JP2008063166A - Method for reducing deformation quantity of material to be machined, method for machining the material to be machined and method for manufacturing reactor - Google Patents

Method for reducing deformation quantity of material to be machined, method for machining the material to be machined and method for manufacturing reactor Download PDF

Info

Publication number
JP2008063166A
JP2008063166A JP2006240461A JP2006240461A JP2008063166A JP 2008063166 A JP2008063166 A JP 2008063166A JP 2006240461 A JP2006240461 A JP 2006240461A JP 2006240461 A JP2006240461 A JP 2006240461A JP 2008063166 A JP2008063166 A JP 2008063166A
Authority
JP
Japan
Prior art keywords
glass substrate
workpiece
engraved
reactor
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006240461A
Other languages
Japanese (ja)
Inventor
Masatoshi Nomura
雅俊 野村
Goji Fujita
剛司 藤田
Motoki Endo
元気 遠藤
Tetsushi Ishikawa
哲史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2006240461A priority Critical patent/JP2008063166A/en
Publication of JP2008063166A publication Critical patent/JP2008063166A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Fuel Cell (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the deformation quantity of deformation such as a warp that occurs in a material to be machined such as a glass material. <P>SOLUTION: The method comprises applying a dry film onto the both surfaces of glass substrates 10, 20, 30, forming openings having a predetermined pattern in the one dry film of each of glass substrates 10, 20, 30 by exposing and developing the pattern, making grooves along the opening pattern on the glass substrates 10, 20, 30 by a sand blasting method, then immersing the glass substrates 10, 20, 30 in a state having the dry film attached thereon into an etching liquid, etching the wall parts of the grooves, then supporting a catalyst in the grooves, and adhering the glass substrates 10, 20, 30. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、機械的加工により変形した被加工材の変形量低減方法に関するともに、その変形量低減方法を利用した被加工材の加工方法及び反応器の製造方法に関する。   The present invention relates to a method for reducing the amount of deformation of a workpiece deformed by mechanical processing, and also relates to a method for processing a workpiece and a method for manufacturing a reactor using the deformation amount reducing method.

近年では、エネルギー変換効率の高いクリーンな電源としての燃料電池を自動車や携帯機器などに搭載するため、燃料電池やその周辺技術の開発が進められている。燃料電池は、燃料と大気中の酸素を電気化学的に反応させて、化学エネルギーから電気エネルギーを直接取り出す装置である。   In recent years, in order to mount a fuel cell as a clean power source with high energy conversion efficiency in an automobile, a portable device, etc., development of a fuel cell and its peripheral technology has been advanced. A fuel cell is a device that directly extracts electric energy from chemical energy by electrochemically reacting fuel and oxygen in the atmosphere.

燃料電池に用いる燃料としては水素単体が挙げられるが、常温、常圧で気体であることによる取り扱いに問題がある。そこで、燃料を液体の状態で保存して、その燃料を反応器によって水素に改質し、その水素を燃料電池に送ることが行われている。このような燃料電池や反応器を小型な電子機器に搭載するために、反応器や燃料電池を小型化するための開発が行われている。小型な反応器としては、溝が形成された複数のガラス基板を積み重ねて接合したものがあり、溝には触媒が担持されている。複数のガラス基板の接合により溝に対応する部分が流路とされ、燃料がその流路を流れる過程で触媒反応が起こる。また、特許文献1に記載された静電接合方法を応用すれば、溝が形成された複数のガラス基板を接合することができる。
特開平6−326331号公報
As a fuel used in a fuel cell, hydrogen alone can be mentioned, but there is a problem in handling due to being a gas at normal temperature and normal pressure. Therefore, it is practiced to store the fuel in a liquid state, reform the fuel into hydrogen by a reactor, and send the hydrogen to the fuel cell. In order to mount such a fuel cell and a reactor on a small electronic device, development for reducing the size of the reactor and the fuel cell has been performed. As a small reactor, there is one in which a plurality of glass substrates having grooves formed thereon are stacked and joined, and a catalyst is supported in the grooves. A portion corresponding to the groove is formed as a flow path by joining a plurality of glass substrates, and a catalytic reaction occurs in a process in which fuel flows through the flow path. Moreover, if the electrostatic joining method described in Patent Document 1 is applied, a plurality of glass substrates having grooves formed thereon can be joined.
JP-A-6-326331

ところで、ガラス基板の接合前にガラス基板に溝を加工する必要があり、溝の加工によってガラス基板に残留応力が発生し、ガラス基板に反り等の変形が生じる。しかし、反りが生じたガラス基板を接合したものとしても、隣り合うガラス基板の対向面を十分に面接触させることができず、高い密着性の接合面を得ることができない。   By the way, it is necessary to process a groove in the glass substrate before joining the glass substrate. Residual stress is generated in the glass substrate by the processing of the groove, and the glass substrate is deformed such as warpage. However, even if glass substrates with warpage are joined, the opposing surfaces of adjacent glass substrates cannot be brought into sufficient surface contact, and a highly adhesive joining surface cannot be obtained.

そこで、本発明は、ガラス材等の被加工材に生じた反り等の変形量を低減することを目的とする。   Therefore, an object of the present invention is to reduce the amount of deformation such as warpage generated in a workpiece such as a glass material.

以上の課題を解決するため、請求項1に係る発明は、機械的に削ることによる彫込み加工により変形した被加工材についてその彫込み壁面を化学的にエッチングすることによって、その被加工材の変形量を低減することを特徴とする被加工材の変形量低減方法である。   In order to solve the above-mentioned problems, the invention according to claim 1 is directed to a method of chemically etching the engraved wall surface of a workpiece deformed by engraving by mechanical cutting. A deformation amount reducing method for a workpiece, wherein the deformation amount is reduced.

請求項2に係る発明は、開口部を備えた状態でマスクを被加工材に被覆し、前記開口部を通じて前記被加工材を機械的に削ることによって前記開口部に沿った彫込みを前記被加工材に施し、前記マスクにより被覆された状態で前記被加工材の彫込み壁面を化学的にエッチングすることを特徴とする被加工材の加工方法である。   According to a second aspect of the present invention, a mask is covered with a workpiece with an opening, and the workpiece is mechanically cut through the opening to engrave the engraving along the opening. It is a processing method for a workpiece, characterized in that it is applied to the workpiece and chemically etched the engraved wall surface of the workpiece in a state covered with the mask.

請求項3に係る発明は、請求項2に記載の被加工材の加工方法において、前記被加工材の化学的にエッチングした後に前記マスクを除去し、前記被加工材に別の部材を接合することによって前記被加工材の彫込みを前記別の部材で覆うことを特徴とする。   The invention according to claim 3 is the method for processing a workpiece according to claim 2, wherein the mask is removed after the workpiece is chemically etched, and another member is joined to the workpiece. Thus, the engraving of the workpiece is covered with the another member.

請求項4に係る発明は、請求項2に記載の被加工材の加工方法において、前記被加工材がリチウム含有ガラス材又は硼珪酸ガラス材であることを特徴とする。   The invention according to claim 4 is the method for processing a workpiece according to claim 2, wherein the workpiece is a lithium-containing glass material or a borosilicate glass material.

請求項5に係る発明は、マスクで被加工板の一方の面を被覆するとともに前記マスクに開口部を形成し、前記開口部を通じて前記被加工板を機械的に削ることによって前記開口部に沿った彫込みを前記被加工板に施し、前記マスクにより被覆された状態で前記被加工板の彫込みの壁面を化学的にエッチングすることを特徴とする反応器の製造方法である。   According to a fifth aspect of the present invention, a mask covers one surface of a processed plate, an opening is formed in the mask, and the processed plate is mechanically cut through the opening along the opening. The reactor manufacturing method is characterized in that the engraving wall surface is engraved on the processed plate and the engraved wall surface of the processed plate is chemically etched in a state of being covered with the mask.

請求項6に係る発明は、請求項5に記載の反応器の製造方法において、前記化学的にエッチングをした後に、前記マスクを除去し、前記被加工板の一方の面に板材を接合することによって前記被加工板の彫込みを前記板材で覆うことを特徴とする。   The invention according to claim 6 is the method of manufacturing a reactor according to claim 5, wherein after the chemical etching, the mask is removed and a plate material is joined to one surface of the processed plate. The engraving of the processed plate is covered with the plate material.

請求項7に係る発明は、請求項5に記載の反応器の製造方法において、前記被加工板がリチウム含有ガラス板又は硼珪酸ガラス板であることを特徴とする。   The invention according to claim 7 is the method for producing a reactor according to claim 5, wherein the processed plate is a lithium-containing glass plate or a borosilicate glass plate.

請求項8に係る発明は、請求項5に記載の反応器の製造方法において、前記被加工板の彫込みに触媒を担持することを特徴とする。   The invention according to claim 8 is characterized in that, in the method for producing a reactor according to claim 5, a catalyst is supported in the engraving of the work plate.

本発明においては、被加工材や被加工板を機械的に削ることによって彫込みを被加工材や被加工板に施す際、主に彫込み壁面近傍に残留応力が発生し、被加工材や被加工板に生じる変形に対し、その彫込み壁面を化学的にエッチングする。この処理によってその壁面近傍が除去され、残留応力も除去される。そのため、被加工材や被加工板に生じた変形量が低減される。   In the present invention, when engraving is performed on a work material or work plate by mechanically cutting the work material or work plate, residual stress is generated mainly in the vicinity of the engraved wall surface. The engraved wall is chemically etched against deformation that occurs in the work plate. By this treatment, the vicinity of the wall surface is removed, and the residual stress is also removed. For this reason, the amount of deformation generated in the workpiece or the workpiece plate is reduced.

以下に、本発明を実施するための最良の形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. However, although various technically preferable limitations for implementing the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples.

反応器の製造方法について説明する。
図1は、反応器の構成要素であるガラス基板10の加工工程を示した図である。まず、図1(a)に示すような矩形平板状のガラス基板10を準備し、ガラス基板10を洗浄する。このガラス基板10は可動イオンのもとなるアルカリ金属(例えば、Na、Li)を含有した耐熱性ガラス又は硼珪酸ガラスからなり、具体的にはパイレックス(登録商標)ガラスからなる。
A method for producing the reactor will be described.
FIG. 1 is a view showing a processing step of a glass substrate 10 which is a constituent element of a reactor. First, a rectangular flat glass substrate 10 as shown in FIG. 1A is prepared, and the glass substrate 10 is cleaned. The glass substrate 10 is made of heat-resistant glass or borosilicate glass containing an alkali metal (for example, Na, Li) that is a source of mobile ions, and specifically made of Pyrex (registered trademark) glass.

次に、図1(b)に示すように、感光性樹脂からなるドライフィルム(レジストフィルム)41,42をガラス基板10の両面に貼り付け、一方のドライフィルム41を部分的に露光して潜像をドライフィルム41に形成し、他方のドライフィルム42を部分的に露光して潜像をドライフィルム42に形成する。そして、ドライフィルム41及びドライフィルム42が貼り付けられたガラス基板10を現像液に浸漬すると、図1(c)に示すように、潜像に応じた開口パターン41aがドライフィルム41に形成され、潜像に応じた開口パターン42aがドライフィルム42に形成される。   Next, as shown in FIG. 1B, dry films (resist films) 41 and 42 made of a photosensitive resin are attached to both surfaces of the glass substrate 10, and one of the dry films 41 is partially exposed to be latent. An image is formed on the dry film 41, and the other dry film 42 is partially exposed to form a latent image on the dry film 42. Then, when the glass substrate 10 to which the dry film 41 and the dry film 42 are attached is immersed in a developer, an opening pattern 41a corresponding to the latent image is formed in the dry film 41 as shown in FIG. An opening pattern 42 a corresponding to the latent image is formed on the dry film 42.

次に、図1(d)に示すように、残留したドライフィルム41をマスクとして、微細粉(例えば、平均粒径40μmの炭化珪素粒)を含んだ圧縮エアーを開口パターン41aを通じてガラス基板10に吹き付けて、微細粉や圧縮エアーの衝突力によりガラス基板10を削って孔部18aを形成する。なお、圧縮エアーの圧力は特に限定されないが、例えば、0.23MPaとし、彫り込みの加工レートを約16μm/minとする。また、このとき、後の接合時に電極を取り出すための切欠き19(図2参照)の部分にも、この切欠き19に対応する孔部を形成する。   Next, as shown in FIG. 1D, using the remaining dry film 41 as a mask, compressed air containing fine powder (for example, silicon carbide particles having an average particle diameter of 40 μm) is applied to the glass substrate 10 through the opening pattern 41a. The hole 18a is formed by spraying and scraping the glass substrate 10 by the collision force of fine powder or compressed air. The pressure of the compressed air is not particularly limited. For example, the pressure is 0.23 MPa, and the engraving processing rate is about 16 μm / min. At this time, a hole corresponding to the notch 19 is also formed in the notch 19 (see FIG. 2) for taking out the electrode at the time of subsequent joining.

次に、残留したドライフィルム42をマスクとして、微細粉(例えば、平均粒径40μmの炭化珪素粒)を含んだ圧縮エアーを開口パターン42aを通じてガラス基板10に吹き付けて、微細粉や圧縮エアーの衝突力によりガラス基板10を削る。ここで、開口パターン42aをなぞるように圧縮エアーをガラス基板10に吹き付けて、開口パターン42aに沿ってガラス基板10を削り、図1(e)に示すように、開口パターン42aに沿った形状の彫込み溝11をガラス基板10に形成する。この時、ドライフィルム42側から彫り込んだ孔部をドライフィルム41側から彫り込んだ孔部18aに貫通させ、彫込み溝11のほかに貫通孔18を形成する。また、上述の切欠き19も、この過程で貫通孔18と同時に形成される。なお、圧縮エアーの圧力は特に限定されないが、例えば、0.23MPaとし、彫込み溝11の加工レートを約16μm/minとする。   Next, by using the remaining dry film 42 as a mask, compressed air containing fine powder (for example, silicon carbide particles having an average particle diameter of 40 μm) is blown onto the glass substrate 10 through the opening pattern 42a, and collision of the fine powder or compressed air occurs. The glass substrate 10 is shaved by force. Here, the compressed air is blown onto the glass substrate 10 so as to trace the opening pattern 42a, and the glass substrate 10 is shaved along the opening pattern 42a. As shown in FIG. 1E, the shape along the opening pattern 42a is cut. Engraved grooves 11 are formed in the glass substrate 10. At this time, the hole carved from the dry film 42 side is passed through the hole 18a carved from the dry film 41 side to form the through hole 18 in addition to the carved groove 11. The notch 19 is also formed simultaneously with the through hole 18 in this process. The pressure of the compressed air is not particularly limited. For example, the pressure is 0.23 MPa, and the processing rate of the engraved groove 11 is about 16 μm / min.

以上のようなサンドブラスト法によってガラス基板10を機械的に削って彫込み溝11や貫通孔18を施すと、ガラス基板10の加工面のうち、より広範囲において加工されている面(ドライフィルム42側の面)が凸となるようにガラス基板10が反る。これは、機械的加工によって彫込み溝11の壁面近傍に応力が残留したものと考えられる。また、サンドブラスト法によって形成された彫込み溝11の壁面は比較的粗い。   When the glass substrate 10 is mechanically shaved by the sandblasting method as described above to provide the engraved grooves 11 and the through holes 18, the surface processed on a wider range (the dry film 42 side) among the processed surfaces of the glass substrate 10. The glass substrate 10 is warped so that the surface is convex. This is considered that stress remained in the vicinity of the wall surface of the engraved groove 11 by mechanical processing. The wall surface of the engraved groove 11 formed by the sandblast method is relatively rough.

次に、図1(f)に示すように、ドライフィルム41,42を残留させた状態でガラス基板10をエッチング液(例えば、フッ酸水溶液)43に浸漬し、彫込み溝11や貫通孔18の壁面部分をエッチング液43によって化学的にエッチング(ウェットエッチング)する。エッチングによる除去量は厚み3.5〜5μmとすることが好ましい。このようなエッチングにより、彫込み溝11や貫通孔18の壁面近傍の残留応力が解放され、ガラス基板10の反りが低減される。また、彫込み溝11の壁面がエッチングされても、彫込み溝11の壁面の粗さは残る。また、ガラス板のうちドライフィルム41,42によって被覆された部分をエッチング液43から保護することができる。   Next, as shown in FIG. 1 (f), the glass substrate 10 is immersed in an etching solution (for example, hydrofluoric acid aqueous solution) 43 with the dry films 41 and 42 remaining, and the engraved grooves 11 and the through holes 18 are immersed. These wall surfaces are chemically etched (wet etching) with an etching solution 43. The amount removed by etching is preferably 3.5 to 5 μm. By such etching, residual stress in the vicinity of the wall surface of the engraved groove 11 and the through hole 18 is released, and the warp of the glass substrate 10 is reduced. Even if the wall surface of the engraved groove 11 is etched, the roughness of the wall surface of the engraved groove 11 remains. Further, the portion of the glass plate covered with the dry films 41 and 42 can be protected from the etching solution 43.

次に、ガラス基板10をエッチング液43から取り出し、図1(e)に示すように、除去液によってドライフィルム41,42を除去し、ガラス基板10を洗浄する。   Next, the glass substrate 10 is taken out from the etching solution 43, and as shown in FIG. 1E, the dry films 41 and 42 are removed with a removing solution, and the glass substrate 10 is washed.

図2(a)は彫込み溝11が形成された面とは反対の面の平面図であり、図2(b)は彫込み溝11が形成された面の平面図であり、図2(c)は図2(b)のIIc−IIc線に沿った面の矢視断面図である。図2(b)に示すように、彫込み溝11は、右縁から貫通孔18の左側へ至る燃料導入部12と、燃料導入部12に通じるとともに貫通孔18の左側において葛折り状になった改質部13と、改質部13に通じるとともに貫通孔18の左側から右側へ至る連通部14と、右縁から連通部14に通じる空気導入部15と、空気導入部15及び連通部14に通じるとともに貫通孔18の右側において葛折り状となった一酸化炭素除去部16と、一酸化炭素除去部16から右縁に至る排出部17等とからなる。
なお、一枚の大きな基板から複数のガラス基板10をダイシング加工により切り出しても良い。その場合には、図1(a)〜図1(g)の各工程をガラス基板10ごとに順番に行うのではなく、各工程を全てのガラス基板10についてまとめて行った後に、一枚の大きな基板から複数のガラス基板10を切り出す。
2A is a plan view of the surface opposite to the surface on which the engraved groove 11 is formed, and FIG. 2B is a plan view of the surface on which the engraved groove 11 is formed. c) is a sectional view taken along the line IIc-IIc in FIG. As shown in FIG. 2 (b), the engraved groove 11 has a fuel introduction part 12 extending from the right edge to the left side of the through hole 18, and leads to the fuel introduction part 12 and has a distorted shape on the left side of the through hole 18. The reforming portion 13, the communication portion 14 that communicates with the reforming portion 13 and from the left side to the right side of the through hole 18, the air introduction portion 15 that communicates from the right edge to the communication portion 14, and the air introduction portion 15 and the communication portion 14. And a carbon monoxide removing portion 16 that is in a distorted shape on the right side of the through hole 18 and a discharge portion 17 that extends from the carbon monoxide removing portion 16 to the right edge.
A plurality of glass substrates 10 may be cut out from a single large substrate by dicing. In that case, after performing each process collectively about all the glass substrates 10, instead of sequentially performing each process of Drawing 1 (a)-Drawing 1 (g) for every glass substrate 10, it is one sheet. A plurality of glass substrates 10 are cut out from a large substrate.

次に、彫込み溝11のうち改質部13の壁面に改質用触媒(例えば、Cu/ZnO系触媒)81を担持させるとともに、一酸化炭素除去部16の壁面に選択酸化用触媒(例えば、白金系触媒)82を担持させる。彫込み溝11の壁面が粗くなっているので、改質用触媒81や選択酸化用触媒82を担持させやすく、改質用触媒81や選択酸化用触媒82のミクロ的な表面積が大きくなるので、改質用触媒81や選択酸化用触媒82による反応効率が高くなる。   Next, a reforming catalyst (for example, a Cu / ZnO-based catalyst) 81 is supported on the wall surface of the reforming portion 13 in the engraved groove 11, and a selective oxidation catalyst (for example, on the wall surface of the carbon monoxide removal portion 16). , Platinum-based catalyst) 82 is supported. Since the wall surface of the engraved groove 11 is rough, the reforming catalyst 81 and the selective oxidation catalyst 82 can be easily carried, and the microscopic surface areas of the reforming catalyst 81 and the selective oxidation catalyst 82 are increased. The reaction efficiency by the reforming catalyst 81 and the selective oxidation catalyst 82 is increased.

図3及び図4は、反応器の構成要素であるガラス基板20の加工工程を示した図である。図3(a)に示すように、矩形平板状の別のガラス基板20を準備し、ガラス基板20を洗浄する。次に、図3(b)に示すように、ガラス基板20の両面に金属薄膜51,52を気相成長法(例えば、スパッタリング法、蒸着法等)によって成膜する。金属薄膜51,52は、ガラス基板10や後述するガラス基板30をガラス基板20に陽極接合するために用いるものであり、例えばタンタルからなる。   3 and 4 are diagrams showing processing steps for the glass substrate 20 which is a component of the reactor. As shown in FIG. 3A, another rectangular flat glass substrate 20 is prepared, and the glass substrate 20 is cleaned. Next, as shown in FIG. 3B, metal thin films 51 and 52 are formed on both surfaces of the glass substrate 20 by vapor phase epitaxy (for example, sputtering or vapor deposition). The metal thin films 51 and 52 are used for anodic bonding of the glass substrate 10 and the glass substrate 30 described later to the glass substrate 20, and are made of, for example, tantalum.

次に、図3(c)に示すように、金属薄膜52に電熱膜53を気相成長法によって成膜する。ここで、電熱膜53は金属薄膜52側から順にタングステン層、金層、タングステン層を積層したものである。   Next, as shown in FIG. 3C, an electrothermal film 53 is formed on the metal thin film 52 by a vapor deposition method. Here, the electrothermal film 53 is formed by laminating a tungsten layer, a gold layer, and a tungsten layer in this order from the metal thin film 52 side.

次に、図3(d)に示すように、フォトリソグラフィー法及びエッチング法により電熱膜53及び金属薄膜52をパターニングし、電熱膜53からヒータ53a,53bを形成する。   Next, as shown in FIG. 3D, the electrothermal film 53 and the metal thin film 52 are patterned by photolithography and etching, and heaters 53 a and 53 b are formed from the electrothermal film 53.

次に、図3(e)に示すように、気相成長法、フォトリソグラフィー法及びエッチング法によりヒータ53a,53bを酸化シリコン又は窒化シリコンの絶縁膜54で被覆し、その後、ヒータ53a,53b以外の部分で電熱膜53をエッチングにより除去する。   Next, as shown in FIG. 3E, the heaters 53a and 53b are covered with an insulating film 54 of silicon oxide or silicon nitride by a vapor phase growth method, a photolithography method, and an etching method, and then other than the heaters 53a and 53b. In this portion, the electrothermal film 53 is removed by etching.

次に、図3(f)に示すように、感光性樹脂からなるドライフィルム55,56をガラス基板20の両面に貼り付け、一方のドライフィルム56を部分的に露光して潜像をドライフィルム56に形成し、他方のドライフィルム55を部分的に露光して潜像をドライフィルム55に形成する。そして、ドライフィルム55及びドライフィルム56が貼り付けられたガラス基板20を現像液に浸漬すると、図4(a)に示すように、潜像に応じた開口パターン56aがドライフィルム56に形成され、潜像に応じた開口パターン55aがドライフィルム55に形成される。   Next, as shown in FIG. 3F, dry films 55 and 56 made of a photosensitive resin are attached to both surfaces of the glass substrate 20, and one of the dry films 56 is partially exposed to form a latent image as a dry film. The other dry film 55 is partially exposed to form a latent image on the dry film 55. Then, when the glass substrate 20 to which the dry film 55 and the dry film 56 are attached is immersed in a developer, an opening pattern 56a corresponding to the latent image is formed in the dry film 56 as shown in FIG. An opening pattern 55 a corresponding to the latent image is formed on the dry film 55.

次に、残留したドライフィルム55をマスクとして、微細粉を含んだ圧縮エアーを開口パターン55aを通じてガラス基板20に吹き付ける。このようなサンドブラスト法によって開口パターン55aに沿ってガラス基板20を削り、図4(b)に示すように、開口パターン55aに沿った形状の彫込み溝21をガラス基板20に形成する。   Next, using the remaining dry film 55 as a mask, compressed air containing fine powder is blown onto the glass substrate 20 through the opening pattern 55a. The glass substrate 20 is shaved along the opening pattern 55a by such a sandblasting method, and the engraved groove 21 having a shape along the opening pattern 55a is formed in the glass substrate 20 as shown in FIG.

次に、図4(c)に示すように、残留したドライフィルム56をマスクとして、微細粉を含んだ圧縮エアーを開口パターン56aを通じてガラス基板20に吹き付けて、ドライフィルム56側から彫り込んだ孔部を反対側に貫通させ、貫通孔28を形成する。   Next, as shown in FIG. 4C, with the remaining dry film 56 as a mask, compressed air containing fine powder is blown onto the glass substrate 20 through the opening pattern 56a and carved from the dry film 56 side. Is penetrated to the opposite side to form a through hole 28.

次に、図4(d)に示すように、ドライフィルム55,56を残留させた状態でガラス基板20をエッチング液57に浸漬し、彫込み溝21や貫通孔28の壁面部分をエッチング液57によって化学的にエッチングする。これにより、ガラス基板20の反りが低減される。ドライフィルム55,56が張り付けられているので、彫込み溝21や貫通孔28の壁面部分がエッチングされるが、他の部分はエッチングされず、ヒータ53a,53b、金属薄膜51,52、絶縁膜54等を保護することができる。   Next, as shown in FIG. 4 (d), the glass substrate 20 is immersed in the etching solution 57 with the dry films 55 and 56 remaining, and the wall portions of the engraved grooves 21 and the through holes 28 are etched into the etching solution 57. Etch chemically. Thereby, the curvature of the glass substrate 20 is reduced. Since the dry films 55 and 56 are attached, the wall portions of the engraved grooves 21 and the through holes 28 are etched, but the other portions are not etched, and the heaters 53a and 53b, the metal thin films 51 and 52, and the insulating film 54 etc. can be protected.

次に、ガラス基板20をエッチング液57から取り出し、図4(e)に示すように、除去液によってドライフィルム55,56を除去し、ガラス基板20を洗浄する。
なお、一枚の大きな基板から複数のガラス基板20をダイシング加工により切り出しても良い。その場合には、図3(a)〜(f)、図4(a)〜(e)の各工程をガラス基板20ごとに順番に行うのではなく、各工程を全てのガラス基板20についてまとめて行った後に、一枚の大きな基板から複数のガラス基板20を切り出す。
Next, the glass substrate 20 is taken out from the etching solution 57, and as shown in FIG. 4E, the dry films 55 and 56 are removed with a removing solution, and the glass substrate 20 is washed.
A plurality of glass substrates 20 may be cut out from a single large substrate by dicing. In that case, each process of Drawing 3 (a)-(f) and Drawing 4 (a)-(e) is not performed in order for every glass substrate 20, but each process is put together about all glass substrates 20. Then, a plurality of glass substrates 20 are cut out from one large substrate.

図5(a)は彫込み溝21が形成された面の平面図であり、図5(b)は彫込み溝21が形成された面とは反対の面の平面図であり、図5(c)は図5(b)のVc−Vc線に沿った面の矢視断面図である。図5(a)に示すように、彫込み溝21のうち改質部23がガラス基板10の改質部13と対称な形状となっており、一酸化炭素除去部26がガラス基板10の一酸化炭素除去部16と対称な形状となっており、貫通孔28がガラス基板10の貫通孔18と対称な形状となっている。   FIG. 5A is a plan view of the surface where the engraved groove 21 is formed, and FIG. 5B is a plan view of the surface opposite to the surface where the engraved groove 21 is formed. c) is a cross-sectional view taken along the line Vc-Vc in FIG. As shown in FIG. 5A, the modified portion 23 of the engraved groove 21 has a symmetrical shape with the modified portion 13 of the glass substrate 10, and the carbon monoxide removing portion 26 is a part of the glass substrate 10. The shape is symmetrical to the carbon oxide removing portion 16, and the through hole 28 is symmetrical to the through hole 18 of the glass substrate 10.

次に、彫込み溝21のうち改質部23の壁面に改質用触媒(例えば、Cu/ZnO系触媒)83を担持させるとともに、一酸化炭素除去部26の壁面に選択酸化用触媒(例えば、白金系触媒)84を担持させる。   Next, a reforming catalyst (for example, a Cu / ZnO-based catalyst) 83 is supported on the wall surface of the reforming portion 23 in the engraved groove 21, and a selective oxidation catalyst (for example, on the wall surface of the carbon monoxide removal portion 26). , Platinum catalyst) 84 is supported.

図6は、反応器の構成要素であるガラス基板30の加工工程を示した図である。図6(a)に示すように、可動イオンのもととなるアルカリ金属(例えば、Na、Li)を含有した矩形平板状のガラス基板30を準備し、ガラス基板30を洗浄する。なお、ガラス基板30は硼珪酸ガラスの基板であっても良い。   FIG. 6 is a view showing a processing step of the glass substrate 30 which is a component of the reactor. As shown in FIG. 6A, a rectangular flat glass substrate 30 containing an alkali metal (for example, Na, Li) that is a source of mobile ions is prepared, and the glass substrate 30 is cleaned. The glass substrate 30 may be a borosilicate glass substrate.

次に、図6(b)に示すように、ドライフィルム61,62をガラス基板30の両面に貼り付け、一方のドライフィルム62を部分的に露光して潜像をドライフィルム62に形成し、他方のドライフィルム61を部分的に露光して潜像をドライフィルム61に形成する。そして、ドライフィルム61及びドライフィルム62が貼り付けられたガラス基板30を現像液に浸漬すると、図6(c)に示すように、潜像に応じた開口パターン62aがドライフィルム62に形成され、潜像に応じた開口パターン61aがドライフィルム61に形成される。   Next, as shown in FIG. 6B, the dry films 61 and 62 are attached to both surfaces of the glass substrate 30, one of the dry films 62 is partially exposed to form a latent image on the dry film 62, The other dry film 61 is partially exposed to form a latent image on the dry film 61. Then, when the glass substrate 30 to which the dry film 61 and the dry film 62 are attached is immersed in the developer, an opening pattern 62a corresponding to the latent image is formed in the dry film 62 as shown in FIG. An opening pattern 61 a corresponding to the latent image is formed on the dry film 61.

次に、残留したドライフィルム61をマスクとして、微細粉を含んだ圧縮エアーを開口パターン61aを通じてガラス基板30に吹き付けてガラス基板30を削り、図6(d)に示すように、開口パターン61aに沿った形状の彫込み溝31をガラス基板30に形成する。また、このとき、後の接合時に電極を取り出すための切欠き39(図7参照)の部分にも、この切欠き39に対応する孔部を形成する。   Next, using the remaining dry film 61 as a mask, compressed air containing fine powder is blown onto the glass substrate 30 through the opening pattern 61a to scrape the glass substrate 30, and as shown in FIG. An engraved groove 31 having a shape along the surface is formed in the glass substrate 30. At this time, a hole corresponding to the notch 39 is also formed in the notch 39 (see FIG. 7) for taking out the electrode during subsequent joining.

次に、図6(e)に示すように、残留したドライフィルム62をマスクとして、微細粉を含んだ圧縮エアーを開口パターン62aを通じてガラス基板30に吹き付けて、ドライフィルム62側から彫り込んだ孔部を反対側に貫通させ、貫通孔38を形成する。また、上述の切欠き39も、この過程で貫通孔38と同時に形成される。   Next, as shown in FIG. 6 (e), using the remaining dry film 62 as a mask, compressed air containing fine powder is blown onto the glass substrate 30 through the opening pattern 62a and carved from the dry film 62 side. Is penetrated to the opposite side to form a through hole 38. Further, the above-described notch 39 is also formed simultaneously with the through hole 38 in this process.

次に、図6(f)に示すように、ドライフィルム61,62を残留させた状態でガラス基板30をエッチング液63に浸漬し、彫込み溝31や貫通孔38の壁面部分をエッチング液63によって化学的にエッチングする。これにより、ガラス基板30の反りが低減される。   Next, as shown in FIG. 6 (f), the glass substrate 30 is immersed in the etching solution 63 with the dry films 61 and 62 remaining, and the wall surfaces of the engraved grooves 31 and the through holes 38 are etched into the etching solution 63. Etch chemically. Thereby, the curvature of the glass substrate 30 is reduced.

次に、ガラス基板30をエッチング液63から取り出し、図6(f)に示すように、除去液によってドライフィルム61,62を除去し、ガラス基板30を洗浄する。   Next, the glass substrate 30 is taken out from the etching solution 63, and as shown in FIG. 6F, the dry films 61 and 62 are removed with a removing solution, and the glass substrate 30 is washed.

図7(a)は彫込み溝31が形成された面の平面図であり、図7(b)は彫込み溝31が形成された面とは反対の面の平面図であり、図7(c)は図7(b)のVIIc−VIIc線に沿った面の矢視断面図である。図7(a)に示すように、彫込み溝31は、右縁から貫通孔38の左側へ至る燃料導入部32と、燃料導入部32に通じるとともに貫通孔38の左側において葛折り状になった燃焼部33と、燃焼部33に通じた端子収納部34,35と、燃焼部33に通じるとともに貫通孔38の左側から右縁に至る排出部36と、貫通孔38の右側において枝分かれしたヒータ収納部37等とからなる。
なお、一枚の大きな基板から複数のガラス基板30をダイシング加工により切り出しても良い。その場合には、図6(a)〜図6(g)の各工程をガラス基板30ごとに順番に行うのではなく、各工程を全てのガラス基板30についてまとめて行った後に、一枚の大きな基板から複数のガラス基板30を切り出す。
7A is a plan view of the surface on which the engraved groove 31 is formed, and FIG. 7B is a plan view of the surface opposite to the surface on which the engraved groove 31 is formed. c) is a cross-sectional view taken along the line VIIc-VIIc in FIG. As shown in FIG. 7A, the engraved groove 31 has a fuel introduction part 32 extending from the right edge to the left side of the through hole 38, and leads to the fuel introduction part 32, and has a distorted shape on the left side of the through hole 38. The combustion section 33, the terminal storage sections 34, 35 communicating with the combustion section 33, the discharge section 36 communicating with the combustion section 33 and extending from the left side to the right edge of the through hole 38, and the heater branched on the right side of the through hole 38 The storage unit 37 and the like.
A plurality of glass substrates 30 may be cut out from a single large substrate by dicing. In that case, after performing each process collectively about all the glass substrates 30, instead of sequentially performing each process of Drawing 6 (a)-Drawing 6 (g) for every glass substrate 30, one sheet A plurality of glass substrates 30 are cut out from a large substrate.

次に、彫込み溝31のうち燃焼部33の壁面に燃焼用触媒(例えば、白金系触媒)85を担持させる。   Next, a combustion catalyst (for example, a platinum-based catalyst) 85 is supported on the wall surface of the combustion part 33 in the engraved groove 31.

以上のように加工したガラス基板10,20,30を積み重ねて、これらを接合する。ここで、ガラス基板20をガラス基板10とガラス基板30の間に挟み、ガラス基板20の両面のうち金属薄膜51が成膜された面をガラス基板10との接合面にし、金属薄膜52が成膜された面をガラス基板30との接合面にする。また、ガラス基板10については、彫込み溝11が形成された面をガラス基板20との接合面にし、ガラス基板30について彫込み溝31が形成された面をガラス基板20との接合面にする。   The glass substrates 10, 20, and 30 processed as described above are stacked and joined. Here, the glass substrate 20 is sandwiched between the glass substrate 10 and the glass substrate 30, and the surface of the glass substrate 20 on which the metal thin film 51 is formed is used as the bonding surface with the glass substrate 10, and the metal thin film 52 is formed. The filmed surface is used as a bonding surface with the glass substrate 30. Further, for the glass substrate 10, the surface on which the engraved groove 11 is formed is a bonding surface with the glass substrate 20, and the surface on which the engraved groove 31 is formed on the glass substrate 30 is the bonding surface with the glass substrate 20. .

具体的には、図8(a)に示すように、ガラス基板10とガラス基板20を重ね合わせ、ガラス基板10,20の全体を加熱し、ガラス基板10側を陰極とし、切欠き19を通じて陽極91をガラス基板20の金属薄膜51に当接させる。これにより、ガラス基板10とガラス基板20を陽極接合する。なお、ガラス基板10とガラス基板20の接合に際しては、彫込み溝11の改質部13と彫込み溝21の改質部23を重ね合わせ、彫込み溝11の一酸化炭素除去部16と彫込み溝21の一酸化炭素除去部26を重ね合わせ、貫通孔18と貫通孔28を重ね合わせる。   Specifically, as shown in FIG. 8A, the glass substrate 10 and the glass substrate 20 are overlapped, the whole glass substrate 10, 20 is heated, the glass substrate 10 side is the cathode, and the anode is formed through the notch 19. 91 is brought into contact with the metal thin film 51 of the glass substrate 20. Thereby, the glass substrate 10 and the glass substrate 20 are anodically bonded. When the glass substrate 10 and the glass substrate 20 are joined, the modified portion 13 of the engraved groove 11 and the modified portion 23 of the engraved groove 21 are overlapped to engrave the carbon monoxide removing portion 16 and the engraved groove 11. The carbon monoxide removing portion 26 of the recessed groove 21 is overlapped, and the through hole 18 and the through hole 28 are overlapped.

次に、ヒータ53a,53bの両端部にリード線を接続する。   Next, lead wires are connected to both ends of the heaters 53a and 53b.

次に、図8(b)に示すように、ガラス基板20とガラス基板30を重ね合わせ、ガラス基板10,20、30の全体を加熱し、ガラス基板30側を陰極とし、切欠き39を通じて陽極91をガラス基板20の金属薄膜52に当接させる。これにより、ガラス基板20とガラス基板30を陽極接合する。なお、ガラス基板20とガラス基板30の接合に際しては、ヒータ53aを彫込み溝31の燃焼部33に収容され、ヒータ53bを彫込み溝31のヒータ収納部37に収容し、貫通孔28と貫通孔38を重ね合わせる。   Next, as shown in FIG. 8 (b), the glass substrate 20 and the glass substrate 30 are overlapped, the whole glass substrate 10, 20, 30 is heated, the glass substrate 30 side is used as the cathode, and the anode is formed through the notch 39. 91 is brought into contact with the metal thin film 52 of the glass substrate 20. Thereby, the glass substrate 20 and the glass substrate 30 are anodically bonded. When joining the glass substrate 20 and the glass substrate 30, the heater 53 a is accommodated in the combustion portion 33 of the engraved groove 31, and the heater 53 b is accommodated in the heater accommodating portion 37 of the engraved groove 31. The holes 38 are overlapped.

ガラス基板10,20,30が終わったら、リード線がガラス基板20とガラス基板30の間の穴を通っているので、その穴をガラス封止材等により封止する。以上により、反応器が完成する。   When the glass substrates 10, 20, and 30 are finished, the lead wire passes through the hole between the glass substrate 20 and the glass substrate 30, and the hole is sealed with a glass sealing material or the like. Thus, the reactor is completed.

以上のような製造方法においては、ガラス基板10,20,30に生じた反りがエッチングによって低減されているので、ガラス基板10,20,30の面同士を十分に接触させて陽極接合することができるので、これらの密着性が高いものとなる。また、ガラス基板10やガラス基板30についてはエッチングの際にドライフィルムによって保護された面が接合面となるので、製造される反応器内の気密性が高くされた状態となるようにガラス基板10やガラス基板30をガラス基板20に陽極接合することができる。同様に、ガラス基板20についてもエッチングの際に金属薄膜51,52が保護されて熱やエッチング液によるダメージを受けていないので、製造される反応器内の気密性が高くされた状態となるようにガラス基板20をガラス基板10やガラス基板30に陽極接合することができる。   In the manufacturing method as described above, since the warpage generated in the glass substrates 10, 20, and 30 is reduced by etching, the surfaces of the glass substrates 10, 20, and 30 can be sufficiently brought into contact with each other to be anodically bonded. Since it can do, these adhesiveness becomes high. In addition, since the glass substrate 10 and the glass substrate 30 are bonded to the surfaces protected by the dry film at the time of etching, the glass substrate 10 is in a state in which the airtightness in the manufactured reactor is increased. Alternatively, the glass substrate 30 can be anodically bonded to the glass substrate 20. Similarly, the glass substrate 20 is protected from the metal thin films 51 and 52 during etching and is not damaged by heat or an etching solution, so that the airtightness in the reactor to be manufactured is increased. In addition, the glass substrate 20 can be anodically bonded to the glass substrate 10 or the glass substrate 30.

また、上記実施形態では、ウェットエッチング法を用いているので、エッチングが等方的になされ、彫込み溝11,21,31の壁面表層を等方的に除去することができ、その表層を効率的に除去することができる。また、ウェットエッチング法では、エッチング液に浸漬しているので、ガラス基板10,20,30の両面を同時に処理したり、複数枚のガラス基板10,20,30を同時に処理したりすることができる。   Moreover, in the said embodiment, since the wet etching method is used, etching is made isotropic and the wall surface layer of the engraving grooves 11, 21, 31 can be removed isotropically, and the surface layer is made efficient. Can be removed. In addition, since the wet etching method is immersed in an etching solution, both surfaces of the glass substrates 10, 20, and 30 can be processed simultaneously, or a plurality of glass substrates 10, 20, and 30 can be processed simultaneously. .

以上のように製造した反応器の作用について説明する。
燃料(例えば、メタノール、エタノール、ジメチルエーテル、ブタン、ガソリン)と水が気化して混合した状態で燃料導入部12に供給され、燃料と水の混合気が燃料導入部12から改質部13,23に送られる。燃料と水の混合気が改質部13,23を流動しているときに、改質用触媒81,83によって燃料と水から水素ガスが生成され、更に微量ながら一酸化炭素ガスが生成される。燃料がメタノールの場合には、次式(1)、(2)のような化学反応が起こる。なお、水素が生成される反応は吸熱反応であって、ヒータ53aの熱や後述の燃焼熱が用いられる。
The operation of the reactor manufactured as described above will be described.
Fuel (for example, methanol, ethanol, dimethyl ether, butane, gasoline) and water are vaporized and mixed to be supplied to the fuel introduction unit 12, and the mixture of fuel and water is supplied from the fuel introduction unit 12 to the reforming units 13 and 23. Sent to. When a mixture of fuel and water flows through the reforming sections 13 and 23, hydrogen gas is generated from the fuel and water by the reforming catalysts 81 and 83, and a small amount of carbon monoxide gas is generated. . When the fuel is methanol, chemical reactions such as the following formulas (1) and (2) occur. The reaction in which hydrogen is generated is an endothermic reaction, and the heat of the heater 53a and the combustion heat described later are used.

CH3OH+H2O→3H2+CO2 …(1)
2+CO2→H2O+CO …(2)
CH 3 OH + H 2 O → 3H 2 + CO 2 (1)
H 2 + CO 2 → H 2 O + CO (2)

改質部13,23で生成された水素ガス及び一酸化炭素ガス等は連通部14を通って一酸化炭素除去部16に送られ、更に外部の空気が空気導入部15を通って一酸化炭素除去部16に送られる。水素ガス、一酸化炭素ガス及び空気が一酸化炭素除去部16を流動しているときに、選択酸化用触媒82,84によって一酸化炭素が優先的に酸化し、一酸化炭素が選択的に除去される。   Hydrogen gas, carbon monoxide gas, and the like generated in the reforming units 13 and 23 are sent to the carbon monoxide removal unit 16 through the communication unit 14, and external air passes through the air introduction unit 15 and carbon monoxide. It is sent to the removal unit 16. When hydrogen gas, carbon monoxide gas, and air are flowing through the carbon monoxide removing unit 16, the carbon monoxide is preferentially oxidized by the selective oxidation catalysts 82 and 84, and the carbon monoxide is selectively removed. Is done.

一酸化炭素除去後、水素ガス等の混合気が排出部17から排出される。排出された水素ガス等の混合気は燃料電池型発電セルに送られ、燃料電池型発電セルでは水素と酸素の電気化学反応により電気が取り出される。また、燃料電池型発電セルで電気化学反応せずに残った水素ガス等が空気と混合されて、燃料導入部32に供給される。水素ガスと空気等の混合気が燃料導入部32から燃焼部33に送られ、混合気が燃焼部33を流動しているときに、水素ガスが燃焼用触媒85によって酸化し、酸化によって燃焼熱が発する。以上の工程を経て生成された排ガスが排出部36を通って外部に排出される。   After the removal of carbon monoxide, an air-fuel mixture such as hydrogen gas is discharged from the discharge unit 17. The exhaust gas mixture such as hydrogen gas is sent to the fuel cell type power generation cell, and electricity is taken out by the electrochemical reaction between hydrogen and oxygen in the fuel cell type power generation cell. In addition, hydrogen gas remaining without electrochemical reaction in the fuel cell type power generation cell is mixed with air and supplied to the fuel introduction unit 32. When an air-fuel mixture such as hydrogen gas and air is sent from the fuel introduction section 32 to the combustion section 33 and the air-fuel mixture flows through the combustion section 33, the hydrogen gas is oxidized by the combustion catalyst 85, and combustion heat is generated by the oxidation. Is emitted. The exhaust gas generated through the above steps is discharged to the outside through the discharge unit 36.

以上のような反応器は、燃料電池型発電セルとともに、ノート型パーソナルコンピュータ、携帯電話機、PDA(Personal Digital Assistant)、電子手帳、腕時計、デジタルスチルカメラ、デジタルビデオカメラ、ゲーム機器、遊技機、その他の電子機器に備え付けられる。電子機器には、その他に、液体状の燃料と水を混合した状態で又は別々で収容した燃料容器と、燃料容器の燃料と水を気化し、その燃料と水の混合気を反応器へ送る気化器とが備え付けられる。   The above reactors are fuel cell type power generation cells, notebook personal computers, mobile phones, PDAs (Personal Digital Assistants), electronic notebooks, watches, digital still cameras, digital video cameras, game machines, game machines, etc. Of electronic equipment. In addition to the electronic equipment, the fuel container containing liquid fuel and water mixed or separately, the fuel and water in the fuel container are vaporized, and the fuel / water mixture is sent to the reactor. A vaporizer is provided.

なお、本発明は、上記実施の形態に限定されることなく、本発明の趣旨を逸脱しない範囲において、種々の改良並びに設計の変更を行っても良い。   The present invention is not limited to the above embodiment, and various improvements and design changes may be made without departing from the spirit of the present invention.

上記実施形態では、彫込み溝11,21,31や貫通孔18,28,38の加工として、衝突荷重を利用したサンドブラスト法を用いたが、他の機械的加工法を用いても良い。例えば、工具を用いて剪断力によりガラス基板10,20,30を削り、彫込み溝11,21,31や貫通孔18,28,38を施しても良い。   In the above embodiment, the sand blast method using a collision load is used for processing the engraved grooves 11, 21, 31 and the through holes 18, 28, 38, but other mechanical processing methods may be used. For example, the glass substrates 10, 20, and 30 may be shaved using a tool and the engraved grooves 11, 21, 31 and the through holes 18, 28, and 38 may be provided.

また、上記実施形態では、ガラス基板10,20,30をエッチング液に浸漬したが、エッチング液をガラス基板10,20,30に吹き付けても良い。   Moreover, in the said embodiment, although glass substrate 10,20,30 was immersed in etching liquid, you may spray an etching liquid on glass substrate 10,20,30.

上記実施形態では、彫込み溝11,21,31や貫通孔18,28,38を加工したが、彫込みによる溝や孔のほかに、彫込みによる凹部を加工しても良い。また、貫通孔18,28,38は両面から彫り込むことで貫通させたが、片面から彫り込むことで貫通させても良い。   In the above embodiment, the engraved grooves 11, 21, 31 and the through holes 18, 28, 38 are processed, but in addition to the engraved grooves and holes, the engraved recesses may be processed. Further, the through holes 18, 28, and 38 are penetrated by engraving from both sides, but may be penetrated by engraving from one side.

また、上記実施形態では、ドライフィルム41,42,55,56,61,62がネガ型であるが、ドライフィルム41,42,55,56,61,62がポジ型であっても良い。ドライフィルム41,42,55,56,61,62がポジ型である場合には、ネガ型に対して、露光する箇所と露光しない箇所を反転させる。   Moreover, in the said embodiment, although the dry films 41, 42, 55, 56, 61, 62 are negative types, the dry films 41, 42, 55, 56, 61, 62 may be positive types. When the dry films 41, 42, 55, 56, 61, and 62 are positive types, the exposed portion and the non-exposed portion are reversed with respect to the negative type.

また、上記実施形態では、被加工材がガラス材、特にガラス基板10,20,30であった。ガラス基板10,20,30の全部又は何れかを他の材料(例えば、イオン伝導性を持たせたセラミックス、鉄、アルミニウム、銅等からなる金属材料又は鉄、アルミニウム、銅等を含む合金材料、シリコン)からなる基板に代えて、その基板をサンドブラスト法で削って、その基板に形成された彫込み溝の壁面をウェットエッチングし、得られた基板を接合して、反応器を製造しても良い。但し、基板の材料に応じて、エッチング工程において用いるエッチング液を変更したり、接合の方法を変更したりする。   Moreover, in the said embodiment, the to-be-processed material was the glass material, especially the glass substrate 10,20,30. All or any of the glass substrates 10, 20, and 30 are made of other materials (for example, metal materials made of ceramics having ion conductivity, iron, aluminum, copper, or alloy materials containing iron, aluminum, copper, etc., Instead of a substrate made of silicon, the substrate is shaved by sandblasting, the walls of the engraved grooves formed on the substrate are wet etched, and the resulting substrate is joined to produce a reactor. good. However, the etching solution used in the etching process is changed or the bonding method is changed according to the material of the substrate.

直径125mm、厚さ0.6mmのリチウム含有ガラス基板にドライフィルムを貼り付けた。ドライフィルムの中央部には、80mm四方の正方形状開口部が形成されていた。そのガラス基板の反対面の全体にドライフィルムを貼り付けた。次に、平均粒径40μmの炭化珪素粒を含んだ圧縮エアー(気圧0.23MPa)をノズル状開口部を通じてガラス基板に吹き付けて、約16μm/minの加工レートで深さ250μmの彫込み溝をガラス基板に施した。その彫込み溝が形成された面とは反対の面について非接触段差計にてその面の反り具合を直径に沿って測定した。その測定結果を図9(凡例:サンドブラスト加工後)に示した。   A dry film was attached to a lithium-containing glass substrate having a diameter of 125 mm and a thickness of 0.6 mm. In the central part of the dry film, a square opening of 80 mm square was formed. A dry film was attached to the entire opposite surface of the glass substrate. Next, compressed air (atmospheric pressure 0.23 MPa) containing silicon carbide particles having an average particle diameter of 40 μm is blown onto the glass substrate through the nozzle-shaped opening, and a groove having a depth of 250 μm is formed at a processing rate of about 16 μm / min. It applied to the glass substrate. About the surface opposite to the surface where the engraved groove was formed, the warpage of the surface was measured along the diameter with a non-contact level meter. The measurement results are shown in FIG. 9 (Legend: after sandblasting).

また、サンドブラスト加工をした後に、ドライフィルムを残した状態でガラス基板をエッチング液に浸漬した。ここで、エッチング液はフッ酸水溶液であり、エッチング液の温度は室温であり、エッチング液の濃度は15vol%であった。また、エッチングレートは約30nm/secであり、エッチング量を3.5μmとした。エッチング後、彫込み溝が形成された面とは反対の面について上述の非接触段差計にてその面の反り具合を直径に沿って測定した。その測定結果を図9(凡例:フッ酸処理後)に示した。   Further, after sandblasting, the glass substrate was immersed in an etching solution while leaving a dry film. Here, the etching solution was an aqueous hydrofluoric acid solution, the temperature of the etching solution was room temperature, and the concentration of the etching solution was 15 vol%. The etching rate was about 30 nm / sec, and the etching amount was 3.5 μm. After etching, the warpage of the surface of the surface opposite to the surface where the engraved grooves were formed was measured along the diameter with the above-mentioned non-contact level difference meter. The measurement results are shown in FIG. 9 (legend: after hydrofluoric acid treatment).

図9において、横軸は直径方向における測定位置を表し、縦軸は所定の基準水平面から下への変位を表す。図9から明らかなように、サンドブラスト加工した後では、直径の中央(測定位置40mmの部分)では変位が大きく、直径の両側(測定位置0mm、80mmでは変位が小さく、ガラス基板が反っていることがわかる。それに対して、フッ酸処理後では全体的な変位が小さくなっており、ガラス基板の反りが小さくなったことがわかる。そのため、フッ酸処理によってガラス基板の反りが低減され、ガラス基板がほぼ平坦になっていることがわかる。
また、上述の実施形態に沿って製造された反応器は気密性が高く製造されていることが確認された。
In FIG. 9, the horizontal axis represents the measurement position in the diameter direction, and the vertical axis represents the displacement from a predetermined reference horizontal plane downward. As is clear from FIG. 9, after sandblasting, the displacement is large at the center of the diameter (measurement position 40 mm), the displacement is small at both sides of the diameter (measurement positions 0 mm and 80 mm, and the glass substrate is warped. On the other hand, after the hydrofluoric acid treatment, the overall displacement is small, and it can be seen that the warpage of the glass substrate is small. It can be seen that is almost flat.
Moreover, it was confirmed that the reactor manufactured along the above-mentioned embodiment is manufactured with high airtightness.

反応器の製造方法におけるガラス基板の加工工程を示した図である。It is the figure which showed the manufacturing process of the glass substrate in the manufacturing method of a reactor. 図1に示した加工工程により加工されたガラス基板の表面、裏面及び断面を示した図である。It is the figure which showed the surface, the back surface, and cross section of the glass substrate processed by the manufacturing process shown in FIG. 反応器の製造方法における別のガラス基板の加工工程を示した図である。It is the figure which showed the manufacturing process of another glass substrate in the manufacturing method of a reactor. 図3の続きの工程を示した図である。FIG. 4 is a diagram showing a step subsequent to FIG. 3. 図3、図4に示した加工工程により加工されたガラス基板の表面、裏面及び断面を示した図である。It is the figure which showed the surface of the glass substrate processed by the processing process shown in FIG. 3, FIG. 4, the back surface, and a cross section. 反応器の製造方法における別のガラス基板の加工工程を示した図である。It is the figure which showed the manufacturing process of another glass substrate in the manufacturing method of a reactor. 図6に示した加工工程により加工されたガラス基板の表面、裏面及び断面を示した図である。It is the figure which showed the surface, the back surface, and cross section of the glass substrate processed by the processing process shown in FIG. ガラス基板の接合工程を示した図である。It is the figure which showed the joining process of the glass substrate. ガラス基板の反りを示したグラフである。It is the graph which showed the curvature of the glass substrate.

符号の説明Explanation of symbols

10、20、30 ガラス基板
11、21、31 彫込み溝
41、42、55、56、61、62
43、57、63 エッチング液
42a、55a、61a
81、83 改質用触媒
82、84 選択酸化用触媒
85 燃焼用触媒
10, 20, 30 Glass substrate 11, 21, 31 Engraving groove 41, 42, 55, 56, 61, 62
43, 57, 63 Etching solution 42a, 55a, 61a
81, 83 Reforming catalyst 82, 84 Selective oxidation catalyst 85 Combustion catalyst

Claims (8)

機械的に削ることによる彫込み加工により変形した被加工材についてその彫込み壁面を化学的にエッチングすることによって、その被加工材の変形量を低減することを特徴とする被加工材の変形量低減方法。   The amount of deformation of the workpiece, characterized by reducing the amount of deformation of the workpiece by chemically etching the engraved wall surface of the workpiece deformed by engraving by mechanical cutting Reduction method. 開口部を備えた状態でマスクを被加工材に被覆し、前記開口部を通じて前記被加工材を機械的に削ることによって前記開口部に沿った彫込みを前記被加工材に施し、前記マスクにより被覆された状態で前記被加工材の彫込み壁面を化学的にエッチングすることを特徴とする被加工材の加工方法。   A mask is coated on the workpiece with an opening, and the workpiece is engraved along the opening by mechanically cutting the workpiece through the opening. A method of processing a workpiece, wherein the engraved wall surface of the workpiece is chemically etched in a coated state. 請求項2に記載の被加工材の加工方法において、
前記被加工材の化学的にエッチングした後に前記マスクを除去し、前記被加工材に別の部材を接合することによって前記被加工材の彫込みを前記別の部材で覆うことを特徴とする被加工材の加工方法。
In the processing method of the workpiece of Claim 2,
After the chemical etching of the workpiece, the mask is removed, and another member is joined to the workpiece to cover the engraving of the workpiece with the other member. Processing method of processed material.
請求項2に記載の被加工材の加工方法において、
前記被加工材がリチウム含有ガラス材又は硼珪酸ガラス材であることを特徴とする被加工材の加工方法。
In the processing method of the workpiece of Claim 2,
The method for processing a workpiece, wherein the workpiece is a lithium-containing glass material or a borosilicate glass material.
マスクで被加工板の一方の面を被覆するとともに前記マスクに開口部を形成し、前記開口部を通じて前記被加工板を機械的に削ることによって前記開口部に沿った彫込みを前記被加工板に施し、前記マスクにより被覆された状態で前記被加工板の彫込みの壁面を化学的にエッチングすることを特徴とする反応器の製造方法。   Covering one surface of the work plate with a mask, forming an opening in the mask, and mechanically scraping the work plate through the opening to engrave the engraving along the opening. The method for producing a reactor is characterized in that the engraved wall surface of the processed plate is chemically etched while being coated with the mask. 請求項5に記載の反応器の製造方法において、
前記化学的にエッチングをした後に、前記マスクを除去し、前記被加工板の一方の面に板材を接合することによって前記被加工板の彫込みを前記板材で覆うことを特徴とする反応器の製造方法。
In the manufacturing method of the reactor according to claim 5,
After the chemical etching, the mask is removed, and the engraving of the processed plate is covered with the plate material by bonding the plate material to one surface of the processed plate. Production method.
請求項5に記載の反応器の製造方法において、
前記被加工板がリチウム含有ガラス板又は硼珪酸ガラス板であることを特徴とする反応器の製造方法。
In the manufacturing method of the reactor according to claim 5,
The method for producing a reactor, wherein the processed plate is a lithium-containing glass plate or a borosilicate glass plate.
請求項5に記載の反応器の製造方法において、
前記被加工板の彫込みに触媒を担持することを特徴とする反応器の製造方法。
In the manufacturing method of the reactor according to claim 5,
A method for producing a reactor, wherein a catalyst is supported in the engraving of the work plate.
JP2006240461A 2006-09-05 2006-09-05 Method for reducing deformation quantity of material to be machined, method for machining the material to be machined and method for manufacturing reactor Pending JP2008063166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006240461A JP2008063166A (en) 2006-09-05 2006-09-05 Method for reducing deformation quantity of material to be machined, method for machining the material to be machined and method for manufacturing reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006240461A JP2008063166A (en) 2006-09-05 2006-09-05 Method for reducing deformation quantity of material to be machined, method for machining the material to be machined and method for manufacturing reactor

Publications (1)

Publication Number Publication Date
JP2008063166A true JP2008063166A (en) 2008-03-21

Family

ID=39286190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006240461A Pending JP2008063166A (en) 2006-09-05 2006-09-05 Method for reducing deformation quantity of material to be machined, method for machining the material to be machined and method for manufacturing reactor

Country Status (1)

Country Link
JP (1) JP2008063166A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082455A (en) * 2009-10-09 2011-04-21 Citizen Electronics Co Ltd Method for manufacturing light emitting device
CN102898031A (en) * 2012-11-19 2013-01-30 天津市中环高科技有限公司 Chemical reinforcing method for enhancing strength of OGS (One Glass Solution) glass hole
JP2013075779A (en) * 2011-09-30 2013-04-25 Nippon Electric Glass Co Ltd Method for producing filmy glass with film, filmy glass with film, method for producing glass material joined body, and glass material joined body
CN103482877A (en) * 2012-06-12 2014-01-01 三星显示有限公司 Method of processing cover glass and display device comprising the cover glass
CN103857640A (en) * 2011-09-15 2014-06-11 苹果公司 Perforated mother sheet for partial edge chemical strengthening
US9439305B2 (en) 2010-09-17 2016-09-06 Apple Inc. Glass enclosure
US9459661B2 (en) 2013-06-19 2016-10-04 Apple Inc. Camouflaged openings in electronic device housings
CN106082688A (en) * 2016-08-24 2016-11-09 合肥京东方光电科技有限公司 A kind of device and method for glass cover-plate strengthening
US9516149B2 (en) 2011-09-29 2016-12-06 Apple Inc. Multi-layer transparent structures for electronic device housings
US9513664B2 (en) 2011-05-04 2016-12-06 Apple Inc. Housing for portable electronic device with reduced border region
US9615448B2 (en) 2008-06-27 2017-04-04 Apple Inc. Method for fabricating thin sheets of glass
US9725359B2 (en) 2011-03-16 2017-08-08 Apple Inc. Electronic device having selectively strengthened glass
US9756739B2 (en) 2012-01-25 2017-09-05 Apple Inc. Glass device housing
US9778685B2 (en) 2011-05-04 2017-10-03 Apple Inc. Housing for portable electronic device with reduced border region
US9886062B2 (en) 2014-02-28 2018-02-06 Apple Inc. Exposed glass article with enhanced stiffness for portable electronic device housing
US9946302B2 (en) 2012-09-19 2018-04-17 Apple Inc. Exposed glass article with inner recessed area for portable electronic device housing
US10133156B2 (en) 2012-01-10 2018-11-20 Apple Inc. Fused opaque and clear glass for camera or display window
US10144669B2 (en) 2011-11-21 2018-12-04 Apple Inc. Self-optimizing chemical strengthening bath for glass
US10185113B2 (en) 2009-03-02 2019-01-22 Apple Inc. Techniques for strengthening glass covers for portable electronic devices
US10189743B2 (en) 2010-08-18 2019-01-29 Apple Inc. Enhanced strengthening of glass
US10781135B2 (en) 2011-03-16 2020-09-22 Apple Inc. Strengthening variable thickness glass

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9615448B2 (en) 2008-06-27 2017-04-04 Apple Inc. Method for fabricating thin sheets of glass
US10185113B2 (en) 2009-03-02 2019-01-22 Apple Inc. Techniques for strengthening glass covers for portable electronic devices
JP2011082455A (en) * 2009-10-09 2011-04-21 Citizen Electronics Co Ltd Method for manufacturing light emitting device
US10189743B2 (en) 2010-08-18 2019-01-29 Apple Inc. Enhanced strengthening of glass
US11785729B2 (en) 2010-09-17 2023-10-10 Apple Inc. Glass enclosure
US10765020B2 (en) 2010-09-17 2020-09-01 Apple Inc. Glass enclosure
US10398043B2 (en) 2010-09-17 2019-08-27 Apple Inc. Glass enclosure
US9439305B2 (en) 2010-09-17 2016-09-06 Apple Inc. Glass enclosure
US10021798B2 (en) 2010-09-17 2018-07-10 Apple Inc. Glass enclosure
US10676393B2 (en) 2011-03-16 2020-06-09 Apple Inc. Electronic device having selectively strengthened glass
US11518708B2 (en) 2011-03-16 2022-12-06 Apple Inc. Electronic device having selectively strengthened glass
US9725359B2 (en) 2011-03-16 2017-08-08 Apple Inc. Electronic device having selectively strengthened glass
US10781135B2 (en) 2011-03-16 2020-09-22 Apple Inc. Strengthening variable thickness glass
US9513664B2 (en) 2011-05-04 2016-12-06 Apple Inc. Housing for portable electronic device with reduced border region
US10656674B2 (en) 2011-05-04 2020-05-19 Apple Inc. Housing for portable electronic device with reduced border region
US9778685B2 (en) 2011-05-04 2017-10-03 Apple Inc. Housing for portable electronic device with reduced border region
US10761563B2 (en) 2011-05-04 2020-09-01 Apple Inc. Housing for portable electronic device with reduced border region
US10401904B2 (en) 2011-05-04 2019-09-03 Apple Inc. Housing for portable electronic device with reduced border region
US10983557B2 (en) 2011-05-04 2021-04-20 Apple Inc. Housing for portable electronic device with reduced border region
US11681326B2 (en) 2011-05-04 2023-06-20 Apple Inc. Housing for portable electronic device with reduced border region
CN103857640A (en) * 2011-09-15 2014-06-11 苹果公司 Perforated mother sheet for partial edge chemical strengthening
US9944554B2 (en) 2011-09-15 2018-04-17 Apple Inc. Perforated mother sheet for partial edge chemical strengthening and method therefor
US9516149B2 (en) 2011-09-29 2016-12-06 Apple Inc. Multi-layer transparent structures for electronic device housings
US10320959B2 (en) 2011-09-29 2019-06-11 Apple Inc. Multi-layer transparent structures for electronic device housings
US10574800B2 (en) 2011-09-29 2020-02-25 Apple Inc. Multi-layer transparent structures for electronic device housings
US11368566B2 (en) 2011-09-29 2022-06-21 Apple Inc. Multi-layer transparent structures for electronic device housings
JP2013075779A (en) * 2011-09-30 2013-04-25 Nippon Electric Glass Co Ltd Method for producing filmy glass with film, filmy glass with film, method for producing glass material joined body, and glass material joined body
US10144669B2 (en) 2011-11-21 2018-12-04 Apple Inc. Self-optimizing chemical strengthening bath for glass
US10133156B2 (en) 2012-01-10 2018-11-20 Apple Inc. Fused opaque and clear glass for camera or display window
US10551722B2 (en) 2012-01-10 2020-02-04 Apple Inc. Fused opaque and clear glass for camera or display window
US10842031B2 (en) 2012-01-25 2020-11-17 Apple Inc. Glass device housings
US10512176B2 (en) 2012-01-25 2019-12-17 Apple Inc. Glass device housings
US9756739B2 (en) 2012-01-25 2017-09-05 Apple Inc. Glass device housing
US11612975B2 (en) 2012-01-25 2023-03-28 Apple Inc. Glass device housings
US11260489B2 (en) 2012-01-25 2022-03-01 Apple Inc. Glass device housings
US10278294B2 (en) 2012-01-25 2019-04-30 Apple Inc. Glass device housings
CN103482877A (en) * 2012-06-12 2014-01-01 三星显示有限公司 Method of processing cover glass and display device comprising the cover glass
US9946302B2 (en) 2012-09-19 2018-04-17 Apple Inc. Exposed glass article with inner recessed area for portable electronic device housing
CN102898031A (en) * 2012-11-19 2013-01-30 天津市中环高科技有限公司 Chemical reinforcing method for enhancing strength of OGS (One Glass Solution) glass hole
US9459661B2 (en) 2013-06-19 2016-10-04 Apple Inc. Camouflaged openings in electronic device housings
US9886062B2 (en) 2014-02-28 2018-02-06 Apple Inc. Exposed glass article with enhanced stiffness for portable electronic device housing
US10496135B2 (en) 2014-02-28 2019-12-03 Apple Inc. Exposed glass article with enhanced stiffness for portable electronic device housing
US10579101B2 (en) 2014-02-28 2020-03-03 Apple Inc. Exposed glass article with enhanced stiffness for portable electronic device housing
CN106082688A (en) * 2016-08-24 2016-11-09 合肥京东方光电科技有限公司 A kind of device and method for glass cover-plate strengthening
US10421686B2 (en) 2016-08-24 2019-09-24 Boe Technology Group Co., Ltd. Apparatus and method for strengthening glass cover

Similar Documents

Publication Publication Date Title
JP2008063166A (en) Method for reducing deformation quantity of material to be machined, method for machining the material to be machined and method for manufacturing reactor
JP2006500734A (en) Ion exchange system structure having a microstructured surface, method for making and using the same
US20080233423A1 (en) Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
JP2012040684A (en) Micromechanical device and its manufacturing method
JP2004057919A (en) Small-sized chemical reactor and manufacturing method thereof
JP2008063178A (en) Method of reducing deformation of workpiece, method of working workpiece, and method of manufacturing pocessor
JP4414780B2 (en) Microreactor for hydrogen production and method for producing the same
JP2005132712A (en) Microreactor for producing hydrogen
JP4366483B2 (en) Reactor
JP2007207672A (en) Thin film heater and its manufacturing method
JP4867357B2 (en) Microreactor for hydrogen production
JP2004331434A (en) Microreacter for hydrogen production and its manufacturing method
JP4537685B2 (en) Membrane reactor for hydrogen production
KR20030060668A (en) A Separator with micro channel and thereof fabrication method
JP2007220583A (en) Fuel cell and manufacturing method of gas separator
JP2008069018A (en) Method for manufacturing micro reforming device and micro-reforming device
JP4486429B2 (en) Microreactor for hydrogen production and method for producing the same
JP2007265845A (en) Separator for molten carbonate fuel cell and its manufacturing method, and molten carbonate fuel cell using the separator
JP2004121899A (en) Thin film supporting substrate used for hydrogen producing filter, and method of manufacturing the filter
JP5038619B2 (en) Microreactor and manufacturing method thereof
JP2005095829A (en) Catalytic reactor and producing method therefor
JP2021051856A (en) Rust-proof plate
JP2007242257A (en) Separator and its manufacturing method as well as fuel cell using it
JP2007280674A (en) Separator for fuel cell and its manufacturing method as well as fuel cell using it
JP2014045030A (en) Method for forming pore in crystal substrate, and functional device having wiring and piping in crystal substrate