JP2008057806A - Wick, heat pipe and heat exchanger - Google Patents

Wick, heat pipe and heat exchanger Download PDF

Info

Publication number
JP2008057806A
JP2008057806A JP2006232251A JP2006232251A JP2008057806A JP 2008057806 A JP2008057806 A JP 2008057806A JP 2006232251 A JP2006232251 A JP 2006232251A JP 2006232251 A JP2006232251 A JP 2006232251A JP 2008057806 A JP2008057806 A JP 2008057806A
Authority
JP
Japan
Prior art keywords
wick
resin
solvent
heat pipe
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006232251A
Other languages
Japanese (ja)
Inventor
Masayuki Iwata
誠之 岩田
Shinya Nishimura
真也 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006232251A priority Critical patent/JP2008057806A/en
Publication of JP2008057806A publication Critical patent/JP2008057806A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wick for a heat pipe, having large capillary force and light-weight. <P>SOLUTION: This wick is formed of porous polymer, and the average pore diameter is 10 μm or less. A method for manufacturing the wick, which is formed of porous polymer, the average pore diameter being 10 μm or less, includes: a process of mixing base resin and resin capable of removing one or two kinds of incompatible solvents to obtain a resin composition having a micro-phase separation structure; a process of subsequently forming the resin composition into a desired shape to obtain a resin molded body; and a process of subsequently bringing a solvent into contact with the resin molded body to remove solvent-removable resin. A heat pipe is characterized in that the wick and a working fluid are provided in the pipe. The heat exchanger is characterized by having the heat pipe. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ループヒートパイプ用ウイックなどに好適に用いられる、非常に微細な細孔を有し、高い毛細管力が得られる多孔質ポリマーからなるウイック、該ウイックの製造方法、該ウイックを用いたヒートパイプ及び熱交換装置に関する。   The present invention is suitably used for a wick for a loop heat pipe or the like, and has a very fine pore and is made of a porous polymer that can obtain high capillary force, a method for producing the wick, and the wick. The present invention relates to a heat pipe and a heat exchange device.

ヒートパイプの一形態として、作動流体の蒸発が生じる蒸発部と作動流体蒸気が凝縮する凝縮部とを蒸気流路によって環状に連結することにより、液相の作動流体と作動流体蒸気とをそれぞれ別の流路を循環流動するように構成されたループヒートパイプ(LHP)や毛細管圧組み上げ型ループ(CPL)などと称されるものがある。この種のヒートパイプのように、パイプ内に、作動流体と、該作動流体を毛細管力により移動させるウイックとを備えた構造のヒートパイプは、通常の直管型のヒートパイプに比較して熱輸送能力が高く、直管型のヒートパイプでは熱輸送が困難なトップヒートモード(上から下に熱を輸送する形態)での熱輸送もしくは冷却にも使用できる等の利点がある。   As one form of the heat pipe, the liquid phase working fluid and the working fluid vapor are separated from each other by connecting the evaporating part where the working fluid evaporates and the condensing part where the working fluid vapor condenses in an annular shape by a steam channel. There is a so-called loop heat pipe (LHP) or capillary pressure assembled loop (CPL) configured to circulate and flow through the flow path. Like this type of heat pipe, a heat pipe having a structure in which a working fluid and a wick that moves the working fluid by capillary force are heated in a pipe as compared with a normal straight pipe type heat pipe. There is an advantage that it can be used for heat transport or cooling in a top heat mode (a form in which heat is transported from the top to the bottom), which has a high transport capability and is difficult to transport with a straight pipe heat pipe.

従来、ヒートパイプ等に用いられるウイックとしては、金属粒子を焼結し、あるいは粒子同士をバインダーで固着し、その粒子間空隙の毛細管現象を利用するものが一般的である。また、ポリマー粒子同士を融着して得られる多孔質ポリマーからなるウイックも提案されている(例えば、特許文献1,2参照。)。
特許文献1には、表面に微細孔を有する耐食層が形成された粒子の多孔質層によって構成されたウイックが記載されている。しかし、特許文献1は化学電池に関する発明であり、そのウイックはヒートパイプに使用できるが否かは不明であるし、そのウイックの平均細孔径については記載されていない。
特許文献2には、セラミックやニッケル、銅、銅酸化物等を原料とした多孔質材、あるいはポリエチレン樹脂などの高分子材料を原料とした多孔質材からなるウイックが記載されている。また、ウイックをポリエチレン樹脂で形成する場合、ポリエチレン樹脂の粒径を20μm、気孔率50〜60%とすることが好ましいことが記載されている。しかし、そのウイックの平均細孔径については記載されていない。
特開平3−1448号公報 特開2006−125783号公報
Conventionally, a wick used for a heat pipe or the like is generally one in which metal particles are sintered or particles are fixed with a binder and the capillary phenomenon of the interparticle voids is utilized. There has also been proposed a wick made of a porous polymer obtained by fusing polymer particles together (see, for example, Patent Documents 1 and 2).
Patent Document 1 describes a wick composed of a porous layer of particles having a corrosion-resistant layer having fine pores on the surface. However, Patent Document 1 is an invention relating to a chemical battery, and it is unclear whether or not the wick can be used for a heat pipe, and the average pore diameter of the wick is not described.
Patent Document 2 describes a wick made of a porous material made of ceramic, nickel, copper, copper oxide or the like, or a porous material made of a polymer material such as polyethylene resin. Moreover, when forming a wick with a polyethylene resin, it is described that it is preferable to make the particle diameter of a polyethylene resin into 20 micrometers and a porosity of 50-60%. However, the average pore diameter of the wick is not described.
JP-A-3-1448 JP 2006-125783 A

前述したループヒートパイプにおいて、ヒートパイプの熱輸送効率を高めるためには、管内に用いるウイックの平均細孔径を小さくし、ウイックの毛細管力を大きくする必要がある。
粒径1〜5μm程度の金属微粒子を用いれば、細孔径10μm以下の多孔質体が作製可能であるが、この場合には比重の大きな金属粒子を用いることで、ウイック及びヒートパイプの質量が大きくなる問題がある。
一方、ポリレオフィンなどのポリマー粒子を用いたウイックは、軽量であるが、平均細孔径を10μm以下に調整することが困難であり、毛細管力の大きなウイックを得ることが困難であった。
In the loop heat pipe described above, in order to increase the heat transport efficiency of the heat pipe, it is necessary to reduce the average pore diameter of the wick used in the pipe and increase the capillary force of the wick.
If metal fine particles having a particle diameter of about 1 to 5 μm are used, a porous body having a pore diameter of 10 μm or less can be produced. In this case, by using metal particles having a large specific gravity, the mass of the wick and the heat pipe is increased. There is a problem.
On the other hand, a wick using polymer particles such as polyleophine is lightweight, but it is difficult to adjust the average pore diameter to 10 μm or less, and it is difficult to obtain a wick having a large capillary force.

本発明は、前記事情に鑑みてなされ、毛細管力が大きく、且つ軽量なヒートパイプ用のウイックの提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat pipe wick having a large capillary force and a light weight.

前記目的を達成するため、本発明は、多孔質ポリマーからなり、その平均細孔径が10μm以下であることを特徴とするウイックを提供する。   In order to achieve the above object, the present invention provides a wick comprising a porous polymer and having an average pore diameter of 10 μm or less.

本発明のウイックにおいて、前記多孔質ポリマーの細孔が相互連続性細孔であることが好ましい。   In the wick of the present invention, the pores of the porous polymer are preferably mutually continuous pores.

本発明のウイックにおいて、前記多孔質ポリマーが、ポリオレフィン系樹脂、ポリスチレン系樹脂からなる群から選択される1種又は2種以上の混合樹脂であることが好ましい。   In the wick of the present invention, the porous polymer is preferably one or more mixed resins selected from the group consisting of polyolefin resins and polystyrene resins.

また本発明は、ベース樹脂と、該ベース樹脂に非相溶性の1種又は2種以上の溶媒除去可能な樹脂とを混練してミクロ相分離構造を有する樹脂組成物を得る工程、次いで該樹脂組成物を所望の形状に成形して樹脂成形体を得る工程、次いで該樹脂成形体に溶媒を接触させて前記溶媒除去可能な樹脂を除去し、多孔質ポリマーからなり、その平均細孔径が10μm以下であるウイックを得ることを特徴とするウイックの製造方法を提供する。   The present invention also includes a step of obtaining a resin composition having a microphase separation structure by kneading a base resin and one or more resins that are incompatible with the base resin and capable of removing a solvent, and then the resin. A step of forming a composition into a desired shape to obtain a resin molded body, and then contacting the resin molded body with a solvent to remove the solvent-removable resin, comprising a porous polymer, and having an average pore diameter of 10 μm Provided is a method for producing a wick characterized by obtaining the following wick.

本発明のウイックの製造方法において、前記樹脂成形体に溶媒を接触させる前に、前記樹脂成形体表面のスキン層を除去する工程をさらに有することが好ましい。   In the manufacturing method of the wick of this invention, it is preferable to further have the process of removing the skin layer on the surface of the said resin molding, before making a solvent contact the said resin molding.

本発明のウイックの製造方法において、前記樹脂組成物中のベース樹脂:溶媒除去可能な樹脂の質量比が25〜75:75〜25の範囲であることが好ましい。   In the manufacturing method of the wick of this invention, it is preferable that mass ratio of the resin in which the base resin in the said resin composition: solvent can be removed is 25-75: 75-25.

本発明のウイックの製造方法において、前記多孔質ポリマーの細孔が相互連続性細孔であることが好ましい。   In the wick manufacturing method of the present invention, the pores of the porous polymer are preferably mutually continuous pores.

本発明のウイックの製造方法において、前記ベース樹脂が、ポリオレフィン系樹脂、ポリスチレン系樹脂からなる群から選択される1種又は2種以上であり、且つ前記溶媒除去可能な樹脂がポリビニルアルコール、ポリエチレンオキシド、ポリエチレングリコール、ポリプロピレンオキシド、ポリビニルピロリドンからなる群から選択される1種又は2種以上であることが好ましい。   In the wick manufacturing method of the present invention, the base resin is one or more selected from the group consisting of polyolefin resin and polystyrene resin, and the solvent-removable resin is polyvinyl alcohol or polyethylene oxide. 1 type or 2 types or more selected from the group consisting of polyethylene glycol, polypropylene oxide, and polyvinylpyrrolidone.

また本発明は、パイプ内に、本発明に係るウイックと、作動流体とを有することを特徴とするヒートパイプを提供する。   Moreover, this invention provides the heat pipe characterized by having the wick which concerns on this invention, and a working fluid in a pipe.

また本発明は、本発明に係る前記ヒートパイプを有することを特徴とする熱交換装置を提供する。   The present invention also provides a heat exchange device comprising the heat pipe according to the present invention.

本発明のウイックは、多孔質ポリマーからなり、その平均細孔径を10μm以下としたものなので、毛細管力が大きく、且つ軽量なウイックを実現することができる。   Since the wick of the present invention is made of a porous polymer and has an average pore diameter of 10 μm or less, a wick having a large capillary force and a light weight can be realized.

本発明のウイックの製造方法は、非相溶性の2種以上の樹脂を混練して得られるミクロ相分離構造を有する樹脂組成物の成形体に、溶媒を接触させて溶媒除去可能な樹脂を除去することでウイックを得る方法なので、従来は製造が困難であった平均細孔径10μm以下の多孔性ポリマーからなるウイックを容易に製造することができる。従って、本発明のウイックの製造方法は、毛細管力が大きく、且つ軽量なウイックを低コストで提供することができる。
また、本発明のウイックの製造方法において、樹脂成形体に溶媒を接触させる前に、前記樹脂成形体表面のスキン層を除去することによって、得られるウイックの表面細孔数が増加し、ウイックとしての性能(溶液浸透速度、輸送量)を向上させることができる。
The wick production method of the present invention removes a solvent-removable resin by bringing a molded product of a resin composition having a microphase separation structure obtained by kneading two or more incompatible resins into contact with a solvent. Thus, since the wick is obtained, it is possible to easily manufacture a wick made of a porous polymer having an average pore diameter of 10 μm or less, which has conventionally been difficult to manufacture. Therefore, the wick manufacturing method of the present invention can provide a low-cost wick having a large capillary force and a light weight.
Moreover, in the wick manufacturing method of the present invention, the surface pore number of the resulting wick is increased by removing the skin layer on the surface of the resin molded body before bringing the resin molded body into contact with the solvent, Performance (solution penetration rate, transport amount) can be improved.

本発明のヒートパイプは、パイプ内に、本発明に係るウイックと、作動流体とを有するものなので、ウイックの毛細管力が大きく、熱輸送効率が高い。またウイックが軽量であるので、軽量化することができる。
また本発明の熱交換装置は、本発明に係る前記ヒートパイプを有するものなので、熱輸送効率が高く、軽量化することができる。
Since the heat pipe of the present invention has the wick according to the present invention and the working fluid in the pipe, the capillary force of the wick is large and the heat transport efficiency is high. Moreover, since a wick is lightweight, it can reduce in weight.
Moreover, since the heat exchange apparatus of this invention has the said heat pipe which concerns on this invention, heat transport efficiency is high and can be reduced in weight.

本発明のウイックは、多孔質ポリマーからなり、その平均細孔径を10μm以下であることを特徴としている。
図1は、本発明のウイックの一例を示すウイック表面の電子顕微鏡画像である。図1に例示した本発明のウイックは、ベース樹脂に無数の細孔が設けられており、この細孔は、開口がほぼ円形をなしている。この細孔は、開口から奥に向かって毛細管状に連なり、且つ互いに連通した相互連続性細孔になっている。
The wick of the present invention is made of a porous polymer and has an average pore diameter of 10 μm or less.
FIG. 1 is an electron microscope image of the wick surface showing an example of the wick of the present invention. The wick of the present invention illustrated in FIG. 1 has innumerable pores in the base resin, and the pores have a substantially circular opening. The pores are continuous pores that are continuous in a capillary shape from the opening toward the back and communicate with each other.

本発明のウイックにおいて、多孔質ポリマーのベース樹脂としては、水に不溶且つ室温からヒートパイプの作動温度において軟化しない樹脂が用いられ、例えば、ポリエチレンやポリプロピレンなどのポリオレフィン系樹脂、ポリスチレン系樹脂からなる群から選択される1種又は2種以上の樹脂を用いることが好ましい。   In the wick of the present invention, as the porous polymer base resin, a resin that is insoluble in water and does not soften at room temperature to the operating temperature of the heat pipe is used. For example, it is made of a polyolefin resin such as polyethylene or polypropylene, or a polystyrene resin. It is preferable to use one or more resins selected from the group.

本発明のウイックにおいて、その平均細孔径は10μm以下であり、好ましくは8μm以下、更に好ましく6μm以下である。平均細孔径が10μm以下であれば、このウイックをヒートパイプに適用した際に、従来のポリマー粒子を用いたウイックよりも大きな毛細管力が得られ、高性能のヒートパイプを構成することができる。一方、平均細孔径が10μmを超えると、毛細管力が低下してしまう。   In the wick of the present invention, the average pore diameter is 10 μm or less, preferably 8 μm or less, more preferably 6 μm or less. When the average pore diameter is 10 μm or less, when this wick is applied to a heat pipe, a larger capillary force than that of a wick using conventional polymer particles can be obtained, and a high-performance heat pipe can be constructed. On the other hand, when the average pore diameter exceeds 10 μm, the capillary force decreases.

本発明のウイックの製造方法は、ベース樹脂と、該ベース樹脂に非相溶性の1種又は2種以上の溶媒除去可能な樹脂とを混練してミクロ相分離構造を有する樹脂組成物を得る工程、次いで該樹脂組成物を所望の形状に成形して樹脂成形体を得る工程、次いで該樹脂成形体に溶媒を接触させて前記溶媒除去可能な樹脂を除去し、多孔質ポリマーからなり、その平均細孔径が10μm以下であるウイックを得ることを特徴としている。   The method for producing a wick of the present invention comprises a step of obtaining a resin composition having a microphase separation structure by kneading a base resin and one or more solvents that are incompatible with the base resin and capable of removing a solvent. Then, the step of molding the resin composition into a desired shape to obtain a resin molded body, then contacting the resin molded body with a solvent to remove the solvent-removable resin, comprising a porous polymer, and the average A wick having a pore size of 10 μm or less is obtained.

本発明の製造方法で使用するベース樹脂は、前述した多孔質ポリマーのベース樹脂と同じである。   The base resin used in the production method of the present invention is the same as the above-described porous polymer base resin.

本発明の製造方法で使用する溶媒除去可能な樹脂としては、前記ベース樹脂と非相溶性であり、且つ酸溶液、アルコール、水等の溶媒に可溶である樹脂が用いられ、ポリビニルアルコール、ポリエチレンオキシド、ポリエチレングリコール、ポリプロピレンオキシド、ポリビニルピロリドンからなる群から選択される1種又は2種以上の樹脂が好ましい。   As the solvent-removable resin used in the production method of the present invention, a resin that is incompatible with the base resin and is soluble in a solvent such as an acid solution, alcohol, or water is used. One or more resins selected from the group consisting of ethylene oxide, polyethylene glycol, polypropylene oxide, and polyvinyl pyrrolidone are preferred.

前記樹脂組成物は、前記ベース樹脂と前記溶媒除去可能な樹脂とを、それらの樹脂の融点又は軟化点よりも高い温度に加熱し、十分に混練する。この混練に使用する装置は、従来より樹脂成形分野等で公知のミキサー等を用いることができる。これらの樹脂を混練後、冷却することにより得られる樹脂組成物は、ミクロ相分離構造を有するものになる。   In the resin composition, the base resin and the solvent-removable resin are heated to a temperature higher than the melting point or softening point of those resins and sufficiently kneaded. As the apparatus used for this kneading, conventionally known mixers in the field of resin molding and the like can be used. The resin composition obtained by kneading and cooling these resins has a microphase separation structure.

この樹脂組成物にミクロ相分離構造を持たせるためには、樹脂組成物中のベース樹脂:溶媒除去可能な樹脂の質量比が25〜75:75〜25の範囲であることが好ましい。この質量比が前記範囲外であると、良好な相分離構造を得ることができない。   In order to give this resin composition a microphase separation structure, it is preferable that the mass ratio of the base resin to the resin capable of removing the solvent in the resin composition is in the range of 25 to 75:75 to 25. When this mass ratio is outside the above range, a good phase separation structure cannot be obtained.

この樹脂組成物は、冷却と同時に、あるいは冷却後に成形し、所望形状の樹脂成形体とする。この成形工程は、プレス成形機などを用いて行うことができる他、従来より樹脂成形分野等で公知の押出機を用い、この押出機内で樹脂組成物を混練し、先端に取り付けたダイの開口から、シート状、管状等の所望の形状に樹脂組成物を押し出し、冷却させて樹脂成形体を得ることもできる。   This resin composition is molded simultaneously with cooling or after cooling to obtain a resin molded body having a desired shape. This molding step can be performed using a press molding machine or the like, and conventionally, an extruder known in the field of resin molding or the like is used, the resin composition is kneaded in the extruder, and a die opening attached to the tip is opened. Thus, the resin composition can be obtained by extruding the resin composition into a desired shape such as a sheet shape or a tubular shape and cooling it.

得られた樹脂成形体は、溶媒除去可能な樹脂を溶出可能な溶媒に浸漬して溶媒除去可能な樹脂を除去し、骨格成分のみを残存させることで、軽量且つ平均細孔径10μm以下の細孔を有するウイックを作製することができる。しかしながら、このようにして作製したウイックは、表面にスキン層(細孔径の数が少ない表面近傍層)が形成され、毛細管力が劣化するなど、ウイックとしての機能に劣化が生じる。これを防ぐため、得られた樹脂成形体の表面に形成されたスキン層を切削・研磨することで、ウイックの表面細孔数を増加させる。溶媒による除去後に研磨を行うと、表面細孔が潰れてしまうため好ましくない。このスキン層除去のための研磨加工は、樹脂成形分野等で従来公知の切削・研磨加工装置を用いて行うことができる。   The obtained resin molded product is light and has fine pores with an average pore diameter of 10 μm or less by immersing the solvent-removable resin in an eluting solvent to remove the solvent-removable resin and leaving only the skeleton component. Can be made. However, the wick produced in this way is deteriorated in its function as a wick, for example, a skin layer (surface vicinity layer with a small number of pore diameters) is formed on the surface and the capillary force is deteriorated. In order to prevent this, the number of surface pores of the wick is increased by cutting and polishing the skin layer formed on the surface of the obtained resin molding. Polishing after removal with a solvent is not preferable because surface pores are crushed. The polishing process for removing the skin layer can be performed using a conventionally known cutting / polishing apparatus in the resin molding field or the like.

次に、スキン層を除去した樹脂成形体を前記溶媒除去可能な樹脂を溶出可能な溶媒、例えば、酸溶液、アルコール、水などの溶媒に浸漬し、撹拌しながら溶媒除去可能な樹脂を溶出させる。これにより、樹脂成形体の骨格をなすベース樹脂と相分離していた溶媒除去可能な樹脂が除去され、溶媒を分離し、洗浄・乾燥後、平均細孔径10μm以下の相互連続細孔を有する多孔質ポリマーからなるウイックが得られる。   Next, the resin molded body from which the skin layer has been removed is immersed in a solvent capable of eluting the solvent-removable resin, for example, a solvent such as an acid solution, alcohol, water, and the solvent-removable resin is eluted while stirring. . As a result, the solvent-removable resin phase-separated from the base resin that forms the skeleton of the resin molded body is removed, and after the solvent is separated, washed and dried, the pores having mutually continuous pores having an average pore diameter of 10 μm or less are obtained. A wick made of a quality polymer is obtained.

なお、上記形態の樹脂組成物において、さらに親水性を付与する場合、親水性フィラーの添加、表面に親水性基を導入する表面処理などを行うことが好ましい   In addition, in the resin composition of the said form, when providing hydrophilicity, it is preferable to perform the surface treatment etc. which introduce | transduce a hydrophilic group to the surface, addition of a hydrophilic filler, etc.

本発明のヒートパイプは、パイプ内に、前述した本発明に係るウイックと、作動流体とを有するものであり、ウイックとして前述した本発明に係るウイックを用いている以外の構成は特に限定されない。本発明のヒートパイプは、例えば、特許文献2(特開2006−125783号公報)に開示されているループヒートパイプ(LHP)や毛細管圧組み上げ型ループ(CPL)などに適用することもできる。また本発明の熱交換装置は、前述した本発明のヒートパイプを必須の構成要素として備えたことを特徴とし、その他の構成要素は従来公知の各種熱交換装置と同様に構成することができる。本発明のヒートパイプ及びそれを用いた熱交換装置は、熱輸送効率が高く、またウイックが軽量であるので、軽量化することができる。   The heat pipe of the present invention includes the wick according to the present invention described above and a working fluid in the pipe, and the configuration is not particularly limited except that the wick according to the present invention described above is used as the wick. The heat pipe of the present invention can also be applied to, for example, a loop heat pipe (LHP) and a capillary pressure assembly type loop (CPL) disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2006-125783). The heat exchange device of the present invention is characterized by including the above-described heat pipe of the present invention as an essential component, and the other components can be configured in the same manner as various conventionally known heat exchange devices. The heat pipe of the present invention and the heat exchange device using the heat pipe have high heat transport efficiency, and the wick is lightweight, so that the weight can be reduced.

[実施例]
以下の1〜8の手順により、本発明に係るウイックを製造した。
1.ベース樹脂(以下、骨格成分と記す)としてポリスチレン(和光純薬製、分子量2000)を用い、また溶媒除去可能な樹脂(以下、除去成分と記す)としてポリエチレングリコール(和光純薬製、平均分子量2000000)を用意した。
[Example]
The wick according to the present invention was manufactured by the following procedures 1 to 8.
1. Polystyrene (made by Wako Pure Chemical Industries, Ltd., molecular weight 2000) is used as a base resin (hereinafter referred to as a skeletal component), and polyethylene glycol (made by Wako Pure Chemical Industries, Ltd., average molecular weight 2000000) is used as a solvent-removable resin (hereinafter referred to as removal components). ) Was prepared.

2.骨格成分と除去成分とを、骨格成分:除去成分の質量比が25:75〜75:25となるように配合する。
上記配合において、骨格成分と除去成分の割合を変化させることで、ウイックの機械強度、空隙率を制御することが可能であるが、上記範囲を超えると相分離構造は連続性を失う。例えば、ポリスチレン成分を増加させればウイックは剛直になるが、空隙率は少なくなる。逆にポリエチレングリコールを増加させればウイックは脆くなるものの、空隙率は高くなる。これらは細孔壁(細孔間の骨格)の厚さに依存する。
2. The skeleton component and the removal component are blended so that the mass ratio of the skeleton component to the removal component is 25:75 to 75:25.
In the above formulation, it is possible to control the mechanical strength and porosity of the wick by changing the ratio of the skeleton component and the removal component, but the phase separation structure loses continuity when the above range is exceeded. For example, increasing the polystyrene component makes the wick stiff, but reduces the porosity. Conversely, increasing polyethylene glycol increases the porosity, although the wick becomes brittle. These depend on the thickness of the pore walls (skeleton between pores).

3.配合物を170℃に余熱したバンバリーミキサー内に投入し、十分に混練を行う。
本実施例では混練時間を5分、プレード回転数を30rpm程度としている。ポリマーの分解が起こらない程度に十分混練することが好ましい。
3. The blend is put into a Banbury mixer preheated to 170 ° C. and sufficiently kneaded.
In this embodiment, the kneading time is 5 minutes and the blade rotation speed is about 30 rpm. It is preferable to sufficiently knead to such an extent that the polymer does not decompose.

4.ミキサーから取り出した樹脂組成物をプレス形成し、シート状の樹脂成形体とする。 4). The resin composition taken out from the mixer is press-formed to obtain a sheet-like resin molded body.

5.その後、樹脂成形体を冷却する。冷却過程では適宜冷却材を用いる。
上記冷却過程において、水、液体窒素などの使用により、相分離構造が放熱中に粗大化するのを防止できる。この粗大化とは、相分離構造が成分界面の揺らぎにより成長する現象であり、最終的には連続性も失って海島構造となるものもある。
5. Thereafter, the resin molded body is cooled. In the cooling process, a coolant is appropriately used.
In the cooling process, the use of water, liquid nitrogen, or the like can prevent the phase separation structure from becoming coarse during heat dissipation. This coarsening is a phenomenon in which the phase separation structure grows due to fluctuations in the component interface, and eventually loses continuity and becomes a sea-island structure.

6.その後、得られた成形体の上下面を研磨・切削することでスキン層を除去する。
図2は、スキン層除去前(研磨未実施)の樹脂成形体表面の電子顕微鏡画像である。図2に示すように、研磨未実施の樹脂成形体表面は、細孔となる除去成分の領域が露出していないスキン層で覆われている。
図3は、スキン層除去後(研磨実施)の樹脂成形体表面の電子顕微鏡画像である。図3に示すように、研磨実施後の樹脂成形体表面には、細孔となる除去成分の領域が多数露出している。
図4は、樹脂成形体(サンプル)の研磨方法を示す概略図である。図4に示すように、本実施例では樹脂組成物をシート状に成形したサンプルの表裏両面をBUFFを用いて約200μmの厚さ研磨してスキン層を除去した。
6). Thereafter, the skin layer is removed by polishing and cutting the upper and lower surfaces of the obtained molded body.
FIG. 2 is an electron microscope image of the surface of the resin molded body before removal of the skin layer (unpolished). As shown in FIG. 2, the surface of the resin molded body that has not been polished is covered with a skin layer in which the region of the removal component that becomes pores is not exposed.
FIG. 3 is an electron microscopic image of the surface of the resin molded body after removal of the skin layer (polishing). As shown in FIG. 3, a large number of removed component regions that become pores are exposed on the surface of the resin molded body after polishing.
FIG. 4 is a schematic view showing a method for polishing a resin molded body (sample). As shown in FIG. 4, in this example, the skin layer was removed by polishing the front and back surfaces of a sample obtained by molding the resin composition into a sheet shape to a thickness of about 200 μm using BUFF.

7.次に、得られた樹脂成形体を蒸留水中に浸漬し、96時間撹拌することで、除去成分を取り除く。 7). Next, the obtained resin molding is immersed in distilled water and stirred for 96 hours to remove the removal component.

8.次に、処理物を水中から引き上げ、水切りした後、細孔内に侵入した水分を十分に乾燥する。これにより、図1に示すように、ポリスチレン骨格に平均細孔径10μm以下の多数の細孔が設けられたウイックが得られる。 8). Next, the treated product is pulled up from the water, drained, and then the moisture that has entered the pores is sufficiently dried. Thereby, as shown in FIG. 1, the wick provided with many pores with an average pore diameter of 10 μm or less in the polystyrene skeleton is obtained.

得られたウイックの平均細孔径を次の方法で測定した。2000倍の電子顕微鏡画像から、200個の細孔を無作為に選出し、それら細孔の長径と短径を測定し、(長径+短径)/2の平均値を平均細孔径(単位:μm)とした。
その結果、得られたウイックの平均細孔径は5μmであった。
The average pore diameter of the obtained wick was measured by the following method. 200 pores were randomly selected from a 2000-fold electron microscope image, and the major and minor diameters of these pores were measured. The average value of (major axis + minor axis) / 2 was calculated as the average pore diameter (unit: μm).
As a result, the average pore diameter of the obtained wick was 5 μm.

[比較例1]
粒径1μmのNi微粒子を800〜1000℃で熱プレスして焼結し、金属多孔質体からなるウイックを製造した。
[Comparative Example 1]
Ni fine particles having a particle diameter of 1 μm were hot-pressed at 800 to 1000 ° C. and sintered to produce a wick made of a metal porous body.

[比較例2]
粒径20〜30μmのポリスチレン微粒子を200℃程度に加熱・融着させて、多孔質ポリスチレン製のウイックを製造した。
[Comparative Example 2]
A polystyrene wick made of porous polystyrene was manufactured by heating and fusing polystyrene fine particles having a particle size of 20 to 30 μm to about 200 ° C.

前記の通り製造した実施例、比較例1〜2のウイックについて、比重と毛細管力を比較した。サンプルはそれぞれ、1cm角、厚さ1mmとした。毛細管力は、各ウイックの一部をエチルアルコールに浸漬し、どの程度の高さまで吸い上げることが可能であるか評価し、毛細管力の指標とした。結果を表1に記す。毛細管力、比重とも、比較例2(多孔質ポリスチレン製のウイック)を1とした時の相対値で表記した。   Specific gravity and capillary force were compared for the wicks of Examples and Comparative Examples 1 and 2 manufactured as described above. Each sample was 1 cm square and 1 mm thick. Capillary force was determined by immersing a part of each wick in ethyl alcohol and evaluating how high the wick could be sucked up, and used as an index of capillary force. The results are shown in Table 1. Both capillary force and specific gravity are expressed as relative values when Comparative Example 2 (porous polystyrene wick) is set to 1.

Figure 2008057806
Figure 2008057806

表1の結果より、本発明に係るウイックは、金属粒子焼結体からなる比較例1のウイックと同等の毛細管力を示すと同時に、ポリマー粒子融着体からなる比較例2のウイックと同等の比重であり、軽量且つ毛細管力の高いウイックとなった。
一方、金属粒子焼結体からなる比較例1のウイックは、良好な毛細管力が得られたが、比重が大きいため、軽量化できない。
またポリマー粒子融着体からなる比較例2のウイックは、比重が小さく軽量化できるが、毛細管力が実施例及び比較例1のウイックよりもかなり低かった。
From the results of Table 1, the wick according to the present invention exhibits the same capillary force as the wick of Comparative Example 1 made of a sintered metal particle, and at the same time the wick of Comparative Example 2 made of a polymer particle fusion product. It was a specific gravity, light weight and high wicking wick.
On the other hand, the wick of Comparative Example 1 made of a metal particle sintered body has a good capillary force, but cannot be reduced in weight because of its large specific gravity.
Further, the wick of Comparative Example 2 made of the polymer particle fusion product had a small specific gravity and could be reduced in weight, but the capillary force was considerably lower than that of the Example and Comparative Example 1 wicks.

[参考例]
実施例の製造手順1〜8のうち、6の工程を行わず、樹脂成形体のスキン層を研磨除去せずに(図2参照)、蒸留水に浸漬したこと以外は実施例と同様にして、参考例のウィックを製造した。
この参考例のウイック(研磨未実施品)と実施例のウイック(研磨実施品)とを比較した。試験項目として1cm角、厚さ1mmのサンプルを作製し、エチルアルコールをサンプル底面に接触させたときの浸透速度を評価した。サンプル全体に浸透するまでの時間を計測することで浸透速度を算出し、相対値で表記した。結果を表2に記す。
[Reference example]
Of the production procedures 1 to 8 of the example, the process of 6 is not performed, the skin layer of the resin molded body is not polished and removed (see FIG. 2), and the same as in the example except that it is immersed in distilled water. The wick of the reference example was manufactured.
The wick of this reference example (unpolished product) and the wick of the example (polished product) were compared. A 1 cm square sample having a thickness of 1 mm was prepared as a test item, and the permeation rate when ethyl alcohol was brought into contact with the bottom surface of the sample was evaluated. The permeation rate was calculated by measuring the time until the entire sample penetrated, and expressed as a relative value. The results are shown in Table 2.

Figure 2008057806
Figure 2008057806

表2の結果より、樹脂成形体のスキン層を除去し、細孔が表面に多数形成された実施例のウイックは、優れた浸透速度を有していた。
一方、スキン層の研磨していない参考例のウイックは、表面に開口している細孔が少ないため、実施例に比べ浸透速度が低かった。
From the results of Table 2, the skin wick of the resin molded product was removed, and the wick of the example in which many pores were formed on the surface had an excellent penetration rate.
On the other hand, the wick of the reference example in which the skin layer was not polished had a lower permeation rate than the example because there were few pores open on the surface.

本発明に係る実施例で作製したウイックの原子顕微鏡画像である。It is an atomic microscope image of the wick produced in the Example which concerns on this invention. 本発明に係る実施例におけるスキン層除去前(研磨未実施)の樹脂成形体表面の電子顕微鏡画像である。It is an electron microscopic image of the resin molding surface before skin layer removal (unpolishing) in the example concerning the present invention. 本発明に係る実施例におけるスキン層除去後(研磨実施)の樹脂成形体表面の電子顕微鏡画像である。It is an electron microscope image of the resin molding surface after skin layer removal (polishing implementation) in the Example which concerns on this invention. 本発明に係る実施例における樹脂成形体の研磨方法を示す概略図である。It is the schematic which shows the grinding | polishing method of the resin molding in the Example which concerns on this invention.

Claims (10)

多孔質ポリマーからなり、その平均細孔径が10μm以下であることを特徴とするウイック。   A wick comprising a porous polymer and having an average pore diameter of 10 μm or less. 前記多孔質ポリマーの細孔が相互連続性細孔であることを特徴とする請求項1に記載のウイック。   The wick according to claim 1, wherein the pores of the porous polymer are mutually continuous pores. 前記多孔質ポリマーが、ポリオレフィン系樹脂、ポリスチレン系樹脂からなる群から選択される1種又は2種以上の混合樹脂であることを特徴とする請求項1又は2に記載のウイック。   The wick according to claim 1 or 2, wherein the porous polymer is one or two or more mixed resins selected from the group consisting of polyolefin resins and polystyrene resins. ベース樹脂と、該ベース樹脂に非相溶性の1種又は2種以上の溶媒除去可能な樹脂とを混練してミクロ相分離構造を有する樹脂組成物を得る工程、次いで該樹脂組成物を所望の形状に成形して樹脂成形体を得る工程、次いで該樹脂成形体に溶媒を接触させて前記溶媒除去可能な樹脂を除去し、多孔質ポリマーからなり、その平均細孔径が10μm以下であるウイックを得ることを特徴とするウイックの製造方法。   A step of kneading a base resin and one or more kinds of resins that are incompatible with the base resin to remove a solvent to obtain a resin composition having a microphase separation structure; Forming a resin molded body by molding into a shape, and then contacting the resin molded body with a solvent to remove the solvent-removable resin and comprising a porous polymer having an average pore diameter of 10 μm or less. A method for producing a wick, comprising: obtaining a wick. 前記樹脂成形体に溶媒を接触させる前に、前記樹脂成形体表面のスキン層を除去する工程をさらに有することを特徴とする請求項4に記載のウイックの製造方法。   The method for producing a wick according to claim 4, further comprising a step of removing a skin layer on the surface of the resin molded body before bringing the solvent into contact with the resin molded body. 前記樹脂組成物中のベース樹脂:溶媒除去可能な樹脂の質量比が25〜75:75〜25の範囲であることを特徴とする請求項4又は5に記載のウイックの製造方法。   The method for producing a wick according to claim 4 or 5, wherein a mass ratio of the base resin to the resin capable of removing the solvent in the resin composition is in the range of 25 to 75:75 to 25. 前記多孔質ポリマーの細孔が相互連続性細孔であることを特徴とする請求項4〜6のいずれかに記載のウイックの製造方法。   The method for producing a wick according to any one of claims 4 to 6, wherein the pores of the porous polymer are mutually continuous pores. 前記ベース樹脂が、ポリオレフィン系樹脂、ポリスチレン系樹脂からなる群から選択される1種又は2種以上であり、且つ前記溶媒除去可能な樹脂がポリビニルアルコール、ポリエチレンオキシド、ポリエチレングリコール、ポリプロピレンオキシド、ポリビニルピロリドンからなる群から選択される1種又は2種以上であることを特徴とする請求項4〜7のいずれかに記載のウイックの製造方法。   The base resin is one or more selected from the group consisting of polyolefin resin and polystyrene resin, and the solvent-removable resin is polyvinyl alcohol, polyethylene oxide, polyethylene glycol, polypropylene oxide, polyvinyl pyrrolidone. The method for producing a wick according to any one of claims 4 to 7, wherein the wick is one or more selected from the group consisting of: パイプ内に、請求項1〜3のいずれかに記載のウイックと、作動流体とを有することを特徴とするヒートパイプ。   A heat pipe comprising the wick according to claim 1 and a working fluid in a pipe. 請求項9記載のヒートパイプを有することを特徴とする熱交換装置。

A heat exchange apparatus comprising the heat pipe according to claim 9.

JP2006232251A 2006-08-29 2006-08-29 Wick, heat pipe and heat exchanger Withdrawn JP2008057806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006232251A JP2008057806A (en) 2006-08-29 2006-08-29 Wick, heat pipe and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006232251A JP2008057806A (en) 2006-08-29 2006-08-29 Wick, heat pipe and heat exchanger

Publications (1)

Publication Number Publication Date
JP2008057806A true JP2008057806A (en) 2008-03-13

Family

ID=39240775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006232251A Withdrawn JP2008057806A (en) 2006-08-29 2006-08-29 Wick, heat pipe and heat exchanger

Country Status (1)

Country Link
JP (1) JP2008057806A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174450A1 (en) * 2012-05-25 2013-11-28 Statoil Petroleum As Pipe liner
JP2014013116A (en) * 2012-07-05 2014-01-23 Fujikura Ltd Wick structure for heat pipe and method for manufacturing the same
WO2018199216A1 (en) * 2017-04-28 2018-11-01 株式会社村田製作所 Vapor chamber
KR20190046744A (en) * 2019-04-26 2019-05-07 한국기계연구원 Manufacturing method of heat exchange pipe, Heat exchange pipe and Heat-recovery system using the same
CN110887390A (en) * 2018-09-07 2020-03-17 丰田自动车株式会社 Evaporator, manufacturing method thereof and annular heat pipe with evaporator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174450A1 (en) * 2012-05-25 2013-11-28 Statoil Petroleum As Pipe liner
JP2014013116A (en) * 2012-07-05 2014-01-23 Fujikura Ltd Wick structure for heat pipe and method for manufacturing the same
WO2018199216A1 (en) * 2017-04-28 2018-11-01 株式会社村田製作所 Vapor chamber
WO2018198372A1 (en) * 2017-04-28 2018-11-01 株式会社村田製作所 Vapor chamber
US11340022B2 (en) 2017-04-28 2022-05-24 Murata Manufacturing Co., Ltd. Vapor chamber having pillars with decreasing cross-sectional area
CN110887390A (en) * 2018-09-07 2020-03-17 丰田自动车株式会社 Evaporator, manufacturing method thereof and annular heat pipe with evaporator
KR20200028843A (en) * 2018-09-07 2020-03-17 도요타지도샤가부시키가이샤 Evaporator, production method therefor, and loop-type heat pipe including evaporator
KR102351282B1 (en) * 2018-09-07 2022-01-14 도요타지도샤가부시키가이샤 Evaporator, production method therefor, and loop-type heat pipe including evaporator
CN110887390B (en) * 2018-09-07 2022-04-15 丰田自动车株式会社 Evaporator, manufacturing method thereof and annular heat pipe with evaporator
KR20190046744A (en) * 2019-04-26 2019-05-07 한국기계연구원 Manufacturing method of heat exchange pipe, Heat exchange pipe and Heat-recovery system using the same
KR102134282B1 (en) * 2019-04-26 2020-07-15 한국기계연구원 Manufacturing apparatus of heat exchange pipe, Heat exchange pipe and Heat-recovery system using the same

Similar Documents

Publication Publication Date Title
JP2004518815A (en) Co-formed metal foam articles
JP2008057806A (en) Wick, heat pipe and heat exchanger
TWI418581B (en) Polyethylene microporous film and the preparation method thereof and separator for cell
JP5512976B2 (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
JP5576609B2 (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
CN1141169C (en) Integrally asymmetrical polyolefin membrane
US8895139B2 (en) Isotropic nano crystallites of polytetrafluoroethylene (PTFE) resin and products thereof that are biaxially planar oriented and form stable
JP6475696B2 (en) Block product incorporating small particle thermoplastic binder and manufacturing method thereof
CN1867622A (en) Microporous PVDF films and method of manufacturing
CN101358304A (en) NiAl intermetallic compound porous material and preparation method thereof
WO2003052844A1 (en) Diffusion film, electrode having the diffusion film, and process for producing diffusion film
JP2007172956A (en) Separator member for polymer electrolyte fuel cell and its manufacturing method
CN110382231A (en) Polyolefin micro porous polyolefin membrane
JP2020528483A (en) Fluorine-based resin porous membrane and its manufacturing method
CN104607061A (en) A method of preparing a poly(ethene-co-tetrafluoroethene) film
WO2017149886A1 (en) Method for producing porous carbon material, and spherical porous carbon material
JP2021109937A (en) Method for producing resin porous body
CN114272770B (en) Polytetrafluoroethylene microporous membrane, preparation method and application thereof
CN1723580A (en) Aqueous electrode binder and electrodes and fuel cells including same
CN114335584A (en) Bipolar plate preform and preparation method thereof, bipolar plate and preparation method thereof, and fuel cell
JP4825338B2 (en) Aluminum porous body excellent in water absorption and method for producing the same
CN114570931B (en) Capillary core manufacturing method and loop heat pipe evaporator
JP2006313648A (en) Porous heat dissipation material
JP4425596B2 (en) Capacitor separator
JP2003301069A (en) Method of producing porous body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110