JP2008055478A - Method for finishing process - Google Patents

Method for finishing process Download PDF

Info

Publication number
JP2008055478A
JP2008055478A JP2006236465A JP2006236465A JP2008055478A JP 2008055478 A JP2008055478 A JP 2008055478A JP 2006236465 A JP2006236465 A JP 2006236465A JP 2006236465 A JP2006236465 A JP 2006236465A JP 2008055478 A JP2008055478 A JP 2008055478A
Authority
JP
Japan
Prior art keywords
laser beam
wall
picosecond laser
pilot hole
picosecond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006236465A
Other languages
Japanese (ja)
Inventor
Takashi Kobayashi
崇 小林
Hiroaki Yamagishi
弘昭 山岸
Masanobu Ishikawa
正信 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006236465A priority Critical patent/JP2008055478A/en
Publication of JP2008055478A publication Critical patent/JP2008055478A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform finishing process in a shorter time while finishing process accuracy is enhanced for the inner wall of a prepared hole. <P>SOLUTION: After a prepared hole 23L is drilled in a workpiece 23, the inner wall (solidification part 23k) of this prepared hole 23L is irradiated with a picosecond laser beam 17 to make a smooth finish on the inner wall. In the picosecond laser beam 17, energy density can be made greater compared with a conventional finishing process by electric discharge machining. When the picosecond laser beam 17 is emitted to the workpiece 23, the temperature of the irradiation part of the workpiece 23 becomes high instantaneously, enabling the finishing process to be performed in a shorter time. In addition, the pulse width T4 of the picosecond laser beam 17 is very small, that is, the irradiation time of the picosecond laser beam 17 is very short, which tends to suppress rise in temperature in a part near the irradiation part of the picosecond laser beam 17. As a result, there is less tendency of causing a heat-affected zone, which improves finishing accuracy of the inner wall of the prepared hole 23L to make the inner wall smoother. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、仕上げ加工方法の改良に関するものである。   The present invention relates to an improvement in a finishing method.

従来の仕上げ加工方法として、レーザー光線によってワークに過***を開けた後、この過***を放電加工で仕上げ加工することが知られている(例えば、特許文献1参照。)。
特許第2623296号公報
As a conventional finishing method, it is known that after forming an under hole in a workpiece with a laser beam, the under hole is finished by electric discharge machining (see, for example, Patent Document 1).
Japanese Patent No. 2623296

特許文献1の第4A図及び第4B図を以下の図4(a),(b)で説明する。なお、符号は振り直した。
図4(a),(b)は従来の仕上げ加工方法を示す作用図である。
(a)はレーザーヘッド101から発射されたレーザー光線102でノズル部品103に過***104を開けた状態を示す。
4A and 4B of Patent Document 1 will be described with reference to FIGS. 4A and 4B below. In addition, the code | symbol was reassigned.
4A and 4B are operation diagrams showing a conventional finishing method.
(A) shows a state in which an underhole 104 is formed in the nozzle component 103 with a laser beam 102 emitted from the laser head 101.

(b)は過***104に放電加工用のワイヤ電極106を挿入しながら過***104の壁107を仕上げ加工することを示す。放電加工であるから、壁107の仕上げ精度は高い。   FIG. 6B shows that the wall 107 of the underhole 104 is finished while the wire electrode 106 for electric discharge machining is inserted into the underhole 104. Since it is electric discharge machining, the finishing accuracy of the wall 107 is high.

上記した過***104の壁107の仕上げ加工を更に短時間に行い、生産性を向上させるためには、高い仕上げ精度を確保しつつ放電加工よりも更に高速な加工方法が望まれる。   In order to finish the above-described finishing of the wall 107 of the under hole 104 in a shorter time and improve productivity, a processing method that is faster than electric discharge machining is desired while ensuring high finishing accuracy.

本発明の目的は、下穴内壁の仕上げ加工精度を高めつつ、仕上げ加工をより短時間に行うことにある。   An object of the present invention is to perform finishing in a shorter time while improving the finishing accuracy of the inner wall of the prepared hole.

請求項1に係る発明は、部材に下穴を開けた後、この下穴の内壁にピコ秒レーザ光を照射して内壁を平滑に仕上げ加工することを特徴とする。
作用として、部材に予め下穴を開け、次に、下穴の内壁にピコ秒レーザ光を照射する。
ピコ秒レーザ光では、従来のような放電加工で仕上げ加工するのに比べてエネルギー密度を大きくすることが可能であり、ピコ秒レーザ光が部材に照射された時には部材の照射部分の温度が瞬時に高温になり、仕上げ加工をより短時間で行える。
The invention according to claim 1 is characterized in that after preparing a pilot hole in a member, the inner wall of the pilot hole is irradiated with picosecond laser light to finish the inner wall smoothly.
As an action, a pilot hole is made in the member in advance, and then the inner wall of the pilot hole is irradiated with a picosecond laser beam.
With picosecond laser light, it is possible to increase the energy density as compared with conventional finishing by electrical discharge machining. When the member is irradiated with picosecond laser light, the temperature of the irradiated part of the member is instantaneous. The temperature becomes extremely high and finishing can be performed in a shorter time.

また、ピコ秒レーザ光のパルス幅が非常に小さい、即ち、ピコ秒レーザ光の照射時間が非常に短いため、ピコ秒レーザ光の照射部分に近い部分の温度が上昇しにくく、熱影響部が生じにくいから、下穴内壁の仕上げ精度が向上し、下穴内壁がより平滑になる。   Also, the pulse width of the picosecond laser beam is very small, that is, the irradiation time of the picosecond laser beam is very short, so the temperature of the portion near the irradiated portion of the picosecond laser beam is difficult to rise, and the heat affected zone Since it does not occur easily, the finishing accuracy of the inner wall of the pilot hole is improved, and the inner wall of the pilot hole becomes smoother.

請求項2に係る発明は、ピコ秒レーザ光を下穴の内径よりも小さく集光させ、下穴の内壁を蒸発除去加工することを特徴とする。
作用として、ピコ秒レーザ光を下穴の内径よりも小さく集光させ、下穴の内壁に照射して内壁を溶融、そして蒸発させる蒸発除去加工で徐々に除去すれば、下穴内壁の仕上げ精度が向上する。更に、ピコ秒レーザ光による熱影響部が生じにくいことからも、下穴内壁の仕上げ精度がより一層向上し、下穴内壁がより平滑になる。
The invention according to claim 2 is characterized in that the picosecond laser beam is condensed smaller than the inner diameter of the pilot hole, and the inner wall of the pilot hole is evaporated and removed.
As a function, if the picosecond laser beam is focused to be smaller than the inner diameter of the pilot hole, the inner wall of the pilot hole is irradiated to melt and evaporate the inner wall, and then removed gradually, the finishing accuracy of the inner wall of the pilot hole Will improve. Furthermore, since the heat-affected zone due to the picosecond laser beam is hardly generated, the finishing accuracy of the inner wall of the pilot hole is further improved, and the inner wall of the pilot hole becomes smoother.

請求項3に係る発明は、ピコ秒レーザ光を部材と相対的に旋回させながら照射することを特徴とする。
作用として、ピコ秒レーザ光が下穴内壁の各部に均等に照射され、内壁の仕上げ精度がより向上する。また、ピコ秒レーザ光が下穴に局部的に照射されることがないため、熱影響部がより一層生じにくい。
The invention according to claim 3 is characterized in that a picosecond laser beam is irradiated while rotating relative to the member.
As an effect, picosecond laser light is evenly applied to each part of the inner wall of the prepared hole, and the finishing accuracy of the inner wall is further improved. In addition, since the picosecond laser beam is not locally irradiated to the pilot hole, the heat affected zone is less likely to occur.

請求項4に係る発明は、ピコ秒レーザ光を内壁に照射したときに内壁が溶融し蒸発して発生する蒸気を蒸気除去装置で吸引又は圧送することを特徴とする。
作用として、発生した蒸気が蒸気除去装置で吸引又は圧送されるため、蒸気によってピコ秒レーザ光が遮られることがない。
The invention according to claim 4 is characterized in that when the inner wall is irradiated with picosecond laser light, the inner wall is melted and evaporated to suck or pump the vapor generated by the vapor removing device.
As an effect, the generated steam is sucked or pumped by the steam removing device, so that the picosecond laser beam is not blocked by the steam.

請求項5に係る発明は、ピコ秒レーザ光を発振するレーザ発振器のピーク出力は、300kW〜1MWであることを特徴とする。
作用として、レーザ発振器のピーク出力が300kW未満では、例えば、部材を金属とした場合には、金属蒸発が発生しにくくなり、蒸発除去加工に多くの時間を要する。
レーザ発振器のピーク出力が1MWを超えると、下穴の内壁に熱影響部が生じやすくなる。
The invention according to claim 5 is characterized in that the peak output of the laser oscillator that oscillates the picosecond laser beam is 300 kW to 1 MW.
As an effect, when the peak output of the laser oscillator is less than 300 kW, for example, when the member is made of metal, metal evaporation hardly occurs and much time is required for evaporation removal processing.
When the peak output of the laser oscillator exceeds 1 MW, a heat affected zone is likely to occur on the inner wall of the prepared hole.

請求項6に係る発明は、ピコ秒レーザ光のパルス繰返し周期のうちの非照射時間を、パルス繰返し周期のうちのパルス幅の500倍以上としたことを特徴とする。
作用として、ピコ秒レーザ光のパルス繰返し周期のうちの非照射時間が、パルス繰返し周期のうちのパルス幅の500倍未満であると、部材への入熱量が大きくなり、下穴内壁で熱影響部が生じやすくなる。
The invention according to claim 6 is characterized in that the non-irradiation time in the pulse repetition period of the picosecond laser beam is 500 times or more of the pulse width in the pulse repetition period.
As an effect, if the non-irradiation time in the pulse repetition period of the picosecond laser beam is less than 500 times the pulse width of the pulse repetition period, the amount of heat input to the member is increased, and the heat effect on the inner wall of the pilot hole Part tends to occur.

請求項1に係る発明では、部材に下穴を開けた後、この下穴の内壁にピコ秒レーザ光を照射して内壁を平滑に仕上げ加工するので、下穴内壁に熱影響部が生じにくくなり、下穴内壁を精度良く平滑に仕上げることができるとともに、ピコ秒レーザ光の高エネルギー密度によって下穴内壁をより短時間に仕上げることができる。   In the invention according to claim 1, since the inner wall of the pilot hole is irradiated with a picosecond laser beam to finish the inner wall smoothly after the pilot hole is made in the member, a heat-affected zone is hardly generated on the inner wall of the pilot hole. Thus, the inner wall of the pilot hole can be finished with high accuracy and smoothness, and the inner wall of the pilot hole can be finished in a shorter time due to the high energy density of the picosecond laser beam.

請求項2に係る発明では、ピコ秒レーザ光を下穴の内径よりも小さく集光させ、下穴の内壁を蒸発除去加工するので、下穴の内壁の小さな範囲を徐々に蒸発除去加工することができ、下穴の内壁をより精度よく平滑に加工することができる。   In the invention according to claim 2, since the picosecond laser beam is condensed to be smaller than the inner diameter of the pilot hole and the inner wall of the pilot hole is evaporated and removed, the small area of the inner wall of the pilot hole is gradually evaporated and removed. And the inner wall of the pilot hole can be processed more accurately and smoothly.

請求項3に係る発明では、ピコ秒レーザ光を部材と相対的に旋回させながら照射するので、ピコ秒レーザ光を下穴の内壁の各部により均等に照射することができ、下穴の内壁をより平滑に仕上げることができる。また、下穴に局部的に照射されることがないため、熱影響部をより一層生じにくくすることができる。   In the invention according to claim 3, since the picosecond laser beam is irradiated while being rotated relative to the member, the picosecond laser beam can be evenly emitted from each part of the inner wall of the pilot hole. Smoother finish. Moreover, since the pilot hole is not locally irradiated, the heat affected zone can be made more difficult to occur.

請求項4に係る発明では、ピコ秒レーザ光を内壁に照射したときに内壁が溶融し蒸発して発生する蒸気を蒸気除去装置で吸引又は圧送するので、蒸気によってピコ秒レーザ光が遮られることがなく、良好に仕上げ加工することができる。   In the invention according to claim 4, since the vapor generated when the inner wall is melted and evaporated when the inner wall is irradiated with the picosecond laser beam is sucked or pumped by the vapor removing device, the picosecond laser beam is blocked by the vapor. There is no, and it can finish well.

請求項5に係る発明では、ピコ秒レーザ光を発振するレーザ発振器のピーク出力を、300kW〜1MWとしたので、下穴内壁の蒸発除去加工を短時間で行うことができるとともに下穴内壁に熱影響部を生じにくくすることができる。   In the invention according to claim 5, since the peak output of the laser oscillator that oscillates the picosecond laser beam is set to 300 kW to 1 MW, evaporation removal processing of the inner wall of the prepared hole can be performed in a short time and the inner wall of the prepared hole is heated. The affected part can be made difficult to occur.

請求項6に係る発明では、ピコ秒レーザ光のパルス繰返し周期のうちの非照射時間を、パルス繰返し周期のうちのパルス幅の500倍以上としたので、ピコ秒レーザ光の非照射時間を大きくすることで、下穴内壁に熱影響部を生じにくくすることができる。   In the invention according to claim 6, since the non-irradiation time in the pulse repetition period of the picosecond laser beam is set to 500 times or more of the pulse width in the pulse repetition period, the non-irradiation time of the picosecond laser beam is increased. By doing so, it is possible to make it difficult to produce a heat affected zone on the inner wall of the prepared hole.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係るレーザ加工装置の説明図であり、レーザ加工装置10は、ナノ秒レーザ光11を発振するナノ秒レーザ発振器12と、ピコ秒レーザ光13を発振する超短パルスレーザ発振器14と、この超短パルスレーザ発振器14から発振されたピコ秒レーザ光13を増幅する増幅器16と、この増幅器16から出力されたピコ秒レーザ光17を反射させるミラー18と、ピコ秒レーザ光17を透過させるとともにナノ秒レーザ発振器12で発振されたナノ秒レーザ光11を反射させるミラー21と、これらのナノ秒レーザ光11又はピコ秒レーザ光17の集光位置を変化させるビームローテータ22と、ナノ秒レーザ光11又はピコ秒レーザ光17をワーク23(例えば、鋼材)に集光させる集光レンズ24と、ワーク23を載せるテーブル26と、ワーク23にナノ秒レーザ光11又はピコ秒レーザ光17を照射したときにワーク23から発生する蒸気を吸引する吸引装置27と、ナノ秒レーザ発振器12、超短パルスレーザ発振器14、ビームローテータ22の作動及びテーブル26の水平移動を制御する制御装置28とからなる。なお、31は吸引装置27に備える吸引ダクトである。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is an explanatory diagram of a laser processing apparatus according to the present invention. A laser processing apparatus 10 includes a nanosecond laser oscillator 12 that oscillates a nanosecond laser beam 11 and an ultrashort pulse laser oscillator that oscillates a picosecond laser beam 13. 14, an amplifier 16 that amplifies the picosecond laser light 13 oscillated from the ultrashort pulse laser oscillator 14, a mirror 18 that reflects the picosecond laser light 17 output from the amplifier 16, and a picosecond laser light 17 And a mirror 21 that reflects the nanosecond laser light 11 oscillated by the nanosecond laser oscillator 12, a beam rotator 22 that changes a condensing position of the nanosecond laser light 11 or the picosecond laser light 17, and A condenser lens 24 for condensing the nanosecond laser beam 11 or the picosecond laser beam 17 onto a workpiece 23 (for example, a steel material), and the workpiece 23 are mounted. A suction device 27 for sucking vapor generated from the work 23 when the work 23 is irradiated with the nanosecond laser light 11 or the picosecond laser light 17, a nanosecond laser oscillator 12, an ultrashort pulse laser oscillator 14, It comprises a control device 28 for controlling the operation of the beam rotator 22 and the horizontal movement of the table 26. Reference numeral 31 denotes a suction duct provided in the suction device 27.

ナノ秒レーザ光11は、ナノ秒レーザ発振器12でパルス発振により生成されたパルスレーザ光であり、そのパルス幅がナノ秒のオーダー、即ち10−9秒のオーダーのものである。
ナノ秒レーザ発振器12は、レーザ媒質(即ち、発光物質)としてYAG等を用いたものである。
The nanosecond laser beam 11 is a pulse laser beam generated by pulse oscillation with the nanosecond laser oscillator 12 and has a pulse width of the order of nanoseconds, that is, the order of 10 −9 seconds.
The nanosecond laser oscillator 12 uses YAG or the like as a laser medium (that is, a light emitting substance).

ピコ秒レーザ光13は、超短パルスレーザ発振器14でパルス発振により生成されたパルスレーザ光であり、そのパルス幅がピコ秒のオーダー、即ち10−12秒のオーダーのものである。 The picosecond laser beam 13 is a pulse laser beam generated by pulse oscillation in the ultrashort pulse laser oscillator 14 and has a pulse width on the order of picoseconds, that is, on the order of 10-12 seconds.

超短パルスレーザ発振器14は、レーザ媒質としてイットリビウム(Ytterbium)を用いたものであり、例えば、パルス繰返し周波数が500kHz〜100MHzのシード光(種光)用レーザを発振することができるシード光用レーザ発振器である。このようなシード光用レーザ発振器は市販されているため、安価に入手することができる。   The ultrashort pulse laser oscillator 14 uses ytterbium as a laser medium. For example, a seed light laser capable of oscillating a seed light (seed light) laser having a pulse repetition frequency of 500 kHz to 100 MHz. It is an oscillator. Since such a laser oscillator for seed light is commercially available, it can be obtained at low cost.

まず、以上に述べたナノ秒レーザ光11によってワーク23に下穴を開ける下穴加工工程を次に説明する。
図2(a)〜(e)は本発明に係るレーザ加工装置による下穴加工工程を示す作用図である。
(a)において、ワーク23の上面23aに集光レンズの焦点が一致するように調整してワーク23の上面23aにナノ秒レーザ光11を照射する。なお、D0は焦点におけるナノ秒レーザ光11の集光径(即ち、スポット径)であり、例えば、集光径D0=約100μmである。
これにより、ワーク23の上面23aは融点に達して溶融し始める。23bは溶融部である。
First, a pilot hole machining process for making a pilot hole in the work 23 with the nanosecond laser beam 11 described above will be described next.
2 (a) to 2 (e) are operational views showing a prepared hole machining step by the laser machining apparatus according to the present invention.
In (a), adjustment is made so that the focal point of the condenser lens coincides with the upper surface 23 a of the work 23, and the upper surface 23 a of the work 23 is irradiated with the nanosecond laser beam 11. Note that D0 is a condensing diameter (that is, a spot diameter) of the nanosecond laser beam 11 at the focal point, for example, a condensing diameter D0 = about 100 μm.
Thereby, the upper surface 23a of the work 23 reaches the melting point and starts to melt. 23b is a melting part.

ナノ秒レーザ光11は、その横断面形状が円形でない場合には、その光軸を回転させることで横断面を円形にすることがある。しかし、光軸を回転させると、回転させる装置の精度によりナノ秒レーザ光のワークへの照射部分が広がり、加工径が大きくなる。   When the cross-sectional shape of the nanosecond laser beam 11 is not circular, the cross-section may be circular by rotating its optical axis. However, when the optical axis is rotated, the portion irradiated with the nanosecond laser light on the workpiece is widened by the accuracy of the rotating device, and the processing diameter is increased.

本実施形態では、ナノ秒レーザ光11の光軸を回転させないので、照射範囲を小さくすることができる。ただし、ワーク23への照射部分は円形でなくなる場合があるので、後工程である仕上げ加工工程で仕上げ加工と共に円形となるように加工する。従って、特別に円形に加工する工程は設けていない。   In this embodiment, since the optical axis of the nanosecond laser beam 11 is not rotated, the irradiation range can be reduced. However, since the irradiated portion of the work 23 may not be circular, it is processed so as to be circular together with finishing in the finishing process, which is a subsequent process. Therefore, there is no special process for processing into a circle.

(b)において、ナノ秒レーザ光11が照射されたワーク23には(a)のときよりも大きな溶融部23dが出来る。
溶融部23dの中央部は、周囲よりも温度が高いために、沸点に達して蒸気23eが盛んに発生するため、蒸気23eの圧力で外側に押し退けられる。この蒸気23eがナノ秒レーザ光11を遮ると、ワーク23の穴開けに支障をきたすので、吸引装置の吸引ダクト31から吸引する。
In (b), the workpiece 23 irradiated with the nanosecond laser beam 11 has a larger melted part 23d than in (a).
Since the temperature of the central part of the melting part 23d is higher than that of the surroundings, the boiling point reaches the boiling point, and the steam 23e is actively generated. Therefore, the melt part 23d is pushed outward by the pressure of the steam 23e. When the vapor 23e blocks the nanosecond laser beam 11, the hole 23 in the workpiece 23 is obstructed, so that the suction is performed from the suction duct 31 of the suction device.

(c)は、ナノ秒レーザ光が照射されない非照射時間での状態を示す。(b)に示した溶融部23dの母材に近い部分は凝固して凝固部23fとなり、この凝固部23fの内側に未凝固状態にある溶融部23gが残る。
以降は、(b)及び(c)と同様な照射と非照射とを繰り返す。
(C) shows the state in the non-irradiation time when the nanosecond laser beam is not irradiated. The part close to the base material of the melted part 23d shown in (b) is solidified to become a solidified part 23f, and an unsolidified melted part 23g remains inside the solidified part 23f.
Thereafter, irradiation and non-irradiation similar to (b) and (c) are repeated.

(d)は、ワーク23の上面23aから下面23jに貫通する下穴23Lが開けられた状態を示す。23kは加工中に一旦溶融し、そして凝固して下穴23Lの表層に出来た筒状の凝固部、23mは凝固部23kの周囲に出来た熱影響部(複数の点で示される層状の部分)、33は下穴23Lの内面である。   (D) shows a state in which a pilot hole 23L penetrating from the upper surface 23a to the lower surface 23j of the work 23 is opened. 23k is a cylindrical solidified portion which is once melted during processing and solidified to form a surface layer of the pilot hole 23L, and 23m is a heat affected zone (layered portions indicated by a plurality of points) formed around the solidified portion 23k. , 33 is an inner surface of the pilot hole 23L.

熱影響部23mは、凝固部23kと、ワーク23の熱影響を受けていない部分(即ち、母材原質域)との間の部分で、母材に対して組織が変化している部分である。
ここで、下穴23Lの内径(即ち、凝固部23kの内径)をD1、凝固部23kの外径をD2、熱影響部23mの外径をD3、下穴23Lの穴深さ(ここでは、ワーク23の厚さに一致する。)をdeとする。下穴23Lの穴深さdeは、例えば、小さくとも1mmである。
上記した凝固部23kの層厚さ(D2−D1)/2は、下穴23Lの内径D1の10〜40%である。
The heat-affected zone 23m is a portion between the solidified portion 23k and a portion not affected by the heat of the work 23 (that is, a base material raw material region), and is a portion where the structure is changed with respect to the base material. is there.
Here, the inner diameter of the pilot hole 23L (that is, the inner diameter of the solidified portion 23k) is D1, the outer diameter of the solidified portion 23k is D2, the outer diameter of the heat affected zone 23m is D3, and the hole depth of the lower hole 23L (here, De equals the thickness of the work 23). The hole depth de of the lower hole 23L is, for example, at least 1 mm.
The layer thickness (D2-D1) / 2 of the solidified portion 23k described above is 10 to 40% of the inner diameter D1 of the pilot hole 23L.

(e)は、(a)〜(c)に示したナノ秒レーザ光の発振器であるナノ秒レーザ発振器12(図1参照)の出力と時間との関係を示すグラフであり、縦軸は出力、横軸は時間を表す。
ナノ秒レーザ発振器の出力はゼロからピーク出力P1までパルス状に変化する。図中のT1はパルス幅、即ちナノ秒レーザ光の照射時間(即ち、パルス幅T1は10−9秒のオーダーである。)、T2はナノ秒レーザ光の非照射時間、T0はパルス繰返し周期である。このパルス繰返し周期T0から求められるパルス繰返し周波数(発振周波数)は、例えば、1kHz〜50kHzである。
(E) is a graph which shows the relationship between the output of nanosecond laser oscillator 12 (refer FIG. 1) which is an oscillator of the nanosecond laser beam shown to (a)-(c), and time, and a vertical axis | shaft is output. The horizontal axis represents time.
The output of the nanosecond laser oscillator changes in a pulse shape from zero to the peak output P1. In the figure, T1 is the pulse width, that is, the irradiation time of the nanosecond laser beam (that is, the pulse width T1 is on the order of 10-9 seconds), T2 is the non-irradiation time of the nanosecond laser beam, and T0 is the pulse repetition period. It is. The pulse repetition frequency (oscillation frequency) obtained from this pulse repetition period T0 is, for example, 1 kHz to 50 kHz.

このように、パルスレーザ光であるナノ秒レーザ光をワークにパルス繰返し周期T0毎に照射時間T1だけ照射することで、段階的に母材を溶融・蒸発させて下穴加工することができる。   In this way, by irradiating the workpiece with the nanosecond laser beam, which is a pulsed laser beam, for the irradiation time T1 at each pulse repetition period T0, the base material can be melted and evaporated stepwise to form the pilot hole.

ナノ秒レーザ光では、照射時間がピコ秒レーザ光に比べて長いため、パルスエネルギーを大きくすることができ、蒸発除去加工量を多くすることができて、下穴をより高速で開けることができる。   With nanosecond laser light, the irradiation time is longer than with picosecond laser light, so the pulse energy can be increased, the amount of evaporation removal can be increased, and the pilot hole can be opened at a higher speed. .

次に、以上に述べたピコ秒レーザ光17によってワーク23の下穴23Lの内壁を仕上げる仕上げ加工工程を説明する。
図3(a)〜(d)は本発明に係るレーザ加工装置による下穴の仕上げ加工工程を示す作用図である。
(a)において、前工程である下穴加工工程では、下穴23Lの表層に精度を低下させる凝固部23kが残っているので、この凝固部23k(あるいは凝固部23kとこの周囲の熱影響部23m)をピコ秒レーザ光17で除去する。本実施形態では下穴23Lに出来ている凝固部23kを厚さを有する内壁とし、この内壁にピコ秒レーザ光17を照射して除去し、内面の精度が高い平滑な穴を形成する。
Next, the finishing process for finishing the inner wall of the pilot hole 23L of the work 23 with the picosecond laser beam 17 described above will be described.
3 (a) to 3 (d) are operational views showing a finishing process of the prepared hole by the laser processing apparatus according to the present invention.
In (a), in the pilot hole machining step, which is the previous process, the solidified portion 23k that reduces the accuracy remains on the surface layer of the pilot hole 23L, so this solidified portion 23k (or the solidified portion 23k and the surrounding heat affected zone) 23 m) is removed by the picosecond laser beam 17. In the present embodiment, the solidified portion 23k formed in the prepared hole 23L is used as an inner wall having a thickness, and the inner wall is removed by irradiating the picosecond laser beam 17 to form a smooth hole with high accuracy on the inner surface.

まず、ワーク23の凝固部23kの上端面に集光レンズの焦点が一致するように調整して、ビームローテータによってピコ秒レーザ光17が筒状の凝固部23kの端面に常に照射されるように渦巻き状に照射される位置を変更する。(凝固部23kと熱影響部23mとを除去する場合は、凝固部23kと熱影響部23mとの両端面にピコ秒レーザ光17を照射する。)
これにより、ワーク23の凝固部23kは渦巻き状に除去される。
First, adjustment is made so that the focal point of the condensing lens coincides with the upper end surface of the solidified part 23k of the work 23, and the end face of the cylindrical solidified part 23k is always irradiated by the beam rotator. Change the position of the spiral irradiation. (When removing the solidified part 23k and the heat affected part 23m, the picosecond laser beam 17 is irradiated to both end faces of the solidified part 23k and the heat affected part 23m.)
Thereby, the solidified part 23k of the workpiece 23 is removed in a spiral shape.

(b)は凝固部23kの除去の途中の状態を示す。ピコ秒レーザ光17を照射中は、凝固部23kが沸点に達して蒸気23pが発生するため、この蒸気23pを吸引装置の吸引ダクト31(吸引ダクト31は吸引ダクト31a,31bからなる。)で吸引し、蒸気23pによって仕上げ加工が阻害されるのを防止する。   (B) shows the state in the middle of removal of the solidification part 23k. During the irradiation with the picosecond laser beam 17, the solidification part 23k reaches the boiling point and the vapor 23p is generated. Therefore, the vapor 23p is generated by the suction duct 31 of the suction device (the suction duct 31 includes suction ducts 31a and 31b). Suction is performed to prevent the finishing process from being hindered by the steam 23p.

仕上げ加工が進むにつれて、ピコ秒レーザ17の入光側とは反対側の吸引ダクト31bで吸引する方がよい。レーザ光を遮ることなく加工することができるからである。例えば、入光側から焦点位置までの距離に比して、吸引ダクト31bの負圧を上げるように図示しない制御手段で制御してもよいし、また、吸引ダクト31aを利用して、吸引ダクト31aから気体を噴出させて気流を作り、入光側とは反対側から吸引ダクト31bで気体と共に蒸気23pを吸引してもよい。   As the finishing process progresses, it is better to suck by the suction duct 31b on the side opposite to the light incident side of the picosecond laser 17. This is because processing can be performed without blocking the laser beam. For example, it may be controlled by a control means (not shown) so as to increase the negative pressure of the suction duct 31b as compared with the distance from the light incident side to the focal position, or by using the suction duct 31a. Gas may be ejected from 31a to create an air flow, and the vapor 23p may be sucked together with the gas by the suction duct 31b from the side opposite to the light incident side.

凝固部23kの除去は、引き続きワーク23の下面まで行う。なお、35は下穴23Lの仕上げ加工が完了した仕上げ完了穴であり、仕上げ完了穴35の内面36は精度良く平滑に仕上げられている。   The removal of the solidified portion 23k is continued up to the lower surface of the work 23. Reference numeral 35 denotes a finishing completion hole in which the finishing process of the pilot hole 23L is completed, and the inner surface 36 of the finishing completion hole 35 is finished with high accuracy and smoothness.

ピコ秒レーザ17による蒸発除去加工中は、後述するように加工部分に近い部分、即ち、仕上げ完了穴35に熱影響部が生じにくい。仕上げ完了穴35の内壁36はもともと熱影響部23mであるが、この熱影響部23mの熱影響度合がピコ秒レーザ17による加工を行っても更に大きくなりにくい。
凝固部23kと熱影響部23mとの両方をピコ秒レーザ17で蒸発除去加工した場合には、熱影響部23mに隣接していた母材には熱影響部が生じにくい。
During evaporation removal processing by the picosecond laser 17, a heat-affected zone is unlikely to occur in a portion close to the processing portion, that is, the finish completion hole 35 as described later. The inner wall 36 of the finish completion hole 35 is originally the heat affected zone 23m. However, even if the degree of heat affected by the heat affected zone 23m is processed by the picosecond laser 17, the inner wall 36 is hardly increased.
When both the solidified part 23k and the heat affected part 23m are evaporated and removed by the picosecond laser 17, the heat affected part hardly occurs in the base material adjacent to the heat affected part 23m.

(c)は凝固部23kの平面図であり、この凝固部23kに集光径D4のピコ秒レーザ光17を矢印の向きに回転させながら照射する状態を示す。ピコ秒レーザ光17の集光径D4は、例えば、5μmである。   (C) is a plan view of the coagulation part 23k, and shows a state in which the coagulation part 23k is irradiated with the picosecond laser light 17 having a condensed diameter D4 rotated in the direction of the arrow. The condensing diameter D4 of the picosecond laser beam 17 is, for example, 5 μm.

(d)は、(a),(b)に示したピコ秒レーザ光の発振器である超短パルスレーザ発振器14(図1参照)の出力と時間との関係を示すグラフであり、縦軸は出力、横軸は時間を表す。
超短パルスレーザ発振器の出力はゼロからピーク出力P2までパルス状に変化する。図中のT4はパルス幅、即ちピコ秒レーザ光の照射時間(即ち、パルス幅T4は10−12秒のオーダーである。)、T5はピコ秒レーザ光の非照射時間、T3はパルス繰返し周期である。
(D) is a graph showing the relationship between the output and time of the ultrashort pulse laser oscillator 14 (see FIG. 1) which is an oscillator of the picosecond laser beam shown in (a) and (b), and the vertical axis is Output, horizontal axis represents time.
The output of the ultrashort pulse laser oscillator changes in a pulse shape from zero to the peak output P2. In the figure, T4 is the pulse width, that is, the irradiation time of the picosecond laser beam (that is, the pulse width T4 is on the order of 10-12 seconds), T5 is the non-irradiation time of the picosecond laser beam, and T3 is the pulse repetition period. It is.

上記の非照射時間T5は、例えば、パルス幅T4の500倍以上の時間である。
パルス繰返し周期T3から求められるパルス繰返し周波数(発振周波数)は、例えば、100kHz〜1.1MHzである。
The non-irradiation time T5 is, for example, a time that is 500 times or more the pulse width T4.
The pulse repetition frequency (oscillation frequency) obtained from the pulse repetition period T3 is, for example, 100 kHz to 1.1 MHz.

このように、エネルギー密度を高くすることが可能なピコ秒レーザ光をワークにパルス繰返し周期T3毎に照射時間T4だけ照射することで、段階的に瞬時に母材を溶融・蒸発させて下穴23Lの凝固部23kを削除して高速で仕上げ加工することができる。   In this way, by irradiating the workpiece with the picosecond laser beam capable of increasing the energy density for the irradiation time T4 every pulse repetition period T3, the base material is instantaneously melted and evaporated step by step. The 23L solidified part 23k can be deleted and finished at high speed.

また、ピコ秒レーザ光で仕上げ加工を行う場合には、パルス繰返し周期T3に非照射時間T5を有するから、この非照射時間T5でワークへの入熱をコントロールすることができ、連続発振によるレーザ光に比べて、ワークの照射箇所近傍での温度上昇を抑えることができ、熱影響部を生じにくくすることができる。   In addition, when finishing with picosecond laser light, the pulse repetition period T3 has a non-irradiation time T5. Therefore, the heat input to the workpiece can be controlled by this non-irradiation time T5, and laser by continuous oscillation is used. Compared with light, the temperature rise in the vicinity of the irradiated part of the workpiece can be suppressed, and the heat-affected zone can be made difficult to occur.

以上の図3(a)〜(d)に示したように、本発明は第1に、部材としてのワーク23に下穴23Lを開けた後、この下穴23Lの内壁(凝固部23k)にピコ秒レーザ光17を照射して内壁を平滑に仕上げ加工することを特徴とする。   As shown in FIGS. 3A to 3D above, according to the present invention, first, after preparing a pilot hole 23L in the work 23 as a member, an inner wall (solidified portion 23k) of the pilot hole 23L is formed. The inner wall is smoothly finished by irradiating the picosecond laser beam 17.

ピコ秒レーザ光17では、従来のような放電加工で仕上げ加工するのに比べてエネルギー密度を大きくすることができ、ピコ秒レーザ光17がワーク23に照射された時にはワーク23の照射部分の温度が瞬時に高温になり、仕上げ加工をより短時間で行うことができる。   The picosecond laser beam 17 can increase the energy density as compared with the conventional finish processing by electric discharge machining. When the workpiece 23 is irradiated with the picosecond laser beam 17, the temperature of the irradiated portion of the workpiece 23 is increased. Becomes a high temperature instantly, and finishing can be performed in a shorter time.

また、ピコ秒レーザ光17のパルス幅T4が非常に小さいため、ピコ秒レーザ光17の照射部分に近い部分の温度が上昇しにくく、熱影響部が生じにくいから、下穴23Lの内壁の仕上げ精度が向上し、下穴23Lの内壁をより平滑にすることができる。   Further, since the pulse width T4 of the picosecond laser beam 17 is very small, the temperature near the irradiated portion of the picosecond laser beam 17 is unlikely to rise, and a heat affected zone is unlikely to occur, so the inner wall of the pilot hole 23L is finished. The accuracy is improved, and the inner wall of the prepared hole 23L can be made smoother.

本発明は第2に、ピコ秒レーザ光17を下穴23Lの内径D1(図2(d)参照)よりも小さく集光させ、下穴23Lの内壁を蒸発除去加工することを特徴とする。
ピコ秒レーザ光17を下穴23Lの内径D1よりも小さく集光させ、下穴23Lの内壁に照射して内壁を溶融、そして蒸発させる蒸発除去加工で小さな範囲を徐々に除去すれば、下穴23Lの内壁の仕上げ精度を向上させることができる。
更に、ピコ秒レーザ光17による熱影響部が生じにくいことからも、下穴23Lの内壁の仕上げ精度がより一層向上し、下穴23Lの内壁をより平滑にすることができる。
Second, the present invention is characterized in that the picosecond laser beam 17 is condensed to be smaller than the inner diameter D1 of the pilot hole 23L (see FIG. 2D), and the inner wall of the pilot hole 23L is evaporated and removed.
If the picosecond laser beam 17 is condensed to be smaller than the inner diameter D1 of the pilot hole 23L, the inner wall of the pilot hole 23L is irradiated to melt and evaporate the inner wall, and a small range is gradually removed to remove the pilot hole The finishing accuracy of the inner wall of 23L can be improved.
Furthermore, since the heat affected zone due to the picosecond laser beam 17 is less likely to occur, the finishing accuracy of the inner wall of the pilot hole 23L can be further improved, and the inner wall of the pilot hole 23L can be made smoother.

本発明は第3に、ピコ秒レーザ光17をワーク23と相対的に旋回させながら照射することを特徴とする。
これにより、ピコ秒レーザ光17を下穴23Lの内壁の各部により均等に照射することができ、下穴23Lの内壁をより平滑に仕上げることができる。また、下穴23Lの内壁に局部的に照射されることがないため、熱影響部をより一層生じにくくすることができる。
Third, the present invention is characterized in that the picosecond laser beam 17 is irradiated while turning relative to the work 23.
Thereby, the picosecond laser beam 17 can be evenly irradiated to each part of the inner wall of the pilot hole 23L, and the inner wall of the pilot hole 23L can be finished more smoothly. In addition, since the inner wall of the prepared hole 23L is not locally irradiated, the heat affected zone can be made more difficult to occur.

本発明は第4に、ピコ秒レーザ光17を内壁に照射したときに内壁が溶融し蒸発して発生する蒸気23eを蒸気除去装置としての吸引装置27で吸引することを特徴とする。
これにより、蒸気23eによってピコ秒レーザ光17が遮られることがなく、良好に仕上げ加工することができる。
Fourthly, the present invention is characterized in that a vapor 23e generated by melting and evaporating the inner wall when the inner wall is irradiated with the picosecond laser light 17 is sucked by a suction device 27 as a vapor removing device.
As a result, the picosecond laser beam 17 is not blocked by the vapor 23e, and finish processing can be performed satisfactorily.

本発明は第5に、ピコ秒レーザ光17を発振する超短パルスレーザ発振器14(図1参照)のピーク出力は、300kW〜1MWであることを特徴とする。
超短パルスレーザ発振器14のピーク出力が300kW未満では、例えば、ワーク23を金属とした場合には、金属蒸発が発生しにくくなり、蒸発除去加工に多くの時間を要する。
超短パルスレーザ発振器14のピーク出力が1MWを超えると、下穴23Lの内壁に熱影響部が生じやすくなる。
Fifth, the present invention is characterized in that the peak output of the ultrashort pulse laser oscillator 14 (see FIG. 1) that oscillates the picosecond laser light 17 is 300 kW to 1 MW.
When the peak output of the ultrashort pulse laser oscillator 14 is less than 300 kW, for example, when the workpiece 23 is made of metal, metal evaporation hardly occurs and much time is required for evaporation removal processing.
When the peak output of the ultrashort pulse laser oscillator 14 exceeds 1 MW, a heat affected zone is likely to occur on the inner wall of the prepared hole 23L.

従って、本発明では、超短パルスレーザ発振器14のピーク出力を、300kW〜1MWとしたので、下穴23Lの内壁の蒸発除去加工を短時間で行うことができるとともに下穴23Lの内壁に熱影響部を生じにくくすることができる。   Therefore, in the present invention, since the peak output of the ultrashort pulse laser oscillator 14 is set to 300 kW to 1 MW, evaporation removal processing of the inner wall of the pilot hole 23L can be performed in a short time and the inner wall of the pilot hole 23L is affected by heat. The part can be made difficult to occur.

本発明は第6に、ピコ秒レーザ光17のパルス繰返し周期T3のうちの非照射時間T5を、パルス繰返し周期T3のうちのパルス幅T4の500倍以上としたことを特徴とする。   Sixth, the present invention is characterized in that the non-irradiation time T5 in the pulse repetition period T3 of the picosecond laser beam 17 is 500 times or more the pulse width T4 in the pulse repetition period T3.

ピコ秒レーザ光17のパルス繰返し周期T3のうちの非照射時間T5が、パルス繰返し周期T3のうちのパルス幅T4の500倍未満であると、ワーク23への入熱量が大きくなり、下穴23Lの内壁で熱影響部が生じやすくなる。   If the non-irradiation time T5 in the pulse repetition period T3 of the picosecond laser beam 17 is less than 500 times the pulse width T4 in the pulse repetition period T3, the amount of heat input to the work 23 increases, and the pilot hole 23L A heat-affected zone is likely to be generated on the inner wall.

従って、本発明では、ピコ秒レーザ光17の非照射時間T5をパルス幅T4の500倍以上としたので、ピコ秒レーザ光17の非照射時間T5を大きくすることができ、下穴23Lの内壁に熱影響部を生じにくくすることができる。   Therefore, in the present invention, the non-irradiation time T5 of the picosecond laser light 17 is set to 500 times or more of the pulse width T4, so the non-irradiation time T5 of the picosecond laser light 17 can be increased, and the inner wall of the pilot hole 23L The heat-affected zone can be made difficult to occur.

尚、本実施形態では、図2に示したように、ナノ秒レーザ光11でワーク23の下穴23Lを開けたが、これに限らず、切削加工、塑性加工等のレーザ加工以外の加工で穴23Lを開けてもよい。   In the present embodiment, as shown in FIG. 2, the pilot hole 23 </ b> L is opened with the nanosecond laser beam 11. However, the present invention is not limited to this, and machining other than laser machining such as cutting and plastic machining is performed. The hole 23L may be opened.

本実施形態では、図1に示したように、蒸気除去装置として吸引装置27を用いたが、これに限らず、蒸気除去装置として、蒸気に圧縮空気を吹き付けて蒸気を圧送することで蒸気がピコ秒レーザ光を遮るのを防止する圧送装置を用いてもよい。   In this embodiment, as shown in FIG. 1, the suction device 27 is used as the vapor removal device. However, the present invention is not limited to this, and the vapor removal device blows compressed air to the vapor to pump the vapor. A pumping device that prevents the picosecond laser light from being blocked may be used.

また、蒸気除去装置として、蒸気に液体窒素を吹き付けて蒸気を圧送してもよい。蒸気が急冷されて固化するので、部材に溶着してバリのように発生することを防止することができる。   Further, as the vapor removing device, the vapor may be pumped by blowing liquid nitrogen onto the vapor. Since the vapor is rapidly cooled and solidified, it is possible to prevent the vapor from being welded to the member and generating like a burr.

更に、図示しない圧送装置の制御装置で、圧送流量を下げる方向に制御し、金属蒸気を多く残るようにさせてレーザ光を遮って、レーザ光から部材への入熱量をコントロールするようにしてもよい。   Further, a control device for the pumping device (not shown) may be used to control the pumping flow rate so that a large amount of metal vapor remains so as to block the laser beam and control the amount of heat input from the laser beam to the member. Good.

本発明の仕上げ加工方法は、部材の穴の仕上げに好適である。   The finishing method of the present invention is suitable for finishing a hole in a member.

本発明に係るレーザ加工装置の説明図である。It is explanatory drawing of the laser processing apparatus which concerns on this invention. 本発明に係るレーザ加工装置による下穴加工工程を示す作用図である。It is an effect | action figure which shows the pilot hole manufacturing process by the laser processing apparatus which concerns on this invention. 本発明に係るレーザ加工装置による下穴の仕上げ加工工程を示す作用図である。It is an effect | action figure which shows the finishing process process of the pilot hole by the laser processing apparatus which concerns on this invention. 従来の仕上げ加工方法を示す作用図である。It is an effect | action figure which shows the conventional finishing method.

符号の説明Explanation of symbols

14…レーザ発振器(超短パルスレーザ発振器)、17…ピコ秒レーザ光、22…ビームローテータ、23…部材(ワーク)、23p…蒸気、23k…内壁(凝固部)、23L…下穴、27…蒸気除去装置(吸引装置)、D1…下穴の内径(凝固部の内径)、T3…ピコ秒レーザ光のパルス繰返し周期、T4…ピコ秒レーザ光のパルス幅、T5…ピコ秒レーザ光の非照射時間、P2…レーザ発振器の出力(超短パルスレーザ発振器のピーク出力)。   DESCRIPTION OF SYMBOLS 14 ... Laser oscillator (ultrashort pulse laser oscillator), 17 ... Picosecond laser beam, 22 ... Beam rotator, 23 ... Member (workpiece), 23p ... Steam, 23k ... Inner wall (solidification part), 23L ... Pilot hole, 27 ... Vapor removal device (suction device), D1... Inner diameter of pilot hole (inner diameter of solidified portion), T3... Pulse repetition period of picosecond laser light, T4... Pulse width of picosecond laser light, T5. Irradiation time, P2 ... Output of laser oscillator (peak output of ultrashort pulse laser oscillator).

Claims (6)

部材に下穴を開けた後、この下穴の内壁にピコ秒レーザ光を照射して前記内壁を平滑に仕上げ加工することを特徴とする仕上げ加工方法。   A finishing method comprising: forming a prepared hole in a member; and irradiating an inner wall of the prepared hole with a picosecond laser beam to finish the inner wall smoothly. 前記ピコ秒レーザ光を前記下穴の内径よりも小さく集光させ、前記下穴の内壁を蒸発除去加工することを特徴とする請求項1記載の仕上げ加工方法。   2. The finishing method according to claim 1, wherein the picosecond laser beam is condensed to be smaller than an inner diameter of the pilot hole, and an inner wall of the pilot hole is removed by evaporation. 前記ピコ秒レーザ光を前記部材と相対的に旋回させながら照射することを特徴とする請求項1又は請求項2記載の仕上げ加工方法。   The finishing method according to claim 1 or 2, wherein the picosecond laser light is irradiated while rotating relative to the member. 前記ピコ秒レーザ光を前記内壁に照射したときに内壁が溶融し蒸発して発生する蒸気を蒸気除去装置で吸引又は圧送することを特徴とする請求項1、請求項2又は請求項3記載の仕上げ加工方法。   The vapor | steam which an inner wall melt | dissolves and evaporates when the said picosecond laser beam is irradiated to the said inner wall is attracted | sucked or pumped with a vapor | steam removal apparatus, The Claim 2 or Claim 3 characterized by the above-mentioned. Finishing method. 前記ピコ秒レーザ光を発振するレーザ発振器のピーク出力は、300kW〜1MWであることを特徴とする請求項1〜請求項4のいずれか1項記載の仕上げ加工方法。   The finishing method according to any one of claims 1 to 4, wherein a peak output of a laser oscillator that oscillates the picosecond laser beam is 300 kW to 1 MW. 前記ピコ秒レーザ光のパルス繰返し周期のうちの非照射時間は、前記パルス繰返し周期のうちのパルス幅の500倍以上であることを特徴とする請求項1〜請求項5のいずれか1項記載の仕上げ加工方法。   6. The non-irradiation time in the pulse repetition period of the picosecond laser beam is 500 times or more of the pulse width in the pulse repetition period. 6. Finishing method.
JP2006236465A 2006-08-31 2006-08-31 Method for finishing process Pending JP2008055478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006236465A JP2008055478A (en) 2006-08-31 2006-08-31 Method for finishing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006236465A JP2008055478A (en) 2006-08-31 2006-08-31 Method for finishing process

Publications (1)

Publication Number Publication Date
JP2008055478A true JP2008055478A (en) 2008-03-13

Family

ID=39238836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006236465A Pending JP2008055478A (en) 2006-08-31 2006-08-31 Method for finishing process

Country Status (1)

Country Link
JP (1) JP2008055478A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119458A1 (en) * 2008-03-24 2009-10-01 丸文株式会社 Beam processing apparatus, beam processing method, and beam processing substrate
JP2011011203A (en) * 2009-06-05 2011-01-20 Panasonic Corp Method and apparatus of coating display panel, and method and apparatus of manufacturing display panel
JP2011103456A (en) * 2009-10-13 2011-05-26 Mitsubishi Materials Corp Method for forming vent hole in electrode plate
JP2015061731A (en) * 2013-08-20 2015-04-02 三菱重工業株式会社 Laser processing method and laser processing device
JP2017225994A (en) * 2016-06-22 2017-12-28 三菱重工業株式会社 Laser processing device and laser processing method
CN109822237A (en) * 2018-12-26 2019-05-31 惠州市金百泽电路科技有限公司 A kind of high out of roundness through-hole laser processing for ceramic circuit board
JP2020073290A (en) * 2016-03-29 2020-05-14 三菱重工業株式会社 Laser surface treatment device
JP7290239B1 (en) * 2023-04-21 2023-06-13 株式会社EX-Fusion LASER CUTTING METHOD AND LASER CUTTING APPARATUS
JP2023091835A (en) * 2021-12-21 2023-07-03 住友金属鉱山株式会社 Manufacturing method of metal roll

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190667A (en) * 1997-09-25 1999-04-06 Murata Mfg Co Ltd Sheet holding device for laser beam machining
JP2004074211A (en) * 2002-08-15 2004-03-11 Sumitomo Heavy Ind Ltd Laser beam machining method
JP2004160463A (en) * 2002-11-11 2004-06-10 Hyogo Prefecture Laser processing apparatus and machining method for workpiece using the same
JP2004351513A (en) * 2003-05-30 2004-12-16 Toppan Printing Co Ltd Method for machining material by super-short pulse laser beam, printed circuit board, and method for manufacturing the same
JP2005349418A (en) * 2004-06-08 2005-12-22 Sumitomo Heavy Ind Ltd Trepanning apparatus for printed circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190667A (en) * 1997-09-25 1999-04-06 Murata Mfg Co Ltd Sheet holding device for laser beam machining
JP2004074211A (en) * 2002-08-15 2004-03-11 Sumitomo Heavy Ind Ltd Laser beam machining method
JP2004160463A (en) * 2002-11-11 2004-06-10 Hyogo Prefecture Laser processing apparatus and machining method for workpiece using the same
JP2004351513A (en) * 2003-05-30 2004-12-16 Toppan Printing Co Ltd Method for machining material by super-short pulse laser beam, printed circuit board, and method for manufacturing the same
JP2005349418A (en) * 2004-06-08 2005-12-22 Sumitomo Heavy Ind Ltd Trepanning apparatus for printed circuit board

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119458A1 (en) * 2008-03-24 2009-10-01 丸文株式会社 Beam processing apparatus, beam processing method, and beam processing substrate
JP2010075996A (en) * 2008-03-24 2010-04-08 Marubun Corp Beam processing apparatus, beam processing method, and beam processing substrate
JP4467633B2 (en) * 2008-03-24 2010-05-26 丸文株式会社 Beam processing apparatus, beam processing method, and beam processing substrate
JP2011011203A (en) * 2009-06-05 2011-01-20 Panasonic Corp Method and apparatus of coating display panel, and method and apparatus of manufacturing display panel
JP2011103456A (en) * 2009-10-13 2011-05-26 Mitsubishi Materials Corp Method for forming vent hole in electrode plate
US8709328B2 (en) 2009-10-13 2014-04-29 Mitsubishi Materials Corporation Method for forming ventilation holes in an electrode plate
JP2015061731A (en) * 2013-08-20 2015-04-02 三菱重工業株式会社 Laser processing method and laser processing device
CN105473273A (en) * 2014-02-28 2016-04-06 三菱重工业株式会社 Laser processing method and laser processing apparatus
WO2015129362A1 (en) * 2014-02-28 2015-09-03 三菱重工業株式会社 Laser processing method and laser processing apparatus
CN105473273B (en) * 2014-02-28 2020-04-10 三菱重工业株式会社 Laser processing method and laser processing apparatus
US10792759B2 (en) 2014-02-28 2020-10-06 Mitsubishi Heavy Industries, Ltd. Laser processing method and laser processing apparatus
JP2020073290A (en) * 2016-03-29 2020-05-14 三菱重工業株式会社 Laser surface treatment device
JP2017225994A (en) * 2016-06-22 2017-12-28 三菱重工業株式会社 Laser processing device and laser processing method
WO2017221931A1 (en) * 2016-06-22 2017-12-28 三菱重工業株式会社 Laser machining device and laser machining method
US11117221B2 (en) 2016-06-22 2021-09-14 Mitsubishi Heavy Industries, Ltd. Laser machining device and laser machining method
CN109822237A (en) * 2018-12-26 2019-05-31 惠州市金百泽电路科技有限公司 A kind of high out of roundness through-hole laser processing for ceramic circuit board
JP2023091835A (en) * 2021-12-21 2023-07-03 住友金属鉱山株式会社 Manufacturing method of metal roll
JP7290239B1 (en) * 2023-04-21 2023-06-13 株式会社EX-Fusion LASER CUTTING METHOD AND LASER CUTTING APPARATUS

Similar Documents

Publication Publication Date Title
JP4833773B2 (en) Micro drilling method
JP2008055478A (en) Method for finishing process
JP5432285B2 (en) Method of laser processing glass into a shape with chamfered edges
JP6554670B2 (en) Laser welding method
US6852946B2 (en) Laser-induced plasma micromachining
JP5276699B2 (en) Laser processing method and laser processing apparatus for piercing
CN105980100B (en) By the method and apparatus for the workpiece that the laser pulse spot welding of green wavelength is especially made of copper, copper alloy, gold or jewellery material
JPWO2016059730A1 (en) Laser processing method and laser processing apparatus
JP2014073526A (en) Optical system and laser beam machining apparatus
JP2011098384A (en) Laser beam machining method
WO2015008482A1 (en) Laser processing device, laser processing method, and laser oscillation device
JP2010274328A (en) Laser beam machining method and laser beam machining device
US20210001427A1 (en) Laser drilling and machining enhancement using gated cw and short pulsed lasers
JP2008515643A (en) Hard material processing apparatus and processing method using laser having irradiance in the range of 106 to 109 Wcm-2 and repetition rate in the range of 10 to 50 kHz
JP2004154813A (en) Laser beam machining method and device
JP5873978B2 (en) Laser processing method and nozzle manufacturing method
JPH11267867A (en) Method and device for laser processing
JP2007075878A (en) Laser beam machining method
JP2006159747A (en) Laser beam machining method and its apparatus
JP2000237886A (en) Laser beam piercing method
JP2005021964A (en) Laser beam ablation processing method and device therefor
JP2007125576A (en) Method and device for fine welding by laser beam
JP2015199114A (en) Laser processing device and laser processing method
JP6808130B2 (en) Laser processing method and laser processing equipment
JP5127495B2 (en) Laser processing method and laser processing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025