JP2008050191A - Ferrite material for high frequency wave and method of manufacturing ferrite material for high frequency wave - Google Patents

Ferrite material for high frequency wave and method of manufacturing ferrite material for high frequency wave Download PDF

Info

Publication number
JP2008050191A
JP2008050191A JP2006226435A JP2006226435A JP2008050191A JP 2008050191 A JP2008050191 A JP 2008050191A JP 2006226435 A JP2006226435 A JP 2006226435A JP 2006226435 A JP2006226435 A JP 2006226435A JP 2008050191 A JP2008050191 A JP 2008050191A
Authority
JP
Japan
Prior art keywords
ferrite
high frequency
composition
added
nicuzn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006226435A
Other languages
Japanese (ja)
Other versions
JP5224495B2 (en
Inventor
Mitsutsugu Kato
充次 加藤
Masayuki Inagaki
正幸 稲垣
Yoshio Matsuo
良夫 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2006226435A priority Critical patent/JP5224495B2/en
Publication of JP2008050191A publication Critical patent/JP2008050191A/en
Application granted granted Critical
Publication of JP5224495B2 publication Critical patent/JP5224495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferrite material for high frequency wave which has excellently dispersed additive components, has improved magnetic characteristics thereby providing high magnetic permeability in high frequency band and which can be made satisfactorily compact when applied to a high frequency use. <P>SOLUTION: The ferrite material contains NiCuZn ferrite as a main component and cobalt ferrite (CoFe<SB>2</SB>O<SB>4</SB>) is added as an auxiliary component. The cobalt ferrite is a composition having a stoichiometric composition expressed by Co<SB>(1+x)</SB>Fe<SB>(2-x)</SB>O<SB>4</SB>, wherein (x) is 0-0.04, that is, the cobalt ferrite contains low Fe content. The added cobalt ferrite easily forms a solid solution with the NiCuZn ferrite and Co is uniformly distributed between the particles, then, a hetero-phase is not deposited between the particles of the NiCuZn ferrite, and the magnetic characteristics consequently can be made excellent without being degraded. The ferrite material has such frequency characteristics of complex magnetic permeability (μ)(μ=μ'-jμ") that high resonance peak of real part μ' is present in high frequency wave side. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、Ni−Zn系の高周波用フェライト材料および高周波用フェライト材料の製造方法に関するもので、より具体的には、NiCuZnフェライトを主成分とし、これに対する添加成分の分散状態の改良に関する。   The present invention relates to a Ni—Zn-based high-frequency ferrite material and a method for producing a high-frequency ferrite material, and more specifically, relates to an improvement in the dispersion state of an additive component based on NiCuZn ferrite.

よく知られるように、Ni−Zn系のフェライト材料は、抵抗率が高い特徴から高い周波数帯域で損失を少なくでき、高周波用のコア材料に用いられることが多い。そして、高周波特性を良好に得るため各種の工夫が行われており、例えばCoやSiOなどを添加することが行われている。また、例えば特許文献1などに見られるように、CoOを添加することも一般的である。 As is well known, Ni—Zn-based ferrite materials can reduce loss in a high frequency band because of their high resistivity, and are often used as high-frequency core materials. Various devices have been devised in order to obtain good high frequency characteristics. For example, Co 3 O 4 or SiO 2 is added. In addition, as seen in, for example, Patent Document 1, it is common to add CoO.

特開2000−327411号公報JP 2000-327411 A

高周波特性のための添加成分を見ると、CoOやCoの添加では、焼成後に一部のCo成分がNiCuZnフェライトにうまく固溶せず、主にNiCuZnフェライト中のNiやZnやCuと酸化物を形成する。これはNiCuZnフェライトの粒子間に偏析し、異相を形成する結果となる。このため、NiCuZnフェライトの磁気特性を悪化させることになる。 Looking at additive components for high-frequency characteristics, with the addition of CoO and Co 3 O 4 , some Co components do not dissolve well in NiCuZn ferrite after firing, and mainly Ni, Zn and Cu in NiCuZn ferrite An oxide is formed. This results in segregation between the NiCuZn ferrite particles and the formation of a heterogeneous phase. For this reason, the magnetic characteristics of NiCuZn ferrite are deteriorated.

また、たとえNi−Zn系のフェライト材料であっても、高周波帯域では損失が格段に大きくなり、このため透磁率が低下する特性を持っている。これは、例えば高周波帯域におけるノイズ対策コイルコアへの適用を考えると、小型に構成できないという問題になる。つまり、ノイズ除去で重要となるコイルのインピーダンスを大きく得たいときには、高周波帯域ではコア自体の透磁率が低減するので、コアサイズを大きくするか、あるいは巻線数を増すことが必要になり、何れにしても寸法サイズが大きくなってしまう。   Further, even if it is a Ni—Zn ferrite material, the loss is remarkably increased in the high frequency band, and thus the magnetic permeability is lowered. For example, when considering application to a noise countermeasure coil core in a high frequency band, there is a problem in that it cannot be made compact. In other words, when you want to increase the impedance of the coil, which is important for noise removal, the permeability of the core itself decreases in the high frequency band, so it is necessary to increase the core size or increase the number of windings. Even so, the size will increase.

近年は電子機器の薄型,軽量,高機能化により、これを構成する電子部品について小型化,小チップ化の要求が特に高いため、より小型化するための改善が求められている。   In recent years, as electronic devices have become thinner, lighter, and more functional, there is a particularly high demand for downsizing and downsizing of the electronic components that make up the electronic devices, so improvements for further downsizing are required.

この発明は上記した課題を解決するもので、その目的は、添加成分の分散状態を良好にすることができ、磁気特性の改善により高周波帯域でも透磁率を高く得ることができ、高周波用途への適用において小型化が良好に行える高周波用フェライト材料および高周波用フェライト材料の製造方法を提供することにある。   The object of the present invention is to solve the above-described problems. The purpose of the invention is to improve the dispersion state of the additive components, and to improve the magnetic properties, to obtain high permeability even in the high frequency band, and to achieve high frequency applications. An object of the present invention is to provide a ferrite material for high frequency and a method for producing the ferrite material for high frequency that can be reduced in size in application.

上記した目的を達成するために、本発明に係る高周波用フェライト材料は、(1)主成分はNiCuZnフェライトとし、副成分には少なくともコバルトフェライト(非化学量論組成を含む)を添加する組成にした。   In order to achieve the above-described object, the high-frequency ferrite material according to the present invention has a composition in which (1) the main component is NiCuZn ferrite and at least cobalt ferrite (including non-stoichiometric composition) is added as a subcomponent. did.

(2)また、コバルトフェライトの組成をCo(1+x)Fe2(1−x)(0<x≦0.04)として、化学量論組成よりFe量が少ない組成物を添加する組成とするとよい。 (2) Further, the composition of cobalt ferrite is Co (1 + x) Fe 2 (1-x) O 4 (0 <x ≦ 0.04), and a composition in which a composition having less Fe than the stoichiometric composition is added. Good.

係る構成にすることにより本発明では、副成分としてコバルトフェライトを添加するので、添加したコバルトフェライトはNiCuZnフェライトに固溶しやすく、Coは均一に分布する。このため、NiCuZnフェライトの粒子間には異相は析出しなく、磁気特性は悪化がなく、むしろ良好にすることができる。   In this invention, since cobalt ferrite is added as a subcomponent in the present invention, the added cobalt ferrite is easily dissolved in NiCuZn ferrite, and Co is uniformly distributed. For this reason, a heterogeneous phase does not precipitate between the NiCuZn ferrite particles, and the magnetic properties are not deteriorated, but rather can be improved.

また、本発明の高周波用フェライトの製造方法では、NiCuZnフェライトに、副成分としてコバルトフェライト(非化学量論組成を含む)粉末を混合し、所定の形状に成形後、焼成するようにした。   Further, in the method for producing a high-frequency ferrite of the present invention, cobalt ferrite (including non-stoichiometric composition) powder as a secondary component is mixed with NiCuZn ferrite, molded into a predetermined shape, and then fired.

本発明では、副成分としてコバルトフェライトを添加すると、Coが均一に分布し、異相は析出しなく、磁気特性を良好にすることができる。ここに、添加成分の分散状態を良好にすることができ、磁気特性の改善により高周波帯域でも透磁率を高く得ることができる。その結果、高周波用途への適用において小型化が良好に行える。   In the present invention, when cobalt ferrite is added as an accessory component, Co is uniformly distributed, no heterogeneous phase is precipitated, and magnetic characteristics can be improved. Here, the dispersion state of the additive component can be improved, and the magnetic permeability can be increased even in the high frequency band by improving the magnetic characteristics. As a result, it is possible to satisfactorily reduce the size in application to high frequency applications.

以下、本発明の好適な実施の形態について説明する。
(製造プロセス)
Hereinafter, preferred embodiments of the present invention will be described.
(Manufacturing process)

本発明に係る高周波用フェライト材料は、NiCuZnフェライトに、副成分としてコバルトフェライトを添加する組成になっている。また、コバルトフェライトは、組成式をCo(1+x)Fe2(1−x)とおくとき、xは0より大きく0.04以下として化学量論組成よりもFe量が少ない組成物とすることもよい。 The ferrite material for high frequency according to the present invention has a composition in which cobalt ferrite is added as a subcomponent to NiCuZn ferrite. In addition, when the composition formula is Co (1 + x) Fe 2 (1-x) O 4 , cobalt ferrite is a composition in which x is larger than 0 and 0.04 or less, and the Fe amount is smaller than the stoichiometric composition. It is also good.

NiCuZnフェライトは、Feが43〜50モル%、ZnOが10〜35モル%、CuOが3〜15%モル%、NiOが残り全量のモル%としている。この組成は一般的な配合比であり特に限定するものではない。 In the NiCuZn ferrite, Fe 2 O 3 is 43 to 50 mol%, ZnO is 10 to 35 mol%, CuO is 3 to 15% mol%, and NiO is the remaining mol%. This composition is a general blending ratio and is not particularly limited.

製造には、まずコバルトフェライトを得るため原料成分のCoO,Feを所定に秤量して湿式混合する。つまり、秤量した各原料成分は例えばボールミルで粉砕しつつ混ぜて混合紛体を製造し、次に900℃の温度で仮焼きする。そして、仮焼きした焼結体は乳鉢などを用いて粉砕する。これとは別に、NiCuZnフェライトを得るため原料成分のFe,ZnO,CuO,NiOを所定に秤量して湿式混合し、これを次に800℃の温度で仮焼きする。そして、仮焼きした焼結体はボールミルで粉砕し、粉砕は所定時間行う。 In production, first, raw material components CoO and Fe 2 O 3 are weighed and wet-mixed in order to obtain cobalt ferrite. That is, each raw material component weighed is mixed while being pulverized by, for example, a ball mill to produce a mixed powder, and then calcined at a temperature of 900 ° C. The calcined sintered body is pulverized using a mortar or the like. Separately, in order to obtain NiCuZn ferrite, the raw material components Fe 2 O 3 , ZnO, CuO, and NiO are weighed in a predetermined amount and wet-mixed, and then calcined at a temperature of 800 ° C. The calcined sintered body is pulverized by a ball mill and pulverized for a predetermined time.

次に、NiCuZnフェライト粉体に対してコバルトフェライト粉体を所定に秤量して湿式混合し、そこへPVA溶液を1wt%添加し、これを造粒する。この後、ふるいを用いて製粒し、製粒した粉体は金型に入れて所定の圧力を加えて所定形状に成形し、これは電気炉等で焼成する。焼成は所定のトップ温度を所定の時間保持することとし、これにより焼成体を製造する。そして、この焼成体に研削加工を施して、所定形状に加工した高周波用フェライト材料を得る。   Next, the cobalt ferrite powder is weighed in a predetermined amount with respect to the NiCuZn ferrite powder and wet mixed, and 1 wt% of the PVA solution is added thereto and granulated. Thereafter, the mixture is granulated using a sieve, and the granulated powder is put in a mold and formed into a predetermined shape by applying a predetermined pressure, which is fired in an electric furnace or the like. Firing is carried out by maintaining a predetermined top temperature for a predetermined time, thereby producing a fired body. Then, the fired body is ground to obtain a high-frequency ferrite material processed into a predetermined shape.

仮焼きおよび焼成では温度管理が重要であり、要求特性に応じて適宜に設定する必要がある。仮焼きにおける温度はコバルトフェライトでは800℃〜1000℃が好ましく、NiCuZnフェライトでは700℃〜900℃が好ましい。   Temperature management is important in calcination and firing, and it is necessary to set appropriately according to required characteristics. The temperature during calcining is preferably 800 ° C. to 1000 ° C. for cobalt ferrite, and 700 ° C. to 900 ° C. for NiCuZn ferrite.

焼成においては、焼結が十分に進んで緻密化するとともに粒成長することが必要なので、これを達成し得る最適温度に設定することになるが、組成が異なると最適温度も相違し、このため組成に応じてその都度適正に設定する必要がある。そこで本発明に係る組成にあっては、焼成における温度は900℃〜1200℃が好ましい。   In firing, sintering is sufficiently advanced and densified and grain growth is necessary, so it is set to an optimum temperature at which this can be achieved. It is necessary to set appropriately each time according to the composition. Therefore, in the composition according to the present invention, the firing temperature is preferably 900 ° C to 1200 ° C.

このように、本発明にあっては副成分としてコバルトフェライトを添加するので、添加したコバルトフェライト(CoFe24)はNiCuZnフェライトに固溶しやすく、Coは均一に分布する。このため、NiCuZnフェライトの粒子間には異相は析出しなく、磁気特性は悪化がなく、むしろ良好にすることができる。 Thus, in the present invention, since cobalt ferrite is added as a subcomponent, the added cobalt ferrite (CoFe 2 O 4 ) is easily dissolved in NiCuZn ferrite, and Co is uniformly distributed. For this reason, a heterogeneous phase does not precipitate between the NiCuZn ferrite particles, and the magnetic properties are not deteriorated, but rather can be improved.

実施例において確認したが、複素透磁率の周波数特性だけを見ると、コバルトフェライトの添加量が少ない組成では、CoOを同等量添加した組成との差が小さく、改善の効果がさほどではないように見えてしまう。しかしそうではなく、コバルトフェライトの添加では、たとえ添加が少量であってもCoの分散状態には大きな差があり、均一に分散することから磁気特性には大幅な改善を期待できる。   As confirmed in the examples, looking only at the frequency characteristics of the complex magnetic permeability, the composition with a small amount of cobalt ferrite added has a small difference from the composition with the same amount of CoO added, so that the improvement effect is not so great. I can see it. However, the addition of cobalt ferrite has a large difference in the dispersion state of Co even if the addition is small, and since it is uniformly dispersed, a significant improvement in magnetic properties can be expected.

すなわち本発明によれば、添加成分の分散状態を良好にすることができ、磁気特性の改善により高周波帯域でも透磁率を高く得ることができる。その結果、高周波用途への適用において小型化が良好に行える。   That is, according to the present invention, the dispersion state of the additive component can be improved, and the magnetic permeability can be increased even in the high frequency band by improving the magnetic characteristics. As a result, it is possible to satisfactorily reduce the size in application to high frequency applications.

上記した製造プロセスにより試料の製造を行った。つまり、本発明の効果を実証するため、フェライト材料は組成を変更した複数を製造し、それら各試料について複素透磁率μ(μ=μ′−jμ″),面内における元素分布を評価した。   The sample was manufactured by the above-described manufacturing process. That is, in order to demonstrate the effect of the present invention, a plurality of ferrite materials having different compositions were manufactured, and for each of these samples, the complex permeability μ (μ = μ′−jμ ″) and the element distribution in the plane were evaluated.

各試料は表1に示すように、副成分の組成を変更して製作してあり、本発明に係る副成分が相違する設定で試料1から試料9までの9種類とし、外形7mm、内径3mm、高さ4mmのリング形状に形成した。

Figure 2008050191
As shown in Table 1, each sample is manufactured by changing the composition of the subcomponents, and the subcomponents according to the present invention are set to nine types from sample 1 to sample 9 with different settings, with an outer diameter of 7 mm and an inner diameter of 3 mm. And formed into a ring shape with a height of 4 mm.
Figure 2008050191

各試料において、主成分のNiCuZnフェライトは、Fe=49モル%、ZnO=22モル%、CuO=6%モル%、NiO=23モル%とした。 In each sample, the main component NiCuZn ferrite was Fe 2 O 3 = 49 mol%, ZnO = 22 mol%, CuO = 6% mol%, and NiO = 23 mol%.

試料1はコバルトフェライト(CoFe24)を5wt%とし、実施例1になっている。試料2はコバルトフェライト(CoFe24)を15wt%とし、実施例2になっている。試料3はコバルトフェライト(CoFe24)は添加しないでCoOを1wt%添加し、比較例1になっている。試料4はコバルトフェライト(CoFe24)は添加しないでCoOを6wt%添加し、比較例2になっている。試料5はコバルトフェライト(CoFe24)は添加しないで、配合時にCoOを1wt%添加し、比較例3になっている。試料6はコバルトフェライト(CoFe24)は添加しないで、ボールミルによる粉砕時にCoOを1wt%添加し、比較例4になっている。試料7は添加するコバルトフェライトは化学量論組成よりもFe量が少ない組成物とし、Co(1+x)Fe2(1−x)においてx=0.04とし、実施例3になっている。試料8は添加するコバルトフェライトは化学量論組成よりもFe量が少ない組成物とし、Co(1+x)Fe2(1−x)においてx=0.08とし、実施例4になっている。試料9は添加するコバルトフェライトは化学量論組成よりもFe量が少ない組成物とし、Co(1+x)Fe2(1−x)においてx=0.12とし、実施例5になっている。 Sample 1 is of Example 1 with 5 wt% cobalt ferrite (CoFe 2 O 4 ). Sample 2 is Example 2 in which cobalt ferrite (CoFe 2 O 4 ) is 15 wt%. Sample 3 is Comparative Example 1 with 1 wt% of CoO added without adding cobalt ferrite (CoFe 2 O 4 ). Sample 4 is a comparative example 2 in which 6 wt% of CoO is added without adding cobalt ferrite (CoFe 2 O 4 ). Sample 5 is Comparative Example 3 without adding cobalt ferrite (CoFe 2 O 4 ) and adding 1 wt% of CoO during blending. In Sample 6, no cobalt ferrite (CoFe 2 O 4 ) was added, and 1 wt% of CoO was added at the time of pulverization with a ball mill. In sample 7, cobalt ferrite to be added is a composition having a smaller amount of Fe than the stoichiometric composition, and x = 0.04 in Co (1 + x) Fe 2 (1-x) O 4 , which is Example 3. . In sample 8, the cobalt ferrite to be added is a composition having a Fe amount smaller than that in the stoichiometric composition, and x = 0.08 in Co (1 + x) Fe 2 (1-x) O 4 , which is Example 4. . In sample 9, the cobalt ferrite to be added is a composition having a Fe amount smaller than that in the stoichiometric composition, and x = 0.12 in Co (1 + x) Fe 2 (1-x) O 4 , which is Example 5. .

製造は具体的には、まずコバルトフェライトを得るため原料成分のCoO,Feを所定に秤量し、秤量した各原料成分はボールミルで粉砕しつつ混ぜて混合紛体を製造し、次に900℃の温度で仮焼きを行い、仮焼きした焼結体は乳鉢を用いて解砕した。また、NiCuZnフェライトを得るため原料成分のFe,ZnO,CuO,NiOを所定に秤量し、秤量した各原料成分はボールミルで粉砕しつつ混ぜて混合紛体を製造し、次に800℃の温度で仮焼きを行い、仮焼きした焼結体はボールミルで粉砕し、粉砕は20時間行った。 Specifically, first, in order to obtain cobalt ferrite, the raw material components CoO and Fe 2 O 3 are weighed in predetermined amounts, and the weighed raw material components are mixed while being pulverized by a ball mill, and then mixed powder is produced. The sintered body was calcined at a temperature of 0 ° C., and the calcined sintered body was crushed using a mortar. Further, in order to obtain NiCuZn ferrite, raw material components Fe 2 O 3 , ZnO, CuO, and NiO are weighed in predetermined amounts, and each weighed raw material component is mixed while being pulverized by a ball mill to produce a mixed powder. The sintered body was calcined at a temperature, the calcined sintered body was pulverized with a ball mill, and the pulverization was performed for 20 hours.

次に各試料については、表1に示す組成とするため、NiCuZnフェライト粉体に対してコバルトフェライト粉体あるいはCoO粉体を所定に秤量して添加し、乳鉢を用いて十分に混合した。さらに、それぞれへPVA溶液を1wt%添加して造粒を行った。この後、ふるいを用いて製粒し、製粒した粉体は金型に入れて所定の圧力を加えて所定形状に成形し、これは電気炉で焼成した。焼成は1150℃のトップ温度で2時間行い、これにより焼成体を製造した。そして、この焼成体に研削加工を施して、所定形状に加工してフェライト試料を得た。   Next, for each sample, in order to obtain the composition shown in Table 1, cobalt ferrite powder or CoO powder was weighed and added to the NiCuZn ferrite powder in a predetermined amount, and sufficiently mixed using a mortar. Furthermore, granulation was performed by adding 1 wt% of the PVA solution to each. Thereafter, the mixture was granulated using a sieve, and the granulated powder was put in a mold and formed into a predetermined shape by applying a predetermined pressure, which was fired in an electric furnace. Firing was performed at a top temperature of 1150 ° C. for 2 hours, thereby producing a fired body. The fired body was ground and processed into a predetermined shape to obtain a ferrite sample.

各試料それぞれについて、複素透磁率μ(μ=μ′−jμ″)の周波数特性を測定した。その結果、図1,図2,図4,図5に示す周波数特性を得た。   For each sample, the frequency characteristics of the complex permeability μ (μ = μ′−jμ ″) were measured. As a result, the frequency characteristics shown in FIGS. 1, 2, 4, and 5 were obtained.

図1から明らかなように、実施例1は比較例1との比較において、ほぼ同一となる複素透磁率では実部μ′の共鳴ピークが、高周波側に約15MHz高くなる特性であることを確認した。そして図2から明らかなように、実施例2は比較例2との比較において、ほぼ同一となる複素透磁率では実部μ′の共鳴ピークが、高周波側に約250MHz高くなる特性であることを確認した。   As is clear from FIG. 1, in comparison with Comparative Example 1, Example 1 has a characteristic that the resonance peak of the real part μ ′ increases by about 15 MHz on the high frequency side when the complex permeability is substantially the same. did. As can be seen from FIG. 2, in comparison with Comparative Example 2, Example 2 shows that the resonance peak of the real part μ ′ is higher by about 250 MHz on the high frequency side when the complex permeability is substantially the same. confirmed.

また、実施例1,2および比較例1,2については、EPMA(Electron Probe Micro Analysis)による元素分布分析を行った。つまり、それら試料の表面を切削してダイヤモンドペーストを用いた鏡面研磨を行い、当該観察面についてEPMAによる分析を行った。その結果、図3に示すCoの元素分布像を得た。   In addition, Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to element distribution analysis by EPMA (Electron Probe Micro Analysis). That is, the surfaces of these samples were cut and mirror-polished using a diamond paste, and the observation surface was analyzed by EPMA. As a result, an element distribution image of Co shown in FIG. 3 was obtained.

図3から明らかなように、比較例1,2には点状にCoの偏析が見られるが、実施例1,2では均一に分散していることがわかる。   As can be seen from FIG. 3, although Co segregation is observed in a dotted manner in Comparative Examples 1 and 2, it can be seen that Examples 1 and 2 are uniformly dispersed.

また、図4に示す比較例3,4に注目すると、それぞれはCoOの添加時期が違う比較例1と比べて混合度は格段によいはずである。しかし、複素透磁率は比較例1とほぼ同等の特性を示しており、実施例1,2のような高周波側へ延びる効果は認められない。したがって、CoOの添加では添加する時期の違い、および添加した際の混合度の違いには関わりがなく、実施例1,2が示す効果は得られないことを確認した。そしてこのことから、実施例1,2が示す特性は、コバルトフェライトを添加することによって得られるものであることは明らかである。   Further, when attention is paid to Comparative Examples 3 and 4 shown in FIG. 4, the degree of mixing should be significantly better than Comparative Example 1 in which the CoO addition time is different. However, the complex magnetic permeability shows almost the same characteristics as in Comparative Example 1, and the effect of extending to the high frequency side as in Examples 1 and 2 is not recognized. Therefore, it was confirmed that the addition of CoO was not related to the difference in the timing of addition and the difference in the mixing degree when added, and the effects shown in Examples 1 and 2 could not be obtained. From this, it is clear that the characteristics shown in Examples 1 and 2 are obtained by adding cobalt ferrite.

さらに、図5から明らかなように、化学量論組成よりもFe量を少なくした実施例3では、実施例1と比べて実部μ′,虚部μ″の共鳴ピークが大きくなっており、より大きな複素透磁率が得られることを確認した。そして、化学量論組成からのズレ量xを大きくした実施例4,6では共鳴ピークが逆に低減しており、より好ましい範囲としては、ズレ量xは0から0.04程度であることを確認した。   Further, as is apparent from FIG. 5, in Example 3 in which the Fe amount was less than the stoichiometric composition, the resonance peaks of the real part μ ′ and the imaginary part μ ″ were larger than in Example 1, It was confirmed that a larger complex permeability was obtained, and in Examples 4 and 6 in which the amount of deviation x from the stoichiometric composition was increased, the resonance peak was reduced conversely. It was confirmed that the amount x was about 0 to 0.04.

試作した試料について複素透磁率の周波数特性を示すグラフ図である。It is a graph which shows the frequency characteristic of a complex magnetic permeability about the sample made as an experiment. 試作した試料について複素透磁率の周波数特性を示すグラフ図である。It is a graph which shows the frequency characteristic of a complex magnetic permeability about the sample made as an experiment. 試作した試料についてEPMAによる元素分布分析を示し、(a)は実施例1、(b)は比較例1、(c)は実施例2、(d)は比較例2、それぞれ元素分布像である。The element distribution analysis by EPMA is shown about the sample which was made as an experiment, (a) is Example 1, (b) is Comparative Example 1, (c) is Example 2, (d) is Comparative Example 2, and each is an element distribution image. . 試作した試料について複素透磁率の周波数特性を示すグラフ図である。It is a graph which shows the frequency characteristic of a complex magnetic permeability about the sample made as an experiment. 試作した試料について複素透磁率の周波数特性を示すグラフ図である。It is a graph which shows the frequency characteristic of a complex magnetic permeability about the sample made as an experiment.

Claims (3)

主成分はNiCuZnフェライトとし、副成分には少なくともコバルトフェライト(非化学量論組成を含む)を添加する組成であることを特徴とする高周波用フェライト材料。   A high-frequency ferrite material characterized in that the main component is NiCuZn ferrite, and at least cobalt ferrite (including non-stoichiometric composition) is added as a subcomponent. コバルトフェライトの組成をCo(1+x)Fe2(1−x)(0<x≦0.04)として、化学量論組成よりFe量が少ない組成物を添加する組成であることを特徴とする請求項1に記載の高周波用フェライト材料。 The composition of the cobalt ferrite is Co (1 + x) Fe 2 (1-x) O 4 (0 <x ≦ 0.04), and the composition is a composition in which a composition having a Fe amount smaller than the stoichiometric composition is added. The high frequency ferrite material according to claim 1. NiCuZnフェライトに、副成分としてコバルトフェライト(非化学量論組成を含む)粉末を混合し、所定の形状に成形後、焼成することを特徴とする高周波用フェライト材料の製造方法。

A method for producing a ferrite material for high frequency, comprising mixing NiCuZn ferrite with cobalt ferrite (including non-stoichiometric composition) powder as an accessory component, forming the powder into a predetermined shape, and firing the powder.

JP2006226435A 2006-08-23 2006-08-23 Manufacturing method of high frequency ferrite Active JP5224495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006226435A JP5224495B2 (en) 2006-08-23 2006-08-23 Manufacturing method of high frequency ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006226435A JP5224495B2 (en) 2006-08-23 2006-08-23 Manufacturing method of high frequency ferrite

Publications (2)

Publication Number Publication Date
JP2008050191A true JP2008050191A (en) 2008-03-06
JP5224495B2 JP5224495B2 (en) 2013-07-03

Family

ID=39234578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006226435A Active JP5224495B2 (en) 2006-08-23 2006-08-23 Manufacturing method of high frequency ferrite

Country Status (1)

Country Link
JP (1) JP5224495B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060332A (en) * 2011-09-14 2013-04-04 Fdk Corp Ferrite plate
CN103693949A (en) * 2013-11-19 2014-04-02 横店集团东磁股份有限公司 Soft magnetic NiCuZn ferrite material with characteristics of wide temperature range, low temperature coefficient, high frequency and low loss, and preparation method thereof
JP2015117173A (en) * 2013-12-20 2015-06-25 Tdk株式会社 Ferrite composition, ferrite plate, member for antenna element and antenna element
JP2015164897A (en) * 2015-04-22 2015-09-17 Fdk株式会社 ferrite plate
CN105529127A (en) * 2016-03-08 2016-04-27 佛山市川东磁电股份有限公司 Integral magnetic core for magneto-dependent sensor and manufacturing method of integral magnetic core for magneto-dependent sensor
CN111128515A (en) * 2020-01-04 2020-05-08 深圳感通科技有限公司 Magnetic core, common mode inductor containing magnetic core and preparation process of common mode inductor
WO2023021910A1 (en) * 2021-08-17 2023-02-23 株式会社村田製作所 Ferrite sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043114A (en) * 2000-07-28 2002-02-08 Fdk Corp High-frequency oxide soft magnetic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043114A (en) * 2000-07-28 2002-02-08 Fdk Corp High-frequency oxide soft magnetic material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6011062289; BYUN,Tae Young et al.: 'Factors Affecting Initial Permeability of Co-substituted Ni-Zn-Cu Ferrites' IEEE TRANSACTIONS ON MAGNETICS Vol.35, No.5, pp.3445-3447, 199909, Institute of Electrical and Electronics Engineers *
JPN6011062292; DIMRI,Mukesh C. et al.: 'Complex permittivity and permeability of Co-substituted NiCuZn ferrite at rf and microwave frequenci' Journal of Electroceramics Vol.16, No.4, pp.331-335, 200607, Springer;New York *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060332A (en) * 2011-09-14 2013-04-04 Fdk Corp Ferrite plate
CN103693949A (en) * 2013-11-19 2014-04-02 横店集团东磁股份有限公司 Soft magnetic NiCuZn ferrite material with characteristics of wide temperature range, low temperature coefficient, high frequency and low loss, and preparation method thereof
JP2015117173A (en) * 2013-12-20 2015-06-25 Tdk株式会社 Ferrite composition, ferrite plate, member for antenna element and antenna element
JP2015164897A (en) * 2015-04-22 2015-09-17 Fdk株式会社 ferrite plate
CN105529127A (en) * 2016-03-08 2016-04-27 佛山市川东磁电股份有限公司 Integral magnetic core for magneto-dependent sensor and manufacturing method of integral magnetic core for magneto-dependent sensor
CN106920624A (en) * 2016-03-08 2017-07-04 佛山市川东磁电股份有限公司 A kind of magneto-dependent sensor integral type magnetic core
CN111128515A (en) * 2020-01-04 2020-05-08 深圳感通科技有限公司 Magnetic core, common mode inductor containing magnetic core and preparation process of common mode inductor
CN111128515B (en) * 2020-01-04 2021-06-01 深圳感通科技有限公司 Magnetic core, common mode inductor containing magnetic core and preparation process of common mode inductor
WO2023021910A1 (en) * 2021-08-17 2023-02-23 株式会社村田製作所 Ferrite sintered body

Also Published As

Publication number Publication date
JP5224495B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5626211B2 (en) Ferrite magnetic material
JP4683327B2 (en) Ferrite sintered body and manufacturing method thereof
JP4254897B2 (en) Magnetic oxide material
JP5224495B2 (en) Manufacturing method of high frequency ferrite
KR101377409B1 (en) Ferrite magnetic material
KR20120047245A (en) Ferrite sintered magnet producing method and ferrite sintered magnet
JP6119752B2 (en) Ferrite calcined body, method for producing sintered ferrite magnet, and sintered ferrite magnet
JP5408521B2 (en) Manufacturing method of sintered magnet
JP2008133166A (en) Hexagonal z-type ferrite sintered body and manufacturing method thereof
JP5804370B2 (en) Method for producing oxide magnetic material
JP2011171568A (en) Oxide magnetic material, ferrite sintered magnet, and method of manufacturing ferrite sintered magnet
CN1264172C (en) Oxide magnetic material
JP2008290893A (en) Ni-Cu-Zn-BASED FERRITE
KR101282194B1 (en) Y-type ferrite and molded article manufactured with the same
JP2015030630A (en) Z-type hexagonal ferrite
JP2010111545A (en) Ferrite composition and inductor
JP5541475B2 (en) Ferrite sintered body, manufacturing method thereof, and electronic component
JP6464660B2 (en) Hexagonal ferrite composite magnetic body and high-frequency magnetic component using the same
JP5660698B2 (en) Magnetic oxide material
JP2008184364A (en) Oxide magnetic material
KR20120036535A (en) Nizncu ferrite composition, method of preparing the same, and multi layered chip materials comprising the same
JPH09306718A (en) Ferrite magnetic material and method of fabricating the same
JP6064732B2 (en) Magnetic oxide sintered body and high-frequency magnetic component using the same
JP5580961B2 (en) Oxidized magnetic material and manufacturing method thereof
JP2005047783A (en) Hexagonal system z-type ferrite and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

R150 Certificate of patent or registration of utility model

Ref document number: 5224495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250