通検知素子(2)についても必ずしも、各直列単位の最下段に固定する必要はなく、印加電圧あるいは検知方法に応じて選定すればよい。 In the present invention, it goes without saying that the number of LEDs connected in each series unit and the number of parallel arrangements in series units may be arbitrarily set according to the specifications of the final product. Further, the conduction detecting element (2) is not necessarily fixed to the lowest stage of each series unit, and may be selected according to the applied voltage or the detection method.

本発明のLED破壊検出装置は、オープン破壊のみならずショート(ショート)破壊が検知できるので、画像処理照明用や光学機器照明用のみならず信号機等の屋外表示灯用あるいは商品展示用等の屋内照明用あるいは医療用照明装置の用途にも適用できる。 Since the LED breakage detection apparatus of the present invention can detect not only open breakage but also short (short) breakage, it can be used not only for image processing lighting and optical equipment lighting but also for outdoor indicator lights such as traffic lights or for display of products. It can also be applied to lighting or medical lighting devices.

本発明のLED破壊検出装置の一例を示すブロック図。The block diagram which shows an example of the LED destruction detection apparatus of this invention. 図1のLED破壊検出装置の回路図。The circuit diagram of the LED destruction detection apparatus of FIG. 図1〜図2の装置において、モニタ信号と基準電圧の関係を示すグラフ。The graph which shows the relationship between a monitor signal and a reference voltage in the apparatus of FIGS. 本発明の別の態様において、モニタ信号と基準電圧の関係を示すグラフ。The graph which shows the relationship between a monitor signal and a reference voltage in another aspect of this invention. 本発明のさらに別の態様において、モニタ信号と基準電圧の関係を示すグラフ。The graph which shows the relationship between a monitor signal and a reference voltage in another aspect of this invention. 上記のさらに別の態様における回路図。The circuit diagram in said another aspect. 本発明のLED破壊検出装置を組込んだ検査用のライン状LED照明装置用の斜視図。The perspective view for the line-shaped LED illuminating device for a test | inspection incorporating the LED breakage detection apparatus of this invention.

符号の説明Explanation of symbols

1 LED破壊検出部
2 導通検知素子
3 比較回路
4 基準電圧回路
5 破壊判定回路
6 駆動回路
7 破壊表示・警告音処理回路
8 破壊表示素子
9 破壊警告ブザー
10 本発明のLED破壊検出装置を組込んだ検査用のライン状LED照明装置
11 調光(光量調節)ボリューム
12 ライン状LED素子群
C1〜C12 LED素子群の直列接続単位(各列)
D1−1〜D12−9 各直列接続単位を構成するLED素子群
V1〜V12 モニタ信号
01〜012 出力信号
R1〜R12 電流制限抵抗
VR1 最大基準電圧(固定電圧)
VR2 最小側基準電圧(固定電圧)
VR3 最大側可変基準電圧
VR4 最小側可変基準電圧
VL LED駆動電圧
G グランド(アース)
















DESCRIPTION OF SYMBOLS 1 LED destruction detection part 2 Continuity detection element 3 Comparison circuit 4 Reference voltage circuit 5 Destruction determination circuit 6 Drive circuit 7 Destruction display / warning sound processing circuit 8 Destruction display element 9 Destruction warning buzzer 10 The LED destruction detection apparatus of the present invention is incorporated Line LED illumination device 11 for inspection 11 Dimming (light quantity adjustment) volume 12 Line LED element groups C1 to C12 Series connection units of LED element groups (each row)
D1-1 to D12-9 LED element groups constituting each series connection unit V1 to V12 Monitor signals 01 to 012 Output signals R1 to R12 Current limiting resistor VR1 Maximum reference voltage (fixed voltage)
VR2 Minimum side reference voltage (fixed voltage)
VR3 Maximum variable reference voltage VR4 Minimum variable reference voltage VL LED drive voltage G Ground (earth)
















Claims (7)

直列接続されたLED素子群を一直列単位とし、この直列単位の複数組が駆動電源に並列接続され、且つ該直列単位毎にLED破壊検知回路が接続されたLED破壊検出装置において、各直列単位の一部のLED素子がその直列回路の導通検知素子として兼用され、その検知信号が入力される各検知回路には、該回路に対応した直列単位に印加される駆動電源の電圧変化に対応する機能が付与されていることを特徴とするLED破壊検出装置。 In an LED breakage detection apparatus in which a group of LED elements connected in series is set as one series unit, a plurality of sets of the series units are connected in parallel to a driving power source, and an LED breakage detection circuit is connected to each of the series units. A part of the LED element is also used as a continuity detection element of the series circuit, and each detection circuit to which the detection signal is input corresponds to a voltage change of the drive power supply applied in series corresponding to the circuit. An LED breakage detection device, which is provided with a function. 該各検知回路が、これに接続した直列単位に印加される最大駆動電圧および最小駆動電圧のそれぞれに対応した最大基準電圧回路および最小基準電圧回路を有している請求項1に記載のLED破壊検出装置。 2. The LED breakdown according to claim 1, wherein each of the detection circuits has a maximum reference voltage circuit and a minimum reference voltage circuit corresponding to a maximum drive voltage and a minimum drive voltage applied to a series unit connected thereto, respectively. Detection device. 該最大基準電圧が、可変基準電圧に変更された請求項2に記載のLED破壊検出装置。 The LED breakdown detection device according to claim 2, wherein the maximum reference voltage is changed to a variable reference voltage. 該各検知回路に、さらに、該最大駆動電圧および最小駆動電圧のそれぞれに連動した最大側可変基準電圧回路および最小側可変基準電圧回路が併設されている請求項2に記載のLED破壊検出装置。 The LED breakdown detection device according to claim 2, wherein each detection circuit is further provided with a maximum variable reference voltage circuit and a minimum variable reference voltage circuit linked to the maximum drive voltage and the minimum drive voltage. 該導通検知素子として兼用されたLED素子が、そのアノード側電位を示すモニタ信号を出力する請求項1〜4のいずれかに記載のLED破壊検出装置。 The LED breakage detection apparatus according to any one of claims 1 to 4, wherein the LED element that is also used as the conduction detection element outputs a monitor signal indicating its anode potential. 該検知回路の出力側に、破壊表示素子および/または破壊警告ブザーが接続された請求項1〜5のいずれかに記載のLED破壊検出装置。 The LED break detection device according to claim 1, wherein a break display element and / or a break warning buzzer is connected to an output side of the detection circuit. 画像処理または機器検査用照明器具用として有用な請求項1〜6のいずれかに記載のLED破壊検出装置。

The LED breakage detection device according to any one of claims 1 to 6, which is useful for a lighting apparatus for image processing or equipment inspection.

JP2006239663A 2006-09-05 2006-09-05 LED break detection device Expired - Fee Related JP4791299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239663A JP4791299B2 (en) 2006-09-05 2006-09-05 LED break detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239663A JP4791299B2 (en) 2006-09-05 2006-09-05 LED break detection device

Publications (2)

Publication Number Publication Date
JP2008064477A true JP2008064477A (en) 2008-03-21
JP4791299B2 JP4791299B2 (en) 2011-10-12

Family

ID=39287336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239663A Expired - Fee Related JP4791299B2 (en) 2006-09-05 2006-09-05 LED break detection device

Country Status (1)

Country Link
JP (1) JP4791299B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123273A (en) * 2008-11-17 2010-06-03 Ccs Inc Led lighting device
JP2013012487A (en) * 2009-10-02 2013-01-17 Lecip Holdings Corp Light-emitting diode illumination circuit and luminaire
CN103018256A (en) * 2012-12-13 2013-04-03 清华大学深圳研究生院 LED (light-emitting diode) defect detecting system
US8653742B2 (en) 2011-03-08 2014-02-18 Rohm Co., Ltd. Control circuit of switching power supply for driving light emitting elements, and light emitting device and electronic apparatus using the same
US9089023B2 (en) 2013-05-17 2015-07-21 Rohm Co., Ltd. Driving circuit of light emitting element, and light emitting device and electronic apparatus including the light emitting element
US9177508B2 (en) 2011-03-24 2015-11-03 Rohm Co., Ltd. Light emitting apparatus
JP5947964B1 (en) * 2015-08-03 2016-07-06 Piaa株式会社 LED lamp sequential circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210219A (en) * 2005-01-31 2006-08-10 Koito Mfg Co Ltd Lighting control circuit of vehicular lighting fixture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210219A (en) * 2005-01-31 2006-08-10 Koito Mfg Co Ltd Lighting control circuit of vehicular lighting fixture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123273A (en) * 2008-11-17 2010-06-03 Ccs Inc Led lighting device
JP2013012487A (en) * 2009-10-02 2013-01-17 Lecip Holdings Corp Light-emitting diode illumination circuit and luminaire
US8653742B2 (en) 2011-03-08 2014-02-18 Rohm Co., Ltd. Control circuit of switching power supply for driving light emitting elements, and light emitting device and electronic apparatus using the same
US9177508B2 (en) 2011-03-24 2015-11-03 Rohm Co., Ltd. Light emitting apparatus
CN103018256A (en) * 2012-12-13 2013-04-03 清华大学深圳研究生院 LED (light-emitting diode) defect detecting system
CN103018256B (en) * 2012-12-13 2014-08-13 清华大学深圳研究生院 LED (light-emitting diode) defect detecting system
US9089023B2 (en) 2013-05-17 2015-07-21 Rohm Co., Ltd. Driving circuit of light emitting element, and light emitting device and electronic apparatus including the light emitting element
JP5947964B1 (en) * 2015-08-03 2016-07-06 Piaa株式会社 LED lamp sequential circuit

Also Published As

Publication number Publication date
JP4791299B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
JP4791299B2 (en) LED break detection device
EP3379901B1 (en) Led failure detecting device
US6147617A (en) Apparatus and method for detecting faults in outdoor display
US11922840B2 (en) Liquid crystal display device, image display system and vehicle
JP4241487B2 (en) LED driving device, backlight light source device, and color liquid crystal display device
KR101694899B1 (en) LED electronic display board controller for detecting error and method for detecting error thereof
KR20110084731A (en) Backlight assembly including plural light sources, driving method thereof, and error detection method thereof
JP2006003904A (en) In-light emission display spectrum component control
KR20090018472A (en) Backlight unit, display apparatus comprising the same and control method thereof
JP2004309614A (en) Image display device, driving circuit system, and fault detecting method for light emitting diode
US8643574B2 (en) Imaging device
JP4925747B2 (en) Light irradiation system
WO2017094555A1 (en) Method for testing led backlight
JPH02287492A (en) Operation detecting circuit for led element
KR20140114674A (en) Apparatus for distinguishing type of analog sensor
JP5110863B2 (en) Lighting device
KR101065416B1 (en) One sheet test device and test method
KR20120067026A (en) Backlight unit
KR101007142B1 (en) Apparatus for short inspect in led module
US12008884B2 (en) Status indicators, systems, and methods for capacitors
US20240062642A1 (en) Status indicators, systems, and methods for capacitors
JP2001042786A (en) Display device incorporating pixel abnormality detecting circuit
JP7278171B2 (en) LED burn-out detection mechanism and LED light irradiation system using the same
JP2014067666A (en) Failure diagnosis device and vehicle lighting tool
TWI534772B (en) Array illuminating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4791299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees