JP2008061483A - Three-phase power generation method by new energy and reactive power generation method for assisting this method - Google Patents

Three-phase power generation method by new energy and reactive power generation method for assisting this method Download PDF

Info

Publication number
JP2008061483A
JP2008061483A JP2006261436A JP2006261436A JP2008061483A JP 2008061483 A JP2008061483 A JP 2008061483A JP 2006261436 A JP2006261436 A JP 2006261436A JP 2006261436 A JP2006261436 A JP 2006261436A JP 2008061483 A JP2008061483 A JP 2008061483A
Authority
JP
Japan
Prior art keywords
phase
circuit
input
voltage
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006261436A
Other languages
Japanese (ja)
Inventor
Kosuke Ishikawa
幸助 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006261436A priority Critical patent/JP2008061483A/en
Publication of JP2008061483A publication Critical patent/JP2008061483A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power generation method which derives electric power energy by the development of an electromagnetic circuit structure method which employs space energy considered to fill the space as a power source, and to provide efficiently generated power with an amalgamated circuit structure by a reactive power generation method to suppress a fault current caused incidentally. <P>SOLUTION: This method has the circuit structure that supplies equal three-phase output electric power simultaneously from a secondary three-output independent winding circuit of Y-▵ connection which obtains an input of a three-phase AC power source. An inductive reactive current induced in each circuit of a three-phase circuit of the input three-phase AC power source is dissipated with a capacitive reactive current induced in the three-phase circuit of the input three-phase AC power source, by forming a non-voltage structure circuit G having three passages from one secondary winding circuit of Y-▵ connection and one secondary compound winding circuit of ▵-Y connection and by supplying to the three structure circuit G phase currents having the phase difference of the electrical angle of 90 degrees from each three-phase voltage of the input AC power source. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、物質の変換エネルギーから電力を得る従来の方式から逸脱し、空間に存在する無限のエネルギー(宇宙、真空、又はフリーエネルギーとも言われる。)をエネルギー源とした三相電力生成法と、該生成法に付随して生じる無効電力を消失させる無効電力生成法に関するものである。  The present invention deviates from the conventional method of obtaining electric power from the conversion energy of matter, and a three-phase power generation method using infinite energy (also referred to as space, vacuum, or free energy) existing in space as an energy source, and The present invention relates to a reactive power generation method that eliminates reactive power generated accompanying the generation method.

本発明の電力生成法は、従来の電気回路技術の更なる発展の基に開発を進めてきたものであり、特に参考とする従来の技術背景はないが、探求の動機としているのは、現在に於ける世界のエネルギー事情から、多くの研究者による宇宙エネルギー利用の開発情報にある。例えば、最近の宇宙物理学分野に於いて、実験を以て真空エネルギーの存在が確認されている所である。(この情報源、2004年NHK放映・宇宙への大紀行)  The power generation method of the present invention has been developed based on the further development of the conventional electric circuit technology, and there is no conventional technical background to be referred to in particular. From the world energy situation in Japan, it is in the development information of space energy utilization by many researchers. For example, in the recent field of astrophysics, the existence of vacuum energy has been confirmed by experiments. (This information source, NHK airing in 2004, a great trip to space)

本発明を開発するに当たっての思念的技術背景は、従来の電磁理論で説明される変圧器作用の更なる追及にある。この世界で経験する通常の事象では、因果律に従って進行している。電磁理論で述べられる変圧器作用も、同様の見解を以て矛盾のない説明が望まれる。
従来では、一次入力巻線回路、及び二次出力巻線回路を設けた通常の変圧器に於いて、(電源の入力有り。)今、二次出力巻線両端子に負荷Rを接続すれば、即座に二次負荷電流(i−1)が流れようとする。そこで変圧器内の相互誘導作用の働きにより、一次入力巻線回路に一次誘導電流(i−2)が導入されることで、電気的エネルギーの均衡が保たれて安定する。との説明に止どまり、自然界のエネルギーが関与する理論的な説明は得られていなかった。
文中の電流値としているi記号は、以下の説明文に於いても常時変化する交流電流値の総称として示している。同様に、交流電圧値並びに交流電力値の記号も比較上の総称としている。
The thoughtful technical background in developing the present invention is the further pursuit of the transformer action explained in the conventional electromagnetic theory. The normal events experienced in this world proceed according to causality. The transformer action described in electromagnetic theory should be explained consistently with the same view.
Conventionally, in a normal transformer provided with a primary input winding circuit and a secondary output winding circuit (with power input), if a load R is connected to both terminals of the secondary output winding now The secondary load current (i-1) tends to flow immediately. Therefore, the primary induced current (i-2) is introduced into the primary input winding circuit by the action of the mutual induction action in the transformer, so that the electrical energy balance is maintained and stabilized. However, no theoretical explanation has been obtained regarding the involvement of natural energy.
The symbol i, which is the current value in the text, is a general term for alternating current values that constantly change in the following explanation. Similarly, the symbols for the AC voltage value and the AC power value are also generic names for comparison.

本発明の理念は、変圧器作用の因果的過度現象を重視する所から、二次出力負荷電流(i−1)の発生初期に注目すると、初期の出力負荷電流(i−1)は、入力電源電流でもある一次誘導電流(i−2)に対して、瞬時的に先行する発現電流である事は明白であり、過度的に入力電源エネルギーとは関わらない、自発的電気現象と観なければならない、としている。この自発的電気現象は、自然界に存在するエネルギーの発現として理解すると共に、空間に充満するエネルギー(宇宙エネルギー)の存在を肯定する事で、容易に受け入れられるもので、自然界から出現するエネルギー的現象は、自然法則そのものであるとして,これを本発明への基本概念としている。  The idea of the present invention is that the emphasis is on the causal transient phenomenon of the transformer action. When attention is paid to the initial generation of the secondary output load current (i-1), the initial output load current (i-1) It is clear that it is an instantaneously preceding expression current with respect to the primary induced current (i-2), which is also the power supply current, and it must be viewed as a spontaneous electrical phenomenon that is not excessively related to the input power supply energy. It is not supposed to be. This spontaneous electrical phenomenon is understood as manifestation of energy that exists in nature, and is easily accepted by affirming the existence of energy that fills space (cosmic energy). Energy phenomena that emerge from nature This is the basic concept of the present invention as it is a law of nature itself.

本発明は、上記の空間に充満するエネルギーを、無尽蔵の新エネルギー源として掲げ、技術的な電気回路の構成法をもって、新エネルギーを電力として導き出す三相電力生成法を提供するにある。
さらに本発明の三相電力生成法では、誘導性無効電力の発生を抑制する必要から、無効電力生成法を同時に提供する事により、互いの無効電力を相殺的に消失させて、新生電力を効果的に、かつ効率的に生成しようとするものである。
文中の誘導性無効電流とは、相電圧に対して、電気角90度の遅相電流としている。
It is an object of the present invention to provide a three-phase power generation method in which the energy that fills the space is listed as an inexhaustible new energy source, and the new energy is derived as electric power using a technical electric circuit configuration method.
Furthermore, in the three-phase power generation method of the present invention, since it is necessary to suppress the generation of inductive reactive power, by simultaneously providing the reactive power generation method, each reactive power is eliminated in an offset manner, and the new power is effective. It is intended to be generated efficiently and efficiently.
The inductive reactive current in the text is a slow current having an electrical angle of 90 degrees with respect to the phase voltage.

本発明は、上記の目的を達成する為に、正弦波三相交流電源(P)の入力を得る、Y−△結線(変圧器)の二次側に於ける3巻線回路を、それぞれ独立の相(U,V,W)電圧出力巻線回路として、同値の三相(U,V,W)出力電力を、同時に負荷に供給できる回路調整下にある電気的回路構成を備える事によって、入力電源電力の導入を得る事なく負荷に新エネルギーによる生成電力を供給しようとするものである。
また本発明による三相電力生成法は、入力三相交流電源(P)の入力三相(R,S,T)電圧回路に、負荷供給出力に付随する誘導性の無効電流が流動する事になるので、この障害的産物である無効電流を除去するのに、入力三相交流電源(P)の各相電圧回路に、容量性無効電流を発生する機器を設けることを手段として開発した、補助法となる無効電力生成法を併用(組み入れる)する事により、効果的で効率的な三相電力生成法とするものである。
尚、小負荷出力の場合には、容量性無効電流を得る手段として、入力三相交流電源(P)各相電圧回路に容量性リアクタンス回路(進相コンデンサー等)を並列に設ける方が容易で適性とする選択もある。
文中の容量性無効電流とは、相電圧に対して電気角90度の進相電流としている。
In order to achieve the above-mentioned object, the present invention obtains an input of a sine wave three-phase AC power source (P), and independently forms a three-winding circuit on the secondary side of the Y-Δ connection (transformer). By providing a three-phase (U, V, W) output power of the same value as a phase (U, V, W) voltage output winding circuit, an electrical circuit configuration under circuit adjustment that can simultaneously supply the load to the load, It is intended to supply power generated by new energy to the load without obtaining input power.
The three-phase power generation method according to the present invention is such that an inductive reactive current associated with the load supply output flows in the input three-phase (R, S, T) voltage circuit of the input three-phase AC power supply (P). Therefore, in order to eliminate this reactive product reactive current, it was developed as a means to provide a device that generates capacitive reactive current in each phase voltage circuit of the input three-phase AC power supply (P). By combining (incorporating) the reactive power generation method, which is the law, it is an effective and efficient three-phase power generation method.
In the case of a small load output, it is easier to provide a capacitive reactance circuit (such as a phase advance capacitor) in parallel to each phase voltage circuit of the input three-phase AC power supply (P) as a means for obtaining a capacitive reactive current. There are also choices to suit.
The capacitive reactive current in the sentence is a phase advance current having an electrical angle of 90 degrees with respect to the phase voltage.

次に上記の無効電力生成法に於いては、以下の様な電磁的回路構成Dを主体としている。
三相交流電源(P)の入力を得るY−△結線(変圧器)の二次側1巻線回路と△−Y結線(変圧器)の二次側1複合巻線回路とで形成出来る無電圧構成回路Gに、該無電圧構成回路Gが内包している入力三相交流電源(P)の1相電圧[1例・R相]に対して、電気角90度の位相差にある、△−Y結線(変圧器)の二次側1複合小巻線回路の相[TS相]電圧から得られる1相[TS相]電流Mを導通する事により、入力三相交流電源(P)の入力1相[R相]電圧回路に、1相[R相]電圧に対して電気角90度の位相差を持つ無効電流を誘発させるものである。
この無効電力生成法では、該無効電圧構成回路Gに対して導通する相[TS相]電流を逆流方向の導通電流とすれば、入力三相交流電源(P)の入力1相[R相]電圧回路に誘発し流動する無効電流は、容量性と誘導性が入れ替わる特徴的な無効電力生成法となっている。
Next, in the reactive power generation method described above, the following electromagnetic circuit configuration D is mainly used.
Can be formed with a Y- △ connection (transformer) secondary side 1-winding circuit and a Δ-Y connection (transformer) secondary side 1-combination circuit to obtain the input of the three-phase AC power supply (P) The voltage component circuit G has a phase difference of 90 degrees in electrical angle with respect to the one-phase voltage of the input three-phase AC power supply (P) included in the non-voltage component circuit G (example: R phase). The input three-phase AC power supply (P) by conducting the one-phase [TS phase] current M obtained from the phase [TS phase] voltage of the secondary side 1 composite small winding circuit of the Δ-Y connection (transformer) The reactive current having a phase difference of an electrical angle of 90 degrees with respect to the one-phase [R-phase] voltage is induced in the input one-phase [R-phase] voltage circuit.
In this reactive power generation method, if the phase [TS phase] current that conducts to the reactive voltage component circuit G is the conduction current in the reverse flow direction, the input one phase [R phase] of the input three-phase AC power supply (P) The reactive current that is induced and flows in the voltage circuit is a characteristic reactive power generation method in which capacitive and inductive properties are interchanged.

従って、本無効電力生成法によれば、簡単な電気配線回路の切替えを行う事によって、容量性と、誘導性の無効電流を共に発生する電磁的構成回路を作成出来る共に、該電磁的構成回路Dへの入力三相交流電源(P)の三相電源端子を、順次切替えの接続形態を持つ事によって、入力三相交流電源(P)の各相電圧回路に、順次に無効電流を発生させる事が出来るものである。
但し、本発明の三相電力生成法による実施上では、入力三相交流電源(P)の三相電圧回路の各々に無効電流を発生させる三通りの回路構成を設けている。
又、該無電圧構成回路Gに導通する、相電流Mの発生回路から生じる電気的損失分については,該相電流Mを発生させる相出力回路の出力電圧を低く構成する事で、損失分を極力押さえる事が出来る。
Therefore, according to this reactive power generation method, it is possible to create an electromagnetic component circuit that generates both capacitive and inductive reactive currents by simply switching the electric wiring circuit. By connecting the three-phase power supply terminals of the input three-phase AC power supply (P) to D in order, the reactive current is generated sequentially in each phase voltage circuit of the input three-phase AC power supply (P). Things that can be done.
However, in the implementation by the three-phase power generation method of the present invention, there are provided three circuit configurations for generating reactive currents in each of the three-phase voltage circuits of the input three-phase AC power supply (P).
In addition, the electrical loss generated from the phase current M generation circuit that is conducted to the no-voltage component circuit G can be reduced by configuring the output voltage of the phase output circuit that generates the phase current M to be low. It can be suppressed as much as possible.

本発明の三相電力生成法によって得られる生成電力は、地球資源を全く消費しないクリーンエネルギーとして誕生しているので、今後の地球環境を良くする最善のエネルギーであり、枯渇しないエネルギー源として遥か未来に渡って活用して行けるものである。
本発明の三相電力生成法によって得られる三相波の生成電力は、共々に同値の相電力を同時に消費する事により、生成電力としての効果をあげるものなので、三相電動機並びに三相電動発電機等の活用によって、様々な電力系統の需要にも応じる事が出来る事から、今後の電力源としての期待は大きいものである。
又、本三相電力生成法による装置は、静止形機器であると共に、簡単な構成による移動可能な無公害電力源として、様々な交通機関等の動力源に用いる事が出来る。
The power generated by the three-phase power generation method of the present invention has been born as clean energy that does not consume any earth resources, so it is the best energy to improve the future global environment, and it will be a far future as an energy source that will not be depleted. It can be used over a wide range.
The generated power of the three-phase wave obtained by the three-phase power generation method of the present invention increases the effect as generated power by simultaneously consuming the same phase power at the same time. Since it is possible to meet the demands of various electric power systems by utilizing machines, etc., there are great expectations as future power sources.
In addition, the apparatus according to the three-phase power generation method is a stationary device, and can be used as a power source for various transportation facilities as a movable pollution-free power source with a simple configuration.

次に、本発明の無効電力生成法による装置は、誘導性と容量性の無効電力を簡単な電気配線回路の切替えによって変更が出来ると共に、該装置に印加する入力三相交流電源(P)の三電源端子の切替えにより、入力1相回路に流動する無効電流を他相回路に変更出来る簡便さは、配電時の力率の改善に、従来では設備の要する進相コンデンサー、並びに進相機、調相機等の回転機に替えて活用して行ける効果を持っている。  Next, according to the reactive power generation method of the present invention, inductive and capacitive reactive power can be changed by simply switching an electric wiring circuit, and the input three-phase AC power supply (P) applied to the device can be changed. By switching the three power supply terminals, it is possible to change the reactive current flowing in the input 1-phase circuit to the other-phase circuit. This improves the power factor at the time of power distribution. It has the effect that it can be used in place of rotating machines such as phase machines.

以下、本発明の三相電力生成法に基づく実施例1の形態を図1、図2、図3を参照して説明する。
図1に於いて、破線に囲まれた(117)はY−△結線構成の三相変圧器で、破線内部は3台の単相変圧器Eを連ねた構成にあって、入力側3線路(105、106、107)は入力三相交流電源(P)端子「(105)と(101R相)」、「(106)と(102S相)」、「(107)と(103T相)」に接続している。
3台の単相変圧器Eの入力側一次巻線巻数を1L、出力側二次巻線巻数を3Lとしている。
入力三相交流電源(P)の端子間(101と102)相電圧をR相電圧、端子間(102と103)相電圧をS相電圧,端子間(103と101)相電圧をT相電圧として示し、それぞれの相電圧(R,S,T)回路に対して各々進相用コンデンサー(104A,104B,104C)を並列に接続している。尚、入力三相交流電源(P)の相順位はR、S,Tである。
Y−△結線変圧器(117)の出力側二次巻線回路「U相巻線回路(108)、V相巻線回路(109),W相巻線回路(110)」から得られる出力3線路(111)、(112)、(113)は、三相交流電動発電機(114)の入力3端子(115)に接続し、単相出力用2端子(116)は、抵抗性負荷体(119)に接続している。三相交流電動発電機(114)は、入力側を三相交流電動機、出力側を単相交流発電機としている。
Hereinafter, the form of Example 1 based on the three-phase electric power generation method of this invention is demonstrated with reference to FIG.1, FIG.2, FIG.3.
In FIG. 1, (117) surrounded by a broken line is a three-phase transformer having a Y-.DELTA. Connection configuration, and the inside of the broken line is a configuration in which three single-phase transformers E are connected. (105, 106, 107) are connected to the input three-phase AC power supply (P) terminals “(105) and (101R phase)”, “(106) and (102S phase)”, “(107) and (103T phase)”. Connected.
The three primary phase transformers E have an input primary winding number of 1L and an output side secondary winding number of 3L.
The terminal (101 and 102) phase voltage of the input three-phase AC power supply (P) is the R phase voltage, the terminal (102 and 103) phase voltage is the S phase voltage, and the terminal (103 and 101) phase voltage is the T phase voltage. The phase-advancing capacitors (104A, 104B, 104C) are connected in parallel to the phase voltage (R, S, T) circuits. The phase order of the input three-phase AC power source (P) is R, S, T.
Output 3 obtained from output side secondary winding circuit “U-phase winding circuit (108), V-phase winding circuit (109), W-phase winding circuit (110)” of Y-Δ connection transformer (117) The lines (111), (112), (113) are connected to the input three terminals (115) of the three-phase AC motor generator (114), and the single-phase output two terminals (116) are connected to a resistive load body ( 119). The three-phase AC motor generator (114) has a three-phase AC motor on the input side and a single-phase AC generator on the output side.

次に上記実施例1に於ける、三相交流電源(P)の印加による動作を説明する。
入力三相交流電源(P)の印加により、抵抗性負荷体(119)は、三相交流電動発電機(114)より単相電力の供給を受けるが、この供給電力ZはY−△結線変圧器(117)に於ける二次巻線回路の3相波「U相(108)、V相(109)、T相(110)」出力電力の電気的変換エネルギ−であり、その内容は、3相波(U、V、W)の波動的電力を、同時性をもって共に等しく抵抗性負荷体(119)に電力を供給する電気的回路構成に在る事から、Y−△結線変圧器(117)の一次3巻線回路(118)には、互いに等しい一次負荷電流が流動する。
文中の一次負荷電流とは、電磁誘導作用により二次負荷電流を起因として一次回路側に誘導される電流としている。
Next, the operation by applying the three-phase AC power source (P) in the first embodiment will be described.
By applying the input three-phase AC power source (P), the resistive load body (119) is supplied with single-phase power from the three-phase AC motor generator (114). Is the electrical conversion energy of the output power of the three-phase wave “U-phase (108), V-phase (109), T-phase (110)” of the secondary winding circuit in the device (117). Since there is an electrical circuit configuration that supplies the three-phase wave (U, V, W) wave power to the resistive load body (119) equally and simultaneously, the Y-Δ connection transformer ( 117) Primary load currents equal to each other flow in the primary three-winding circuit (118).
The primary load current in the sentence is a current induced to the primary circuit side due to the secondary load current due to electromagnetic induction.

次に入力三相交流電源(P)の一次三相波電圧回路に流動する一次負荷電流の形態を、図2、及び図3を参照して説明する。
図2のイ.は、一次R相、及び一次S相電圧を線図一次R、及び一次Sで示し、二次V相電圧を一次相電圧に対抗する相電圧として線図二次Vとして示し、二次V相回路に発生する二次負荷Vi電流が,電磁誘導により一次側回路に誘発される一次負荷電流Viの相電流を,破線図一次Viとして示している。
また図2のイ.に於いては、二次V相回路に発生する二次負荷電流Viは一次R相電圧回路、及び一次S相電圧回路のみに一次負荷電流Viを誘発している事を示している。
Next, the form of the primary load current flowing in the primary three-phase wave voltage circuit of the input three-phase AC power supply (P) will be described with reference to FIG. 2 and FIG.
In FIG. Shows the primary R-phase and primary S-phase voltages as a diagram primary R and primary S, and shows the secondary V-phase voltage as a diagram secondary V as a phase voltage that opposes the primary phase voltage. A phase current of the primary load current Vi induced in the primary side circuit by electromagnetic induction by the secondary load Vi current generated in the circuit is shown as a primary Vi in a broken line diagram.
In FIG. In FIG. 2, the secondary load current Vi generated in the secondary V-phase circuit induces the primary load current Vi only in the primary R-phase voltage circuit and the primary S-phase voltage circuit.

図2のロ.は、一次T相、及び一次R相電圧を線図一次T、及び一次Rで示し、二次U相電圧を一次相電圧に対抗する相電圧として線図二次Uとして示し、二次U相回路に発生する二次負荷Ui電流が,電磁誘導により一次側回路に誘発される一次負荷電流Uiの相電流を,破線図一次Uiとして示している。
また図2のロ.に於いては、二次U相回路に発生する二次負荷電流Uiは一次T相電圧回路、及び一次R相電圧回路のみに一次負荷電流Uiを誘発している事を示している。
B. Shows the primary T-phase and primary R-phase voltages as a diagram primary T and primary R, and shows the secondary U-phase voltage as a phase secondary U against the primary phase voltage as a secondary U-phase. A phase current of the primary load current Ui that is induced in the primary side circuit by electromagnetic induction by the secondary load Ui current generated in the circuit is shown as a primary Ui in a broken line diagram.
In FIG. In FIG. 2, the secondary load current Ui generated in the secondary U-phase circuit induces the primary load current Ui only in the primary T-phase voltage circuit and the primary R-phase voltage circuit.

図2のハ.は、一次S相、及び一次T相電圧を線図一次S、及び一次Tで示し、二次W相電圧を一次相電圧に対抗する相電圧として線図二次Wとして示し、二次W相回路に発生する二次負荷Wi電流が,電磁誘導により一次側回路に誘発される一次負荷電流Wiの相電流を,破線図一次Wiとして示している。
また図2のハ.に於いては、二次W相回路に発生する二次負荷電流Wiは一次S相電圧回路、及び一次T相電圧回路のみに一次負荷電流Wiを誘発している事を示している。
In FIG. Shows the primary S-phase and primary T-phase voltages as the primary S and primary T in the diagram, and shows the secondary W-phase voltage as the secondary W phase diagram as the phase voltage against the primary phase voltage. A phase current of the primary load current Wi that is induced in the primary circuit by electromagnetic induction by the secondary load Wi current generated in the circuit is shown as a primary Wi in a broken line diagram.
In FIG. In FIG. 2, the secondary load current Wi generated in the secondary W-phase circuit induces the primary load current Wi only in the primary S-phase voltage circuit and the primary T-phase voltage circuit.

ここに於いて、入力三相交流電源(P)の各相(R,S,T)電圧回路に流動する全ての一次負荷電流を表したが、さらに個々の相(R,S,T)電圧回路に流動する一次負荷電流の合成形態を示しているのが図3である。  Here, all the primary load currents flowing in the phase (R, S, T) voltage circuits of the input three-phase AC power source (P) are shown, but the individual phase (R, S, T) voltages are also shown. FIG. 3 shows a combined form of the primary load current flowing in the circuit.

図3は、図2より導かれる線図であり、図3のニ.は、一次R相電圧回路に於けるR相波電圧を線図一次Rで示し、一次R相電圧回路に流動する一次負荷電流を破線一次Vi、一次Uiで示し、その合成電流uviを二点破線uviで表しているもので、この合成電流uviは、一次R相電圧に対して電気角90度の遅相にある誘導性無効電流uviとして一次R相電圧回路に流動することを示している。
同じく、図3のホ.は、一次T相電圧回路に於けるT相波電圧を線図一次Tで示し、一次T相電圧回路に流動する一次負荷電流を破線一次Wi、一次Uiで示し、その合成電流wuiを二点破線wuiで表しているもので、この合成電流wuiは、一次T相電圧に対して電気角90度の遅相にある誘導性無効電流wuiとして一次T相電圧回路に流動することを示している。
同じく、図3のヘ.は、一次S電圧回路に於けるS相波電圧を線図一次Sで示し、一次S相電圧回路に流動する一次負荷電流を破線一次Vi、一次Wiで示し、その合成電流vwiを二点破線vwiで表しているもので、この合成電流vwiは、一次S相電圧に対して電気角90度の遅相にある誘導性無効電流vwiとして一次S相電圧回路に流動することを示している。
FIG. 3 is a diagram derived from FIG. Shows the R-phase wave voltage in the primary R-phase voltage circuit as a primary R in the diagram, the primary load current flowing through the primary R-phase voltage circuit as a broken line primary Vi, and the primary Ui, and the combined current uvi This is represented by a broken line uvi, and indicates that this combined current uvi flows to the primary R-phase voltage circuit as an inductive reactive current uvi that is in a phase with an electrical angle of 90 degrees with respect to the primary R-phase voltage. .
Similarly, in FIG. Shows the T-phase wave voltage in the primary T-phase voltage circuit as a primary T in the diagram, the primary load current flowing in the primary T-phase voltage circuit as a broken line primary Wi, and the primary Ui, and the combined current wui at two points. This is represented by a broken line wui, and indicates that this combined current wui flows to the primary T-phase voltage circuit as an inductive reactive current wui that is in the phase of 90 degrees electrical angle with respect to the primary T-phase voltage. .
Similarly, in FIG. Shows the S phase wave voltage in the primary S voltage circuit as a primary S in the diagram, the primary load current flowing in the primary S phase voltage circuit as a broken line primary Vi, and the primary Wi, and the combined current vwi as a two-dot broken line. This combined current vwi is represented by vwi and indicates that it flows to the primary S-phase voltage circuit as an inductive reactive current vwi that is in a phase with an electrical angle of 90 degrees with respect to the primary S-phase voltage.

以上の説明による一次負荷誘導電流の流れから明らかなように、実施例1構成回路の二次出力負荷電流により誘導される一次入力電源(P)各相電圧回路の一次負荷誘導電流は、三相(R,S,T)電圧回路に対して共々誘導性無効電流として流動している事が明確であると共に、実施例1構成回路に於ける一次入力電源(P)1相電圧回路に流動する誘導性無効電流値が各々等値である事により、一次入力電源(P)各相(R,S,T)電圧回路に容量の等しい各進相用コンデンサー(104A、104B,104C)を並列に設けて、各相回路の誘導性無効電流を容量性無効電流にて共振を起こし、入力電源(P)回路に流動する無効電流を消失させる回路構成としている。
従って、実施例1装置は、入力電源(P)電力を得る事なく継続して単相交流電力を抵抗性負荷体(119)に供給出来るもので、定出力時には簡単な装置として実施出来るものである。
なお、実施例1で採用しているY−△結線変圧器(117)は、三相用内部三脚鉄心材を用いた三相用変圧器に交換する事が出来る。
以上の全構成から、抵抗性負荷体(119)に供給される電力は、入力電源(P)電力を導入せずに得られる電力エネルギーであり、新エネルギ−が電力に変換しているものと解釈出来るもので、ここに三相電力生成法の成立を観る事が出来る。
すなわち、三相交流電源(P)の入力を得るY−△結線の二次出力側3巻線回路から得られる三相出力回路を、各々独立の相電圧出力回路として同値の各相電力を負荷に供給する構成を持ち、三相波の出力電力を同時性を持って等しく供給する回路体制にあると共に、三相出力電力に付随して、入力三相交流電源(P)の各三相電圧回路に誘発する誘導性無効電流を、前記各三相電圧回路に、並列に設けた容量性リアクタンス回路に流動する容量性無効電流をもって消失させ、負荷には新生する生成電力を供給する電力生成法である。
従って、本実施例1に用いている三相交流電動発電機(114)に替えて、三本の等値発熱抵抗体系、及び三相照明器系、三相電動動力機系等を設ける事により、広範囲に渡る電力生成装置を作成出来るものである。
As apparent from the flow of the primary load induced current according to the above description, the primary load induced current of each phase voltage circuit of the primary input power source (P) induced by the secondary output load current of the configuration circuit of the first embodiment is three-phase. It is clear that the current flows as an inductive reactive current to the (R, S, T) voltage circuit, and flows to the primary input power source (P) single-phase voltage circuit in the configuration circuit of the first embodiment. Since the inductive reactive current values are equal to each other, each phase advance capacitor (104A, 104B, 104C) having the same capacity is connected in parallel to the primary input power supply (P), each phase (R, S, T) voltage circuit. The circuit configuration is such that the inductive reactive current of each phase circuit resonates with the capacitive reactive current and the reactive current flowing in the input power supply (P) circuit disappears.
Therefore, the apparatus of Example 1 can continuously supply single-phase AC power to the resistive load body (119) without obtaining input power (P) power, and can be implemented as a simple apparatus at constant output. is there.
The Y-Δ connection transformer (117) employed in Example 1 can be replaced with a three-phase transformer using a three-phase internal tripod core.
From all the above configurations, the power supplied to the resistive load body (119) is power energy obtained without introducing the input power (P) power, and the new energy is converted into power. It can be interpreted, and here you can see the establishment of the three-phase power generation method.
In other words, the three-phase output circuit obtained from the Y-Δ connected secondary output side 3-winding circuit that obtains the input of the three-phase AC power supply (P) is used as an independent phase voltage output circuit, and each phase power of the same value is loaded. In addition to the three-phase output power, the three-phase voltage of the input three-phase AC power supply (P) is attached to the three-phase output power. An inductive reactive current induced in a circuit is eliminated by a capacitive reactive current flowing in a capacitive reactance circuit provided in parallel in each of the three-phase voltage circuits, and a generated power is supplied to a load. It is.
Therefore, instead of the three-phase AC motor generator (114) used in the first embodiment, by providing three equivalent heating resistance systems, a three-phase illuminator system, a three-phase electric motor system, etc. A wide range of power generation devices can be created.

実施例2は、本発明の三相電力生成法による装置を、より効率、効果的に成立させる無効電力生成法による1実施例である。
又、実施例2を表す図4は、入力三相交流電源R相回路に、容量性無効電流を発生させる電磁的構成回路であり、図5の線図を参照して実施の形態を説明する。
図4に於いては、破線に囲まれた三体の単相変圧器の連携により構成されたY−△結線(変圧器)(204)、及び△−Y結線(変圧器)(205)の各入力巻線回路の電線路に於いて、電線路(201B)は、入力三相交流電源(P)の出力端子である(201A)のR相端子、電線路(202B)は、電源(P)の出力端子である(202A)のS相端子、電線路(203B)は、電源(P)の出力端子である(203A)のT相端子に接続している。三相変圧器(204)、(205)には三脚鉄心体系変圧器も可能である。
Y−△結線(204)の各入力巻線巻数を1Lとしている。
△−Y結線(205)の各入力巻線巻数を3Lとしている。
入力三相交流電源(P)の相順位は、R,S,Tである。
Y−△結線(204)の二次出力1巻線回路側に於いては、(206と207)端子間相電圧をU相電圧、(207と208A)端子間相電圧をV相電圧、(208Aと206)端子間相電圧をT相電圧として、各1巻線巻数を3Lとしている。
The second embodiment is an embodiment according to the reactive power generation method that makes the apparatus according to the three-phase power generation method of the present invention more effective and effective.
FIG. 4 showing the second embodiment is an electromagnetic configuration circuit for generating a capacitive reactive current in the input three-phase AC power supply R-phase circuit. The embodiment will be described with reference to the diagram of FIG. .
In FIG. 4, the Y-Δ connection (transformer) (204) and the Δ-Y connection (transformer) (205) constituted by the cooperation of three single-phase transformers surrounded by a broken line. In the electric line of each input winding circuit, the electric line (201B) is the output terminal of the input three-phase AC power supply (P), the R-phase terminal of (201A), and the electric line (202B) is the power supply (P The S-phase terminal (202A), which is the output terminal of (), and the electric line (203B) are connected to the T-phase terminal (203A), which is the output terminal of the power supply (P). Tripod core transformers are also possible for the three-phase transformers (204), (205).
The number of turns of each input winding of the Y-Δ connection (204) is 1L.
The number of turns of each input winding of the Δ-Y connection (205) is 3L.
The phase order of the input three-phase AC power supply (P) is R, S, T.
On the secondary output 1 winding circuit side of the Y-Δ connection (204), the (206 and 207) inter-terminal phase voltage is the U-phase voltage, the (207 and 208A) inter-terminal phase voltage is the V-phase voltage, ( 208A and 206) The phase voltage between terminals is a T-phase voltage, and the number of turns of each winding is 3L.

△−Y結線(205)の二次出力1巻線回路に於いては、二次R相電圧1巻線回路と二次S相電圧1巻線回路とで二次SR相複合巻線回路を構成し、その一方の端子(208B)をV相電圧巻線回路の端子(208A)に接続すると共に、他端子(209)は誘導変圧器(213)の二次巻線回路(214)の白丸端子に接続する。また誘導変圧器(213)の二次巻線回路(214)の黒丸端子は,V相電圧巻線回路の端子(207)に接続して電気的閉回路Kを形成する。さらに、誘導変圧器(213)の一次巻線回路(215)の黒丸端子は、△−Y結線(205)の二次S相小巻線回路と二次出力T相小巻線回路とで形成するTS相電圧複合小巻線回路の出力端子(210)に接続すると共に、誘導変圧器(213)の一次巻線(215)の白丸端子は、可変抵抗器(212)を介してTS相電圧複合小巻線回路の出力端子(211)に接続している。
TS相電圧複合小巻線回路の各小巻線巻数nLは、1L巻数より小巻数としている。
In the secondary output 1 winding circuit of the Δ-Y connection (205), a secondary SR phase composite winding circuit is composed of a secondary R phase voltage 1 winding circuit and a secondary S phase voltage 1 winding circuit. One terminal (208B) is connected to the terminal (208A) of the V-phase voltage winding circuit, and the other terminal (209) is a white circle of the secondary winding circuit (214) of the induction transformer (213). Connect to the terminal. The black circle terminal of the secondary winding circuit (214) of the induction transformer (213) is connected to the terminal (207) of the V-phase voltage winding circuit to form an electrical closed circuit K. Further, the black circle terminal of the primary winding circuit (215) of the induction transformer (213) is formed by the secondary S-phase small winding circuit and the secondary output T-phase small winding circuit of the Δ-Y connection (205). And the white circle terminal of the primary winding (215) of the induction transformer (213) is connected to the TS phase voltage via the variable resistor (212). It is connected to the output terminal (211) of the composite small winding circuit.
Each small winding number nL of the TS phase voltage composite small winding circuit is set to be smaller than 1L.

上記該電気的閉回路Kは、誘導変圧器(213)の二次巻線回路(214)に電圧を与えない無電圧構成回路Gでもある。すなわち、無電圧構成回路Gを構成するV相電圧巻線回路(207〜208A)に於いては、そのV相電圧波は、図5のト.の線図二次Vで示す如く図5のチの線図二次SRで示すSR相電圧波と逆位相であるから、同一無電圧構成回路Gを構成するSR相電圧巻線回路(208B〜209)と、対抗的方向を以て直列に接続する事により、その両端子間交流電圧(207と209)を無電圧とするものである。尚、V相電圧巻線回路の1巻線巻数を3L,SR相電圧複合巻線回路の単巻線巻数を3Lとして,互い(V相とSR相巻線回路)の相電圧値も合わせている。
文中の説明に於いて、図1、及び図4の巻線回路に於いては、すべてが同一方向巻きで黒丸端子を巻き始め端子、白丸端子を巻き終わり端子としている。
The electrical closed circuit K is also a non-voltage component circuit G that does not apply a voltage to the secondary winding circuit (214) of the induction transformer (213). That is, in the V-phase voltage winding circuit (207 to 208A) constituting the no-voltage component circuit G, the V-phase voltage wave is the same as that of FIG. As shown by secondary line V of FIG. 5, the SR phase voltage wave circuit (208 </ b> B˜ 209) in series with the opposite direction, the AC voltage between the two terminals (207 and 209) is set to no voltage. The number of turns of the V phase voltage winding circuit is 3L, the number of single turns of the SR phase voltage composite winding circuit is 3L, and the phase voltage values of each other (V phase and SR phase winding circuit) are also matched. Yes.
In the explanation in the text, in the winding circuits of FIGS. 1 and 4, all are wound in the same direction, with the black circle terminal being the winding start terminal and the white circle terminal being the winding end terminal.

次に実施例2の動作として、三相交流電源(P)の入力を得ているY−△結線(204)、及び△−Y結線(205)の各巻線回路に流れる電流形態の説明をする。
△−Y結線(205)の二次TS相(210〜211)出力回路から、可変抵抗器(212)の調整によって出力する調整用一次TS相負荷電流tsiが誘導変圧器(213)の一次巻線回路(215)を流動する事により、誘導変圧器(213)の二次巻線回路(214)には、誘導作用により二次誘導電流tsiが発生すると共に、閉回路K内を流動する事になるが、該閉回路Kは、無電圧構成回路Qにて構成されているので、流動する二次誘導電流tsiのTS相波は、その相波TSを保持しつつ、さらに一次入力電源(P)R相電圧回路、並びにS相電圧回路に、一次相電流tsiを誘発させる。
文中の電流tsiのtsi記号は、TS相の波動をもつ電流として示している。
Next, as an operation of the second embodiment, a description will be given of the form of current flowing in each winding circuit of the Y-Δ connection (204) and the Δ-Y connection (205) that has received the input of the three-phase AC power supply (P). .
The primary TS phase load current for adjustment tsi output by adjusting the variable resistor (212) from the secondary TS phase (210 to 211) output circuit of the Δ-Y connection (205) is the primary winding of the induction transformer (213). By flowing the line circuit (215), the secondary winding circuit (214) of the induction transformer (213) generates a secondary induction current tsi by induction and flows in the closed circuit K. However, since the closed circuit K is configured by the no-voltage component circuit Q, the TS phase wave of the flowing secondary induced current tsi is further maintained in the primary input power source ( P) The primary phase current tsi is induced in the R phase voltage circuit and the S phase voltage circuit.
The tsi symbol of the current tsi in the sentence is shown as a current having a TS phase wave.

この一次相電流tsiがY−△結線(204)の一次巻線回路に表れる形態を図5のリ.に示すと、一次入力電源(P)R相電圧回路のR相電圧を一次R、S相電圧回路のS相電圧を一次Sで示すと、一次相電流tsiは破線一次TSiとなり、一次入力電源(P)R相電圧回路には、容量性無効電流iとなって流動する。他方のS相電圧回路(一次S)には、遅相電気角150度の位相TS電流iとなって流動する。
次に△−Y結線(205)の一次巻線回路に表れる形態を図5のチ.に示すと、一次入力電源(P)R相電圧回路のR相電圧を一次R、S相電圧回路のS相電圧を一次Sで示すと、一次相電流tsiは破線一次TSiとなり、一次入力電源(P)R相電圧回路には、同じく容量性無効電流iとなって流動する。他方のS相電圧回路には、進相電気角30度の位相TS電流iとなって流動する。
The form in which this primary phase current tsi appears in the primary winding circuit of the Y-Δ connection (204) is shown in FIG. When the R phase voltage of the primary input power supply (P) R phase voltage circuit is represented by primary R, and the S phase voltage of the S phase voltage circuit is represented by primary S, the primary phase current tsi becomes the broken line primary TSi, and the primary input power supply (P) A capacitive reactive current i flows through the R-phase voltage circuit. The other S phase voltage circuit (primary S) flows as a phase TS current i having a slow electrical angle of 150 degrees.
Next, the form appearing in the primary winding circuit of the Δ-Y connection (205) is shown in FIG. When the R phase voltage of the primary input power supply (P) R phase voltage circuit is represented by primary R, and the S phase voltage of the S phase voltage circuit is represented by primary S, the primary phase current tsi becomes the broken line primary TSi, and the primary input power supply (P) Similarly, the capacitive reactive current i flows through the R-phase voltage circuit. The other S-phase voltage circuit flows as a phase TS current i having a leading electrical angle of 30 degrees.

そこで、まず一次入力電源(P)S相電圧回路に流動する位相TS電流を総括すると、図5のチ.リ.に示す如く位相TS電流iは、互いが逆位相に在るので消滅するが、他方のR相電圧回路に流動する容量性無効電流iは、図5のチ.リ.より、互いが加算されて電流値2iの容量性無効電流となり、ここで入力交流電源(P)R相回路を流動する生成された容量性無効電流2iのみを確認する事が出来る。  Therefore, first, the phase TS current flowing in the primary input power supply (P) S-phase voltage circuit is summarized as follows. Li. As shown in FIG. 5, the phase TS currents i disappear because they are in opposite phases, but the capacitive reactive current i flowing in the other R-phase voltage circuit is Li. Thus, they are added together to form a capacitive reactive current having a current value 2i, and only the generated capacitive reactive current 2i flowing through the input AC power supply (P) R-phase circuit can be confirmed.

以上が容量性無効電流を生成する実施例2の説明であるが、上記図4の回路説明に於いて、閉回路Kに導通(流動)するTS相電流tsiの電気的導通方向を反転させる,切替え回路構成をもてば、図5の破線一次TSiが反転する事から,一次入力電源(P)R相電圧回路には、誘導性無効電流が流動する事になる。
又、本実施例2に印加する入力三相交流電源(P)の入力三相端子「201A(R),202A(S),203A(T)」の接続切替えによって、入力電源(P)S相並びにT相電圧回路にも無効電流を流動させる事が出来る。
すなわち、実施例2の入力電線路(201B)と入力電源(P)端子「202A(S)」、入力電線路(202B)と入力電源(P)端子「203A(T)」、入力電線路(203B)と入力電源(P)端子「201A(R)」を接続すると、入力電源(P)S相電圧回路に無効電流が流動する。
実施例2の入力電線路(201B)と入力電源(P)端子「203A(T)」、入力電線路(202B)と入力電源(P)端子「201A(R)」、入力電線路(203B)と入力電源(P)端子「202A(S)」を接続すると、入力電源(P)T相電圧回路に無効電流を流動させる事が出来るので、ここに於いて、三相の無効電流を生成する3回路構成を設けて、実施例1の構成回路に組み入れる事により、無効電力を伴わない、効率の良い効果的な生成電力を得る事が出来る。
The above is the description of the second embodiment that generates the capacitive reactive current. In the circuit description of FIG. 4 above, the electrical conduction direction of the TS phase current tsi that conducts (flows) to the closed circuit K is reversed. With the switching circuit configuration, the broken line primary TSi in FIG. 5 is inverted, so that an inductive reactive current flows in the primary input power supply (P) R-phase voltage circuit.
Further, by switching the connection of the input three-phase terminals “201A (R), 202A (S), 203A (T)” of the input three-phase AC power source (P) applied to the second embodiment, the input power source (P) S phase In addition, the reactive current can also flow through the T-phase voltage circuit.
That is, the input electric line (201B) and the input power supply (P) terminal “202A (S)”, the input electric line (202B) and the input power (P) terminal “203A (T)”, the input electric line ( 203B) and the input power supply (P) terminal “201A (R)” are connected, a reactive current flows through the input power supply (P) S-phase voltage circuit.
Input electric line (201B) and input power supply (P) terminal “203A (T)”, input electric line (202B) and input power supply (P) terminal “201A (R)”, input electric line (203B) And the input power supply (P) terminal “202A (S)” can cause a reactive current to flow in the input power supply (P) T-phase voltage circuit, so that a three-phase reactive current is generated here. By providing a three-circuit configuration and incorporating it into the configuration circuit of the first embodiment, it is possible to obtain efficient and effective generated power without any reactive power.

実施例3は、本発明の三相電力生成法による電磁的回路構成に、本発明の無効電力生成法による電磁的回路構成を加えて併合構成回路とした、三相電力生成装置の1実施例である。図6は、実施例3の電気的回路構成図である。  The third embodiment is an embodiment of a three-phase power generation apparatus in which an electromagnetic circuit configuration by the reactive power generation method of the present invention is added to an electromagnetic circuit configuration by the three-phase power generation method of the present invention to form a combined configuration circuit. It is. FIG. 6 is an electrical circuit configuration diagram of the third embodiment.

次に実施例3装置の実施の形態を図6に基づいて説明する。  Next, an embodiment of the apparatus of Example 3 will be described with reference to FIG.

Y−△結線変圧器(317)、及び△−Y結線変圧器(318)の各入力三線路は、入力三相交流電源(P)の出力電源端子の各々R相端子(301),S相端子(302),T相端子(303)に接続している。三相変圧器(317)、(318)は、共に単相変圧器を連ねた構成にあるので、Y−△結線変圧器(317)に於いては、回路(307)を設けて安定化を計り、一次入力側単巻線巻数1Lに対して二次出力側単巻線巻数を3Lとした関係にあり、出力巻線回路の各独立相電圧をU,V,W相電圧としていると共に、二次側△結線は、末端の出力端子(U−1,V−1,W−1)に至って形成している。
△−Y結線変圧器(318)に於いては、一次入力側単巻線巻数3Lに対して、各イ,ロの端子をもつ二次出力側単巻線巻数を3Lとした単巻線回路をもって、各々複合巻線回路(RT相、SR相、TS相)を形成して、それぞれに(U,V,W)相電圧巻線回路と誘導変圧器(H1,H2,H3)を介して接続し、三通りの無電圧構成回路(A,B,C)組みによる3閉回路(A”,B”,C”)を構成する。
すなわち、二次出力U相電圧巻線回路は、同相のRT相電圧複合巻線回路と無電圧構成回路Aを形成し、誘導変圧器(308)H1の二次巻線を介して閉回路A”を構成する。
二次出力V相電圧巻線回路は、同相のSR相電圧複合巻線回路と無電圧構成回路Bを形成し、誘導変圧器(309)H2の二次巻線を介して閉回路B”を構成する。
二次出力W相電圧巻線回路は、同相のTS相電圧複合巻線回路と無電圧構成回路Cを形成し、誘導変圧器(310)H3の二次巻線を介して閉回路C”を構成する。
さらに、各誘導変圧器(H1,H2,H3)の二次巻線巻数2Lに対して一次巻線巻数を1Lとして、本実施例の各相出力電流を以て、入力電源(P)各相電圧回路の誘導性無効電流に対峙する適当な巻数関係にしている。
The three input lines of the Y-Δ connection transformer (317) and the Δ-Y connection transformer (318) are respectively the R phase terminal (301) and the S phase of the output power supply terminal of the input three-phase AC power supply (P). The terminal (302) and the T-phase terminal (303) are connected. Since the three-phase transformers (317) and (318) are both configured by connecting single-phase transformers, a circuit (307) is provided in the Y-Δ connection transformer (317) for stabilization. The primary output side single winding winding number is 1L, and the secondary output side single winding winding number is 3L. Each independent phase voltage of the output winding circuit is U, V, W phase voltage, The secondary side Δ connection is formed so as to reach the terminal output terminals (U-1, V-1, W-1).
In the △ -Y connection transformer (318), a single-winding circuit in which the number of secondary output side single windings having 3 terminals is set to 3L for each primary input side single winding number of 3L. And form a composite winding circuit (RT phase, SR phase, TS phase), respectively, via (U, V, W) phase voltage winding circuit and induction transformer (H1, H2, H3) respectively. Connected to form three closed circuits (A ″, B ″, C ″) by three sets of no-voltage component circuits (A, B, C).
In other words, the secondary output U-phase voltage winding circuit forms an in-phase RT phase voltage composite winding circuit and a no-voltage component circuit A, and the closed circuit A is connected via the secondary winding of the induction transformer (308) H1. ”.
The secondary output V-phase voltage winding circuit forms an in-phase SR phase voltage composite winding circuit and a no-voltage component circuit B, and the closed circuit B ″ is connected via the secondary winding of the induction transformer (309) H2. Constitute.
The secondary output W-phase voltage winding circuit forms an in-phase TS phase voltage composite winding circuit and a no-voltage component circuit C, and the closed circuit C ″ is connected via the secondary winding of the induction transformer (310) H3. Constitute.
Furthermore, the primary winding turns are set to 1L with respect to the secondary winding turns 2L of each induction transformer (H1, H2, H3), and the input power supply (P) each phase voltage circuit with each phase output current of this embodiment. The number of turns is appropriate for the inductive reactive current.

次に、上記の三通りの無電圧構成回路(A,B,C)に各相電流Mを導通する目的をもって構成している、△−Y結線変圧器(318)の二次出力小複合巻線回路(RT相,SR相、TS相)に於いて、RT相(315〜316)巻線回路の一端(316)は、本装置の出力端子(305,V−1)に接続し、他端(315)は誘導変圧器H3の一次巻線を介してY−△結線(317)の二次出力U相電圧巻線回路の白丸端子に接続して、本装置の出力両端子(304〜305)に接続している負荷抵抗1に、U相電圧と同相にあるRT相(315〜316)電圧が加算されて印加している。又、SR相(313〜314)巻線回路の一端(313)は、本装置の出力端子(306,W−1)に接続し、他端(314)は誘導変圧器H1の一次巻線を介してY−△結線(317)の二次出力V相電圧巻線回路の白丸端子に接続して、本装置の出力両端子(305〜306)に接続している負荷抵抗2に、V相電圧と同相にあるSR相(313〜314)電圧が加算されて印加している。
さらに、TS相(311〜312)巻線回路の一端(311)は、本装置の出力端子(304,U−1)に接続し、他端(312)は誘導変圧器H2の一次巻線を介してY−△結線(317)の二次出力W相電圧巻線回路の白丸端子に接続して、本装置の出力両端子(306〜304)に接続している負荷抵抗3に、W相電圧と同相にあるTS相(311〜312)電圧が加算されて印加している。負荷抵抗1,2,3は、同一抵抗値である。又、図6の小巻数nLは、巻数1Lより小巻数としている。
Next, the secondary output small composite winding of the Δ-Y connection transformer (318), which is configured for the purpose of conducting each phase current M to the above three voltageless circuit (A, B, C). In the line circuit (RT phase, SR phase, TS phase), one end (316) of the RT phase (315-316) winding circuit is connected to the output terminal (305, V-1) of this device, and the like. The end (315) is connected to the white circle terminal of the secondary output U-phase voltage winding circuit of the Y-Δ connection (317) via the primary winding of the induction transformer H3, and the output terminals (304 to 304) of the present apparatus. The RT phase (315 to 316) voltage in phase with the U phase voltage is added to the load resistor 1 connected to 305) and applied. Also, one end (313) of the SR phase (313 to 314) winding circuit is connected to the output terminal (306, W-1) of this device, and the other end (314) is the primary winding of the induction transformer H1. Connected to the white circle terminal of the secondary output V-phase voltage winding circuit of the Y-Δ connection (317) through the load resistor 2 connected to the output terminals (305 to 306) of the present device. The SR phase (313-314) voltage in phase with the voltage is added and applied.
Further, one end (311) of the TS phase (311 to 312) winding circuit is connected to the output terminal (304, U-1) of the present apparatus, and the other end (312) is the primary winding of the induction transformer H2. Connected to the white circle terminal of the secondary output W-phase voltage winding circuit of the Y-Δ connection (317) through the load resistor 3 connected to the output terminals (306 to 304) of the present device. TS phase (311 to 312) voltages that are in phase with the voltage are added and applied. The load resistances 1, 2, and 3 have the same resistance value. Further, the number of small turns nL in FIG. 6 is set to be smaller than the number of turns 1L.

次に上記構成の動作を説明する。
三相交流電源(P)の入力を得ている本装置(実施例3)に於いて、本装置の三相出力用端子(304・U−1),(305・V−1),(306・W−1)として設けている各端子間出力相電圧は、各々主とする各相(U,V,W)電圧に、各同相(RT,SR,TS)電圧が加わる回路構成にあるので、互いの端子(304,305,306)間出力相電圧は等しくなっている。
Next, the operation of the above configuration will be described.
In the present apparatus (Example 3) that receives the input of the three-phase AC power source (P), the three-phase output terminals (304 · U-1), (305 · V-1), (306) The output phase voltage between terminals provided as W-1) is in a circuit configuration in which each main phase (U, V, W) voltage is added to each main phase (RT, SR, TS) voltage. The output phase voltages between the terminals (304, 305, 306) are equal.

前記出力3端子間に、出力用としている同抵抗値の3負荷抵抗(1,2,3)が接続されているので、1負荷抵抗(1,2,3)に導通(流動)する電流iは、誘導変圧器(H1,H2,H3)の各一次巻線回路を導通する事によって変圧器作用を受け、誘導変圧器(H1,H2,H3)の二次巻線回路の構成する閉回路(A”,B”,C”)には、各々1/2の相電流iが流動すると共に、両三相変圧器(317)(318)の一次巻線回路、すなわち入力三相交流電源(P)の入力各相(R,S,T)回路には容量性無効電流iが誘発し流動する状況にある。  Since three load resistors (1, 2, 3) of the same resistance value for output are connected between the three output terminals, current i that conducts (flows) to one load resistor (1, 2, 3). Is a closed circuit configured by the secondary winding circuit of the induction transformer (H1, H2, H3), which is subjected to a transformer action by conducting each primary winding circuit of the induction transformer (H1, H2, H3). In (A ″, B ″, C ″), a half phase current i flows, and the primary winding circuit of both three-phase transformers (317) and (318), that is, the input three-phase AC power source ( The capacitive reactive current i is induced and flows in the input phase (R, S, T) circuit of P).

ところで、3負荷抵抗(1,2,3)に流れる各相(U−1,V−1,W−1)電流iは、Y−△結線(変圧器)(317)の二次出力巻線回路の独立した各相(U,V,W)電圧回路による出力電流iである事から、入力三相交流電源(P)の入力各相(R,S,T)回路(または,Y−△結線(317)の一次入力巻線回路)には、誘導性無効電流iが誘発し流動する状況でもある。
従って、入力三相交流電源(P)各相回路には、互いが逆相となる電流iによって、入力電源(P)電流は消失する事になり、出力三端子(304,305,306)に接続されている3負荷抵抗(1,2,3)には、入力電源(P)電力を得ない生成電力が供給される結果が得られるものである。
但し小巻線(nL)回路によって形成される出力用複合小巻線回路(RT,SR,TS)からの小出力電力は、入力三相電源(P)側の消費電力となるが、実施例3の回路構成に於いては、小巻線巻数nLは、ゼロ巻数に定めても成立するものである。
By the way, each phase (U-1, V-1, W-1) current i flowing through the three load resistors (1, 2, 3) is a secondary output winding of Y-Δ connection (transformer) (317). Since the output current i is generated by the voltage circuit of each phase (U, V, W) independent of the circuit, the input phase (R, S, T) circuit (or Y-Δ) of the input three-phase AC power supply (P). In the connection (317) primary input winding circuit), an inductive reactive current i is induced and flows.
Therefore, in each phase circuit of the input three-phase alternating current power supply (P), the input power supply (P) current is lost due to the current i that is opposite to each other, and the output three terminals (304, 305, 306) are lost. As a result, the generated power that does not obtain the input power (P) power is supplied to the three load resistors (1, 2, 3) connected.
However, the small output power from the output composite small winding circuit (RT, SR, TS) formed by the small winding (nL) circuit becomes the power consumption on the input three-phase power supply (P) side. In the circuit configuration of No. 3, the small winding number nL is established even if it is set to zero.

本装置の特徴は、発生する誘導性無効電流に応じて容量性無効電流を生成する自動的回路構成にあって、手動による煩わしさを排除した効率的三相電力生成装置となっている。  This device is characterized by an automatic circuit configuration that generates a capacitive reactive current according to an inductive reactive current that is generated, and is an efficient three-phase power generation device that eliminates manual inconvenience.

文中の説明に於いて、図6の巻線回路に於いては、すべてが同一方向巻きで黒丸端子を巻き始め端子、白丸端子を巻き終わり端子としている。
又、本装置の三相変圧器(317)(318)に於いては、三相用内部三脚鉄心材を用いた三相用変圧器に交換する事が出来る。
尚、全文の説明に渡って、Y−△結線、△−Y結線の二次側結線回路に於ける、△、Y結線の用語が、本説明の電気回路になじまない様な観もあるが、一般的に融通性のある用語として採用している所で、△結線系、Y結線系回路として解釈が出来る用語としているものである。
In the description in the text, in the winding circuit of FIG. 6, all are wound in the same direction, with the black circle terminal being the winding start terminal and the white circle terminal being the winding end terminal.
In addition, the three-phase transformers (317) and (318) of the present apparatus can be replaced with a three-phase transformer using a three-phase internal tripod core material.
It should be noted that over the entire description, there is a view that the terms △ and Y connection in the secondary side connection circuit of Y- △ connection and △ -Y connection do not conform to the electric circuit of this description. In general, it is adopted as a flexible term, and is a term that can be interpreted as a Δ connection system or a Y connection system circuit.

本発明の新エネルギ−による三相電力生成法に於いては、従来からの代表的エネルギ−源とする石油、天然ガスに替わるクリ−ンエネルギ−の源泉となり、様々な電力生成装置の開発が実践されて行くものと思われる。又、地球環境を良くしようとする社会の願望にのって、産業上の開拓分野は益々広がるものと思われる。  In the three-phase power generation method using the new energy of the present invention, it becomes a source of clean energy instead of oil and natural gas, which are conventional representative energy sources, and various power generation devices have been developed. It seems to be going. In addition, the industrial development field is expected to expand more and more according to the desire of society to improve the global environment.

本発明の三相電力生成法に基づく実施例1の電気的回路構成図である。  It is an electric circuit block diagram of Example 1 based on the three-phase electric power generation method of this invention. Y−△結線変圧器に表れる各電圧相と出力時に流れる入力三相交流電源電流相との相関係を示す線図である。  It is a diagram which shows the phase relationship between each voltage phase which appears in a Y- △ connection transformer, and the input three-phase alternating current power supply current phase which flows at the time of output. 入力三相交流電源の各相回路に流動する電流相を示す線図である。  It is a diagram which shows the electric current phase which flows into each phase circuit of an input three-phase alternating current power supply. 本発明の無効電力生成法に基づく実施例2の電気的回路構成図である。  It is an electrical circuit block diagram of Example 2 based on the reactive power generation method of this invention. 三相変圧器に於ける一次,二次の電圧位相関係を対比的に示した線図(ト)であると共に、一次巻線回路に誘発する各々の電流位相(チ,リ)との関係を明確に示す線図である。  It is a diagram (g) showing the primary and secondary voltage phase relations in a three-phase transformer in contrast, and the relationship with each current phase (chi and li) induced in the primary winding circuit. It is a diagram showing clearly. 本発明の三相電力生成法と無効電力生成法を組み入れた実施例3の電気的回路構成図である。  It is an electrical circuit block diagram of Example 3 incorporating the three-phase power generation method and reactive power generation method of this invention.

符号の説明Explanation of symbols

(101・R)(102・S)(102・T) 入力三相交流電源端子
114 三相電動発電機
104(A,B,C) コンデンサ−
117 Y−△結線変圧器
119 抵抗性負荷体
(201A・R)(202A・S) 入力三相交流電源端子
(203A・T) 入力三相交流電源端子
204 Y−△結線変圧器
205 △−Y結線変圧器
212 可変抵抗器
213 誘導変圧器
214 誘導変圧器の二次巻線回路
215 誘導変圧器の一次巻線回路
(301・R)(302・S) 入力三相交流電源端子
(303・T) 入力三相交流電源端子
(304・U−1)(305・V−1) 三相交流出力端子
(306・W−1) 三相交流出力端子
307 Y−△結線変圧器安定用回路
308 誘導変圧器H1 巻線比1対2
309 誘導変圧器H2 巻線比1対2
310 誘導変圧器H3 巻線比1対2
317 Y−△結線変圧器
318 △−Y結線変圧器
(101 · R) (102 · S) (102 · T) Input three-phase AC power supply terminal 114 Three-phase motor generator 104 (A, B, C) Capacitor
117 Y-Δ connection transformer 119 Resistive load body (201A / R) (202A / S) Input three-phase AC power supply terminal (203A / T) Input three-phase AC power supply terminal 204 Y-Δ Connection transformer 205 Δ-Y Connection transformer 212 Variable resistor 213 Induction transformer 214 Secondary winding circuit of induction transformer 215 Primary winding circuit of induction transformer (301 · R) (302 · S) Input three-phase AC power terminal (303 · T ) Input three-phase AC power terminal (304 · U-1) (305 · V-1) Three-phase AC output terminal (306 · W-1) Three-phase AC output terminal 307 Y- △ wiring transformer stabilization circuit 308 Induction Transformer H1 Turn ratio 1 to 2
309 Induction transformer H2 Turn ratio 1 to 2
310 Induction transformer H3 Turn ratio 1 to 2
317 Y- △ connection transformer 318 △ -Y connection transformer

Claims (3)

三相交流電源の入力を得るY−△結線の二次3出力独立巻線回路から同時に、しかも互いに等値の三相出力電力を供給する回路構成を持つと共に、該入力三相交流電源三相各回路に、容量性リアクタンス回路を並列に設けて、出力電力に付随して、該入力三相交流電源三相電圧回路の各回路に誘発する誘導性無効電流を、容量性無効電流にて消失させる事を特徴とする、新エネルギーによる三相電力生成法。  It has a circuit configuration that supplies three-phase output power of the same value simultaneously from the secondary three-output independent winding circuit of Y- △ connection that obtains the input of the three-phase AC power supply, and the input three-phase AC power supply three-phase Capacitive reactance circuits are provided in parallel in each circuit, and inductive reactive currents induced in each circuit of the input three-phase AC power supply three-phase voltage circuit accompanying the output power are eliminated by capacitive reactive currents. A three-phase power generation method using new energy. 三相交流電源(P)の入力を得るY−△結線(変圧器)の二次側1巻線回路と△−Y結線(変圧器)の二次側1複合巻線回路とで形成出来る無電圧構成回路Gに、無電圧構成回路Gが内包している入力三相交流電源(P)の1相[1例・R相]電圧に対して、電気角90度の位相差にある、△−Y結線(変圧器)の二次側1複合小巻線回路の相[TS相]電圧から得られる1相[TS相]電流Mを導通する事により、入力三相交流電源(P)の入力1相[R相]電圧回路に、1相[R相]電圧に対して電気角90度の位相差を持つ無効電流を誘発させる事を特徴とする無効電力生成法を、請求項1記載の容量性リアクタンス回路の役割を、より効率化する目的で組み入れた、新エネルギーによる三相電力生成法。  Can be formed with a Y- △ connection (transformer) secondary side 1-winding circuit and a Δ-Y connection (transformer) secondary side 1-combination circuit to obtain the input of the three-phase AC power supply (P) The voltage component circuit G has a phase difference of 90 degrees in electrical phase with respect to the one-phase [one example / R phase] voltage of the input three-phase AC power supply (P) included in the non-voltage component circuit G. -By connecting the one-phase [TS phase] current M obtained from the phase [TS phase] voltage of the secondary side 1 composite small winding circuit of the Y connection (transformer), the input three-phase AC power supply (P) The reactive power generation method characterized by inducing a reactive current having a phase difference of 90 electrical degrees with respect to a single-phase [R-phase] voltage in an input one-phase [R-phase] voltage circuit. A three-phase power generation method using new energy that incorporates the role of the capacitive reactance circuit in order to make it more efficient. 請求項2に組み入れている無効電力生成法。
すなわち、三相交流電源(P)の入力を得るY−△結線(変圧器)の二次側1巻線回路と△−Y結線(変圧器)の二次側1複合巻線回路とで形成出来る無電圧構成回路Gに、無電圧構成回路Gが内包している入力三相交流電源(P)の1相[1例・R相]電圧に対して、電気角90度の位相差にある、△−Y結線(変圧器)の二次側1複合小巻線回路の相[TS相]電圧から得られる1相[TS相]電流Mを導通する事により、入力三相交流電源(P)の入力1相[R相]電圧回路に、1相[R相]電圧に対して電気角90度の位相差を持つ無効電流を誘発させる事を特徴とする無効電力生成法。
A reactive power generation method incorporated in claim 2.
That is, it is formed by a Y-Δ connection (transformer) secondary side 1 winding circuit and a Δ-Y connection (transformer) secondary side 1 composite winding circuit that obtains the input of the three-phase AC power supply (P). The possible non-voltage component circuit G has a phase difference of 90 degrees in electrical angle with respect to the one-phase [one example / R-phase] voltage of the input three-phase AC power supply (P) included in the non-voltage component circuit G. , By connecting the one-phase [TS phase] current M obtained from the phase [TS phase] voltage of the secondary side 1 composite small winding circuit of the Δ-Y connection (transformer), the input three-phase AC power source (P The reactive power generation method is characterized in that a reactive current having a phase difference of an electrical angle of 90 degrees with respect to the one-phase [R-phase] voltage is induced in the input one-phase [R-phase] voltage circuit.
JP2006261436A 2006-08-29 2006-08-29 Three-phase power generation method by new energy and reactive power generation method for assisting this method Pending JP2008061483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006261436A JP2008061483A (en) 2006-08-29 2006-08-29 Three-phase power generation method by new energy and reactive power generation method for assisting this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006261436A JP2008061483A (en) 2006-08-29 2006-08-29 Three-phase power generation method by new energy and reactive power generation method for assisting this method

Publications (1)

Publication Number Publication Date
JP2008061483A true JP2008061483A (en) 2008-03-13

Family

ID=39243596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261436A Pending JP2008061483A (en) 2006-08-29 2006-08-29 Three-phase power generation method by new energy and reactive power generation method for assisting this method

Country Status (1)

Country Link
JP (1) JP2008061483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570470A (en) * 2012-02-15 2012-07-11 河海大学 Transient stability-based generator phase advancing depth determination method
CN105095590A (en) * 2015-08-11 2015-11-25 华北电力大学 Method for modeling of electromechanical transient simulation system based on three-sequence equivalent impedance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570470A (en) * 2012-02-15 2012-07-11 河海大学 Transient stability-based generator phase advancing depth determination method
CN105095590A (en) * 2015-08-11 2015-11-25 华北电力大学 Method for modeling of electromechanical transient simulation system based on three-sequence equivalent impedance
CN105095590B (en) * 2015-08-11 2018-05-25 华北电力大学 A kind of modeling method of the electromechanical transient simulation system based on three sequence equivalent impedances

Similar Documents

Publication Publication Date Title
US7233506B1 (en) Low kVA/kW transformers for AC to DC multipulse converters
JP2011135764A (en) Power distribution system
JP2009207349A (en) Energy system
JP4973306B2 (en) Parallel 24 pulse rectifier circuit
WO2006014982A2 (en) Transformer with selectable input to output phase angle relationship
JPH0782402B2 (en) Phase shifter
US20080231241A1 (en) Transformers
AU2013247084A1 (en) Control transformer
US20150222194A1 (en) Current-Modulated Smart Distribution Transformers, Modules, Systems, and Methods
JP2007129135A (en) Phase-shifting voltage regulator
JP2010226843A (en) Single-phase to n-phase converter
WO2001084689A1 (en) Distribution system for electrical power
JP2008178180A (en) Rectifier circuit
CN111052588A (en) Power conversion device with Scott transformer
JP2008061483A (en) Three-phase power generation method by new energy and reactive power generation method for assisting this method
ES2906176T3 (en) Phase compensation system
JP2012231567A (en) Three-phase inverter type power generator
JP2007082269A (en) Single phase-three phase converter and single phase-three phase converting method
KR20130124228A (en) Power supply system with a first and a second power supply equipments
JP5209973B2 (en) Synchronous generator
JP4765006B2 (en) Power conversion system
JP2008278714A (en) Rectifier circuit
Kwak et al. Fault-tolerant topologies and switching function algorithms for three-phase matrix converter based AC motor drives against open and short phase failures
JP2006020409A (en) Unbalance compensating apparatus and method, power supply circuit
JP6016712B2 (en) AC brushless exciter and power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306