JP2008059843A - Solid electrolytic layer and its manufacturing method - Google Patents

Solid electrolytic layer and its manufacturing method Download PDF

Info

Publication number
JP2008059843A
JP2008059843A JP2006233813A JP2006233813A JP2008059843A JP 2008059843 A JP2008059843 A JP 2008059843A JP 2006233813 A JP2006233813 A JP 2006233813A JP 2006233813 A JP2006233813 A JP 2006233813A JP 2008059843 A JP2008059843 A JP 2008059843A
Authority
JP
Japan
Prior art keywords
layer
solid electrolyte
amorphous
crystalline
amorphous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006233813A
Other languages
Japanese (ja)
Inventor
Kyosuke Kishida
恭輔 岸田
Katsushi Tanaka
克志 田中
Haruyuki Inui
晴行 乾
Yasuhisa Iriyama
恭寿 入山
Zenhachi Okumi
善八 小久見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2006233813A priority Critical patent/JP2008059843A/en
Publication of JP2008059843A publication Critical patent/JP2008059843A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic layer capable of realizing an electrochemical element of which rising of an internal resistance and dropping of a battery capacity are hard to occur. <P>SOLUTION: The solid electrolytic layer comprises a solid electrolytic material consisting of composite oxide containing Li, La, and Ti. It comprises an amorphous layer positioned on a first surface side, a crystalline layer positioned on a second surface side facing the first surface, and a lattice failure layer positioned in the amorphous layer or on the amorphous layer side in the crystalline layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気化学素子に好適に用いることのできる固体電解質層及びその製造方法に関する。   The present invention relates to a solid electrolyte layer that can be suitably used for an electrochemical device and a method for producing the same.

近年、パーソナルコンピュータ及び携帯電話等のポータブル機器の開発にともない、電源である二次電池の需要が非常に大きくなっている。特にリチウム二次電池は、リチウムが小さな原子量を持ちかつ大きなイオン化エネルギーを有することから、高エネルギー密度を有する電池として盛んに研究されている。   In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for secondary batteries as power sources has become very large. In particular, lithium secondary batteries are actively studied as batteries having a high energy density because lithium has a small atomic weight and a large ionization energy.

このようなリチウム二次電池の汎用化にともなって、活物質量の増加による内部エネルギーの増加、及び電解質に用いられる可燃性物質である有機溶媒の含有量の増加が試みられているが、全固体リチウム二次電池は3〜5Vという高電圧の充放電可能な電池であることから、発火等の危険性に対する関心が近年クローズアップされ、安全性を確保するために有機溶媒電解質に代えて不燃性である固体電解質を用いた全固体リチウム二次電池の開発が望まれている。   With the generalization of such lithium secondary batteries, attempts have been made to increase internal energy by increasing the amount of active material and to increase the content of organic solvents that are flammable materials used in electrolytes. Since the solid lithium secondary battery is a battery that can be charged and discharged at a high voltage of 3 to 5 V, interest in dangers such as ignition has recently been raised, and in order to ensure safety, non-combustible instead of organic solvent electrolyte Development of an all-solid-state lithium secondary battery using a solid electrolyte that is compatible is desired.

全固体リチウム二次電池においては、電解質が液体でないため、漏液や腐食の完全防止のための施策や、電解液の注液工程等を回避することができ、電池の構造が簡単でその組立も容易になる等の利点がある。かかる全固体リチウム二次電池に用いられる固体電解質としては、高いリチウムイオン伝導性を有するものが好ましく、例えばLiI−Li2S−P25、LiI−Li2S−B23、LiI−Li2S−SiS2、Li3PO4−Li2S−SiS2、及びLi4SiO4−Li2S−SiS2等のガラス状(非晶質)の硫化物や、例えばLi2S−SiS2−Ga23、及びLi2S−P25等の結晶化ガラス等の報告がなされている。 In all-solid-state lithium secondary batteries, the electrolyte is not liquid, so measures to completely prevent leakage and corrosion, and the electrolyte injection process can be avoided, and the battery structure is simple and assembled. There are advantages such as easier. As the solid electrolyte used in such an all-solid lithium secondary battery, those having high lithium ion conductivity are preferable. For example, LiI-Li 2 S—P 2 S 5 , LiI—Li 2 S—B 2 S 3 , LiI -Li sulfides 2 S-SiS 2, Li 3 PO 4 -Li 2 S-SiS 2, and Li 4 SiO 4 -Li 2 S- SiS 2 such as glass-like (amorphous) or, for example, Li 2 S -SiS 2 -Ga 2 S 3, and Li 2 S-P 2 S 5 or the like reports such crystallized glass has been made.

例えば特許文献1においては、Li2S−SiS2、Li2S−B23、Li2S−P25等の硫化物系の非晶質(ガラス状)リチウムイオン伝導性固体電解質が、10-4S/cm以上の高いイオン伝導性を有することから好適であると記載されており、Li2S−SiS2系固体電解質を用いた全固体リチウム二次電池に関する非特許文献1においても、Li2S−SiS2系固体電解質が最も好適であるとの記載がなされている。 For example, in Patent Document 1, sulfide-based amorphous (glassy) lithium ion conductive solid electrolyte such as Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—P 2 S 5, etc. Is preferable because it has a high ion conductivity of 10 −4 S / cm or more, and Non-Patent Document 1 relating to an all-solid-state lithium secondary battery using a Li 2 S—SiS 2 -based solid electrolyte. Is also described that Li 2 S—SiS 2 -based solid electrolyte is most suitable.

更に、特許文献2及び特許文献3においては、室温でも有機電解質に匹敵する高いイオン伝導度を有し、かつ正極/電解質界面で酸化反応が起こりにくいという特性を有していることから、LLTと呼ばれる(Li,La)TiO3という固体電解質が全固体リチウム二次電池に好適であることが報告されている。
特開平11-219722号公報 特開平09-219215号公報 特開平10-189050号公報 R. Komiyaet al., Solid Atate Ionics, 140, 83(2001)
Further, in Patent Document 2 and Patent Document 3, LLT is characterized by having a high ionic conductivity comparable to that of an organic electrolyte even at room temperature and an oxidation reaction that hardly occurs at the cathode / electrolyte interface. It has been reported that a solid electrolyte called (Li, La) TiO 3 is suitable for an all-solid lithium secondary battery.
Japanese Patent Laid-Open No. 11-219722 JP 09-219215 A JP-A-10-189050 R. Komiyaet al., Solid Atate Ionics, 140, 83 (2001)

しかしながら、全固体リチウム二次電池に用いられる固体電解質の材料(組成)については上記のような観点から種々の検討がなされているものの、電極(特に活物質層)との間の接触に起因する問題を考慮した固体電解質(特に構造)の検討は未だ十分にはなされていないのが現状である。   However, although various studies have been made on the material (composition) of the solid electrolyte used in the all-solid-state lithium secondary battery from the above viewpoint, it is caused by the contact with the electrode (particularly the active material layer). At present, examination of solid electrolytes (particularly the structure) in consideration of the problem has not yet been made sufficiently.

即ち、電極と固体電解質といった固体の材料同士が接触すると、それぞれの材料が異なる熱膨張係数及び収縮率を有すること等から、電極−固体電解質間の界面近傍に応力が発生するため、固体構造の破壊が生じてしまったり、電極と固体電解質とが上記界面が剥離してしまったり、場合によっては電池を作製することができなくなってしまったりする。また、電池を作製することができたとしても、固体構造中及び電極−固体電解質間の界面等にクラックが生じて、電池の内部抵抗が上昇し、電池容量の低下をもたらすおそれがある。   That is, when a solid material such as an electrode and a solid electrolyte come into contact with each other, stress is generated near the interface between the electrode and the solid electrolyte because each material has a different coefficient of thermal expansion and shrinkage. Destruction may occur, the interface between the electrode and the solid electrolyte may be peeled off, or in some cases, the battery cannot be manufactured. Even if the battery can be fabricated, cracks may occur in the solid structure and at the interface between the electrode and the solid electrolyte, thereby increasing the internal resistance of the battery and reducing the battery capacity.

そこで、本発明は、電極−固体電解質間の界面における上述のような問題点を解消し、内部抵抗の上昇及び電池容量の低下を起こしにくい全固体リチウム二次電池を実現し得る固体電解質層、並びにその製造方法を提供することを目的とする。   Therefore, the present invention eliminates the above-mentioned problems at the interface between the electrode and the solid electrolyte, and realizes an all-solid lithium secondary battery that hardly causes an increase in internal resistance and a decrease in battery capacity, An object of the present invention is to provide a manufacturing method thereof.

上記課題を解決すべく、本発明は、
Li、La及びTiを含む複合酸化物からなる固体電解質で構成された固体電解質層であって、第1の面側に位置する非晶質層と、前記第1の面に対向する第2の面側に位置する結晶質層と、前記非晶質層内又は前記結晶質層のうちの前記非晶質層側に位置する格子欠陥層と、を有すること、を特徴とする固体電解質層を提供する。
In order to solve the above problems, the present invention provides:
A solid electrolyte layer composed of a solid electrolyte made of a complex oxide containing Li, La, and Ti, an amorphous layer positioned on the first surface side, and a second surface facing the first surface A solid electrolyte layer comprising: a crystalline layer located on a surface side; and a lattice defect layer located in the amorphous layer or on the amorphous layer side of the crystalline layer. provide.

即ち、本発明の固体電解質層は、結晶質層と非晶質層とを有し、更に、上記非晶質層内又は上記結晶質層のうちの上記非晶質層側に格子欠陥を有する部分が設けられている。このような構成を有する本発明の固体電解質層を用いて全固体リチウム二次電池を作製した場合には、電極−固体電解質間の界面に非晶質層(アモルファス層)が存在することになり、電極(特にLiCoO2からなる正極活物質層)の膨張収縮による歪を緩和することができ、サイクル特性の向上を図ることができる。 That is, the solid electrolyte layer of the present invention has a crystalline layer and an amorphous layer, and further has lattice defects in the amorphous layer or on the amorphous layer side of the crystalline layer. A part is provided. When an all-solid lithium secondary battery is produced using the solid electrolyte layer of the present invention having such a configuration, an amorphous layer (amorphous layer) exists at the interface between the electrode and the solid electrolyte. Further, the strain due to expansion and contraction of the electrode (particularly, the positive electrode active material layer made of LiCoO 2 ) can be relaxed, and the cycle characteristics can be improved.

また、上記非晶質層は、結晶性固体電解質に比較して、高濃度の潜在的な可動性のあるイオンを有し、高いイオン伝導度を持つことが期待されており、更に、結晶中に含まれる欠陥量が多いほどイオン伝導が良好になる。そのため、上述のような非晶質層及び格子欠陥層が設けられることにより、電池特性の向上を図ることができる。特に高密度で格子欠陥が存在すると、かかる効果はより顕著になる。   Further, the amorphous layer is expected to have a high concentration of potentially mobile ions and to have a high ionic conductivity as compared to a crystalline solid electrolyte. The larger the amount of defects contained in, the better the ion conduction. Therefore, the battery characteristics can be improved by providing the amorphous layer and the lattice defect layer as described above. This effect becomes more prominent particularly when lattice defects exist at high density.

また、本発明は、
Li2CO3、La23及びTiO2を混合及び加熱して得られる試料を粉砕し、得られた粉砕物を成型及び焼結してLi、La及びTiを含む複合酸化物の結晶質層からなる固体電解質材料を得る工程(1)と、
前記固体電解質材料の少なくとも一部に非晶質層を形成する工程(2)と、
前記非晶質層内又は前記結晶質層のうちの前記非晶質層側の領域に格子欠陥層を形成する工程(3)と、を具備すること、
を特徴とする固体電解質層の製造方法を提供する。
The present invention also provides:
A sample obtained by mixing and heating Li 2 CO 3 , La 2 O 3 and TiO 2 is pulverized, and the obtained pulverized product is molded and sintered to form a crystalline compound oxide containing Li, La and Ti. A step (1) of obtaining a solid electrolyte material comprising layers;
Forming an amorphous layer on at least a part of the solid electrolyte material (2);
Forming a lattice defect layer in the amorphous layer or a region on the amorphous layer side of the crystalline layer (3),
A method for producing a solid electrolyte layer is provided.

前記工程(2)においては、バフを用いた機械研磨、ショットピーニング処理又はイオン照射処理により前記固体電解質材料の少なくとも一部に非晶質層を形成することができる。
また、前記工程(3)においては、前記固体電解質材料に研磨材を用いたショットピーニング処理又は不活性ガスのイオンを用いたイオン照射処理を施すことにより、前記非晶質層内又は前記結晶質層のうちの前記非晶質層側の領域に格子欠陥層を形成することができる。
In the step (2), an amorphous layer can be formed on at least a part of the solid electrolyte material by mechanical polishing using a buff, shot peening treatment, or ion irradiation treatment.
In the step (3), the solid electrolyte material is subjected to a shot peening process using an abrasive or an ion irradiation process using ions of an inert gas, so that the inside of the amorphous layer or the crystalline substance is treated. A lattice defect layer can be formed in a region of the layer on the amorphous layer side.

このような構成によれば、全固体リチウム二次電池を作製した場合に、電極(特にLiCoO2からなる正極活物質層)の膨張収縮による歪が緩和されかつイオン伝導性に優れることにより、良好なサイクル特性及び電池特性を有する全固体リチウム二次電池を実現し得る固体電解質層をより確実に得ることができる。 According to such a configuration, when an all-solid lithium secondary battery is produced, the strain due to expansion and contraction of the electrode (particularly, the positive electrode active material layer made of LiCoO 2 ) is alleviated and the ion conductivity is excellent. Thus, a solid electrolyte layer capable of realizing an all-solid lithium secondary battery having excellent cycle characteristics and battery characteristics can be obtained more reliably.

本発明によれば、電極−固体電解質間の界面における上述のような問題点を解消し、内部抵抗の上昇及び電池容量の低下を起こしにくい全固体リチウム二次電池をより確実に実現し得る固体電解質層、並びにその製造方法を提供することができる。   According to the present invention, it is possible to solve the above-described problems at the interface between the electrode and the solid electrolyte, and to realize an all-solid lithium secondary battery that is less likely to cause an increase in internal resistance and a decrease in battery capacity. An electrolyte layer and a manufacturing method thereof can be provided.

以下、図面を参照しながら本発明の固体電解質層及びそれを用いた電気化学素子の一実施の形態である全固体リチウム二次電池の代表的な一実施の形態について詳細に説明する。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する。図1は、本発明の固体電解質層の一実施の形態の構造を概略的に示す断面図である。また、図2には、図1に示す固体電解質層を用いた電気化学素子の一実施の形態である全固体リチウム二次電池の構造を示す断面図である。   Hereinafter, a representative embodiment of an all-solid lithium secondary battery which is an embodiment of a solid electrolyte layer of the present invention and an electrochemical device using the same will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. FIG. 1 is a cross-sectional view schematically showing the structure of an embodiment of a solid electrolyte layer of the present invention. FIG. 2 is a cross-sectional view showing the structure of an all-solid lithium secondary battery which is an embodiment of an electrochemical device using the solid electrolyte layer shown in FIG.

(1)固体電解質層について
図1に示す本実施の形態に係る固体電解質層10は、Li、La及びTiを含む複合酸化物からなる固体電解質で構成され、第1の面側に位置する非晶質層10aと、第1の面に対向する第2の面側に位置する結晶質層10bと、を有する。そして、結晶質層10bのうちの非晶質層10a側には、格子欠陥層10cが位置し、符号10dで示される部分は、結晶質層10bのうちの格子欠陥層10cを除く結晶質部分を表す。
(1) Solid Electrolyte Layer The solid electrolyte layer 10 according to the present embodiment shown in FIG. 1 is composed of a solid electrolyte made of a complex oxide containing Li, La, and Ti, and is located on the first surface side. It has the crystalline layer 10a and the crystalline layer 10b located in the 2nd surface side which opposes a 1st surface. A lattice defect layer 10c is located on the amorphous layer 10a side of the crystalline layer 10b, and a portion indicated by reference numeral 10d is a crystalline portion excluding the lattice defect layer 10c in the crystalline layer 10b. Represents.

図2に示す本実施の形態の全固体リチウム二次電池100は、固体電解質層10と、正極活物質層12cと、正極集電層14cと、負極活物質層12a、負極集電層14aと、正極缶16cと、負極缶16aと、絶縁部18と、を有する。即ち、固体電解質層10、正極活物質層12c及び負極活物質層12aを含む発電要素が、正極集電層14c及び負極集電層14aを介して、正極缶16c、負極缶16a及び絶縁部18によって封口されている。   The all solid lithium secondary battery 100 of the present embodiment shown in FIG. 2 includes a solid electrolyte layer 10, a positive electrode active material layer 12c, a positive electrode current collector layer 14c, a negative electrode active material layer 12a, and a negative electrode current collector layer 14a. The positive electrode can 16c, the negative electrode can 16a, and the insulating portion 18 are included. That is, the power generation element including the solid electrolyte layer 10, the positive electrode active material layer 12c, and the negative electrode active material layer 12a is connected to the positive electrode can 16c, the negative electrode can 16a, and the insulating portion 18 via the positive electrode current collection layer 14c and the negative electrode current collection layer 14a. Is sealed by.

本実施の形態の固体電解質層10は、上記のように結晶質層10bと非晶質層10aとを有し、更に結晶質層10bのうちの非晶質層10a側の領域に格子欠陥を有する部分(格子欠陥層10c)が設けられているため、当該固体電解質層10を用いて全固体リチウム二次電池を作製した場合には、図2に示すように、非晶質層10aの表面に正極活物質層12cが位置することになる。なお、上述のように、結晶質層10bのうちの結晶質部分10dは格子欠陥を有しない部分である。   The solid electrolyte layer 10 of the present embodiment has the crystalline layer 10b and the amorphous layer 10a as described above, and further has lattice defects in the region on the amorphous layer 10a side of the crystalline layer 10b. Since the portion (lattice defect layer 10c) is provided, when the all-solid-state lithium secondary battery is manufactured using the solid electrolyte layer 10, the surface of the amorphous layer 10a is formed as shown in FIG. Thus, the positive electrode active material layer 12c is positioned on the surface. As described above, the crystalline portion 10d of the crystalline layer 10b is a portion having no lattice defect.

このように、正極活物質層12c−固体電解質層10間の界面に非晶質層10aが存在し、全固体リチウム二次電池100の充放電にともなう正極活物質層12cの膨張収縮による歪を、効果的に緩和することができ、サイクル特性の向上を図ることができる。また、非晶質層10aが高濃度の潜在的に可動性のあるイオンを有して高いイオン伝導度を発揮することができ、更に、格子欠陥層10cが良好なイオン伝導性を有することから、全固体リチウム二次電池の電池特性の向上を図ることができる。   As described above, the amorphous layer 10 a exists at the interface between the positive electrode active material layer 12 c and the solid electrolyte layer 10, and distortion due to expansion and contraction of the positive electrode active material layer 12 c due to charging / discharging of the all solid lithium secondary battery 100 is caused. Thus, it can be effectively relaxed and the cycle characteristics can be improved. Further, the amorphous layer 10a has a high concentration of potentially mobile ions and can exhibit high ionic conductivity, and the lattice defect layer 10c has good ionic conductivity. The battery characteristics of the all solid lithium secondary battery can be improved.

ここで、固体電解質層10を構成する上記固体電解質材料は、Li、La及びTiを含む複合酸化物からなる、いわゆるLLTと呼ばれる(Li,La)TiO3で構成されているものである。このLLTは、室温でも従来の有機電解質に匹敵する高いイオン伝導度を有し、かつ正極(特に正極活物質層)/電解質界面で酸化反応が起こしにくい。 Here, the solid electrolyte material constituting the solid electrolyte layer 10 is made of so-called LLT (Li, La) TiO 3 made of a composite oxide containing Li, La and Ti. This LLT has a high ionic conductivity comparable to that of a conventional organic electrolyte even at room temperature, and an oxidation reaction hardly occurs at the positive electrode (particularly, positive electrode active material layer) / electrolyte interface.

なかでも、前記固体電解質材料(LLT)は、一般式:La2/3-xLi3xTiO3(0.03≦x≦0.167)で示されるものであるのが好ましい。このような構成を有するLLTは、中性の電荷とともにペロブスカイト型の結晶構造を有し、高温下においても優れたリチウムイオン伝導性を発揮する。 Among them, the solid electrolyte material (LLT) has the general formula: La 2 / 3x Li 3x TiO 3 is preferably those represented by (0.03 ≦ x ≦ 0.167). The LLT having such a configuration has a perovskite crystal structure with a neutral charge, and exhibits excellent lithium ion conductivity even at high temperatures.

また、固体電解質層10の結晶化度が、非晶質層10aから格子欠陥層10cを経て結晶質部分10dにむかって概略的に増加しているような構成を有するのが好ましい。このような構成を有していれば、リチウムイオンを、非晶質層10aから格子欠陥層10cを経て結晶質部分10dへと、又は、結晶質部分10dから格子欠陥層10cを経て非晶質層10aへと、スムースに移動させることができ、好ましい。   Moreover, it is preferable to have a configuration in which the degree of crystallinity of the solid electrolyte layer 10 is roughly increased from the amorphous layer 10a to the crystalline portion 10d through the lattice defect layer 10c. With such a configuration, lithium ions are amorphous from the amorphous layer 10a through the lattice defect layer 10c to the crystalline portion 10d or from the crystalline portion 10d through the lattice defect layer 10c. It can move smoothly to the layer 10a, which is preferable.

ここで、「固体電解質層10の結晶化度が、非晶質層10aから格子欠陥層10cを経て結晶質部分10dにむかって概略的に増加している」状態とは、固体電解質層10の一端に位置する非晶質層10aの結晶化度が、当該固体電解質層10の他端に位置する結晶質部分10dの結晶化度よりも最終的に小さくなっており、複数層を全体としてみた場合に、各層(非晶質層10a、格子欠陥層10c及び結晶質部分10dを含む結晶質層10b)の結晶化度が非晶質層10aから結晶質部分10dにかけて(即ち、図1における矢印Xの向きに)概略的に増加している状態を示す。例えば、非晶質層10aから結晶質部分10dにかけて結晶化度が単調に増加している状態であってもよい。   Here, “the degree of crystallinity of the solid electrolyte layer 10 is roughly increased from the amorphous layer 10 a to the crystalline portion 10 d through the lattice defect layer 10 c” means that the solid electrolyte layer 10 The degree of crystallinity of the amorphous layer 10a located at one end is finally smaller than the degree of crystallinity of the crystalline part 10d located at the other end of the solid electrolyte layer 10, and a plurality of layers are viewed as a whole. In this case, the crystallinity of each layer (the amorphous layer 10a, the lattice defect layer 10c, and the crystalline layer 10b including the crystalline portion 10d) varies from the amorphous layer 10a to the crystalline portion 10d (that is, the arrows in FIG. 1). It shows a state of increasing roughly (in the direction of X). For example, the crystallinity may monotonously increase from the amorphous layer 10a to the crystalline portion 10d.

また、固体電解質層10、非晶質層10a、結晶質部分10d、格子欠陥層10c及び結晶質層10bの厚さとしては、所望する固体電解質層10及びこれを用いた全固体リチウム二次電池100のスペック等に応じて適宜選択すればよい。   Further, the thickness of the solid electrolyte layer 10, the amorphous layer 10a, the crystalline portion 10d, the lattice defect layer 10c, and the crystalline layer 10b may be the desired solid electrolyte layer 10 and an all-solid lithium secondary battery using the same. What is necessary is just to select suitably according to 100 specifications etc.

(2)固体電解質層の製造方法について
上記の本実施の形態の固体電解質層10は、以下のような工程(1)〜工程(3)によって製造することができる。以下、本実施の形態の固体電解質層の代表的な製造方法を工程ごとに説明する。
(2) About the manufacturing method of a solid electrolyte layer The solid electrolyte layer 10 of this Embodiment mentioned above can be manufactured by the following processes (1) -process (3). Hereinafter, a typical manufacturing method of the solid electrolyte layer of the present embodiment will be described for each step.

・工程(1)
原料であるLi2CO3、La23及びTiO2を混合及び加熱して試料を調製し、当該試料を粉砕し、得られた粉砕物を成型及び焼結してLi、La及びTiを含む複合酸化物の結晶質層からなる固体電解質材料を得る。この工程の詳細な条件は、上記複合酸化物の結晶質層からなる固体電解質材料を得ることができる限りにおいては、特に制限はなく、従来公知の条件を適宜採用することができる。
・ Process (1)
Li 2 CO 3 , La 2 O 3 and TiO 2 as raw materials are mixed and heated to prepare a sample, the sample is pulverized, and the obtained pulverized product is molded and sintered to obtain Li, La, and Ti. A solid electrolyte material comprising a crystalline layer of a composite oxide is obtained. The detailed conditions of this step are not particularly limited as long as a solid electrolyte material composed of the crystalline layer of the composite oxide can be obtained, and conventionally known conditions can be appropriately employed.

例えば、Li2CO3、La23及びTiO2を所定のモル比で含む混合物に、アセトン等の有機溶媒を添加して、例えば遊星ボールミルを用いて混合し、乾燥する。その後、吸着した二酸化炭素を除去するために第一の加熱処理をし、ついで、LLTを形成するための第二の加熱処理を、上記第一の加熱処理よりも高い温度でかつ長い時間、行って試料を調製する。なお、上記第一の加熱処理は省略することができる。 For example, an organic solvent such as acetone is added to a mixture containing Li 2 CO 3 , La 2 O 3 and TiO 2 at a predetermined molar ratio, and the mixture is mixed using, for example, a planetary ball mill and dried. Thereafter, the first heat treatment is performed to remove the adsorbed carbon dioxide, and then the second heat treatment for forming the LLT is performed at a temperature higher than that of the first heat treatment for a longer time. Prepare the sample. Note that the first heat treatment can be omitted.

次に、得られた試料を粉砕し、粉砕物を例えば冷間等方圧加圧法等によって成型し、焼結(第三の加熱処理)を行うことによりLi、La及びTiを含む複合酸化物の結晶質層からなる固体電解質材料を得る。ここでは、所望する全固体リチウム二次電池の形状に応じた形状(例えば板状や円盤等)及び寸法の固体電解質材料を、常法により得ることができる。   Next, the obtained sample is pulverized, the pulverized product is molded by, for example, a cold isostatic pressing method, and sintered (third heat treatment) to perform composite oxide containing Li, La and Ti. A solid electrolyte material comprising the crystalline layer is obtained. Here, a solid electrolyte material having a shape (for example, a plate shape or a disk) and a dimension corresponding to the desired shape of the all-solid lithium secondary battery can be obtained by a conventional method.

また、例えば、ポリアクリル酸、カルボキシメチルセルロース、ポリビニルアルコール、ジアセチルセルロース、ヒドロキシプロピルセルロース及びポリブチラール等のうちの少なくとも1種を成形助剤として使用してもよい。   Further, for example, at least one of polyacrylic acid, carboxymethylcellulose, polyvinyl alcohol, diacetylcellulose, hydroxypropylcellulose, polybutyral, and the like may be used as a molding aid.

・工程(2)
次に、上記工程(1)で得られた固体電解質材料の少なくとも一部(面)を研磨することによって、当該一部に非晶質層を形成する。ただし、ここで行う研磨には従来公知のいずれの方法を採用することもでき、また、後述する工程(3)において説明するショットピーニング処理又はイオン照射処理により非晶質層を形成してもよい。
・ Process (2)
Next, by polishing at least a part (surface) of the solid electrolyte material obtained in the step (1), an amorphous layer is formed on the part. However, any conventionally known method can be employed for polishing performed here, and an amorphous layer may be formed by shot peening treatment or ion irradiation treatment described in step (3) described later. .

研磨の場合には、なかでも、より確実に非晶質層(乃至は非晶質層に近い層)を得るために、上記固体電解質材料の少なくとも一部を、例えばダイヤモンドペーストを用いてより細かいバフ研磨を行うのが好ましい。もちろん、例えば粗いエメリー紙を用いてあらかじめ湿式研磨を行ってもよい。   In the case of polishing, in order to obtain an amorphous layer (or a layer close to an amorphous layer) more reliably, at least a part of the solid electrolyte material is finer using, for example, a diamond paste. Buffing is preferably performed. Of course, wet polishing may be performed in advance using rough emery paper, for example.

・工程(3)
そして、非晶質層10a側及び/又は結晶質層10b側から固体電解質材料にショットピーニング処理又はイオン照射処理を施し、前記非晶質層内又は前記結晶質層のうちの前記非晶質層側に格子欠陥層を形成し、本実施の形態の固体電解質層を製造することができる。
・ Process (3)
Then, the solid electrolyte material is subjected to shot peening treatment or ion irradiation treatment from the amorphous layer 10a side and / or the crystalline layer 10b side, and the amorphous layer in the amorphous layer or in the crystalline layer By forming a lattice defect layer on the side, the solid electrolyte layer of the present embodiment can be manufactured.

(i)ショットピーニング処理
ショットピーニング処理は、固体電解質層10の非晶質層10a側からみて、さらに奥の結晶質層10bの領域において、研磨材を衝突させることにより結晶構造を部分的に崩し、物理的に格子欠陥を形成して格子欠陥層10cを形成するものである。したがって、上記研磨材は、格子欠陥層10cを形成できる範囲の粒径のものを用いるのが好ましい。例えば80〜110μmの粒径を有する研磨材を用いることができる。
(I) Shot peening treatment In the shot peening treatment, as seen from the amorphous layer 10a side of the solid electrolyte layer 10, the crystal structure is partially destroyed by colliding abrasive in the deeper crystalline layer 10b region. The lattice defect layer 10c is formed by physically forming lattice defects. Therefore, it is preferable to use a material having a particle size within a range in which the lattice defect layer 10c can be formed. For example, an abrasive having a particle size of 80 to 110 μm can be used.

上記ショットピーニング処理は、例えば(株)不二製作所製のエアーブラスト装置等とともに、例えばガラスビーズやアルミナボール等の研磨材を用いて行うことができる。なお、その他にも研磨材として各種金属製のボールを使用することも可能である。研磨材の投射圧力及び投射時間等の条件については、本発明の効果を損なわない範囲で当業者であれば適宜選択することが可能である。また、研磨材の粒径、投射圧力及び投射時間等の条件を調整することにより、格子欠陥層10cの厚みを任意に設定することができる。   The shot peening treatment can be performed using, for example, an abrasive such as glass beads or alumina balls together with an air blast device manufactured by Fuji Seisakusho Co., Ltd. In addition, various metal balls can be used as the abrasive. The conditions such as the projection pressure and the projection time of the abrasive can be appropriately selected by those skilled in the art within a range not impairing the effects of the present invention. Moreover, the thickness of the lattice defect layer 10c can be arbitrarily set by adjusting conditions such as the particle size of the abrasive, the projection pressure, and the projection time.

(ii)イオン照射処理
イオン照射処理は、固体電解質層10の非晶質層10a側からみて、さらに奥の結晶質層10bの領域において、イオンを衝突させることにより結晶構造を部分的に崩し、物理的に格子欠陥を形成して格子欠陥層10cを形成するものである。イオンとしては、例えばアルゴンイオン等の不活性ガスのイオンを用いることができる。
(Ii) Ion irradiation treatment In the ion irradiation treatment, as viewed from the amorphous layer 10a side of the solid electrolyte layer 10, the crystal structure is partially broken by colliding ions in the region of the crystalline layer 10b at the back, A lattice defect is physically formed to form the lattice defect layer 10c. As ions, for example, ions of inert gas such as argon ions can be used.

上記イオン照射処理は、例えばGatan社製のPECS等を用いて行えばよい。なお、不活性ガスのドーズ量及び照射量等の条件については、本発明の効果を損なわない範囲で当業者であれば適宜選択することが可能である。また、イオンの照射エネルギー、ドーズ量及び照射量等の条件を調整することにより、格子欠陥層10cの厚みを任意に設定することができる。   The ion irradiation treatment may be performed using, for example, PECS manufactured by Gatan. In addition, about conditions, such as a dose amount and irradiation amount of an inert gas, it is possible for those skilled in the art to select suitably in the range which does not impair the effect of this invention. Moreover, the thickness of the lattice defect layer 10c can be arbitrarily set by adjusting conditions such as ion irradiation energy, dose, and dose.

(3)全固体リチウム二次電池について
上述のように、図2に示す全固体リチウム二次電池100は、固体電解質層10と、正極活物質層12cと、正極集電層14cと、負極活物質層12a、負極集電層14aと、正極缶16cと、負極缶16aと、絶縁部18と、を有し、固体電解質層10としては、上述したものを用い、他の構成要素としては、従来公知のものを用いることができる。
(3) All Solid Lithium Secondary Battery As described above, the all solid lithium secondary battery 100 shown in FIG. 2 includes the solid electrolyte layer 10, the positive electrode active material layer 12c, the positive electrode current collecting layer 14c, and the negative electrode active battery. The material layer 12a, the negative electrode current collecting layer 14a, the positive electrode can 16c, the negative electrode can 16a, and the insulating portion 18 are used. As the solid electrolyte layer 10, those described above are used. A conventionally well-known thing can be used.

正極活物質層12cとしては種々のものを用いることができ、LiCoO3の他、例えば式(1):LiNi1-x-yCoxAly2(0.1<x≦0.25、0≦y<0.2)で示される化合物や式(2):LiMn2-xNix4で示されるスピネル型リチウムマンガン化合物等を用いることができる。上記式(1)で示される化合物はリチウムの吸蔵放出に伴う結晶構造の変化がほとんど無く、かつ4V級の高い平均放電電圧を発揮し得るため好ましい。また、上記式(2)で示される化合物のうち、特にLiMn2-xNix4(0≦x≦1)は、体積変化が2%以下であり好ましい。 Various materials can be used as the positive electrode active material layer 12c. In addition to LiCoO 3 , for example, the formula (1): LiNi 1-xy Co x Al y O 2 (0.1 <x ≦ 0.25, 0 ≦ A compound represented by y <0.2) or a spinel type lithium manganese compound represented by the formula (2): LiMn 2−x Ni x O 4 can be used. The compound represented by the above formula (1) is preferable because it hardly changes the crystal structure associated with insertion and extraction of lithium and can exhibit a high average discharge voltage of 4 V class. Of the compounds represented by the above formula (2), LiMn 2-x Ni x O 4 (0 ≦ x ≦ 1) is preferable because the volume change is 2% or less.

また、負極活物質層12aとしても種々のものを用いることができ、例えば黒鉛等の炭素材料の他、例えばLiTi24及びLi2Ti37等のリチウムチタン系酸化物等を用いることができる。特に上記リチウムチタン酸化物は体積変化が2%以下であるので好ましい。 Various materials can be used as the negative electrode active material layer 12a. For example, in addition to a carbon material such as graphite, a lithium titanium-based oxide such as LiTi 2 O 4 and Li 2 Ti 3 O 7 can be used. Can do. In particular, the lithium titanium oxide is preferable because the volume change is 2% or less.

正極集電層14c及び負極集電層14aは、それぞれ正極缶16cと正極活物質層14cとの接触及び集電、並びに、負極缶16aと負極活物質層14aとの接触及び集電のために配置され、種々の金属材料を用いることができ、例えば白金、金、銀、銅、アルミニウム、ニッケル及び導電性カーボンなどの導電性粒子を含んだ導電性接着剤を用いることができる。   The positive electrode current collecting layer 14c and the negative electrode current collecting layer 14a are respectively for contact and current collection between the positive electrode can 16c and the positive electrode active material layer 14c, and for contact and current collection between the negative electrode can 16a and the negative electrode active material layer 14a. Various metal materials can be used, for example, conductive adhesives containing conductive particles such as platinum, gold, silver, copper, aluminum, nickel and conductive carbon can be used.

また、正極缶16c及び負極缶16aには、発電要素が大気中の水分に曝されて充放電反応が阻害されることを防ぎ、かつそれぞれ正極集電層14c及び負極集電層14aの端子として用いるために配置され、例えばアルミニウム、銅、ニッケル、ステンレススチール及びチタン等の金属の薄板を用いることができる。   In addition, the positive electrode can 16c and the negative electrode can 16a prevent the power generation element from being exposed to moisture in the atmosphere to inhibit the charge / discharge reaction, and serve as terminals of the positive electrode current collecting layer 14c and the negative electrode current collecting layer 14a, respectively. For example, a thin metal plate such as aluminum, copper, nickel, stainless steel and titanium can be used.

また、絶縁部18は、全固体リチウム二次電池100の正極側と負極側とが内部短絡することを防止するために配置され、例えばポリエチレン、ポリプロピレン及びポリイミド等の絶縁性を有する高分子材料からなる層である。
上記のような全固体リチウム二次電池は、従来公知の方法によって作製することができる。
Further, the insulating portion 18 is arranged to prevent an internal short circuit between the positive electrode side and the negative electrode side of the all-solid lithium secondary battery 100, and is made of an insulating polymer material such as polyethylene, polypropylene, and polyimide. It is a layer.
The all solid lithium secondary battery as described above can be produced by a conventionally known method.

以上、本発明の代表的な実施の形態について説明したが、本発明はこれらのみに限定されるものではない。例えば、上記実施の形態においては、図1に示すように、第1の面側に位置する非晶質層と、第1の面に対向する第2の面側に位置する結晶質層と、結晶質層のうちの非晶質層側に位置する格子欠陥層と、を有する固体電解質層について説明したが、格子欠陥層は非晶質層内に含まれていてもよい。この場合、非晶質層に上記ショットピーニング処理又はイオン照射処理を施せばよい。   As mentioned above, although typical embodiment of this invention was described, this invention is not limited only to these. For example, in the above embodiment, as shown in FIG. 1, an amorphous layer located on the first surface side, a crystalline layer located on the second surface side facing the first surface, Although the solid electrolyte layer having the lattice defect layer positioned on the amorphous layer side of the crystalline layer has been described, the lattice defect layer may be included in the amorphous layer. In this case, the amorphous layer may be subjected to the shot peening treatment or the ion irradiation treatment.

以下において、本発明の固体電解質層を実施例とともにより詳細に説明するが、本発明はこれら実施例に限定されるものではない。     In the following, the solid electrolyte layer of the present invention will be described in more detail together with examples, but the present invention is not limited to these examples.

《実施例1》
本実施例においては、図面を参照しながら説明した上記実施の形態で説明した構造を有する固体電解質層を、以下のような工程を行い、かつショットピーニング処理を用いることにより作製した。
Example 1
In this example, a solid electrolyte layer having the structure described in the above embodiment described with reference to the drawings was manufactured by performing the following steps and using shot peening.

(1)固体電解質材料の作製
Li2CO3(99.999%)、La23(99.99%)及びTiO2(99.9%)をモル比1:1:4で混合したものを出発材料とし、アセトン溶媒を用いて、遊星型ボールミルで2時間混合した後、乾燥させた。混合した試薬は吸着したCO2を除去するために800℃で4時間(第一の加熱処理)、LLTの相形成のために1150℃で12時間熱処理(第二の加熱処理)した。熱処理後の試料を粉砕し、1MPaで冷間等方圧加圧法(CIP)により成型した後、1350℃で6時間焼結させ(第三の加熱処理)、LLTの多結晶試料、即ち、Li、La及びTiを含む複合酸化物の結晶質層からなる固体電解質材料を得た(工程(1))。
(1) Production of solid electrolyte material Li 2 CO 3 (99.999%), La 2 O 3 (99.99%) and TiO 2 (99.9%) mixed at a molar ratio of 1: 1: 4 Was mixed in a planetary ball mill for 2 hours using an acetone solvent and then dried. The mixed reagent was heat-treated at 800 ° C. for 4 hours (first heat treatment) to remove the adsorbed CO 2, and heat-treated at 1150 ° C. for 12 hours (second heat treatment) to form the LLT phase. The heat-treated sample is pulverized, molded by cold isostatic pressing (CIP) at 1 MPa, sintered at 1350 ° C. for 6 hours (third heat treatment), and an LLT polycrystalline sample, that is, Li A solid electrolyte material composed of a crystalline layer of a composite oxide containing La, Ti was obtained (step (1)).

(2)非晶質層の形成
上記工程(1)で得た固体電解質材料の一方の面を、エメリー紙(〜#2000)を用いて湿式研磨した後、ダイヤモンドペースト(1μm)を用いて機械研磨(バフ研磨)し、上記面に非晶質層を形成した(工程(2))。
(2) Formation of Amorphous Layer One surface of the solid electrolyte material obtained in the above step (1) is wet-polished using emery paper (˜ # 2000), and then machined using diamond paste (1 μm). Polishing (buffing) was performed to form an amorphous layer on the surface (step (2)).

(3)格子欠陥層の形成
上記工程(2)後の固体電解質材料及び(株)不二製作所製のニューマ・ブラスターFGB−180を用い、(株)不二製作所製のガラスビーズ(粒径:88〜105μm)を結晶質層10bのうちの非晶質層10a側の領域に高速で衝突させ、ショットピーニング処理を行い、これにより本実施例の固体電解質層を得た(工程(3))。
(3) Formation of Lattice Defect Layer Using the solid electrolyte material after step (2) and Puma Blaster FGB-180 made by Fuji Seisakusho, glass beads made by Fuji Seisakusho (particle size: 88-105 [mu] m) collided with the region on the amorphous layer 10a side of the crystalline layer 10b at high speed, and a shot peening treatment was performed, thereby obtaining a solid electrolyte layer of this example (step (3)). .

なお、投射圧力は0.4MPaとし、投射時間は非晶質層0a側からを約10分間、結晶質層10b側からを約10分間とした。また、得られた固体電解質層を切断して走査電子顕微鏡(SEM)で観察したところ、固体電解質材料に、非晶質層10a及び格子欠陥層10cが形成されていることが認められた。   The projection pressure was 0.4 MPa, and the projection time was about 10 minutes from the amorphous layer 0a side and about 10 minutes from the crystalline layer 10b side. Moreover, when the obtained solid electrolyte layer was cut | disconnected and observed with the scanning electron microscope (SEM), it was recognized that the amorphous layer 10a and the lattice defect layer 10c were formed in the solid electrolyte material.

《実施例2》
本実施例においては、イオン照射処理を用いた以外は、上記実施例1と同様にして固体電解質層を作製した。即ち、上記実施例1における上記工程(2)後の固体電解質材料及びGatan社製のPECSを用いて、電圧6kV、電流約300μA、イオン照射時間1分間の条件で、イオン照射処理を行い、これにより本実施例の固体電解質層を得た(工程(3))。
得られた固体電解質層を切断して走査電子顕微鏡(SEM)で観察したところ、固体電解質材料に、非晶質層10a及び格子欠陥層10cが形成されていることが認められた。
《比較例》
本比較例においては、上記工程(3)を行わなかった以外は実施例1と同様にして、固体電解質層を作製した。即ち、上記工程(1)で得た固体電解質材料の一方の面を、エメリー紙(〜#2000)を用いて湿式研磨した後、ダイヤモンドペースト(1μm)を用いて機械研磨(バフ研磨)し、上記面に非晶質層を形成したが(工程(2))、格子欠陥層は形成しなかった。
Example 2
In this example, a solid electrolyte layer was produced in the same manner as in Example 1 except that ion irradiation treatment was used. That is, using the solid electrolyte material after Step (2) in Example 1 and PECS manufactured by Gatan, ion irradiation treatment was performed under conditions of a voltage of 6 kV, a current of about 300 μA, and an ion irradiation time of 1 minute. Thus, a solid electrolyte layer of this example was obtained (step (3)).
When the obtained solid electrolyte layer was cut and observed with a scanning electron microscope (SEM), it was found that the amorphous layer 10a and the lattice defect layer 10c were formed in the solid electrolyte material.
《Comparative example》
In this comparative example, a solid electrolyte layer was produced in the same manner as in Example 1 except that the above step (3) was not performed. That is, one surface of the solid electrolyte material obtained in the above step (1) is wet-polished using emery paper (~ # 2000), and then mechanically polished (buffed) using diamond paste (1 μm), An amorphous layer was formed on the surface (step (2)), but no lattice defect layer was formed.

[評価試験]
(1)試験セルの作製
上記実施例1及び2並びに比較例において得られた固体電解質層の特性を評価するために、まず試験セルを作製した。上記固体電解質層のうちの非晶質層10aの表面に、パルスレーザー蒸着(PLD)法によって、厚さ約100nmのLiCoO3からなる正極活物質層を形成した。なお、ターゲットしてはLiリッチのLi1.4CoO2を用い、蒸着は、ターゲットと固体電解質層との距離:40mm、蒸着温度:700℃、27Paの酸素雰囲気、レーザー出力1.4J/cm2、及び1時間の条件で行った。
[Evaluation test]
(1) Production of test cell In order to evaluate the characteristics of the solid electrolyte layers obtained in Examples 1 and 2 and the comparative example, a test cell was first produced. A positive electrode active material layer made of LiCoO 3 having a thickness of about 100 nm was formed on the surface of the amorphous layer 10a of the solid electrolyte layer by a pulse laser deposition (PLD) method. Note that Li-rich Li 1.4 CoO 2 was used as the target, and the deposition was performed at a distance between the target and the solid electrolyte layer: 40 mm, a deposition temperature: 700 ° C., an oxygen atmosphere of 27 Pa, a laser output of 1.4 J / cm 2 , And for 1 hour.

ついで、上述のように形成した正極活物質層の上に、RFマグネトロンスパッタリングによって白金を蒸着させ、正極集電層を形成した。白金の蒸着は、1.5Paのアルゴン雰囲気中で、出力40Wにて15分間行った。   Subsequently, platinum was vapor-deposited by RF magnetron sputtering on the positive electrode active material layer formed as described above to form a positive electrode current collecting layer. The platinum was deposited in an argon atmosphere of 1.5 Pa at an output of 40 W for 15 minutes.

(2)電気化学特性の測定
作製した試験セルのサイクル特性を評価するため、サイクリクボルタンメトリーの測定を行った。サイクリックボルタンメトリーはアルゴン雰囲気中で行い、対極としてはリチウムを用い、電解液としては1MのLiClO4を含むプロピレンカーボネート溶液を用い、固体電解質層と上記対極との接触を防止するため、多孔質膜からなるセパレータを用いた。初期電圧3.2V、折り返し電位4.3V、掃引速度0.1mVで、3サイクルの測定を行った。結果をそれぞれ図3(実施例1)、図4(実施例2)及び図5(比較例)に示した。
(2) Measurement of electrochemical characteristics Cyclic voltammetry was measured in order to evaluate the cycle characteristics of the produced test cells. Cyclic voltammetry is performed in an argon atmosphere, lithium is used as the counter electrode, a propylene carbonate solution containing 1M LiClO 4 is used as the electrolyte, and a porous membrane is used to prevent contact between the solid electrolyte layer and the counter electrode. A separator consisting of Three cycles of measurements were performed at an initial voltage of 3.2 V, a folding potential of 4.3 V, and a sweep rate of 0.1 mV. The results are shown in FIG. 3 (Example 1), FIG. 4 (Example 2) and FIG. 5 (Comparative example), respectively.

図3及び図4を図5と比較してわかるように、本発明の固体電解質層を用いた場合は良好なサイクル特性が得られている。更に、図3、図4及び図5の順に、電圧ピークがLi/Li+に対するLiCoO2の電極電位E0=3.91Vに近い位置に見られ、小さな過電圧で反応が進行しはじめており、Li+の挿入脱離反応に対する抵抗が、図3、図4及び図5の順に大きくなっていることがわかる。即ち、固体電解質層に高密度の格子欠陥層を形成するほど、Li+の挿入脱離反応に対する抵抗が小さくなり、サイクル特性に優れる電池が得られることがわかる。 As can be seen by comparing FIG. 3 and FIG. 4 with FIG. 5, good cycle characteristics are obtained when the solid electrolyte layer of the present invention is used. Furthermore, in order of FIG. 3, FIG. 4 and FIG. 5, the voltage peak is seen at a position close to the electrode potential E 0 = 3.91 V of LiCoO 2 with respect to Li / Li + , and the reaction starts to proceed with a small overvoltage. It can be seen that the resistance to the + insertion / release reaction increases in the order of FIG. 3, FIG. 4 and FIG. That is, it can be seen that the higher the density of the lattice defect layer formed in the solid electrolyte layer, the lower the resistance to the Li + insertion / desorption reaction, and a battery with excellent cycle characteristics can be obtained.

(3)交流インピーダンスの測定
上記試験セルの交流インピーダンスを、充電時4Vの時点で±10mVの交流を10mHz〜100kHzの範囲で印加することによって測定した。その結果、比較例の固体電解質層を用いた試験セルの交流インピーダンスが最も大きく、正極活物質層−固体電解質層界面の抵抗が増加していることがわかった。即ち、実施例の固体電解質層を用いた試験セルでは、内部抵抗の上昇及び電池容量の低下が抑制されていることがわかる。
(3) Measurement of AC impedance The AC impedance of the test cell was measured by applying ± 10 mV of alternating current in the range of 10 mHz to 100 kHz at the time of charging 4V. As a result, it was found that the AC impedance of the test cell using the solid electrolyte layer of the comparative example was the largest, and the resistance at the positive electrode active material layer-solid electrolyte layer interface was increased. That is, it can be seen that in the test cell using the solid electrolyte layer of the example, an increase in internal resistance and a decrease in battery capacity are suppressed.

本発明の固体電解質層を用いれば、内部抵抗の上昇及び電池容量の低下を起こしにくい電気化学素子(特に全固体リチウム二次電池)を実現することができる。また、本発明の固体電解質層は、全固体リチウム二次電池のほか、例えば一次電池、リチウムイオン二次電池等の二次電池、キャパシタ、電解コンデンサー、ガスセンサ等のセンサ、エレクトロクロミック素子、固体酸化物型燃料電池(SOFC)等の電気化学素子に応用することが考えられる。   By using the solid electrolyte layer of the present invention, it is possible to realize an electrochemical element (particularly an all-solid lithium secondary battery) that hardly causes an increase in internal resistance and a decrease in battery capacity. Further, the solid electrolyte layer of the present invention is not only an all-solid lithium secondary battery, but also a secondary battery such as a primary battery or a lithium ion secondary battery, a sensor such as a capacitor, an electrolytic capacitor, or a gas sensor, an electrochromic element, a solid oxide It can be applied to electrochemical devices such as physical fuel cells (SOFC).

本発明の固体電解質層の一実施の形態の構造を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of one Embodiment of the solid electrolyte layer of this invention. 図1に示す固体電解質層を用いた電気化学素子の一実施の形態である全固体リチウム二次電池の構造を示す断面図である。It is sectional drawing which shows the structure of the all-solid-state lithium secondary battery which is one Embodiment of the electrochemical element using the solid electrolyte layer shown in FIG. 実施例1で得られた固体電解質層(ショットピーニング処理)を用いた場合のサイクリックボルタンメトリーの結果を示すグラフである。6 is a graph showing the results of cyclic voltammetry when the solid electrolyte layer (shot peening treatment) obtained in Example 1 is used. 実施例2で得られた固体電解質層(イオン照射処理)を用いた場合のサイクリックボルタンメトリーの結果を示すグラフである。It is a graph which shows the result of the cyclic voltammetry at the time of using the solid electrolyte layer (ion irradiation process) obtained in Example 2. FIG. 比較例で得られた固体電解質層を用いた場合のサイクリックボルタンメトリーの結果を示すグラフである。It is a graph which shows the result of the cyclic voltammetry at the time of using the solid electrolyte layer obtained by the comparative example.

符号の説明Explanation of symbols

10・・・固体電解質層、10a・・・非晶質層、10b・・・結晶質層、10c・・・格子欠陥層、10d・・・結晶質部分、12a・・・負極活物質層、12c・・・正極活物質層、14a・・・負極集電層、14c・・・正極集電層、16a・・・負極缶、16c・・・正極缶、18・・・絶縁部、100・・・全固体リチウム二次電池。   DESCRIPTION OF SYMBOLS 10 ... Solid electrolyte layer, 10a ... Amorphous layer, 10b ... Crystalline layer, 10c ... Lattice defect layer, 10d ... Crystalline part, 12a ... Negative electrode active material layer, 12c ... Positive electrode active material layer, 14a ... Negative electrode current collecting layer, 14c ... Positive electrode current collecting layer, 16a ... Negative electrode can, 16c ... Positive electrode can, 18 ... Insulating part, 100. ..All-solid lithium secondary batteries.

Claims (9)

Li、La及びTiを含む複合酸化物からなる固体電解質で構成された固体電解質層であって、
第1の面側に位置する非晶質層と、前記第1の面に対向する第2の面側に位置する結晶質層と、前記非晶質層内又は前記結晶質層のうちの前記非晶質層側に位置する格子欠陥層と、を有すること、
を特徴とする固体電解質層。
A solid electrolyte layer composed of a solid electrolyte made of a complex oxide containing Li, La and Ti,
An amorphous layer located on the first surface side, a crystalline layer located on the second surface side facing the first surface, and the amorphous layer or the crystalline layer of the crystalline layer Having a lattice defect layer located on the amorphous layer side,
Solid electrolyte layer characterized by
前記固体電解質層の結晶化度が、前記非晶質層から前記結晶質層にむかって概略的に増加している、請求項1に記載の固体電解質層。   The solid electrolyte layer according to claim 1, wherein the crystallinity of the solid electrolyte layer is substantially increased from the amorphous layer to the crystalline layer. 前記固体電解質材料が一般式:La2/3-xLi3xTiO3(0.03≦x≦0.167)で示される、請求項1又は2に記載の固体電解質層。 The solid electrolyte layer according to claim 1, wherein the solid electrolyte material is represented by a general formula: La 2 / 3-x Li 3x TiO 3 (0.03 ≦ x ≦ 0.167). Li2CO3、La23及びTiO2を混合及び加熱して得られる試料を粉砕し、得られた粉砕物を成型及び焼結してLi、La及びTiを含む複合酸化物の結晶質層からなる固体電解質材料を得る工程(1)と、
前記固体電解質材料の少なくとも一部に非晶質層を形成する工程(2)と、
前記非晶質層内又は前記結晶質層のうちの前記非晶質層側の領域に格子欠陥層を形成する工程(3)と、を具備すること、
を特徴とする固体電解質層の製造方法。
A sample obtained by mixing and heating Li 2 CO 3 , La 2 O 3 and TiO 2 is pulverized, and the obtained pulverized product is molded and sintered to form a crystalline compound oxide containing Li, La and Ti. A step (1) of obtaining a solid electrolyte material comprising layers;
Forming an amorphous layer on at least a part of the solid electrolyte material (2);
Forming a lattice defect layer in the amorphous layer or a region on the amorphous layer side of the crystalline layer (3),
A method for producing a solid electrolyte layer.
前記工程(2)において、バフを用いた機械研磨、ショットピーニング処理又はイオン照射処理により前記固体電解質材料の少なくとも一部に非晶質層を形成すること、
を特徴とする請求項4に記載の固体電解質層の製造方法。
Forming an amorphous layer on at least a part of the solid electrolyte material by mechanical polishing using a buff, shot peening treatment or ion irradiation treatment in the step (2);
The method for producing a solid electrolyte layer according to claim 4.
前記工程(3)において、前記固体電解質材料にショットピーニング処理又はイオン照射処理を施し、前記非晶質層内又は前記結晶質層のうちの前記非晶質層側の領域に格子欠陥層を形成すること、
を特徴とする請求項4又は5に記載の固体電解質層の製造方法。
In the step (3), the solid electrolyte material is subjected to shot peening treatment or ion irradiation treatment, and a lattice defect layer is formed in the amorphous layer or in the region on the amorphous layer side of the crystalline layer. To do,
The method for producing a solid electrolyte layer according to claim 4 or 5.
前記工程(3)において、前記固体電解質材料に研磨材を用いたショットピーニング処理を施し、前記非晶質層内又は前記結晶質層のうちの前記非晶質層側の領域に格子欠陥層を形成する、
請求項5又は6に記載の固体電解質層の製造方法。
In the step (3), the solid electrolyte material is subjected to shot peening using an abrasive, and a lattice defect layer is formed in the amorphous layer or in the region of the crystalline layer on the amorphous layer side. Form,
The manufacturing method of the solid electrolyte layer of Claim 5 or 6.
前記工程(3)において、前記固体電解質材料に不活性ガスのイオンを用いたイオン照射処理を施し、前記非晶質層又は前記結晶質層のうちの前記非晶質層側の領域に格子欠陥層を形成する、
請求項5又は6に記載の固体電解質層の製造方法。
In the step (3), the solid electrolyte material is subjected to ion irradiation treatment using ions of an inert gas, and a lattice defect is formed in the amorphous layer or a region on the amorphous layer side of the crystalline layer. Forming a layer,
The manufacturing method of the solid electrolyte layer of Claim 5 or 6.
前記固体電解質材料が一般式:La2/3-xLi3xTiO3(0.03≦x≦0.167)で示される、請求項4〜8のうちのいずれかに記載の固体電解質層の製造方法。 The solid electrolyte layer according to any one of claims 4 to 8, wherein the solid electrolyte material is represented by a general formula: La 2 / 3-x Li 3x TiO 3 (0.03 ≦ x ≦ 0.167). Production method.
JP2006233813A 2006-08-30 2006-08-30 Solid electrolytic layer and its manufacturing method Pending JP2008059843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006233813A JP2008059843A (en) 2006-08-30 2006-08-30 Solid electrolytic layer and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233813A JP2008059843A (en) 2006-08-30 2006-08-30 Solid electrolytic layer and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008059843A true JP2008059843A (en) 2008-03-13

Family

ID=39242342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233813A Pending JP2008059843A (en) 2006-08-30 2006-08-30 Solid electrolytic layer and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008059843A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238704A (en) * 2008-03-28 2009-10-15 Sumitomo Electric Ind Ltd Solid electrolyte membrane and lithium battery
WO2010009680A1 (en) * 2008-07-25 2010-01-28 丰田自动车株式会社 Li-la-ti-o composite solid electrolyte material containing silicon and synthesizing method thereof
JP2010123463A (en) * 2008-11-20 2010-06-03 Toyota Motor Corp All-solid battery, electrode for all-solid battery, and its manufacturing method
JP2010244827A (en) * 2009-04-06 2010-10-28 Nippon Telegr & Teleph Corp <Ntt> Lithium air battery
JP2011009103A (en) * 2009-06-26 2011-01-13 Toyota Motor Corp All-solid lithium secondary battery
US20110045355A1 (en) * 2009-08-18 2011-02-24 Seiko Epson Corporation Electrode for lithium battery and lithium battery
WO2011128976A1 (en) * 2010-04-13 2011-10-20 トヨタ自動車株式会社 Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
WO2011128979A1 (en) * 2010-04-13 2011-10-20 トヨタ自動車株式会社 Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
WO2011128977A1 (en) * 2010-04-13 2011-10-20 トヨタ自動車株式会社 Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
WO2011128978A1 (en) * 2010-04-13 2011-10-20 トヨタ自動車株式会社 Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
JP2013073907A (en) * 2011-09-29 2013-04-22 Toyota Motor Corp Method for manufacturing electrode mixture
JP2013109840A (en) * 2011-11-17 2013-06-06 Fujitsu Ltd Secondary battery, and method for manufacturing the same
JP2013532361A (en) * 2010-06-17 2013-08-15 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Lithium ion battery
JP2014096352A (en) * 2012-11-07 2014-05-22 Ngk Insulators Ltd Ceramic positive electrode-solid electrolyte assembly
WO2014133039A1 (en) * 2013-02-28 2014-09-04 京セラ株式会社 All-solid capacitor
WO2015060686A1 (en) * 2013-10-24 2015-04-30 주식회사 엘지화학 Solid electrolyte particles, method for preparing same, and lithium secondary battery containing same
KR20150055799A (en) * 2013-11-14 2015-05-22 주식회사 엘지화학 The synthesis of solid electrolyte nano particle for lithium secondary battery using flame spray pyrolysis
CN105206870A (en) * 2015-09-25 2015-12-30 山东玉皇新能源科技有限公司 Method for electrochemically preparing solid electrolyte lithium lanthanum titanium oxides
WO2016006498A1 (en) * 2014-07-11 2016-01-14 株式会社村田製作所 Solid electrolyte, multilayer electronic component, and method for producing multilayer electronic component
WO2016031022A1 (en) * 2014-08-28 2016-03-03 富士通株式会社 Solid electrolyte, method for manufacturing same, all-solid-state secondary cell, and method for manufacturing same
US9287582B2 (en) 2011-11-15 2016-03-15 Seiko Epson Corporation Composition for forming solid electrolyte layer, method for forming solid electrolyte layer, solid electrolyte layer, and lithium ion secondary battery
KR20160046882A (en) 2013-09-25 2016-04-29 후지필름 가부시키가이샤 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
JP2019033081A (en) * 2017-08-04 2019-02-28 三星電子株式会社Samsung Electronics Co.,Ltd. Solid electrolyte, manufacturing method thereof, and lithium battery including the same
US10654963B2 (en) 2013-09-25 2020-05-19 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238704A (en) * 2008-03-28 2009-10-15 Sumitomo Electric Ind Ltd Solid electrolyte membrane and lithium battery
US8748044B2 (en) 2008-07-25 2014-06-10 Toyota Jidosha Kabushiki Kaisha Li-La-Ti-O composite solid electrolyte material containing silicon and synthesizing method thereof
WO2010009680A1 (en) * 2008-07-25 2010-01-28 丰田自动车株式会社 Li-la-ti-o composite solid electrolyte material containing silicon and synthesizing method thereof
CN101971408A (en) * 2008-07-25 2011-02-09 丰田自动车株式会社 Li-la-ti-o composite solid electrolyte material containing silicon and synthesizing method thereof
JP2010123463A (en) * 2008-11-20 2010-06-03 Toyota Motor Corp All-solid battery, electrode for all-solid battery, and its manufacturing method
JP2010244827A (en) * 2009-04-06 2010-10-28 Nippon Telegr & Teleph Corp <Ntt> Lithium air battery
JP2011009103A (en) * 2009-06-26 2011-01-13 Toyota Motor Corp All-solid lithium secondary battery
US20110045355A1 (en) * 2009-08-18 2011-02-24 Seiko Epson Corporation Electrode for lithium battery and lithium battery
US9005817B2 (en) * 2009-08-18 2015-04-14 Seiko Epson Corporation Electrode for lithium battery comprising solid electrolyte nanoparticles and lithium battery
US8945779B2 (en) 2010-04-13 2015-02-03 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, lithium battery, and method of producing solid electrolyte material
US8795902B2 (en) 2010-04-13 2014-08-05 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, lithium battery, and method of producing solid electrolyte material
CN102473958A (en) * 2010-04-13 2012-05-23 丰田自动车株式会社 Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
CN102844927A (en) * 2010-04-13 2012-12-26 丰田自动车株式会社 Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
CN102859779A (en) * 2010-04-13 2013-01-02 丰田自动车株式会社 Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
WO2011128976A1 (en) * 2010-04-13 2011-10-20 トヨタ自動車株式会社 Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
JP5692221B2 (en) * 2010-04-13 2015-04-01 トヨタ自動車株式会社 Solid electrolyte material, lithium battery and method for producing solid electrolyte material
WO2011128979A1 (en) * 2010-04-13 2011-10-20 トヨタ自動車株式会社 Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
JP5267678B2 (en) * 2010-04-13 2013-08-21 トヨタ自動車株式会社 Solid electrolyte material, lithium battery and method for producing solid electrolyte material
JP5360296B2 (en) * 2010-04-13 2013-12-04 トヨタ自動車株式会社 Solid electrolyte material, lithium battery and method for producing solid electrolyte material
JP5392402B2 (en) * 2010-04-13 2014-01-22 トヨタ自動車株式会社 Solid electrolyte material, lithium battery and method for producing solid electrolyte material
US9300008B2 (en) 2010-04-13 2016-03-29 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, lithium battery, and method of producing solid electrolyte material
WO2011128977A1 (en) * 2010-04-13 2011-10-20 トヨタ自動車株式会社 Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
WO2011128978A1 (en) * 2010-04-13 2011-10-20 トヨタ自動車株式会社 Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
US9196924B2 (en) 2010-04-13 2015-11-24 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, lithium battery, and method of producing solid electrolyte material
JP2013532361A (en) * 2010-06-17 2013-08-15 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Lithium ion battery
JP2013073907A (en) * 2011-09-29 2013-04-22 Toyota Motor Corp Method for manufacturing electrode mixture
US9287582B2 (en) 2011-11-15 2016-03-15 Seiko Epson Corporation Composition for forming solid electrolyte layer, method for forming solid electrolyte layer, solid electrolyte layer, and lithium ion secondary battery
JP2013109840A (en) * 2011-11-17 2013-06-06 Fujitsu Ltd Secondary battery, and method for manufacturing the same
JP2014096352A (en) * 2012-11-07 2014-05-22 Ngk Insulators Ltd Ceramic positive electrode-solid electrolyte assembly
JPWO2014133039A1 (en) * 2013-02-28 2017-02-02 京セラ株式会社 All solid-state capacitor
WO2014133039A1 (en) * 2013-02-28 2014-09-04 京セラ株式会社 All-solid capacitor
US20160204465A1 (en) * 2013-09-25 2016-07-14 Fujifilm Corporation Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
KR20180069137A (en) 2013-09-25 2018-06-22 후지필름 가부시키가이샤 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
US11440986B2 (en) 2013-09-25 2022-09-13 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte
US10654963B2 (en) 2013-09-25 2020-05-19 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition
KR20160046882A (en) 2013-09-25 2016-04-29 후지필름 가부시키가이샤 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
JP2016509331A (en) * 2013-10-24 2016-03-24 エルジー・ケム・リミテッド Solid electrolyte particles, manufacturing method thereof, and lithium secondary battery including the same
WO2015060686A1 (en) * 2013-10-24 2015-04-30 주식회사 엘지화학 Solid electrolyte particles, method for preparing same, and lithium secondary battery containing same
US10128531B2 (en) 2013-10-24 2018-11-13 Lg Chem, Ltd. Solid electrolyte particles, preparation method thereof, and lithium secondary battery comprising the same
KR20150055799A (en) * 2013-11-14 2015-05-22 주식회사 엘지화학 The synthesis of solid electrolyte nano particle for lithium secondary battery using flame spray pyrolysis
KR101683949B1 (en) * 2013-11-14 2016-12-07 주식회사 엘지화학 The synthesis of solid electrolyte nano particle for lithium secondary battery using flame spray pyrolysis
JPWO2016006498A1 (en) * 2014-07-11 2017-04-27 株式会社村田製作所 Solid electrolyte, multilayer electronic component, and method of manufacturing multilayer electronic component
WO2016006498A1 (en) * 2014-07-11 2016-01-14 株式会社村田製作所 Solid electrolyte, multilayer electronic component, and method for producing multilayer electronic component
JPWO2016031022A1 (en) * 2014-08-28 2017-06-08 富士通株式会社 SOLID ELECTROLYTE AND METHOD FOR MANUFACTURING THE SAME
WO2016031022A1 (en) * 2014-08-28 2016-03-03 富士通株式会社 Solid electrolyte, method for manufacturing same, all-solid-state secondary cell, and method for manufacturing same
US10505221B2 (en) 2014-08-28 2019-12-10 Fujitsu Limited Solid electrolyte and fabrication method therefor, and all-solid-state secondary battery and fabrication method therefor
CN105206870A (en) * 2015-09-25 2015-12-30 山东玉皇新能源科技有限公司 Method for electrochemically preparing solid electrolyte lithium lanthanum titanium oxides
JP2019033081A (en) * 2017-08-04 2019-02-28 三星電子株式会社Samsung Electronics Co.,Ltd. Solid electrolyte, manufacturing method thereof, and lithium battery including the same
JP7266931B2 (en) 2017-08-04 2023-05-01 三星電子株式会社 Solid electrolyte, manufacturing method thereof, and lithium battery containing same

Similar Documents

Publication Publication Date Title
JP2008059843A (en) Solid electrolytic layer and its manufacturing method
KR101624805B1 (en) Secondary battery comprising solid electrolyte layer
KR102207038B1 (en) Solid-state battery, separator, electrode, and method of manufacturing the same
JP5484928B2 (en) All solid battery
JP5692184B2 (en) All solid lithium ion secondary battery
TWI401835B (en) Core-shell type anode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries comprising the same
WO2010090125A1 (en) Solid state thin film lithium ion secondary battery and manufacturing method therefor
WO2013137224A1 (en) All solid state cell and method for producing same
KR100454092B1 (en) Fabrication method of cathod film for thin-film battery through rapid thermal annealing method
JP2013519990A (en) Method for manufacturing monolithic batteries by pulsed current sintering
KR101685799B1 (en) Method for manufacturing electrodes for all-solid battery and method for manufacturing all-solid battery
JP2016169142A (en) Garnet-type lithium ion-conducting oxide and all solid lithium ion secondary battery
JP6637412B2 (en) Method of manufacturing electrochemical cell for solid state battery
JP3677508B2 (en) Solid electrolyte and all solid state battery using the same
JP2015232930A (en) Nonaqueous electrolyte secondary battery
CN110235295B (en) Lithium ion solid storage battery and method for manufacturing same
JP2017182949A (en) Method for manufacturing positive electrode substance material for all-solid battery, and positive electrode active substance material for all-solid battery
Kim et al. Li–B–O–N electrolytes for all-solid-state thin film batteries
JP5738150B2 (en) Secondary battery
JP2013012338A (en) Lithium secondary battery
JP2016103418A (en) Positive electrode active material for all-solid type lithium secondary battery, and method for manufacturing all-solid type lithium secondary battery
JP2018116776A (en) All-solid battery and manufacturing method of all-solid battery
JP5902579B2 (en) Secondary battery and manufacturing method thereof
US20130236794A1 (en) Inorganic solid/organic liquid hybrid electrolyte for li ion battery
JP2011090877A (en) Solid electrolyte battery