JP2008055388A - Electric deionized water making apparatus and its operation method - Google Patents

Electric deionized water making apparatus and its operation method Download PDF

Info

Publication number
JP2008055388A
JP2008055388A JP2006238671A JP2006238671A JP2008055388A JP 2008055388 A JP2008055388 A JP 2008055388A JP 2006238671 A JP2006238671 A JP 2006238671A JP 2006238671 A JP2006238671 A JP 2006238671A JP 2008055388 A JP2008055388 A JP 2008055388A
Authority
JP
Japan
Prior art keywords
water
exchange membrane
treated
ion exchanger
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006238671A
Other languages
Japanese (ja)
Inventor
Naoyuki Tajima
直幸 田島
Koji Yamanaka
弘次 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2006238671A priority Critical patent/JP2008055388A/en
Publication of JP2008055388A publication Critical patent/JP2008055388A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric deionized water making apparatus capable of preventing the deflected flow or the contact failure with an ion exchange membrane caused by the expansion or shrinkage accompanying ion exchange reaction, requiring no high voltage and enhanced in the utilization efficiency of a current, and its operation method. <P>SOLUTION: The electric deionized water making apparatus internally houses a vertical desalting chamber demarcated by an anion exchange membrane on an anode side and a cation exchange film on a cathode side, water to be treated is passed through the ion exchanger in the desalting chamber, a DC electric field is made to act in the direction vertical to the flow of the water to be treated through both ion exchange films, and ions in the water to be treated are electrically excluded into the concentrated water flowing to the outside of both ion exchange films. The ion exchanger is a mixed ion exchanger of a monolithic organic porous ion exchanger and a granular ion exchange resin. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、脱イオン水を用いる半導体製造工業、製薬工業、食品工業、発電所、研究所等の各種の工業あるいは糖液、ジュース、ワイン等の製造等で利用される電気式脱イオン水製造装置及び運転方法に関するものである。   The present invention relates to the production of electric deionized water used in various industries such as semiconductor manufacturing industry, pharmaceutical industry, food industry, power plant, laboratory, etc. using deionized water, or the production of sugar liquid, juice, wine, etc. The present invention relates to an apparatus and an operation method.

従来の電気式脱イオン水製造装置は、基本的には陽イオン交換膜と陰イオン交換膜で形成される隙間に、イオン交換体として粒状アニオン交換樹脂と粒状カチオン交換樹脂の混合イオン交換樹脂層を充填して脱塩室とし、当該イオン交換樹脂層に被処理水を通過させるとともに、前記両イオン交換膜を介して被処理水の流れに対して垂直方向に直流電流を作用させて、両イオン交換膜の外側に流れている濃縮水中に被処理水中のイオンを電気的に排除しながら脱イオン水を製造するものである。この電気式脱イオン水製造装置の脱塩室は陽イオン交換膜と陰イオン交換膜で形成される隙間が狭く、被処理水の流れ方向に長いため、縦型脱塩室と称されることがある。   A conventional electric deionized water production apparatus basically has a mixed ion exchange resin layer of a granular anion exchange resin and a granular cation exchange resin as an ion exchanger in a gap formed by a cation exchange membrane and an anion exchange membrane. The desalting chamber is filled with water to pass the water to be treated through the ion exchange resin layer, and a direct current is applied to the water to be treated through the both ion exchange membranes in the vertical direction to Deionized water is produced while electrically removing ions in the water to be treated from the concentrated water flowing outside the ion exchange membrane. The demineralization chamber of this electric deionized water production apparatus is called a vertical demineralization chamber because the gap formed by the cation exchange membrane and the anion exchange membrane is narrow and long in the flow direction of the water to be treated. There is.

一方、特開2003−334560号公報には、モノリス状の有機多孔質イオン交換体(以下、単に「モノリス」とも言う)を充填した脱塩室を有し、該脱塩室に通水し、水中のイオン性不純物を除去して脱イオン水を製造すると共に、該脱塩室に直流電場を印加して、該有機多孔質イオン交換体に吸着したイオン性不純物を系外に排除する電気式脱イオン水製造装置において、該直流電場の印加は、排除されるイオンが該有機多孔質イオン交換体内における通水方向に対して逆向きに泳動するように行う電気式脱イオン水製造装置が開示されている。特開2003−334560号公報記載の電気式脱イオン水製造装置の脱塩室は幅寸法が大きく採れ且つ脱塩室充填材として3次元網目構造を有するモノリスを用いるため、直流電流を被処理水の流れに対して垂直方向に印加する従前の電気式脱イオン水製造装置に比べて、装置構造が簡略であり材料費、加工費、組み立て費を軽減させることができる。また、モノリスは粒状イオン交換樹脂と比較して充填層全体が連続体となっているため、イオンの吸脱着が容易であり、吸着したイオン性不純物の移動を速めて吸着イオンの排除を容易にし、炭酸カルシウムや水酸化マグネシウム等のスケール発生の可能性が全くないなど顕著な効果を有している。   On the other hand, JP-A-2003-334560 has a desalting chamber filled with a monolithic organic porous ion exchanger (hereinafter also simply referred to as “monolith”), and water is passed through the desalting chamber. An electric system that removes ionic impurities in water to produce deionized water and applies a DC electric field to the desalting chamber to exclude ionic impurities adsorbed on the organic porous ion exchanger out of the system In the deionized water production apparatus, there is disclosed an electric deionized water production apparatus in which the application of the DC electric field is performed such that the excluded ions migrate in a direction opposite to the water flow direction in the organic porous ion exchanger. Has been. The demineralization chamber of the electric deionized water production apparatus described in Japanese Patent Application Laid-Open No. 2003-334560 has a large width and uses a monolith having a three-dimensional network structure as the demineralization chamber filling material. Compared with a conventional electric deionized water production apparatus that applies in a direction perpendicular to the flow of the apparatus, the structure of the apparatus is simple and material costs, processing costs, and assembly costs can be reduced. In addition, the monolith has a continuous packed bed as compared with the granular ion exchange resin, so that the adsorption and desorption of ions is easy, and the movement of adsorbed ionic impurities is accelerated to facilitate the removal of adsorbed ions. In addition, there is a remarkable effect that there is no possibility of generation of scales such as calcium carbonate and magnesium hydroxide.

また、特開2006−15260号公報には、モノリスと粒状イオン交換樹脂の混合体を充填した脱塩室に、直流電場を、排除されるイオンが該イオン交換体内における通水方向に対して同一方向又は逆方向に泳動するように印加して、該イオン交換体に吸着したイオン性不純物を系外に排除する電気式脱イオン水製造装置が開示されている。この電気式脱イオン水製造装置によれば、モノリスのイオン交換反応由来の膨張収縮とは無関係な物理的な伸縮性による緩衝作用により、イオン交換反応に伴う膨張、収縮による片流れやイオン交換膜との接触不良を防止できる。この電気式脱イオン水製造装置の脱塩室は、被処理水の流れ方向である両側のイオン交換膜で形成される幅寸法が長いため、横型脱塩室と称されることがある。
特開2003−334560号公報 特開2006−15260号公報
Japanese Patent Application Laid-Open No. 2006-15260 discloses a desalting chamber filled with a mixture of a monolith and a granular ion exchange resin, with a DC electric field, and the ions to be excluded are the same in the direction of water flow in the ion exchanger. An electric deionized water production apparatus is disclosed in which ionic impurities adsorbed on the ion exchanger are excluded from the system by being applied so as to migrate in the direction or in the reverse direction. According to this electric deionized water production apparatus, the buffering action due to the physical elasticity that is independent of the expansion and contraction derived from the ion exchange reaction of the monolith, and the single flow or the ion exchange membrane due to the expansion and contraction associated with the ion exchange reaction. Can prevent poor contact. The demineralization chamber of this electric deionized water production apparatus is sometimes referred to as a horizontal demineralization chamber because of the long width formed by the ion exchange membranes on both sides in the flow direction of the water to be treated.
JP 2003-334560 A JP 2006-15260 A

しかしながら、特開2006−15260号公報には、モノリスと粒状イオン交換樹脂の混合体を、縦型脱塩室へ適用することは記載されていない。また、横型脱塩室を内包する電気式脱イオン水製造装置は、1つのセルが厚くなり電気抵抗が高い、一つの脱塩室の極間距離が長く電圧が高い、積層できないため電流の利用効率が劣るという装置構造に起因した問題がある。また、モノリスと粒状イオン交換樹脂の混合体を横型脱塩室に適用する際、モノリスとして両性イオンモノリスを使用すると、もともと高い電圧が必要な構造に加えて、両性イオンモノリスに由来する電気抵抗の高さから、更に高い電圧を必要とし、実用上使用し得ないという問題があった。   However, Japanese Patent Application Laid-Open No. 2006-15260 does not describe that a mixture of a monolith and a granular ion exchange resin is applied to a vertical desalting chamber. In addition, the electric deionized water production apparatus that encloses the horizontal demineralization chamber uses a current because a single cell is thick and has high electrical resistance, the distance between the poles of one demineralization chamber is long and the voltage is high, and stacking is not possible. There is a problem due to the device structure that the efficiency is inferior. When a mixture of monolith and granular ion exchange resin is applied to a horizontal desalination chamber, if a zwitterionic monolith is used as the monolith, in addition to the structure that originally required a high voltage, the electrical resistance derived from the zwitterionic monolith can be reduced. From the height, there is a problem that a higher voltage is required and it cannot be used practically.

従って、本発明の目的は、イオン交換反応に伴う膨張、収縮による片流れやイオン交換膜との接触不良を防止できると共に、高い電圧を必要とせず、電流の利用効率が高い電気式脱イオン水製造装置及びその運転方法を提供することにある。また、本発明の他の目的は、上記目的に加えて更に、脱塩室ひとつでイオン交換体充填高さを低くでき、且つカチオンとアニオンの除去を可能にする電気式脱イオン水製造装置及びその運転方法を提供することにある。   Accordingly, the object of the present invention is to prevent the occurrence of uniflow due to expansion and contraction associated with ion exchange reactions and poor contact with the ion exchange membrane, and does not require a high voltage and has high current utilization efficiency. It is to provide an apparatus and a method for operating the apparatus. In addition to the above object, another object of the present invention is to provide an electric deionized water production apparatus capable of reducing the ion exchanger filling height with a single desalting chamber and removing cations and anions. It is to provide a driving method.

かかる実状において、本発明者らは鋭意検討を行った結果、縦型脱塩室を内包する電気式脱イオン水製造装置において、該脱塩室に充填されるイオン交換体を、モノリス状有機多孔質イオン交換体と粒状イオン交換樹脂の混合イオン交換体とすれば、イオン交換反応に伴う膨張、収縮による片流れやイオン交換膜との接触不良を防止できると共に、高い電圧を必要とせず、電流の利用効率が高まること、ひとつの脱塩室に例えば、被処理水流入側から流出側に向けて、粒状アニオン交換樹脂と両性イオンモノリスをこの順序で充填した場合、印加電圧をそれほど高くすることなく、脱塩室ひとつでイオン交換体充填高さを低くでき、且つカチオンとアニオンの除去ができること、などを見出し、本発明を完成するに至った。   In the actual situation, as a result of intensive studies, the present inventors have determined that the ion exchanger filled in the demineralization chamber is a monolithic organic porous material in an electric deionized water production apparatus including a vertical demineralization chamber. If a mixed ion exchanger of a porous ion exchanger and a granular ion exchange resin is used, it is possible to prevent a single flow due to expansion and contraction due to an ion exchange reaction and contact failure with an ion exchange membrane, and a high voltage is not required. Increased utilization efficiency, for example, when filling a single desalination chamber with the granular anion exchange resin and zwitterionic monolith in this order from the treated water inflow side to the outflow side, without increasing the applied voltage so much The present inventors have found that the ion exchanger filling height can be lowered with a single desalting chamber and that cations and anions can be removed, and the present invention has been completed.

すなわち、本発明は、陽極側がアニオン交換膜で区画され陰極側がカチオン交換膜で区画されるイオン交換体が充填される脱塩室を内包し、該イオン交換体に被処理水を通過させると共に、該両イオン交換膜を介して被処理水の流れに対して垂直方向に直流電場を作用させて、該両イオン交換膜の外側に流れている濃縮水中に被処理水中のイオンを電気的に排除する電気式脱イオン水製造装置において、該イオン交換体が、モノリス状有機多孔質イオン交換体と粒状イオン交換樹脂の混合イオン交換体であることを特徴とする電気式脱イオン水製造装置を提供するものである。   That is, the present invention includes a desalting chamber filled with an ion exchanger that is partitioned by an anion exchange membrane on the anode side and partitioned by a cation exchange membrane on the cathode side, and allows water to be treated to pass through the ion exchanger. A DC electric field is applied in a direction perpendicular to the flow of the water to be treated through both ion exchange membranes to electrically exclude ions in the water to be treated in the concentrated water flowing outside the ion exchange membranes. An electric deionized water production apparatus is characterized in that the ion exchanger is a mixed ion exchanger of a monolithic organic porous ion exchanger and a granular ion exchange resin. To do.

また、本発明は、該アニオン交換膜と該カチオン交換膜の間に更に中間イオン交換膜を配設して、該アニオン交換膜と該中間イオン交換膜で区画される第1イオン交換体が充填される第1小脱塩室と該中間イオン交換膜と該カチオン交換膜で区画される第2イオン交換体が充填される第2小脱塩室を形成し、該第1小脱塩室と該第2小脱塩室に被処理水をこの順序で直列に通過させるか、または該第2小脱塩室と該第1小脱塩室に被処理水をこの順序で直列に通過させると共に、該イオン交換膜を介して被処理水の流れに対して垂直方向に直流電場を作用させて、該アニオン交換膜と該カチオン交換膜の外側に流れている濃縮水中に被処理水中のイオンを電気的に排除する電気式脱イオン水製造装置において、該イオン交換体が、モノリス状有機多孔質イオン交換体と粒状イオン交換樹脂の混合イオン交換体であることを特徴とする電気式脱イオン水製造装置を提供するものである。   In the present invention, an intermediate ion exchange membrane is further disposed between the anion exchange membrane and the cation exchange membrane, and the first ion exchanger partitioned by the anion exchange membrane and the intermediate ion exchange membrane is filled. Forming a second small desalting chamber filled with a second ion exchanger partitioned by the first small desalting chamber, the intermediate ion exchange membrane and the cation exchange membrane, and The treated water is passed in series in this order through the second small desalting chamber, or the treated water is passed in series in this order through the second small desalting chamber and the first small desalting chamber. A DC electric field is applied in a direction perpendicular to the flow of the water to be treated through the ion exchange membrane, and ions in the water to be treated are concentrated in the concentrated water flowing outside the anion exchange membrane and the cation exchange membrane. In an electrically deionized water production apparatus for electrical exclusion, the ion exchanger is monolithic. There is provided an electrodeionization water producing apparatus, characterized in that a mixed ion exchanger of the machine porous ion exchanger and the ion exchange resin particles.

また、本発明は、陽極側がアニオン交換膜で区画され陰極側がカチオン交換膜で区画されるモノリス状有機多孔質イオン交換体と粒状イオン交換樹脂の混合イオン交換体が充填される脱塩室を内包する電気式脱イオン水製造装置を用い、該イオン交換体に被処理水を通過させると共に、該両イオン交換膜を介して被処理水の流れに対して垂直方向に直流電場を作用させて、該両イオン交換膜の外側に流れている濃縮水中に被処理水中のイオンを電気的に排除することを特徴とする電気式脱イオン水製造装置の運転方法を提供するものである。   The present invention also includes a desalting chamber filled with a mixed ion exchanger of a monolithic organic porous ion exchanger and a granular ion exchange resin in which the anode side is partitioned by an anion exchange membrane and the cathode side is partitioned by a cation exchange membrane. Using the electric deionized water production apparatus, the treated water is passed through the ion exchanger, and a DC electric field is applied in a direction perpendicular to the flow of treated water through the both ion exchange membranes. It is an object of the present invention to provide an operating method of an electric deionized water production apparatus, wherein ions in the water to be treated are electrically excluded from the concentrated water flowing outside the ion exchange membranes.

また、本発明は、陽極側のアニオン交換膜と陰極側のカチオン交換膜と該アニオン交換膜と該カチオン交換膜の間に位置する中間イオン交換膜とを有し、該アニオン交換膜と該中間イオン交換膜で形成される隙間にモノリス状有機多孔質イオン交換体と粒状イオン交換樹脂の第1混合イオン交換体が充填される第1小脱塩室と該中間イオン交換膜と該カチオン交換膜で形成される隙間にモノリス状有機多孔質イオン交換体と粒状イオン交換樹脂の第2混合イオン交換体が充填される第2小脱塩室を内包する電気式脱イオン水製造装置を用い、該第1小脱塩室と該第2小脱塩室に被処理水をこの順序で直列に通過させるか、または該第2小脱塩室と該第1小脱塩室に被処理水をこの順序で直列に通過させると共に、該アニオン交換膜又は該カチオン交換膜を介して被処理水の流れに対して垂直方向に直流電場を作用させて、該アニオン交換膜と該カチオン交換膜の外側に流れている濃縮水中に被処理水中のイオンを電気的に排除することを特徴とする電気式脱イオン水製造装置の運転方法を提供するものである。   The present invention also includes an anion exchange membrane on the anode side, a cation exchange membrane on the cathode side, an anion exchange membrane located between the anion exchange membrane and the cation exchange membrane, and the anion exchange membrane and the intermediate A first small desalting chamber in which a monolithic organic porous ion exchanger and a first mixed ion exchanger of granular ion exchange resin are filled in a gap formed by the ion exchange membrane, the intermediate ion exchange membrane, and the cation exchange membrane Using an electric deionized water production apparatus including a second small desalting chamber in which a monolithic organic porous ion exchanger and a second mixed ion exchanger of a granular ion exchange resin are filled in a gap formed by The treated water is passed in series in this order through the first small desalting chamber and the second small desalting chamber, or the treated water is passed through the second small desalting chamber and the first small desalting chamber. The anion exchange membrane or the click A DC electric field is applied in a direction perpendicular to the flow of the water to be treated through the ion exchange membrane, and the ions in the water to be treated are electrically discharged into the concentrated water flowing outside the anion exchange membrane and the cation exchange membrane. The present invention provides an operation method of an electric deionized water production apparatus characterized in that it is excluded.

本発明によれば、縦型脱塩室に充填されるイオン交換体の一部にモノリスを使用するため、(1)モノリス及び粒状イオン交換樹脂の膨潤、収縮反応による体積変化を、モノリスの物理的な伸縮性により緩衝し、該脱塩室内の充填状態を均一に保つことができる。また、イオン交換反応に伴う膨張、収縮による片流れやイオン交換膜との接触不良を防止できると共に、高い電圧を必要とせず、電流の利用効率が高まる。また、(2)粒状イオン交換樹脂に比べて、モノリスはイオンの移動速度が速くイオン交換体長さが短いため、処理水流出口近傍に配置されたモノリスは希薄濃度域での微量イオンの漏れを抑えて高純度処理水を得ることができる。このため、(3)イオン交換体充填高さを低くでき、装置をコンパクト化できるか、あるいは(4)イオン交換体充填高さを保ったまま、大流量処理が可能となる。また、(5)脱塩室の被処理水流入口近傍にモノリスを配置することで、脱陽イオン室ではカルシウム等の硬度成分の排除速度が向上し、脱陰イオン室では炭酸やシリカ等の陰イオンの排除速度が向上する。また、(6)ひとつの脱塩室に例えば、被処理水流入側から流出側に向けて、粒状アニオン交換樹脂と両性イオンモノリスをこの順序で充填した場合、横型脱塩室に比べて遥かに低い印加電圧で、カチオンとアニオンの除去ができ、特に炭酸比率の高い逆浸透膜処理水を、高度に精製された純水とすることができる。   According to the present invention, since the monolith is used as a part of the ion exchanger filled in the vertical desalination chamber, (1) volume change due to swelling and shrinkage reaction of the monolith and the granular ion exchange resin is performed. It can be buffered by a general stretchability, and the filling state in the desalting chamber can be kept uniform. In addition, it is possible to prevent a single flow due to expansion and contraction associated with the ion exchange reaction and poor contact with the ion exchange membrane, and a high voltage is not required, and the current use efficiency is increased. (2) Compared to granular ion exchange resins, monoliths have faster ion migration speed and shorter ion exchanger lengths, so monoliths placed near the treated water outlet suppress leakage of trace ions in dilute concentrations. High-purity treated water can be obtained. For this reason, (3) the ion exchanger filling height can be lowered and the apparatus can be made compact, or (4) a large flow rate treatment can be performed while maintaining the ion exchanger filling height. In addition, (5) by disposing a monolith in the vicinity of the inlet of the water to be treated in the demineralization chamber, the removal rate of hardness components such as calcium is improved in the decation chamber, and in the deanion chamber, carbonic acid, silica, and the like are removed. Ion elimination rate is improved. In addition, (6) when one desalination chamber is filled with the granular anion exchange resin and the zwitterion monolith in this order from the treated water inflow side to the outflow side, for example, it is far more than the horizontal desalination chamber. Cations and anions can be removed with a low applied voltage, and reverse osmosis membrane-treated water having a particularly high carbonic acid ratio can be made highly purified water.

本発明の電気式脱イオン水製造装置は、陽極側がアニオン交換膜で区画され陰極側がカチオン交換膜で区画されるイオン交換体が充填される脱塩室を内包し、該イオン交換体に被処理水を通過させると共に、該両イオン交換膜を介して被処理水の流れに対して垂直方向に直流電場を作用させて、該両イオン交換膜の外側に流れている濃縮水中に被処理水中のイオンを電気的に排除する装置(第1の装置)、又は該アニオン交換膜と該カチオン交換膜の間に更に中間イオン交換膜を配設して、該アニオン交換膜と該中間イオン交換膜で区画される第1イオン交換体が充填される第1小脱塩室と該中間イオン交換膜と該カチオン交換膜で区画される第2イオン交換体が充填される第2小脱塩室を形成し、該第1小脱塩室と該第2小脱塩室に被処理水をこの順序で直列に通過させるか、または該第2小脱塩室と該第1小脱塩室に被処理水をこの順序で直列に通過させると共に、該イオン交換膜を介して被処理水の流れに対して垂直方向に直流電場を作用させて、該アニオン交換膜と該カチオン交換膜の外側に流れている濃縮水中に被処理水中のイオンを電気的に排除する装置(第2の装置)が挙げられる。第1の装置の基本構造は、例えば、特開2001−239270号公報において従来例である図5に示されたものと、第2の装置の基本構造は、特開2001−239270号公報に記載の発明に係る装置とそれぞれ同じである。   The electric deionized water production apparatus of the present invention includes a demineralization chamber filled with an ion exchanger in which the anode side is partitioned by an anion exchange membrane and the cathode side is partitioned by a cation exchange membrane, and the ion exchanger is treated. While allowing water to pass through, a direct current electric field is applied to the flow of water to be treated through both ion exchange membranes in a direction perpendicular to the flow of water to be treated. An apparatus for electrically removing ions (first apparatus), or an intermediate ion exchange membrane is further provided between the anion exchange membrane and the cation exchange membrane, and the anion exchange membrane and the intermediate ion exchange membrane Forming a first small desalting chamber filled with a partitioned first ion exchanger and a second small desalting chamber filled with a second ion exchanger partitioned by the intermediate ion exchange membrane and the cation exchange membrane; The first small desalting chamber and the second small desalting chamber are treated. Are passed in series in this order, or treated water is passed in series in this order through the second small desalting chamber and the first small desalting chamber, and the treated water is passed through the ion exchange membrane. A device (second device) for electrically removing ions in the water to be treated in the concentrated water flowing outside the anion exchange membrane and the cation exchange membrane by applying a direct current electric field in a direction perpendicular to the flow of water ). The basic structure of the first device is, for example, that shown in FIG. 5, which is a conventional example in JP-A-2001-239270, and the basic structure of the second device is described in JP-A-2001-239270. This is the same as the device according to the invention.

モノリスとしては、特に制限されず、特開2003−334560号公報記載のものが挙げられ、気泡状のマクロポア同士が重なり合い、この重なる部分が共通の開口となる平均径が1〜1000μmのメソポアを有し、該マクロポアと該メソポアで形成される気泡内が流路となる連続気泡構造体であって、全細孔容積が1ml/g〜50ml/gであり、イオン交換基が均一に分布され、イオン交換容量が0.5mg当量/g乾燥多孔質体以上である3次元網目構造のものが使用できる。粒状イオン交換樹脂としては、特に制限されず、水処理に使用される公知のイオン交換樹脂が挙げられる。当該モノリスの製造方法は、特開2003−334560号公報に開示されている。   The monolith is not particularly limited, and examples thereof include those described in JP-A No. 2003-334560, which have mesopores having an average diameter of 1 to 1000 μm in which bubble-shaped macropores overlap each other and the overlapping portions form a common opening. In addition, an open cell structure in which bubbles formed by the macropores and the mesopores are flow paths, the total pore volume is 1 ml / g to 50 ml / g, and ion exchange groups are uniformly distributed, A three-dimensional network structure having an ion exchange capacity of 0.5 mg equivalent / g or more of a dry porous body can be used. The particulate ion exchange resin is not particularly limited, and examples thereof include known ion exchange resins used for water treatment. The manufacturing method of the monolith is disclosed in Japanese Patent Application Laid-Open No. 2003-334560.

モノリスと粒状イオン交換樹脂の混合イオン交換体としては、通水方向に対して、粒状イオン交換樹脂とモノリスをこの順序で積層する2層構造であるか、又は該積層構造の繰り返しの3層又は4層構造以上のもの、あるいは通水方向に対して、モノリスと粒状イオン交換樹脂をこの順序で積層する2層構造であるか、又は該積層構造の繰り返しの3層又は4層構造のものが挙げられる。モノリスと粒状イオン交換樹脂の積層体は、モノリスがスポンジ状の一体構造物であるため、粒状イオン交換樹脂と混ざることがなく、室内において通水方向に対して垂直方向に延設される仕切り部材を用いなくとも相状に充填できる。積層体におけるモノリス相と粒状イオン交換樹脂相の体積割合としては、特に制限されず、イオン交換基の種類、被処理水の処理目的などにより適宜決定される。   The mixed ion exchanger of the monolith and the granular ion exchange resin has a two-layer structure in which the granular ion exchange resin and the monolith are laminated in this order with respect to the direction of water flow, or three layers in which the laminated structure is repeated. A four-layer structure or more, or a two-layer structure in which a monolith and a granular ion exchange resin are laminated in this order with respect to the direction of water flow, or a three-layer or four-layer structure in which the laminated structure is repeated Can be mentioned. Since the monolith is a sponge-like integrated structure, the monolith and the granular ion exchange resin laminate are not mixed with the granular ion exchange resin and extend in a direction perpendicular to the water flow direction in the room. It can be filled in phase without using. The volume ratio of the monolith phase and the granular ion exchange resin phase in the laminate is not particularly limited, and is appropriately determined depending on the type of ion exchange group, the purpose of treating the water to be treated, and the like.

モノリスとしては、モノリス状有機多孔質カチオン交換体(カチオンモノリス)、モノリス状有機多孔質アニオン交換体(アニオンモノリス)及びモノリス状有機多孔質両性イオン交換体(両性モノリス)が挙げられ、粒状イオン交換樹脂としては、粒状カチオン交換樹脂、粒状アニオン交換樹脂及び粒状カチオン交換樹脂と粒状アニオン交換樹脂の混合樹脂(粒状ミックス交換樹脂)が挙げられる。従って、脱塩室がモノリスと粒状イオン交換樹脂の2層の積層構造の場合、上記6種類で、本願発明のモノリスと粒状イオン交換樹脂の組合せは18通りの積層形態を採ることができる。   Monoliths include monolithic organic porous cation exchangers (cationic monoliths), monolithic organic porous anion exchangers (anionic monoliths) and monolithic organic porous amphoteric ion exchangers (amphoteric monoliths), granular ion exchange Examples of the resin include granular cation exchange resin, granular anion exchange resin, and mixed resin (granular mix exchange resin) of granular cation exchange resin and granular anion exchange resin. Therefore, when the desalting chamber has a two-layer laminated structure of a monolith and a granular ion exchange resin, the above-mentioned six types of combinations of the monolith and the granular ion exchange resin of the present invention can take 18 laminated forms.

モノリスとイオン交換樹脂の混合イオン交換体のイオン形としては、特に制限されないが、塩形と再生形の混合イオン交換体が、イオン交換反応に伴う膨潤、収縮を緩和できる点で好ましい。なお、本発明においては、モノリスとイオン交換樹脂の混合イオン交換体による当該膨潤、収縮緩和効果のみでは十分ではなく、これにモノリスの物理的な伸縮効果が加わって、脱塩室内の密着性が確保できる。   The ion form of the mixed ion exchanger of monolith and ion exchange resin is not particularly limited, but a salt form and a regenerated mixed ion exchanger are preferable in that they can alleviate swelling and shrinkage associated with the ion exchange reaction. In the present invention, the swelling / shrinkage relaxation effect of the mixed ion exchanger of the monolith and the ion exchange resin is not sufficient, and the physical expansion / contraction effect of the monolith is added to the adhesiveness in the desalting chamber. It can be secured.

脱塩室が被処理水中のカチオンを除去するカチオンセルの場合、あるいは脱塩室が被処理水中のアニオンを除去するアニオンセルの場合、被処理水流入側から順に粒状イオン交換樹脂→モノリスの積層構造、あるいは被処理水流入側から順にモノリス→粒状イオン交換樹脂の積層構造をとる。このうち、被処理水流入側から順に粒状イオン交換樹脂→モノリスの積層構造の場合、上記(1)〜(4)の効果を奏する。また、被処理水流入側から順にモノリス、粒状イオン交換樹脂の積層構造の場合、上記(1)、(5)及び(6)の効果を奏する。   When the desalting chamber is a cation cell that removes cations in the water to be treated, or when the desalting chamber is an anion cell that removes anions in the water to be treated, the granular ion exchange resin is sequentially stacked from the treated water inflow side to the monolith. The structure or the laminated structure of monolith → granular ion exchange resin is taken in order from the treated water inflow side. Among these, in the case of the laminated structure of the granular ion exchange resin → monolith in order from the treated water inflow side, the effects (1) to (4) described above are exhibited. Moreover, in the case of the laminated structure of the monolith and the granular ion exchange resin in order from the treated water inflow side, the effects (1), (5), and (6) are achieved.

ひとつの脱塩室が被処理水中のカチオンとアニオンを共に除去する両性セルの場合、粒状カチオン交換樹脂とアニオンモノリスの組み合わせ、又は粒状アニオン交換樹脂とカチオンモノリスの組み合わせを採る第1の形態、両性モノリスと粒状イオン交換樹脂の組合せを採る第2の形態、被処理水流入側から順に単一極性のモノリス若しくは単一極性の粒状イオン交換樹脂と、両性粒状ミックス交換樹脂若しくは両性モノリスの組合せを採る第3の形態が挙げられる。この中、第1の装置において、脱塩室の被処理水流入側から流出側に向けて、粒状アニオン交換樹脂と両性イオンモノリスをこの順序で充填した場合、あるいは第2の装置において、第1小脱塩室と第2小脱塩室に被処理水をこの順序で直列に通過させる装置形態において、第1小脱塩室に、被処理水流入側から順に、粒状アニオン交換樹脂、アニオンモノリスの積層構造、第2小脱塩室に、第1小脱塩室処理水流入側から順に、粒状ミックス交換樹脂、両性モノリスの積層構造の場合、共に、横型脱塩室に比べて遥かに低い印加電圧で、カチオンとアニオンの除去ができ、特に炭酸比率の高い逆浸透膜処理水を、高度に精製された純水とすることができる。なお、本発明において、第2装置におけるひとつの脱塩室とは、第1小脱塩室又は第2小脱塩室を言う。   In the case of an amphoteric cell in which one desalting chamber removes both cations and anions in the water to be treated, a first form of amphoteric, which employs a combination of a granular cation exchange resin and an anionic monolith, or a combination of a granular anion exchange resin and a cation monolith A second form employing a combination of a monolith and a granular ion exchange resin, a combination of a monopolar monolith or a monopolar granular ion exchange resin and an amphoteric granular mix exchange resin or an amphoteric monolith in order from the treated water inflow side A third form is mentioned. Among these, in the first apparatus, when the granular anion exchange resin and the zwitterionic monolith are filled in this order from the treated water inflow side to the outflow side of the desalination chamber, or in the second apparatus, In the apparatus configuration in which the water to be treated is passed in series in this order through the small desalting chamber and the second small desalting chamber, the granular anion exchange resin and the anion monolith are sequentially fed into the first small desalting chamber from the inflow side of the treated water. In the case of the laminated structure of the granular mix exchange resin and the amphoteric monolith in order from the first small desalination chamber treated water inflow side to the second small desalination chamber, both are much lower than the horizontal desalination chamber Cations and anions can be removed at an applied voltage, and reverse osmosis membrane treated water having a particularly high carbonic acid ratio can be made highly purified water. In the present invention, one desalting chamber in the second device refers to a first small desalting chamber or a second small desalting chamber.

本発明において、被処理水としては、脱イオン処理を目的とするものであり、濁質を含まないものであれば特に限定されないが、例えば、濁度1度程度以下の工業用水や市水、あるいは逆浸透膜処理水などを挙げることができる。   In the present invention, the water to be treated is intended for deionization treatment and is not particularly limited as long as it does not contain turbidity. For example, industrial water or city water having a turbidity of about 1 degree or less, Or a reverse osmosis membrane process water etc. can be mentioned.

本発明の電気式脱イオン水製造装置において、脱塩室を形成するセル枠内にモノリスと粒状イオン交換樹脂の混合イオン交換体を充填する方法としては、モノリスをセル枠よりやや大きいサイズにカットして、セル枠の所定の位置に押し込むように充填し、その後、モノリス以外の空間に粒状イオン交換樹脂を充填するのがよい。このように混合イオン交換体が充填された脱塩室は、粒状イオン交換樹脂が収縮しても、モノリスがスポンジ状に押し返して隙間を塞ぎ、一方、粒状イオン交換樹脂が膨張しても、モノリスがスポンジ状に縮んで吸収し、セル枠の破損やイオン交換膜の剥離を防ぐ。従って、セル内の混合イオン交換体の充填状態を常に一定に保ち、片流れや、電気抵抗及び電流の偏りを防ぐことができる。また、モノリスと粒状イオン交換樹脂を組み合わせることで、従来の縦型被処理水の通水方向に対して、垂直方向に延出するように配設されていた仕切り部材の設置を省略することができる。   In the electric deionized water production apparatus of the present invention, as a method of filling a mixed ion exchanger of monolith and granular ion exchange resin in a cell frame forming a desalination chamber, the monolith is cut to a size slightly larger than the cell frame. Then, it is preferable to fill the cell frame so as to push it into a predetermined position, and then fill the space other than the monolith with the granular ion exchange resin. In this way, the desalination chamber filled with the mixed ion exchanger has a monolith that pushes back into a sponge shape to close the gap even if the granular ion exchange resin contracts, and on the other hand, even if the granular ion exchange resin expands. Will shrink into a sponge and absorb, preventing damage to the cell frame and peeling of the ion exchange membrane. Therefore, the filling state of the mixed ion exchanger in the cell can always be kept constant, and single flow, electrical resistance, and current bias can be prevented. In addition, by combining the monolith and the granular ion exchange resin, it is possible to omit the installation of the partition member arranged to extend in the vertical direction with respect to the flow direction of the conventional vertical type water to be treated. it can.

本発明の電気式脱イオン水製造装置の運転方法としては、第1の装置を用い、該イオン交換体に被処理水を通過させると共に、該両イオン交換膜を介して被処理水の流れに対して垂直方向に直流電場を作用させて、該両イオン交換膜の外側に流れている濃縮水中に被処理水中のイオンを電気的に排除する方法、第2の装置を用い、該第1小脱塩室と該第2小脱塩室に被処理水をこの順序で直列に通過させるか、または該第2小脱塩室と該第1小脱塩室に被処理水をこの順序で直列に通過させると共に、該イオン交換膜を介して被処理水の流れに対して垂直方向に直流電場を作用させて、該アニオン交換膜と該カチオン交換膜の外側に流れている濃縮水中に被処理水中のイオンを電気的に排除する運転方法が挙げられる。   As an operating method of the electric deionized water production apparatus of the present invention, the first apparatus is used to pass the water to be treated through the ion exchanger and to the flow of the water to be treated through the both ion exchange membranes. On the other hand, by applying a DC electric field in the vertical direction to electrically exclude ions in the water to be treated from the concentrated water flowing outside the two ion exchange membranes, the second apparatus is used to The treated water is passed in series in this order through the desalting chamber and the second small desalting chamber, or the treated water is serially connected in this order to the second small desalting chamber and the first small desalting chamber. And is treated in the concentrated water flowing outside the anion exchange membrane and the cation exchange membrane by causing a direct current electric field to act perpendicularly to the flow of the treatment water through the ion exchange membrane. An operation method in which ions in water are electrically excluded can be mentioned.

次に、本発明の電気式脱イオン水製造装置及びその運転方法の一例を図1を参照して説明する。図1は本例の電気式脱イオン水製造装置の構造を示す模式図である。図1の電気式脱イオン水製造装置10は、カチオン交換膜1及びアニオン交換膜2を離間して交互に配置し、カチオン交換膜1とアニオン交換膜2で形成される空間内にひとつおきにイオン交換体を充填して脱塩室4とする。脱塩室4のそれぞれの隣に位置するアニオン交換膜2とカチオン交換膜1で形成されるイオン交換体を充填していない部分は濃縮水が流れる濃縮室5である。   Next, an example of the electric deionized water production apparatus and the operation method thereof according to the present invention will be described with reference to FIG. FIG. 1 is a schematic view showing the structure of the electric deionized water production apparatus of this example. In the electric deionized water production apparatus 10 of FIG. 1, the cation exchange membrane 1 and the anion exchange membrane 2 are alternately arranged apart from each other, and every other in the space formed by the cation exchange membrane 1 and the anion exchange membrane 2. An ion exchanger is filled to form a desalting chamber 4. A portion not filled with the ion exchanger formed by the anion exchange membrane 2 and the cation exchange membrane 1 located next to each of the desalting chambers 4 is a concentration chamber 5 through which concentrated water flows.

また、カチオン交換膜1とアニオン交換膜2とその内部には、通水方向に沿って、アニオン交換樹脂(AER)41と両性モノリス(K/AMo)42がこの順で2層に積層された脱塩モジュール40を形成する。脱塩モジュール40の複数個をその間に図では省略するスペーサーを挟んで併設した状態が図1に示されたものであり、併設した脱塩モジュール40の一端側に陰極8を配設すると共に、他端側に陽極7を配設する。なお、スペーサーを挟んだ位置が濃縮室5であり、両端の濃縮室5の両外側は、例えばイオン交換性のない単なる隔膜(仕切り膜)21を配設し、隔膜21で仕切られた両電極が接する部分をそれぞれ陰極室81及び陽極室71としている。   In addition, an anion exchange resin (AER) 41 and an amphoteric monolith (K / AMo) 42 were laminated in this order in the cation exchange membrane 1, the anion exchange membrane 2 and the inside thereof in the water flow direction. A desalting module 40 is formed. A state in which a plurality of desalting modules 40 are provided side by side with a spacer not shown in the figure is shown in FIG. 1, and a cathode 8 is disposed on one end side of the provided desalting module 40, An anode 7 is disposed on the other end side. In addition, the position which pinched | interposed the spacer is the concentration chamber 5, and both the electrodes separated by the diaphragm 21 are provided with a simple membrane (partition membrane) 21 having no ion exchange property, for example, on both outer sides of the concentration chambers 5 at both ends. The portions in contact with each other are defined as a cathode chamber 81 and an anode chamber 71, respectively.

次ぎに、電気式脱イオン水製造装置10によって、被処理水を処理し、処理水を製造するには、以下のように操作される。なお、被処理水は逆浸透膜透過水の場合について説明する。すなわち、陰極8と陽極7間に直流電流を通じ、また、電極室71、81に電極水を、濃縮室5に濃縮水をそれぞれ通水する。被処理水は、各脱塩室4を流下し、アニオン交換樹脂41の充填層を通過する際、逆浸透膜装置で除去し難い炭酸イオンやその他のアニオン成分が除かれ、流出側の両性モノリス42の充填層を通過する際、残りのアニオン成分とカチオン成分が除かれ、処理水が脱塩室から得られる。また、濃縮水は濃縮室5を流下し、両イオン交換膜を介して移動してくる不純物イオンを受け取り、不純物イオンを濃縮した濃縮水として濃縮室5から流出される。上記操作によって、逆浸透膜装置の透過水中の不純物イオンは電気的に除去され、高度に精製された処理水(純水)を得ることができる。従来の横型脱塩室を備える電気式脱イオン水製造装置の場合、モノリスとして両性イオンモノリスを使用すると、もともと高い電圧が必要な構造に加えて、両性イオンモノリスに由来する電気抵抗の高さから、更に高い電圧を必要とし、実用上使用することができないものであったが、本例の電気式脱イオン水製造装置10の運転方法によれば、横型脱塩室に比べて遥かに低い印加電圧で不純物イオンを除去でき、且つ上記(1)〜(4)の効果を奏する。   Next, in order to process treated water and produce treated water by the electric deionized water production apparatus 10, the following operations are performed. In addition, the to-be-processed water demonstrates the case of reverse osmosis membrane permeated water. That is, a direct current is passed between the cathode 8 and the anode 7, electrode water is passed through the electrode chambers 71 and 81, and concentrated water is passed through the concentration chamber 5. When the water to be treated flows down each desalting chamber 4 and passes through the packed bed of anion exchange resin 41, carbonate ions and other anion components that are difficult to remove by the reverse osmosis membrane device are removed, and the amphoteric monolith on the outflow side is removed. When passing through the 42 packed bed, the remaining anion components and cation components are removed and treated water is obtained from the desalting chamber. The concentrated water flows down the concentration chamber 5, receives impurity ions moving through both ion exchange membranes, and flows out from the concentration chamber 5 as concentrated water in which the impurity ions are concentrated. By the above operation, impurity ions in the permeated water of the reverse osmosis membrane device are electrically removed, and highly purified treated water (pure water) can be obtained. In the case of an electric deionized water production apparatus equipped with a conventional horizontal demineralization chamber, if a zwitterionic monolith is used as the monolith, in addition to the structure that originally required a high voltage, the high electrical resistance derived from the zwitterionic monolith Furthermore, although a higher voltage was required and could not be used practically, according to the operation method of the electric deionized water production apparatus 10 of this example, the application was much lower than that of the horizontal demineralization chamber. Impurity ions can be removed by voltage, and the effects (1) to (4) are achieved.

次に、本発明の電気式脱イオン水製造装置及びその運転方法の他の例を図2を参照して説明する。図2は他の例の電気式脱イオン水製造装置の構造を示す模式図である。図2において、図1と同一構成要素には同一符号を付して、その説明を省略し、異なる点について主に説明する。すなわち、図2において、図1と異なる点は、脱塩室構造及び被処理水の流れ方向である。電気式脱イオン水製造装置10aの脱塩構造は、アニオン交換膜2とカチオン交換膜1の間に更に中間イオン交換膜9を配設して、アニオン交換膜2と中間イオン交換膜9で区画される第1イオン交換体が充填される第1小脱塩室4aと中間イオン交換膜9とカチオン交換膜1で区画される第2イオン交換体が充填される第2小脱塩室4bを形成したものである。なお、中間イオン交換膜9はカチオン交換膜である。   Next, another example of the electric deionized water production apparatus and the operation method thereof according to the present invention will be described with reference to FIG. FIG. 2 is a schematic view showing the structure of another example of an electrical deionized water production apparatus. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and different points will be mainly described. That is, FIG. 2 is different from FIG. 1 in the desalination chamber structure and the flow direction of the water to be treated. The demineralized structure of the electrical deionized water production apparatus 10a has an intermediate ion exchange membrane 9 disposed between the anion exchange membrane 2 and the cation exchange membrane 1, and is partitioned by the anion exchange membrane 2 and the intermediate ion exchange membrane 9. The first small desalting chamber 4a filled with the first ion exchanger to be prepared, the second small desalting chamber 4b filled with the second ion exchanger partitioned by the intermediate ion exchange membrane 9 and the cation exchange membrane 1 are provided. Formed. The intermediate ion exchange membrane 9 is a cation exchange membrane.

次ぎに、電気式脱イオン水製造装置10aによって、被処理水を処理し、処理水を製造するには、以下のように操作される。なお、被処理水は前記同様に、逆浸透膜装置の透過水の場合について説明する。すなわち、陰極8と陽極7間に直流電流を通じ、また、電極室71、81に電極水を、濃縮室5に濃縮水をそれぞれ通水する。被処理水は、第1小脱塩室4a及び第2小脱塩室4bの順序で直列に通過され、第1小脱塩室4aのアニオン交換樹脂41及びアニオンモノリス43の2層の充填層を通過する際、逆浸透膜装置で除去し難い炭酸イオンやその他のアニオン成分が除かれ、次いで第2小脱塩室4bのカチオン交換樹脂44及び両性モノリス42の2層の充填層を通過する際、残りのアニオン成分とカチオン成分が除かれ、処理水が脱塩室4から得られる。また、濃縮水は濃縮室5を流下し、アニオン交換膜2とカチオン交換膜1を介して移動してくる不純物イオンを受け取り、不純物イオンを濃縮した濃縮水として濃縮室5から流出される。上記操作によって、透過水の不純物イオンは電気的に除去され、処理水(純水)を得ることができる。電気式脱イオン水製造装置10aの運転方法によれば、電気式脱イオン水製造装置10と同様の効果を奏する。   Next, in order to process treated water and produce treated water by the electric deionized water production apparatus 10a, the following operations are performed. In addition, the to-be-processed water demonstrates the case of the permeated water of a reverse osmosis membrane apparatus similarly to the above. That is, a direct current is passed between the cathode 8 and the anode 7, electrode water is passed through the electrode chambers 71 and 81, and concentrated water is passed through the concentration chamber 5. The water to be treated is passed in series in the order of the first small desalting chamber 4a and the second small desalting chamber 4b, and two packed layers of the anion exchange resin 41 and the anion monolith 43 in the first small desalting chamber 4a. The carbonate ions and other anion components that are difficult to remove by the reverse osmosis membrane device are removed when passing through the water, and then pass through the two packed layers of the cation exchange resin 44 and the amphoteric monolith 42 in the second small desalting chamber 4b. At this time, the remaining anion component and cation component are removed, and treated water is obtained from the desalting chamber 4. The concentrated water flows down the concentration chamber 5, receives impurity ions moving through the anion exchange membrane 2 and the cation exchange membrane 1, and flows out from the concentration chamber 5 as concentrated water in which the impurity ions are concentrated. Through the above operation, the impurity ions of the permeated water are electrically removed, and treated water (pure water) can be obtained. According to the operation method of the electrical deionized water production apparatus 10a, the same effect as that of the electrical deionized water production apparatus 10 can be obtained.

次ぎに、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.

脱塩室構造が図1に示す電気式脱イオン水製造装置の縦型のもので、下記仕様の装置を用いて、図1に示したフローにて、被処理水を下記の運転条件により処理した。被処理水は逆浸透膜装置の透過水であり、炭酸濃度3.8mgCO/l、シリカ濃度500μgSiO/lである。この結果、運転時間1000時間における抵抗率17.9MΩ-cmの処理水を得るための、平均印加電圧は12V、電流は0.3Aであった。また、連続運転中、脱塩モジュール内を観察したところ、アニオン交換樹脂が膨張して両性モノリスが潰されており、混合イオン交換体は脱塩モジュール内に密着している状態であった。 The structure of the desalination chamber is the vertical type of the electric deionized water production apparatus shown in FIG. 1, and the water to be treated is treated under the following operating conditions in the flow shown in FIG. did. The water to be treated is the permeated water of the reverse osmosis membrane device, and has a carbonic acid concentration of 3.8 mg CO 2 / l and a silica concentration of 500 μg SiO 2 / l. As a result, the average applied voltage for obtaining treated water having a resistivity of 17.9 MΩ-cm at an operating time of 1000 hours was 12 V, and the current was 0.3 A. Further, when the inside of the desalting module was observed during continuous operation, the anion exchange resin expanded and the amphoteric monolith was crushed, and the mixed ion exchanger was in close contact with the desalting module.

(両性モノリス(K/AMo)の製造)
ビニルベンジルクロライド83ミリモル、スチレンスルホン酸エチル30ミリモル、ジビニルベンゼン13ミリモル、アゾビスイソブチロニトリル1.6ミリモル及びソルビタンモノオレエート2.25gを混合し、均一に溶解させた。次に、当該混合物を180mlの純水に添加し、500ml容量の円筒型容器に入れ、遊星式攪拌装置(VMX−360、EME社製)を用いて−0.08MPaの減圧下、公転回転数1800回転/分、自転回転数600回転/分で5分間攪拌し、油中水滴型エマルジョンを得た(油中水滴型エマルジョン形成工程)。乳化終了後、窒素で十分置換した後、密封し、静置下、60℃で24時間重合させた(重合工程)。重合終了後、内容物を取り出し、イソプロパノールで18時間ソックスレー抽出し、未反応モノマーとソルビタンモノオレエートを除去した後、85℃で一昼夜減圧乾燥した。このようにして得られた次式(I)に示すビニルベンジルクロライド/スチレンスルホン酸エチル/ジビニルベンゼン共重合体よりなる多孔質体(架橋成分を10モル%含有)から6.6gを切り出して、テトラヒドロフラン900ml及びジメチルエタノールアミン177ミリモルを加え、40℃で6時間反応させた。反応終了後、多孔質イオン交換体を取り出し、メタノールで洗浄後水洗し、乾燥して次式(II)に示す多孔質イオン交換体を得た。

Figure 2008055388
IR測定の結果より、この多孔質イオン交換体中には四級アンモニウム基に帰属される吸収(1630cm−1、3390cm−1)とスルホン酸基に帰属される吸収(1033cm−1)は認められたが、スルホン酸エステルの吸収(1176cm−1)は認められなかった。このことから、この多孔質イオン交換体にはスルホン酸エステル基の加水分解によって生じた陽イオン交換基であるスルホン酸基と、クロロメチル基とジメチルエタノールアミンとの反応で生成した陰イオン交換基である四級アンモニウム基が導入されていることを確認した。また、これらのイオン交換基の分布状況を確認するため、硫黄原子及び塩素原子の分布をEPMAで測定した。その結果、硫黄原子、塩素原子共に多孔質体の表面及び内部に均一に分布していることが確認できた。導入されたイオン交換基を定量するため、元素分析により硫黄含有量及び窒素含有量を定量し、スルホン酸基導入量と四級アンモニウム基導入量を算出したところ、それぞれ1.5ミリモル/g乾燥多孔質体、3.9ミリモル/g乾燥多孔質体であった。また、SEM観察の結果、多孔質体の連続気泡構造が確認できた。SEM観察の結果から求めたマクロポアの平均径は20μm であり、マクロポアとマクロポアの重なりで形成されるメソポアの直径の平均値は8μm、多孔質ポリマー部分の全細孔容積は8.2ml/gであった。なお、メソポアの直径の平均値及び全細孔容積は、水銀圧入法を用いて測定した。 (Production of amphoteric monolith (K / AMo))
83 mmol of vinyl benzyl chloride, 30 mmol of ethyl styrenesulfonate, 13 mmol of divinylbenzene, 1.6 mmol of azobisisobutyronitrile and 2.25 g of sorbitan monooleate were mixed and dissolved uniformly. Next, the mixture is added to 180 ml of pure water, put into a cylindrical container having a capacity of 500 ml, and the revolution speed is reduced at a reduced pressure of −0.08 MPa using a planetary stirrer (VMX-360, manufactured by EME). The mixture was stirred for 5 minutes at 1800 rpm and at a rotation speed of 600 rpm to obtain a water-in-oil emulsion (water-in-oil emulsion formation step). After completion of the emulsification, after sufficiently substituting with nitrogen, it was sealed and polymerized at 60 ° C. for 24 hours while standing (polymerization step). After completion of the polymerization, the content was taken out, extracted with Soxhlet for 18 hours with isopropanol to remove unreacted monomers and sorbitan monooleate, and then dried under reduced pressure at 85 ° C. overnight. 6.6 g was cut out from the porous body (containing 10 mol% of the crosslinking component) composed of the vinylbenzyl chloride / ethyl styrenesulfonate / divinylbenzene copolymer represented by the following formula (I) thus obtained, 900 ml of tetrahydrofuran and 177 mmol of dimethylethanolamine were added and reacted at 40 ° C. for 6 hours. After completion of the reaction, the porous ion exchanger was taken out, washed with methanol, washed with water, and dried to obtain a porous ion exchanger represented by the following formula (II).
Figure 2008055388
From the results of IR measurement, absorption (1630 cm −1 , 3390 cm −1 ) attributed to quaternary ammonium groups and absorption attributed to sulfonic acid groups (1033 cm −1 ) were observed in this porous ion exchanger. However, absorption (1176 cm −1 ) of the sulfonic acid ester was not recognized. From this, this porous ion exchanger includes an anion exchange group formed by a reaction of a sulfonic acid group, which is a cation exchange group generated by hydrolysis of a sulfonate group, and a chloromethyl group and dimethylethanolamine. It was confirmed that a quaternary ammonium group was introduced. Moreover, in order to confirm the distribution of these ion exchange groups, the distribution of sulfur atoms and chlorine atoms was measured by EPMA. As a result, it was confirmed that both sulfur atoms and chlorine atoms were uniformly distributed on the surface and inside of the porous body. In order to quantify the introduced ion exchange groups, the sulfur content and nitrogen content were quantified by elemental analysis, and the sulfonic acid group introduction amount and the quaternary ammonium group introduction amount were calculated. The porous body was 3.9 mmol / g dry porous body. Further, as a result of SEM observation, an open cell structure of the porous body was confirmed. The average diameter of the macropores determined from the results of SEM observation is 20 μm, the average diameter of the mesopores formed by the overlap of the macropores and the macropores is 8 μm, and the total pore volume of the porous polymer portion is 8.2 ml / g. there were. The average value of mesopore diameter and the total pore volume were measured using a mercury intrusion method.

<電気式脱イオン水製造装置>
・ 電気式脱イオン水製造装置;EDI(オルガノ社製)
・ 脱塩室;幅55mm、高さ230mm、厚さ8mm
・ 混合イオン交換体の体積比率(AER(IRA402BL):K/AMo);2:1
・ 被処理水の流量;10l/h
・ 濃縮水の流量;5l/h
<Electrical deionized water production device>
・ Electric deionized water production equipment; EDI (manufactured by Organo)
・ Desalination chamber: Width 55mm, Height 230mm, Thickness 8mm
-Volume ratio of mixed ion exchanger (AER (IRA402BL): K / AMo); 2: 1
・ Flow rate of water to be treated: 10 l / h
・ Flow rate of concentrated water: 5 l / h

脱塩室構造が図2に示す電気式脱イオン水製造装置の縦型のもので、下記仕様の装置を用いて、図2に示したフローにて、被処理水を下記の運転条件により処理した以外は、実施例1と同様に行った。この結果、運転時間1000時間における抵抗率17.9MΩ-cmの処理水を得るための、平均印加電圧は18V、電流は0.3Aであった。   The demineralization chamber structure is a vertical type of the electric deionized water production apparatus shown in FIG. 2, and the water to be treated is treated under the following operating conditions in the flow shown in FIG. The procedure was the same as in Example 1 except that. As a result, the average applied voltage for obtaining treated water having a resistivity of 17.9 MΩ-cm at an operation time of 1000 hours was 18 V, and the current was 0.3 A.

(アニオンモノリスの製造)
スチレン83.1gの代わりに、p-クロロメチルスチレン54.0gを用い、ジビニルベンゼン51.9g、アゾビスイソブチロニトリル0.78gとした以外、上記両性モノリスの製造と同様の油中水滴型エマルジョンの重合を行い、p−クロロメチルスチレン/ジビニルベンゼン共重合体よりなる架橋成分を50モル%含有した多孔質体を製造した。この多孔質体に、ジオキサン1500gを加え80℃で30分加熱した後、室温まで冷却し、トリメチルアミン(30%)水溶液195gを徐々に加え、50℃で3時間反応させた後、室温で一昼夜放置した。反応終了後、多孔質体を取り出し、アセトンで洗浄後水洗し、乾燥して多孔質アニオン交換体を得た。SIMSにより、トリメチルアンモニウム基が多孔質体に均一に導入されていることを確認した。また、SEM観察の結果、この多孔質体の内部構造は、連続気泡構造を有しており、平均径30μm のマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成されるメソポアの直径の平均値は4μm、全細孔容積は9.9ml/gであった。
(Manufacture of anionic monolith)
A water-in-oil type similar to the production of the above amphoteric monolith, except that 54.0 g of p-chloromethylstyrene was used instead of 83.1 g of styrene, and 51.9 g of divinylbenzene and 0.78 g of azobisisobutyronitrile were used. The emulsion was polymerized to produce a porous body containing 50 mol% of a cross-linking component consisting of a p-chloromethylstyrene / divinylbenzene copolymer. To this porous body, 1500 g of dioxane was added and heated at 80 ° C. for 30 minutes, then cooled to room temperature, 195 g of a trimethylamine (30%) aqueous solution was gradually added, reacted at 50 ° C. for 3 hours, and then allowed to stand overnight at room temperature. did. After completion of the reaction, the porous body was taken out, washed with acetone, washed with water, and dried to obtain a porous anion exchanger. It was confirmed by SIMS that the trimethylammonium group was uniformly introduced into the porous body. Moreover, as a result of SEM observation, the internal structure of this porous body has an open cell structure, and most of the macropores having an average diameter of 30 μm overlap, and the average diameter of the mesopores formed by the overlap of the macropores and the macropores. The value was 4 μm and the total pore volume was 9.9 ml / g.

<電気式脱イオン水製造装置>
・ 電気式脱イオン水製造装置;D2EDI(オルガノ社製)
・ 第1小脱塩室;幅55mm、高さ230mm、厚さ8mm
・ 第1小脱塩室の混合イオン交換体の体積比率(AER:AMo);2:1
・ 第2小脱塩室;幅55mm、高さ230mm、厚さ4mm
・ 第2小脱塩室の混合イオン交換体の体積比率(K/AER:K/AMo);2:1、
・ 第2脱塩室のK/AER;粒状カチオン(IR120B)と粒状アニオン(IRA402BL)の体積比率50:50
・ 被処理水の流量;10l/h
・ 濃縮水の流量;5l/h
<Electrical deionized water production device>
・ Electric deionized water production equipment; D2EDI (organo)
・ 1st small desalination chamber; width 55mm, height 230mm, thickness 8mm
-Volume ratio of mixed ion exchanger in the first small desalting chamber (AER: AMo); 2: 1
・ Second small desalination chamber; width 55mm, height 230mm, thickness 4mm
The volume ratio of the mixed ion exchanger in the second small desalting chamber (K / AER: K / AMo); 2: 1,
-K / AER of the second desalting chamber; volume ratio of granular cation (IR120B) to granular anion (IRA402BL) 50:50
・ Flow rate of water to be treated: 10 l / h
・ Flow rate of concentrated water: 5 l / h

比較例1
(電気式脱イオン水製造装置の作製)
図3の簡略図に示すような下記仕様の横型脱塩室を有する電気式脱イオン水製造装置を使用した。図3中、電気式脱イオン水製造装置50は、混合イオン交換体51aを充填した脱塩室51に、直流電場を、排除されるイオンがイオン交換体51a内における通水方向に対して同一方向又は逆方向に泳動するように印加して、混合イオン交換体51aに吸着したイオン性不純物を系外に排除する装置であって、脱塩室51の陽極側にはアニオン交換樹脂58が充填され、脱塩室51の陰極側には両性モノリス59が充填され、被処理水はアニオン交換樹脂58の陽極56に隣接するアニオン交換膜52近傍に流入し、処理水は陰極57に隣接するカチオン膜53近傍で、被処理水流入部とは対角線上にある位置から流出する。
Comparative Example 1
(Production of electric deionized water production equipment)
An electric deionized water production apparatus having a horizontal demineralization chamber with the following specifications as shown in the simplified diagram of FIG. 3 was used. In FIG. 3, the electric deionized water production apparatus 50 has a DC electric field in the demineralization chamber 51 filled with the mixed ion exchanger 51a, and the ions to be excluded are the same in the direction of water flow in the ion exchanger 51a. This is an apparatus for removing ionic impurities adsorbed on the mixed ion exchanger 51a out of the system by applying so as to migrate in the reverse direction or the reverse direction, and the anion exchange resin 58 is filled on the anode side of the desalting chamber 51 The amphoteric monolith 59 is filled on the cathode side of the desalting chamber 51, and the water to be treated flows into the vicinity of the anion exchange membrane 52 adjacent to the anode 56 of the anion exchange resin 58, and the treated water is cations adjacent to the cathode 57. In the vicinity of the membrane 53, the water to be treated flows out from a position on the diagonal line.

・ セルサイズ;160ml(縦5cm×横4cm×高さ(電極間長さ)8cm)
・ セル容器;内容積160ml
・ アニオン交換樹脂(陽極側に充填);120ml(IRA402BL)、縦5cm×横4cm×高さ6cm、
・ 両性モノリス(陰極側に充填);40ml、実施例1記載のモノリスを切断した縦5cm×横4cm×高さ2cmのもの、
・ 被処理水;実施例1で使用した逆浸透膜装置の透過水、流量15l/時間
・ 電極水;アノード水、カソード水共に、流量各5l/時間
-Cell size: 160 ml (5 cm long x 4 cm wide x height (length between electrodes) 8 cm)
・ Cell container; internal volume 160ml
Anion exchange resin (filled on the anode side); 120 ml (IRA402BL), length 5 cm × width 4 cm × height 6 cm,
Amphoteric monolith (filled on the cathode side); 40 ml, 5 cm long × 4 cm wide × 2 cm high obtained by cutting the monolith described in Example 1
Water to be treated: Permeated water of the reverse osmosis membrane device used in Example 1, flow rate of 15 l / hour Electrode water: Both anode water and cathode water flow rates of 5 l / hour

(電気式脱イオン水製造装置の運転)
得られた電気式脱イオン水製造装置に被処理水を流速15l/時間(LV=7.5、SV=94(全体))で連続通水し、0.6Aの直流電流を通電したところ、操作電圧は脱塩構造及び両性モノリスに起因する電気抵抗の高さから、350Vに達して、実用上使用に耐えないものであった。
(Operation of electric deionized water production equipment)
When the water to be treated was continuously passed through the obtained electric deionized water production apparatus at a flow rate of 15 l / hour (LV = 7.5, SV = 94 (whole)) and a direct current of 0.6 A was applied, The operating voltage reached 350 V due to the high salt resistance resulting from the desalting structure and the amphoteric monolith, and was practically unusable.

本発明の電気式脱イオン水製造装置は、脱イオン水を用いる半導体製造工業、製薬工業、食品工業、発電所、研究所等の各種の工業あるいは糖液、ジュース、ワイン等の製造等で利用され、特に逆浸透膜装置の透過水の処理に好適である。   The electric deionized water production apparatus of the present invention is used in various industries such as semiconductor manufacturing industry, pharmaceutical industry, food industry, power plant, laboratory, etc. using deionized water, or production of sugar solution, juice, wine, etc. In particular, it is suitable for the treatment of the permeated water of the reverse osmosis membrane device.

本発明の実施の形態例の電気式脱イオン水製造装置の構造を示す模式図である。It is a schematic diagram which shows the structure of the electrical deionized water manufacturing apparatus of the embodiment of this invention. 本発明の他の実施の形態例の電気式脱イオン水製造装置の構造を示す模式図である。It is a schematic diagram which shows the structure of the electrical deionized water manufacturing apparatus of the other embodiment of this invention. 比較例で用いた横型脱塩室構造の電気式脱イオン水製造装置の構造を示す模式図である。It is a schematic diagram which shows the structure of the electrical deionized water manufacturing apparatus of the horizontal type desalination chamber structure used by the comparative example.

符号の説明Explanation of symbols

1 カチオン交換膜
2 アニオン交換膜
4 脱塩室
4a 第1小脱塩室
4b 第2小脱塩室
5 濃縮室
7 陽極
8 陰極
9 中間イオン交換膜
10、10a、10b 電気式脱イオン水製造装置
41 粒状アニオン交換樹脂
42 両性モノリス
43 アニオンモノリス
44 粒状ミックス樹脂
15 脱塩室

DESCRIPTION OF SYMBOLS 1 Cation exchange membrane 2 Anion exchange membrane 4 Desalination chamber 4a 1st small desalination chamber 4b 2nd small desalination chamber 5 Concentration chamber 7 Anode 8 Cathode 9 Intermediate ion exchange membrane 10, 10a, 10b Electric deionized water production apparatus 41 Granular anion exchange resin 42 Amphoteric monolith 43 Anionic monolith 44 Granular mix resin 15 Desalination chamber

Claims (9)

陽極側がアニオン交換膜で区画され陰極側がカチオン交換膜で区画されるイオン交換体が充填される脱塩室を内包し、該イオン交換体に被処理水を通過させると共に、該両イオン交換膜を介して被処理水の流れに対して垂直方向に直流電場を作用させて、該両イオン交換膜の外側に流れている濃縮水中に被処理水中のイオンを電気的に排除する電気式脱イオン水製造装置において、該イオン交換体が、モノリス状有機多孔質イオン交換体と粒状イオン交換樹脂の混合イオン交換体であることを特徴とする電気式脱イオン水製造装置。   It contains a desalting chamber filled with an ion exchanger that is partitioned by an anion exchange membrane on the anode side and partitioned by a cation exchange membrane on the cathode side, allowing water to be treated to pass through the ion exchanger, An electric deionized water that causes a DC electric field to act in a direction perpendicular to the flow of the water to be treated and electrically removes ions in the water to be treated in the concentrated water flowing outside the ion exchange membranes. In the production apparatus, the ion exchanger is a mixed ion exchanger of a monolithic organic porous ion exchanger and a granular ion exchange resin. 該脱塩室は、通水方向に沿って、粒状イオン交換樹脂とモノリス状有機多孔質イオン交換体をこの順序で積層する構造であるか、又は該積層構造の繰り返し構造であることを特徴とする請求項1記載の電気式脱イオン水製造装置。   The desalting chamber has a structure in which the granular ion exchange resin and the monolithic organic porous ion exchanger are laminated in this order along the water flow direction, or is a repeating structure of the laminated structure. The electric deionized water production apparatus according to claim 1. 該脱塩室は、通水方向に沿って、モノリス状有機多孔質イオン交換体と粒状イオン交換樹脂をこの順序で積層する構造であるか、又は該積層構造の繰り返し構造であることを特徴とする請求項1記載の電気式脱イオン水製造装置。   The desalting chamber has a structure in which a monolithic organic porous ion exchanger and a granular ion exchange resin are laminated in this order along the water flow direction, or a repeating structure of the laminated structure. The electric deionized water production apparatus according to claim 1. 該脱塩室の流出側に、モノリス状有機多孔質両性イオン交換体を配置したことを特徴とする請求項1又は2記載の電気式脱イオン水製造装置。   The apparatus for producing electric deionized water according to claim 1 or 2, wherein a monolithic organic porous zwitterion exchanger is disposed on the outflow side of the demineralization chamber. 該アニオン交換膜と該カチオン交換膜の間に更に中間イオン交換膜を配設して、該アニオン交換膜と該中間イオン交換膜で区画される第1イオン交換体が充填される第1小脱塩室と該中間イオン交換膜と該カチオン交換膜で区画される第2イオン交換体が充填される第2小脱塩室を形成し、該第1小脱塩室と該第2小脱塩室に被処理水をこの順序で直列に通過させるか、または該第2小脱塩室と該第1小脱塩室に被処理水をこの順序で直列に通過させると共に、該イオン交換膜を介して被処理水の流れに対して垂直方向に直流電場を作用させて、該アニオン交換膜と該カチオン交換膜の外側に流れている濃縮水中に被処理水中のイオンを電気的に排除する電気式脱イオン水製造装置において、該イオン交換体が、モノリス状有機多孔質イオン交換体と粒状イオン交換樹脂の混合イオン交換体であることを特徴とする電気式脱イオン水製造装置。   An intermediate ion exchange membrane is further disposed between the anion exchange membrane and the cation exchange membrane, and the first small ion exchanger filled with the first ion exchanger partitioned by the anion exchange membrane and the intermediate ion exchange membrane. Forming a second small desalting chamber filled with a second ion exchanger partitioned by a salt chamber, the intermediate ion exchange membrane and the cation exchange membrane, the first small desalting chamber and the second small desalting chamber; The treated water is passed through the chamber in series in this order, or the treated water is passed through the second small desalting chamber and the first small desalting chamber in series in this order, and the ion exchange membrane is passed through the chamber. An electric current is applied to the treated water in a direction perpendicular to the flow of the treated water to electrically exclude ions in the treated water in the concentrated water flowing outside the anion exchange membrane and the cation exchange membrane. In the deionized water production apparatus, the ion exchanger is a monolithic organic porous ion Electrodeionization water producing apparatus which is a mixed ion exchangers recombinants and the particulate ion exchange resin. 該第1小脱塩室及び該第2小脱塩室は、それぞれ被処理水流入側から流出側に向けて、粒状イオン交換樹脂とモノリス状有機多孔質イオン交換体をこの順序で積層する構造であるか、又は該積層構造の繰り返し構造であることを特徴とする請求項5記載の電気式脱イオン水製造装置。   The first small desalting chamber and the second small desalting chamber each have a structure in which a granular ion exchange resin and a monolithic organic porous ion exchanger are laminated in this order from the treated water inflow side to the outflow side. 6. The apparatus for producing electrical deionized water according to claim 5, wherein the apparatus is a repeating structure of the laminated structure. 該第1小脱塩室と該第2小脱塩室に被処理水をこの順序で直列に通過させるものであって、該第1小脱塩室は、被処理水流入側から流出側に向けて、粒状アニオン交換樹脂とモノリス状有機多孔質アニオン交換体をこの順序で積層する構造であり、該第2小脱塩室は、該第1小脱塩室の処理水流入側から流出側に向けて、粒状混合イオン交換体とモノリス状有機多孔質両性イオン交換体をこの順序で積層する構造であることを特徴とする請求項5又は6記載の電気式脱イオン水製造装置。   The treated water is passed in series in this order through the first small desalting chamber and the second small desalting chamber, and the first small desalting chamber extends from the treated water inflow side to the outflow side. The second small desalting chamber has a structure in which the granular anion exchange resin and the monolithic organic porous anion exchanger are laminated in this order, and the second small desalting chamber has an outlet side from the treated water inflow side of the first small desalting chamber. 7. The apparatus for producing electrical deionized water according to claim 5 or 6, wherein the granular mixed ion exchanger and the monolithic organic porous amphoteric ion exchanger are laminated in this order. 陽極側がアニオン交換膜で区画され陰極側がカチオン交換膜で区画されるモノリス状有機多孔質イオン交換体と粒状イオン交換樹脂の混合イオン交換体が充填される脱塩室を内包する電気式脱イオン水製造装置を用い、該イオン交換体に被処理水を通過させると共に、該両イオン交換膜を介して被処理水の流れに対して垂直方向に直流電場を作用させて、該両イオン交換膜の外側に流れている濃縮水中に被処理水中のイオンを電気的に排除することを特徴とする電気式脱イオン水製造装置の運転方法。   Electric deionized water containing a desalination chamber filled with a mixed ion exchanger of a monolithic organic porous ion exchanger and a granular ion exchange resin, the anode side being partitioned by an anion exchange membrane and the cathode side being partitioned by a cation exchange membrane Using a manufacturing apparatus, the water to be treated is passed through the ion exchanger, and a direct current electric field is applied to the flow of the water to be treated through the ion exchange membranes in a direction perpendicular to the ion exchange membranes. An operation method for an electrical deionized water production apparatus, wherein ions in treated water are electrically excluded from concentrated water flowing outside. 陽極側のアニオン交換膜と陰極側のカチオン交換膜と該アニオン交換膜と該カチオン交換膜の間に位置する中間イオン交換膜とを有し、該アニオン交換膜と該中間イオン交換膜で形成される隙間にモノリス状有機多孔質イオン交換体と粒状イオン交換樹脂の第1混合イオン交換体が充填される第1小脱塩室と該中間イオン交換膜と該カチオン交換膜で形成される隙間にモノリス状有機多孔質イオン交換体と粒状イオン交換樹脂の第2混合イオン交換体が充填される第2小脱塩室を内包する電気式脱イオン水製造装置を用い、該第1小脱塩室と該第2小脱塩室に被処理水をこの順序で直列に通過させるか、または該第2小脱塩室と該第1小脱塩室に被処理水をこの順序で直列に通過させると共に、該アニオン交換膜又は該カチオン交換膜を介して被処理水の流れに対して垂直方向に直流電場を作用させて、該アニオン交換膜と該カチオン交換膜の外側に流れている濃縮水中に被処理水中のイオンを電気的に排除することを特徴とする電気式脱イオン水製造装置の運転方法。



















An anion exchange membrane on the anode side, a cation exchange membrane on the cathode side, an anion exchange membrane located between the anion exchange membrane and the cation exchange membrane, and formed by the anion exchange membrane and the intermediate ion exchange membrane In the gap formed by the first small desalting chamber filled with the monolithic organic porous ion exchanger and the first mixed ion exchanger of the granular ion exchange resin, the intermediate ion exchange membrane and the cation exchange membrane. Using an electric deionized water production apparatus containing a second small demineralization chamber filled with a monolithic organic porous ion exchanger and a second mixed ion exchanger of granular ion exchange resin, the first small demineralization chamber And the water to be treated are passed in series in this order through the second small desalting chamber, or the water to be treated is passed in series in this order through the second small desalting chamber and the first small desalting chamber. And through the anion exchange membrane or the cation exchange membrane A direct electric field is applied in a direction perpendicular to the flow of the water to be treated to electrically exclude ions in the water to be treated in the concentrated water flowing outside the anion exchange membrane and the cation exchange membrane. The operation method of the electrical deionized water production apparatus.



















JP2006238671A 2006-09-04 2006-09-04 Electric deionized water making apparatus and its operation method Pending JP2008055388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006238671A JP2008055388A (en) 2006-09-04 2006-09-04 Electric deionized water making apparatus and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006238671A JP2008055388A (en) 2006-09-04 2006-09-04 Electric deionized water making apparatus and its operation method

Publications (1)

Publication Number Publication Date
JP2008055388A true JP2008055388A (en) 2008-03-13

Family

ID=39238768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006238671A Pending JP2008055388A (en) 2006-09-04 2006-09-04 Electric deionized water making apparatus and its operation method

Country Status (1)

Country Link
JP (1) JP2008055388A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104007A1 (en) * 2009-03-10 2010-09-16 オルガノ株式会社 Deionization module and electric device for producing deionized water
JP2010234362A (en) * 2009-03-12 2010-10-21 Japan Organo Co Ltd Electric deionized water production apparatus and method of operating the same
JP2010240638A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Electric deionized liquid producing apparatus
JP2010264361A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2010264362A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2010264375A (en) * 2009-05-14 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2010264360A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Deionization module and electric deionized-water producing apparatus
JP2010284639A (en) * 2009-05-14 2010-12-24 Japan Organo Co Ltd Electric apparatus for producing deionized water and method for operating the apparatus
WO2011152226A1 (en) * 2010-06-03 2011-12-08 オルガノ株式会社 Electric device for production of deionized water
WO2011152227A1 (en) * 2010-06-03 2011-12-08 オルガノ株式会社 Electric device for producing deionized water
JP2017176968A (en) * 2016-03-29 2017-10-05 栗田工業株式会社 Electric deionization apparatus, and production method of deionization water

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306976A (en) * 2001-04-13 2002-10-22 Japan Organo Co Ltd Porous ion exchanger, deionizing module using the same, and electrical device for producing deionized water
JP2006015260A (en) * 2004-07-02 2006-01-19 Japan Organo Co Ltd Electric deionized water manufacturing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306976A (en) * 2001-04-13 2002-10-22 Japan Organo Co Ltd Porous ion exchanger, deionizing module using the same, and electrical device for producing deionized water
JP2006015260A (en) * 2004-07-02 2006-01-19 Japan Organo Co Ltd Electric deionized water manufacturing apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104007A1 (en) * 2009-03-10 2010-09-16 オルガノ株式会社 Deionization module and electric device for producing deionized water
JP2010234362A (en) * 2009-03-12 2010-10-21 Japan Organo Co Ltd Electric deionized water production apparatus and method of operating the same
JP2010240638A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Electric deionized liquid producing apparatus
JP2010264360A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Deionization module and electric deionized-water producing apparatus
JP2010264362A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2010264361A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2010264375A (en) * 2009-05-14 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2010284639A (en) * 2009-05-14 2010-12-24 Japan Organo Co Ltd Electric apparatus for producing deionized water and method for operating the apparatus
WO2011152226A1 (en) * 2010-06-03 2011-12-08 オルガノ株式会社 Electric device for production of deionized water
WO2011152227A1 (en) * 2010-06-03 2011-12-08 オルガノ株式会社 Electric device for producing deionized water
CN102939266A (en) * 2010-06-03 2013-02-20 奥加诺株式会社 Electric device for production of deionized water
JP5385457B2 (en) * 2010-06-03 2014-01-08 オルガノ株式会社 Electric deionized water production equipment
US8871073B2 (en) 2010-06-03 2014-10-28 Organo Corporation Electrodeionization apparatus for producing deionized water
TWI482658B (en) * 2010-06-03 2015-05-01 Organo Corp Electrical deionized water production device
JP2017176968A (en) * 2016-03-29 2017-10-05 栗田工業株式会社 Electric deionization apparatus, and production method of deionization water

Similar Documents

Publication Publication Date Title
JP2008055388A (en) Electric deionized water making apparatus and its operation method
JP3794268B2 (en) Electrodeionization apparatus and operation method thereof
US5316637A (en) Electrodeionization apparatus
JP4778664B2 (en) Apparatus and method for electrodialysis
JP6078074B2 (en) Desalination system and method
JP2865389B2 (en) Electric deionized water production equipment and frame used for it
WO2003097536A1 (en) Electric demineralizer
JP2003334560A (en) Electric deionized water producing apparatus
JP4303242B2 (en) Electric desalination module and apparatus equipped with the module
JP2010201361A (en) Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
JP4672601B2 (en) Deionized water production equipment
JP5015990B2 (en) Electric deionized water production equipment
JP2004033976A (en) Deionized water manufacturing method and apparatus therefor
JP3273707B2 (en) Production method of deionized water by electrodeionization method
JP4609924B2 (en) Electric deionized water production equipment
JPH08150393A (en) Production of deionized water by electrolytic deionization method
TW201240731A (en) Electrical deionization apparatus
JP2001079553A (en) Method for packing ion exchanger in electric deionizer, and electric deionizer
JP5114307B2 (en) Electric deionized water production equipment
JP6042234B2 (en) Desalination method and desalting apparatus
JP2002001345A (en) Electrically regenerative method for manufacturing deionized water, its manufacturing apparatus and ion exchange layer used therefor
JP3781352B2 (en) Electric deionized water production apparatus and deionized water production method
US8529759B2 (en) Electric deionized water production apparatus
JP6163078B2 (en) Desalination method and desalting apparatus
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120822