JP2008049265A - Microorganism-carrying sintered compact for water purification and its manufacturing method, and method for water purification of water area using this sintered compact - Google Patents

Microorganism-carrying sintered compact for water purification and its manufacturing method, and method for water purification of water area using this sintered compact Download PDF

Info

Publication number
JP2008049265A
JP2008049265A JP2006227904A JP2006227904A JP2008049265A JP 2008049265 A JP2008049265 A JP 2008049265A JP 2006227904 A JP2006227904 A JP 2006227904A JP 2006227904 A JP2006227904 A JP 2006227904A JP 2008049265 A JP2008049265 A JP 2008049265A
Authority
JP
Japan
Prior art keywords
water
microorganism
sintered body
supported
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006227904A
Other languages
Japanese (ja)
Inventor
Kiyohisa Ota
清久 太田
Satoshi Kaneko
聡 金子
Hideyuki Katsumata
英之 勝又
Miyo Nakano
みよ 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2006227904A priority Critical patent/JP2008049265A/en
Publication of JP2008049265A publication Critical patent/JP2008049265A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microorganism-carrying sintered compact for water purification which is free from concern about its influence on the environment, and is excellent in properties for fixing microorganisms. <P>SOLUTION: A sintered compact obtained by burning a mixture prepared by mixing bottom sludge taken out from the bottom of a water system with at least pulverized material of shells and sodium silicate is made to carry microorganisms for water purification, thereby obtaining the target microorganism-carrying sintered compact. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、環境への影響が懸念されることのない微生物担持水質浄化用焼結体とそれを製造する方法、更にはそのような微生物担持水質浄化用焼結体を用いた、水域、特に海域の有利な水質浄化方法に関するものである。   The present invention relates to a microorganism-supported water-purifying sintered body that is not concerned about the influence on the environment, a method for producing the same, and a water region using such a microorganism-supported water-purifying sintered body, The present invention relates to an advantageous water purification method for sea areas.

従来から、河川、池、沼、海洋等の水域における、汚染された水質の改善乃至は浄化のために、水質汚染物質を分解する微生物の利用が考えられて来ており、また、そのような微生物による水質浄化作用を長期間に亘って維持すべく、かかる微生物を適当な多孔質の担体に担持せしめて、水質浄化の目的とされた水中に投与することが、考えられている。   Conventionally, in order to improve or purify polluted water quality in water areas such as rivers, ponds, swamps, and oceans, the use of microorganisms that decompose water pollutants has been considered. In order to maintain the action of water purification by microorganisms for a long period of time, it is considered that such microorganisms are supported on a suitable porous carrier and administered into water intended for water purification.

例えば、特開平5−219953号公報(特許文献1)においては、木炭をマイクロハビタットとして用いて、これに微生物を有利に定着させるための技術が提案されており、また、特開2005−52815号公報(特許文献2)においては、天然多孔性の貝殻の粉砕物を用い、これに微生物や高分子剤をよくミキシングして得られたものによって、水質改善を図る技術が明らかにされている。更に、水中に投与されるものではないが、特開2003−199434号公報(特許文献3)においては、微生物応用資材として、セラミックス、活性炭、貝殻等の多孔質担持物質、ゼオライト、珪酸白土、鹿沼土等の天然鉱物、コーヒーかす、ビールかす、茶かす等の食品有用残渣物、上下水道汚泥、生ゴミ、野菜屑等の堆肥用材料を担持物質として、これに有用微生物を担持せしめてなるものが、明らかにされている。   For example, Japanese Patent Laid-Open No. 5-219953 (Patent Document 1) proposes a technique for advantageously fixing microorganisms to charcoal as a microhabitat, and Japanese Patent Laid-Open No. 2005-52815. In the gazette (patent document 2), a technique for improving water quality is disclosed by using a natural porous shell of pulverized material and mixing it with a microorganism or a polymer agent. Furthermore, although not administered in water, in Japanese Patent Application Laid-Open No. 2003-199434 (Patent Document 3), as microorganisms applied materials, porous support materials such as ceramics, activated carbon, shells, zeolite, silicate clay, Kanuma Natural minerals such as soil, food residue such as coffee grounds, beer grounds, tea grounds, composting materials such as water and sewage sludge, raw garbage, vegetable waste, etc. However, it has been revealed.

しかしながら、それら従来から提案されている担持物質は、それに微生物を担持させて水中に投与するには、強度的に問題のあるものであったり、水の流れによって移動し、一定の場所に滞在することが困難なものであったり、更には担持物質の微生物担持特性において充分でなく、そのために、迅速に或いは長期間に亘って水質浄化能力を発揮し得ないものでもあったのである。また、天然の有機材料や無機鉱物を担持物質とした場合にあっても、それ自体、現場の生態系にとって人工物質乃至は異物質となるものであるところから、担持せしめた微生物の浄化能力が低下したときに惹起される、担持物質自体の材質の環境への影響等も懸念されるものであった。   However, these conventionally proposed support materials are problematic in terms of strength, or are moved by the flow of water and stay in a certain place when they are loaded with microorganisms and administered into water. In addition, it is difficult to carry out the purification of microorganisms, and further, it is not sufficient in the microorganism-carrying characteristics of the support material, and therefore, it cannot exhibit the water purification ability quickly or over a long period of time. In addition, even when natural organic materials and inorganic minerals are used as supporting substances, the ability to purify the microorganisms that have been supported is not possible because they are artificial or foreign substances in the local ecosystem. There are also concerns about the environmental impact of the material of the support material itself, which is caused when the amount is lowered.

特開平5−219953号公報JP-A-5-219953 特開2005−52815号公報JP 2005-52815 A 特開2003−199434号公報JP 2003-199434 A

ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決課題とするところは、環境への影響が懸念されることのない、また微生物の定着性の良好な微生物担持水質浄化用焼結体と、それを有利に製造する方法を提供することにあり、またそのような微生物担持水質浄化用焼結体を用いて、目的とする水域の水質浄化を有効に行い得る方法を提供することにある。   Here, the present invention has been made in the background of such circumstances, and the problem to be solved is a microorganism that has no concern about the influence on the environment and has a good microorganism fixing property. The object is to provide a sintered body for purification of supported water and a method for producing the same advantageously, and to effectively purify water in a target water area using such a sintered body for purification of water on microorganisms. It is to provide a method of obtaining.

そして、本発明にあっては、かくの如き課題の解決のために、水系の底部から取り出された底泥に、少なくとも、貝殻の粉砕物及び珪酸ナトリウムが配合されてなる混合物を焼成して得られる焼結体に、水質浄化用微生物を担持せしめてなることを特徴とする微生物担持水質浄化用焼結体を、その要旨とするものである。   In the present invention, in order to solve the problems as described above, the bottom mud taken out from the bottom of the aqueous system is obtained by calcining at least a mixture of shell pulverized material and sodium silicate. The gist of the sintered body for water purification of microorganisms is characterized in that the sintered body for water purification is supported on the sintered body.

なお、かかる本発明に従う微生物担持水質浄化用焼結体の望ましい態様によれば、前記珪酸ナトリウムは、前記混合物中、10〜50重量%の割合で配合され、また前記貝殻の粉砕物は、前記混合物中、1〜10重量%の割合で配合されることとなる。更に、そのような貝殻の粉砕物は、有利には、0.01〜1mmの粒径を有している。   According to a desirable aspect of the microorganism-supported water purification ceramic sintered body according to the present invention, the sodium silicate is blended in a proportion of 10 to 50% by weight in the mixture, and the crushed shell is It will mix | blend in the ratio of 1-10 weight% in a mixture. Furthermore, such crushed shells advantageously have a particle size of 0.01 to 1 mm.

また、本発明に従う微生物担持水質浄化用焼結体の他の望ましい態様によれば、水質浄化用微生物が担持せしめられる焼結体は、0.1〜10m2 /gの比表面積を有しているものである。 According to another desirable aspect of the microorganism-supported water-purifying sintered body according to the present invention, the sintered body on which the water-purifying microorganism is supported has a specific surface area of 0.1 to 10 m 2 / g. It is what.

さらに、本発明に従う微生物担持水質浄化用焼結体の、更に異なる望ましい態様によれば、前記水質浄化用微生物が、水質浄化の目的とされた水域から採取された、水質汚染物質を分解する微生物であり、またそのような水質浄化用微生物は、硝化細菌及び/又は脱窒細菌でもある。   Further, according to a further different desirable aspect of the microorganism-supported water purification sinter according to the present invention, the water purification microorganism is a microorganism that decomposes water pollutants collected from a water area intended for water purification. Such a water purification microorganism is also a nitrifying bacterium and / or a denitrifying bacterium.

そして、かくの如き本発明に従う微生物担持水質浄化用焼結体を製造するために、本発明にあっては、水系の底部から取り出された底泥に、少なくとも、貝殻の粉砕物及び珪酸ナトリウムが混合されてなる混合物を焼成して、固形の焼結体を調製した後、この得られた焼結体を、水質浄化用微生物の培養液の濃縮物と共に、培地に投入して、更に培養を行うことにより、かかる水質浄化用微生物を該焼結体表面に担持させることを特徴とする微生物担持水質浄化用焼結体の製造方法をも、その要旨としている。   And in order to manufacture the microorganism-supported water purification sintered body according to the present invention as described above, in the present invention, the bottom mud taken out from the bottom of the aqueous system contains at least crushed shellfish and sodium silicate. After the mixed mixture is fired to prepare a solid sintered body, the obtained sintered body is put into a medium together with a culture solution concentrate for water purification microorganisms, and further cultured. The gist of the method for producing a microorganism-supported water-purifying sintered body is characterized in that the water-purifying microorganism is supported on the surface of the sintered body.

なお、かかる本発明に従う微生物担持水質浄化用焼結体の製造方法の好ましい態様の一つによれば、前記焼結体を得るための前記混合物の焼成温度として、200℃〜1800℃の温度が採用されることとなる。   According to one of the preferred embodiments of the method for producing a sintered body for purification of microorganism-supported water quality according to the present invention, a temperature of 200 ° C. to 1800 ° C. is used as the firing temperature of the mixture for obtaining the sintered body. Will be adopted.

また、本発明にあっては、上述の如き微生物担持水質浄化用焼結体を用いて、目的とする水域の水質を浄化するに際して、該焼結体を与える前記底泥及び貝殻粉砕物が、それぞれ、当該水域の底部の浚渫底泥及び当該水域で生育した貝の貝殻粉砕物であり、且つ前記水質浄化用微生物が、当該水域から採取された微生物であることを特徴とする水域の水質浄化方法をも、その要旨としている。   Further, in the present invention, when purifying the water quality of the target water area using the above-described microorganism-supported water purification sintered body, the bottom mud and shell pulverized product that gives the sintered body, Water purification of the water area, characterized in that each is a dredged mud at the bottom of the water area and a shell pulverized product of shellfish grown in the water area, and the microorganism for water purification is a microorganism collected from the water area The method is also the gist.

このように、本発明に従う微生物担持水質浄化用焼結体にあっては、その水質浄化用微生物を担持せしめるキャリヤとしての焼結体は、充分な強度を有し、目的とする水域において散布されても、崩壊することなく底部に止まり、長期に亘って有効な浄化作用を発揮し得ると共に、その多孔性や材質特性によって微生物の定着性に優れたものとなっているところから、焼結体表面において微生物が長期的に繁殖し、その効果が有利に持続させられ得ることとなるのである。しかも、そのような焼結体は、現場に存在する水系の底部から取り出された底泥や貝殻粉砕物を用い、また自然に豊富に存在する元素から構成される珪酸ナトリウムを用いて、形成されたものであるところから、微生物担持水質浄化用焼結体の用いられる現場において二次汚染の可能性は殆どなく、それ故に、使用後に微生物による浄化活性の無くなった焼結体(キャリヤ)を回収する必要性もないのである。   As described above, in the sintered body for purification of water carrying microorganisms according to the present invention, the sintered body as a carrier for carrying the microorganisms for water purification has sufficient strength and is dispersed in a target water area. However, it remains at the bottom without collapsing, can exhibit an effective purification action for a long time, and has excellent microbe fixing properties due to its porosity and material properties. Microorganisms propagate on the surface for a long time, and the effect can be advantageously maintained. Moreover, such a sintered body is formed using bottom mud and shell pulverized material extracted from the bottom of an aqueous system existing in the field, and using sodium silicate composed of naturally abundant elements. Therefore, there is almost no possibility of secondary contamination at the site where the sintered body for purification of water supported by microorganisms is used. Therefore, the sintered body (carrier) that has lost its purification activity by microorganisms after use is recovered. There is no need to do it.

また、本発明に従う微生物担持水質浄化用焼結体の製造方法によれば、キャリヤとしての焼結体が、水質浄化用微生物の培養液の濃縮物と共に、培地に投入されて、更に培養が行われることにより、かかる水質浄化用微生物を焼結体表面に効果的に担持せしめ得て、目的とする微生物担持水質浄化用焼結体を有利に得ることが出来る特徴がある。   In addition, according to the method for producing a microorganism-supported water-purifying sintered body according to the present invention, the sintered body as a carrier is put into a medium together with a concentrate of the culture medium for water-purifying microorganisms, and further cultured. Therefore, the water purification microorganism can be effectively supported on the surface of the sintered body, and the target microorganism-supported water quality purification sintered body can be advantageously obtained.

さらに、かくの如き本発明に従う微生物担持水質浄化用焼結体を用いて、目的とする水域の水質を浄化するに際して、そのキャリヤである焼結体を与える、水系の底部から取り出された底泥や貝殻粉砕物として、当該水域で得られる原料、即ち当該水域の底部の浚渫底泥や当該水域で生育した貝の貝殻粉砕物を用いると共に、水質浄化用微生物としても、当該水域から採取された微生物を用いるようにすることにより、現場水域における二次汚染の可能性を皆無となし得ると共に、微生物の定着性をも、より一層高め得ることとなり、以て、水質浄化作用をより一層有利に発揮せしめ得るのである。   Further, when purifying the water quality of the target water area using the microorganism-supported water purification sintered body according to the present invention as described above, the bottom mud taken out from the bottom of the water system, which gives the sintered body as the carrier, is provided. The raw material obtained in the water area, that is, the dredged mud at the bottom of the water area or the shell crushed shell of the shellfish grown in the water area, and the microorganisms for water purification were also collected from the water area. By using microorganisms, there is no possibility of secondary contamination in the on-site water area, and it is possible to further improve the colonization of microorganisms, thereby further improving the water purification effect. It can be demonstrated.

ところで、かかる本発明に従う微生物担持水質浄化用焼結体において、そのキャリヤとしての焼結体を与える原料の一つである、水系の底部から取り出された底泥は、一般に、従来と同様な、浚渫作業等によって閉鎖性の水域の底部から採取される、有機質の豊富なものであって、そのような水系の底部から取り出された底泥は、通常、含水率が30%〜40%程度のものとして、用いられることとなる。特に、この水系の底部から取り出された底泥としては、微生物担持水質浄化用焼結体が用いられる水域の底部から得られる浚渫底泥等のものが好適に用いられ、これによって、現場水域により適合した微生物担持水質浄化用焼結体を得ることが可能となる。   By the way, in the microorganism-supported water purification sinter according to the present invention, the bottom mud taken out from the bottom of the aqueous system, which is one of the raw materials that give the sinter as the carrier, is generally the same as in the past. Organic mud that is collected from the bottom of a closed water area by dredging work, etc., and the bottom mud taken from the bottom of such an aqueous system usually has a moisture content of about 30% to 40%. As a thing, it will be used. In particular, as the bottom mud taken out from the bottom of this water system, dredged bottom mud obtained from the bottom of the water area where the sintered body for purifying the microorganism-supported water is used is preferably used. It is possible to obtain a compatible sintered body for purification of microorganism-supported water quality.

また、かかる水系の底部から取り出された底泥と共に、焼結体の原料として用いられる貝殻の粉砕物は、焼成して得られる焼結体に有効な強度を付与すると共に、実際の水系に応用したときに、その表面に有機物やリン酸等が付着し、そしてそれらが担持される微生物の栄養分となって、微生物の活性が維持され易くするものである。そして、この貝殻の粉砕物としては、公知の各種の貝類の貝殻を粉砕して得られたものが用いられ得るが、中でも、本発明にあっては、カキ殻の粉砕物が有利に用いられ、更に微生物担持水質浄化用焼結体の用いられる水域において生育した貝の貝殻粉砕物が、前記した水系の底部から取り出された底泥と同様な理由において、特に有利に用いられ得るのである。   In addition, crushed shells used as raw materials for sintered bodies together with the bottom mud taken out from the bottom of the aqueous system give effective strength to the sintered body obtained by firing, and can be applied to actual aqueous systems. In this case, organic substances, phosphoric acid, and the like adhere to the surface and become nutrients of the microorganisms that carry them, thereby facilitating the maintenance of the activity of the microorganisms. As the crushed material of the shell, those obtained by pulverizing shells of various known shellfish can be used, and among them, the pulverized material of oyster shell is advantageously used in the present invention. Furthermore, the shell crushed material of shellfish grown in the water area where the sintered body for purifying microorganisms-supporting water quality is used can be used particularly advantageously for the same reason as the bottom mud taken out from the bottom of the aqueous system.

なかでも、そのような貝殻には、カキ養殖や真珠貝養殖等の海洋産業において、カキ殻や真珠貝殻等として排出される廃棄物をそのまま用いることが出来るところから、それら貝殻を再資源化して、その有効利用を図り得る点において、技術的に大きな意義を有しているのである。   In particular, such shells can be reused as waste from oyster shells and pearl shells in the marine industry such as oyster culture and pearl shell culture. In terms of its effective use, it has great technical significance.

そして、このような貝殻は、公知の粉砕機によって適度の大きさに粉砕されて、用いられることとなるが、一般に、0.01〜1mm程度の粒径を有するものが、有利に用いられることとなる。なお、この貝殻の粉砕物の粒径が、余りにも小さくなり過ぎると、その配合効果を充分に奏することが困難となるからであり、また1mmを越えるような粒径の粉砕物を用いた場合にあっては、焼成したときに得られる焼成体(焼結体)から粉砕物粒子が脱落して、空洞が生じて、強度が低下する等の恐れがあるからである。また、そのような貝殻の粉砕物は、焼結体を与える混合物(固形分換算)中において、1〜10重量%の割合で配合、含有せしめられていることが望ましい。けだし、その配合量が余りにも少なくなり過ぎると、貝殻粉砕物の配合効果が充分に発揮され得なくなるからであり、また10重量%を越えるようになりると、焼成して得られる焼結体が脆くなり、充分な強度を確保し難くなるからである。   And such a shell is pulverized to an appropriate size by a known pulverizer, and generally, a shell having a particle size of about 0.01 to 1 mm is advantageously used. It becomes. This is because if the particle size of the crushed shell is too small, it will be difficult to sufficiently achieve the blending effect, and when the pulverized particle having a particle size exceeding 1 mm is used. In this case, the pulverized product particles may fall off from the fired body (sintered body) obtained when fired, resulting in cavities and a decrease in strength. Moreover, it is desirable that such a crushed shell is blended and contained in a ratio of 1 to 10% by weight in a mixture (in terms of solid content) that gives a sintered body. However, if the blending amount is too small, the effect of blending the crushed shells cannot be fully exhibited. If the blending amount exceeds 10% by weight, the sintered body obtained by firing is obtained. This is because it becomes brittle and it is difficult to ensure sufficient strength.

さらに、それら水系の底部から取り出された底泥や貝殻粉砕物と共に用いられる珪酸ナトリウムは、バインダーとして機能するものであって、その配合によって、焼成して得られる焼結体に充分な強度を付与し得るものである。なお、この珪酸ナトリウムの配合量としては、目的とする焼結体の強度に応じて適宜に選定され得るものであるが、一般に、混合物(固形分換算)中において、10〜50重量%の割合で配合、含有せしめられることが、望ましい。この珪酸ナトリウムの配合量が少なくなり過ぎると、バインダーとしての機能を充分に奏し得ず、そのために得られる焼結体の強度を充分に高め得なくなるからであり、また珪酸ナトリウムの配合量が多くなり過ぎると、得られる焼結体の表面特性が悪化し、その比表面積が低下するようになるところから、微生物の定着に悪影響をもたらす恐れを惹起することとなる。   Furthermore, sodium silicate used together with the bottom mud and shell pulverized material taken out from the bottom of these water systems functions as a binder, and its composition gives sufficient strength to the sintered body obtained by firing. It is possible. In addition, as a compounding quantity of this sodium silicate, although it can select suitably according to the intensity | strength of the target sintered compact, generally the ratio of 10 to 50 weight% in a mixture (solid content conversion) It is desirable to be blended and contained in This is because if the amount of sodium silicate is too small, the function as a binder cannot be sufficiently achieved, and the strength of the resulting sintered body cannot be sufficiently increased, and the amount of sodium silicate is large. When it becomes too much, the surface characteristics of the obtained sintered body deteriorate, and the specific surface area thereof is lowered, which causes a possibility of adversely affecting the colonization of microorganisms.

なお、本発明において、キャリヤとして用いられる焼結体は、上記せる水系の底部から取り出された底泥と貝殻粉砕物と珪酸ナトリウムとを原料とするものであるが、この他にも、本発明の目的を阻害しない限りにおいて、必要に応じて、各種の配合剤、例えば水系の底部から取り出された底泥の凝集や脱水のための薬剤や固化剤、結合助剤、多孔化補助剤等を適宜に配合せしめることが可能である。   In the present invention, the sintered body used as a carrier is made from the bottom mud taken out from the bottom of the aqueous system described above, shell pulverized material, and sodium silicate. As long as it does not impede the purpose of the above, various compounding agents, such as agglomerates and dehydrating agents, solidifying agents, binding aids, porosity aids, etc. It is possible to mix them appropriately.

そして、本発明にあっては、微生物を担持せしめるキャリヤとして有効な焼結体を得るべく、上記した水系の底部から取り出された底泥に対して、少なくとも、貝殻の粉砕物及び珪酸ナトリウムを配合して得られる混合物を用い、それを適宜の大きさに造粒した後、空気中において焼成することにより、目的とする焼結体が製造されるのである。なお、このような混合物の焼成に際して、その焼成温度としては、一般に、200℃〜1800℃の範囲内において適宜に選定されることとなるが、特に有利には、600℃〜900℃の範囲内の焼成温度が採用されることとなる。その焼成温度が低くなり過ぎると、充分な焼成を行うことが出来ず、そのために焼結体の強度を充分に高めることが困難となるからであり、また焼成温度が高くなり過ぎると、得られる焼結体表面の緻密化が進行し、その表面特性が悪化して、微生物の定着に有効な多孔質構造を得ることが困難となるからである。   In the present invention, in order to obtain a sintered body that is effective as a carrier for supporting microorganisms, at least the crushed shellfish and sodium silicate are added to the bottom mud taken out from the bottom of the aqueous system. Then, the mixture obtained is granulated to an appropriate size, and then fired in air to produce the intended sintered body. In the firing of such a mixture, the firing temperature is generally appropriately selected within the range of 200 ° C. to 1800 ° C., but particularly preferably within the range of 600 ° C. to 900 ° C. The firing temperature is adopted. If the firing temperature is too low, sufficient firing cannot be performed, which makes it difficult to sufficiently increase the strength of the sintered body, and if the firing temperature is too high, it is obtained. This is because the densification of the surface of the sintered body progresses, the surface characteristics deteriorate, and it becomes difficult to obtain a porous structure effective for fixing microorganisms.

また、このような焼成操作によって、焼結体は、多孔質構造において充分な強度を有するものとして、形成されることとなるが、一般に、そのような焼結体は、0.1〜10m2 /g程度の比表面積を有していることが望ましい。けだし、かかる焼結体の比表面積が小さくなり過ぎると、焼結体の緻密度が上昇して、微生物の定着を有効に行い難くなる恐れがあるからであり、また比表面積が大きくなり過ぎると、多孔質構造が強調されて、焼結体が脆くなり、強度が低下する恐れがあるからである。また、そのような焼結体の大きさとしては、その取扱い性等を考慮して、一般に0.5mm〜10cm程度の粒径のものとして、好ましくは1cm〜5cm程度の粒径のものとして、形成されることとなる。 In addition, by such a firing operation, the sintered body is formed as having sufficient strength in the porous structure. Generally, such a sintered body has a thickness of 0.1 to 10 m 2. It is desirable to have a specific surface area of about / g. However, if the specific surface area of such a sintered body becomes too small, the density of the sintered body increases, and there is a risk that it will be difficult to effectively fix microorganisms, and if the specific surface area becomes too large. This is because the porous structure is emphasized, the sintered body becomes brittle, and the strength may decrease. In addition, the size of such a sintered body is generally about 0.5 mm to 10 cm particle size, preferably about 1 cm to 5 cm particle size, in consideration of its handleability, etc. Will be formed.

次いで、かくの如くして得られた焼結体をキャリヤとして用いて、これに所定の水質浄化用微生物が担持せしめられるのであるが、その担持方法としては、一般に、水質浄化用微生物の存在する液中に、焼結体を浸漬することにより、かかる焼結体の多孔質構造内に微生物を入り込ませて、担持させる方法が、採用されることとなるが、勿論、これに限定されることなく、公知の各種の担持方法が、適宜に採用され得るものである。   Next, the sintered body obtained as described above is used as a carrier, and a predetermined water purification microorganism is supported on the carrier. Generally, there are water purification microorganisms as the loading method. A method of allowing microorganisms to enter and carry in the porous structure of the sintered body by immersing the sintered body in the liquid is, of course, limited to this. In addition, various known loading methods can be appropriately employed.

中でも、本発明にあっては、水質浄化用微生物を培養して得られる培養液を濃縮して、かかる微生物の濃度を高めた濃縮物を用い、これと共に、前述の如くして得られた焼結体を、そのような微生物のための培地に投入乃至は添加して、更に培養を行うことにより、そのような水質浄化用微生物を焼結体表面に担持させるようにする手法が、有利に採用されることとなる。こうすることにより、微生物を、焼結体の多孔構造内に有利に侵入せしめ得て、その効果的な定着を図ることが出来るのである。   In particular, according to the present invention, the culture solution obtained by culturing the water purification microorganism is concentrated, and the concentrate obtained by increasing the concentration of the microorganism is used together with the baking obtained as described above. It is advantageous to add a ligature to a medium for such microorganisms and further culture, so that the microorganisms for water purification are supported on the surface of the sintered body. Will be adopted. By doing so, microorganisms can be advantageously invaded into the porous structure of the sintered body, and effective fixing thereof can be achieved.

ここで、かかる焼結体に担持せしめられる微生物としては、公知の各種の水質浄化用微生物が適宜に選定されて用いられることとなるが、その中でも、特に、各種のアンモニア酸化細菌、亜硝酸酸化細菌等の硝化細菌や各種の脱窒細菌のうちの少なくとも何れか一方が用いられて、目的とする水域の水質浄化が図られることとなる。また、その中でも、水質浄化の目的とされた水域から採取された水質汚染物質を分解する微生物が有利に用いられることとなるのである。   Here, as the microorganisms supported on the sintered body, known various water purification microorganisms are appropriately selected and used, and among them, various ammonia oxidizing bacteria, nitrite oxidation, among others. At least one of nitrifying bacteria such as bacteria and various denitrifying bacteria is used to purify the water quality of the target water area. Among them, microorganisms that decompose water pollutants collected from water areas intended for water purification are advantageously used.

そして、かくの如くして得られた微生物担持水質浄化用焼結体は、目的とする水域に投入乃至は散布されて、その底部において、担持された微生物により、水質汚染物質が効果的に分解されて、水質の浄化が図られることとなるが、その際、焼結体は充分な強度を有しているところから、その形状が崩れることなく、水域に有効に存在せしめられ得ることとなるのである。かくして、微生物による水質浄化作用が、長期間に亘って有利に発揮せしめられ得ることとなるのであり、またそのような焼結体には、微生物が定着性良く担持せしめられているところから、これによっても、微生物の長期間に亘る水質浄化作用が有利に発揮せしめられ得ることとなるのである。   Then, the microorganism-supported sintered body for purification of water quality obtained as described above is thrown into or dispersed in the target water area, and the water pollutants are effectively decomposed at the bottom by the supported microorganisms. Thus, purification of water quality will be achieved, but at that time, since the sintered body has sufficient strength, its shape can be effectively prevented from being lost and it can be effectively present in the water area. It is. Thus, the water purification effect by microorganisms can be advantageously exerted over a long period of time, and such a sintered body is supported by microorganisms with good fixability. In this way, the water purification effect of microorganisms over a long period of time can be advantageously exerted.

しかも、そのような微生物担持水質浄化用焼結体において、その焼結体を与える、水系、特に有利には海域の底部から取り出された底泥や貝殻粉砕物、水質浄化用微生物として、当該水域(海域)の底部の浚渫底泥や当該水域(海域)で生育した貝の貝殻粉砕物、更には当該水域(海域)から採取された微生物が用いられるようにすることによって、かかる微生物の定着性がより一層高められ得ると共に、当該水域(海域)における水質浄化作用も、より一層有利に発揮され得ることとなる他、それら焼結体や微生物が何れも用いられる水域(海域)に存在するものであるところから、環境汚染の懸念が全くなく、それ故に、使用後において、本発明に係る微生物担持水質浄化用焼結体を回収する必要も全くないという特徴が有利に発揮されることとなる。   Moreover, in such a microorganism-supported water purification sinter, an aqueous system that gives the sinter, particularly preferably bottom mud and shell pulverized matter taken from the bottom of the sea, as a microorganism for water purification, By using dredged mud at the bottom of (water area), crushed shells of shellfish grown in the water area (sea area), and microorganisms collected from the water area (sea area), the microorganisms can be fixed. In addition to being able to be further enhanced, the water purification effect in the water area (sea area) can be exhibited more advantageously, and those existing in the water area (sea area) where these sintered bodies and microorganisms are used Therefore, there is no concern about environmental pollution, and therefore, there is no need to recover the microorganism-supported water purification sintered body according to the present invention after use. And thus.

以下に、本発明の代表的な実施例を示し、本発明を、更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等を加え得るものであることが、理解されるべきである。   In the following, typical examples of the present invention will be shown, and the present invention will be clarified more specifically. However, the present invention is subject to any restrictions by the description of such examples. It goes without saying that it is not. In addition to the following examples, the present invention includes various changes and modifications based on the knowledge of those skilled in the art without departing from the spirit of the present invention, in addition to the specific description described above. It should be understood that improvements can be made.

先ず、微生物のキャリヤとしての焼結体を、以下のようにして製造した。即ち、三重県の英虞湾の海底から浚渫により得られた、有機物を豊富に含む海洋底泥を用い、その30%含水率のものと珪酸ナトリウムとカキ殻の粉砕物(粒径が0.01〜1mmのもの)とを、重量比にて40:20:1の割合で混合し、その得られた混合物を造粒した後、空気雰囲気下において、昇温速度:20℃/分にて、800℃の温度まで昇温し、更にその後800℃で3時間加熱することにより、直径が3〜5cm程度の大きさを有する塊状の焼結体を製造した。   First, a sintered body as a microorganism carrier was produced as follows. In other words, marine sediment containing abundant organic matter obtained from dredged sea bottom in Ago Bay, Mie Prefecture, with a 30% water content, pulverized product of sodium silicate and oyster shell (particle size of 0. 0). 01 to 1 mm) in a weight ratio of 40: 20: 1, and the resulting mixture is granulated, and then heated in an air atmosphere at a heating rate of 20 ° C./min. The temperature was raised to a temperature of 800 ° C., and then heated at 800 ° C. for 3 hours to produce a massive sintered body having a diameter of about 3 to 5 cm.

一方、水質浄化用微生物としては、国立大学法人三重大学生物資源学部で凍結保存されている脱窒細菌:Sc51株を選択した。なお、このSc51株は、1994年、三重県熊野灘、北緯33°20’、東経36°30’、水深2070mの海水中から分離されたものであって、シュードモナス属に属する株である。なお、この株の脱窒素活性の最適温度は30℃であり、最適pHは7〜8である。   On the other hand, as a microorganism for water purification, a denitrifying bacterium: Sc51 strain, which was cryopreserved at the Faculty of Bioresources, Mie University, was selected. This Sc51 strain was isolated from seawater at 1994 Kumano Pass in Mie Prefecture, north latitude 33 ° 20 ', east longitude 36 ° 30', water depth 2070m, and belongs to the genus Pseudomonas. The optimal temperature for denitrification activity of this strain is 30 ° C., and the optimal pH is 7-8.

この選択された株を用い、先ず、その前培養を行い、その選択された脱窒細菌(Sc51株)の生存・増殖を確認した。具体的には、300ml容の三角フラスコに収容された100mlの普通培地(ポリペプトン5.0g、酵母エキス3.0g、蒸留水100ml、人工海水900ml、pH7.0〜7.2)に対して、脱窒細菌(Sc51株)の一白金耳を接種し、30℃にて12時間振とう培養することにより、前培養液を得た。次いで、更に、本培養として、500ml容の逆口フラスコに上記普通培地の250mlを収容した後、前培養液から2.5mlを接種し、30℃にて12時間振とう培養することにより、本培養液を得た。その後、かかる本培養液を4℃にて7000rpm×15分間の遠心分離を施し、その上澄液を除去した後、滅菌海水を注ぎ、再懸濁させて、菌体を洗浄することからなる操作を、2回繰り返して実施し、培養された菌体を、濃縮液の形態において回収した。得られた生菌数は、109 cells/ml以上であった。 Using this selected strain, pre-culture was first carried out to confirm the survival and proliferation of the selected denitrifying bacteria (Sc51 strain). Specifically, for 100 ml of normal medium (polypeptone 5.0 g, yeast extract 3.0 g, distilled water 100 ml, artificial seawater 900 ml, pH 7.0 to 7.2) contained in a 300 ml Erlenmeyer flask, A preculture was obtained by inoculating one platinum loop of denitrifying bacteria (Sc51 strain) and shaking culture at 30 ° C. for 12 hours. Next, after further containing 250 ml of the above normal medium in a 500 ml reverse mouth flask as the main culture, inoculate 2.5 ml from the preculture and culturing with shaking at 30 ° C. for 12 hours. A culture solution was obtained. Thereafter, the main culture solution is centrifuged at 7000 rpm for 15 minutes at 4 ° C., and the supernatant is removed, and then sterilized seawater is poured, resuspended, and the cells are washed. Was repeated twice and the cultured cells were collected in the form of a concentrate. The number of viable bacteria obtained was 10 9 cells / ml or more.

そして、この得られた菌体濃縮物を、ポリペプトン5gと酵母エキス3gからなる普通培地30mlに加え、Sc51株が108 〜109 cells/mlとなるように調整する一方、その懸濁溶液に、先に製造された焼結体の5gを添加して、25℃の温度で24時間更に培養を行うことにより、かかる焼結体の表面に、微生物(脱窒細菌)を担持せしめた。 Then, the obtained bacterial cell concentrate is added to 30 ml of a normal medium composed of 5 g of polypeptone and 3 g of yeast extract, and adjusted so that the Sc51 strain becomes 10 8 to 10 9 cells / ml. Then, 5 g of the previously produced sintered body was added and further cultured at a temperature of 25 ° C. for 24 hours, whereby microorganisms (denitrifying bacteria) were supported on the surface of the sintered body.

かくして得られた微生物担持焼結体を用い、その5gを、25μM又は45μMの濃度の硝酸性窒素が存在するように調製された人工海水試料又は水道水に添加して、そのような焼結体に担持された微生物(Sc51株)の脱窒素の効果を検討し、その結果を、図1及び図2に示した。そして、それら図に示されるように、時間の経過と共に、硝酸イオンが亜硝酸イオンに還元され、更に亜硝酸イオン濃度も低下することが、確認された。そして、亜硝酸イオンの低下と共に、窒素ガスと思われる気泡の発生が確認された。   Using the thus obtained microorganism-carrying sintered body, 5 g thereof was added to an artificial seawater sample or tap water prepared so that nitrate nitrogen having a concentration of 25 μM or 45 μM was present, and such a sintered body. The effect of denitrification of the microorganism (Sc51 strain) supported on the surface was examined, and the results are shown in FIGS. As shown in these figures, it was confirmed that nitrate ions were reduced to nitrite ions and the nitrite ion concentration was reduced with the passage of time. And with the fall of nitrite ion, generation | occurrence | production of the bubble considered to be nitrogen gas was confirmed.

また、上記で得られた微生物担持焼結体における微生物の定着具合を検討するために、かかる微生物担持焼結体と、2種類の市販の担体を用いて、上記と同様にして微生物を担持せしめたものとの間において、硝酸性窒素の各種濃度下における硝酸イオンの減少率を求めて、それぞれの浄化能力を比較した。具体的には、既知濃度の硝酸性窒素が存在する試料100mlに、それぞれの微生物担持焼結体/担体の5gを添加し、温度を25℃で一定に保持しつつ、添加後3時間及び7時間の硝酸性窒素濃度を測定し、硝酸性窒素の濃度低下によって、担持されている微生物の活性の状態を評価した。   In addition, in order to examine the fixing state of microorganisms in the microorganism-supported sintered body obtained above, the microorganism-supported sintered body and two types of commercially available carriers are used to support microorganisms in the same manner as described above. The reduction rate of nitrate ion under various concentrations of nitrate nitrogen was determined, and the purification capacity of each was compared. Specifically, 5 g of each microorganism-supported sintered body / carrier is added to 100 ml of a sample containing nitrate nitrogen of a known concentration, and the temperature is kept constant at 25 ° C. for 3 hours and 7 hours after the addition. The nitrate nitrogen concentration over time was measured, and the activity state of the supported microorganisms was evaluated by the decrease in nitrate nitrogen concentration.

その結果、下記表1に示される如く、本発明に従う、海洋底泥を用いて得られた焼結体を担体として用いた場合にあっては、焼結体表面上への微生物の担持が効果的に為されているところから、市販の担体と比較して、添加後3時間で有為な差が認められ、短時間で硝酸イオン濃度を低下させることが出来ることが明らかとなった。   As a result, as shown in Table 1 below, in the case where the sintered body obtained using marine bottom mud according to the present invention is used as a carrier, it is effective to support microorganisms on the surface of the sintered body. As a result, a significant difference was observed 3 hours after the addition as compared with the commercially available carrier, and it became clear that the nitrate ion concentration can be reduced in a short time.

Figure 2008049265
Figure 2008049265

以上の実験結果に示されるように、本発明に従う微生物担持焼結体においては、脱窒細菌(Sc51株)が、焼結体上で有効に作用し、脱窒素反応が効果的に進行していることが認められ、従って、本発明に従う微生物担持焼結体は、河川、池、沼、海洋等の水環境の浄化に有利に応用することが出来ることが明らかとなった。   As shown in the above experimental results, in the microorganism-carrying sintered body according to the present invention, denitrifying bacteria (Sc51 strain) effectively act on the sintered body, and the denitrification reaction proceeds effectively. Therefore, it was found that the microorganism-carrying sintered body according to the present invention can be advantageously applied to purification of water environments such as rivers, ponds, swamps, and the ocean.

実施例において得られた、25μMの硝酸性窒素が存在する人工海水試料を用いた場合における、本発明に従う微生物担持焼結体の脱窒作用の結果を示すグラフである。It is a graph which shows the result of the denitrification effect | action of the microorganisms holding sintered compact according to this invention in the case of using the artificial seawater sample in which 25 micromol nitrate nitrogen exists obtained in the Example. 実施例において得られた、45μMの硝酸性窒素が存在する水道水試料を用いた場合における、本発明に従う微生物担持焼結体の脱窒作用の結果を示すグラフである。It is a graph which shows the result of the denitrification effect | action of the microorganisms holding sintered compact according to this invention at the time of using the tap water sample in which 45 micromol nitrate nitrogen exists obtained in the Example.

Claims (10)

水系の底部から取り出された底泥に、少なくとも、貝殻の粉砕物及び珪酸ナトリウムが配合されてなる混合物を焼成して得られる焼結体に、水質浄化用微生物を担持せしめてなることを特徴とする微生物担持水質浄化用焼結体。   It is characterized in that microorganisms for water purification are supported on a sintered body obtained by firing at least a mixture of shell crushed material and sodium silicate in the bottom mud taken out from the bottom of the aqueous system. A sintered body for purification of microorganism-supported water. 前記珪酸ナトリウムが、前記混合物中、10〜50重量%の割合で配合されていることを特徴とする請求項1に記載の微生物担持水質浄化用焼結体。   The sintered body for purification of microorganism-supported water according to claim 1, wherein the sodium silicate is blended in the mixture at a ratio of 10 to 50% by weight. 前記貝殻の粉砕物が、前記混合物中、1〜10重量%の割合で配合されていることを特徴とする請求項1又は請求項2に記載の微生物担持水質浄化用焼結体。   3. The microorganism-supported water purification sintered body according to claim 1, wherein the crushed shell is mixed in the mixture at a ratio of 1 to 10% by weight. 前記貝殻の粉砕物が、0.01〜1mmの粒径を有していることを特徴とする請求項1乃至請求項3の何れか一つに記載の微生物担持水質浄化用焼結体。   The microorganism-supported water purification sintered body according to any one of claims 1 to 3, wherein the crushed shellfish has a particle size of 0.01 to 1 mm. 前記焼結体が、0.1〜10m2 /gの比表面積を有していることを特徴とする請求項1乃至請求項4の何れか一つに記載の微生物担持水質浄化用焼結体。 The sintered body for purification of microorganism-supported water quality according to any one of claims 1 to 4, wherein the sintered body has a specific surface area of 0.1 to 10 m 2 / g. . 前記水質浄化用微生物が、水質浄化の目的とされた水域から採取された、水質汚染物質を分解する微生物であることを特徴とする請求項1乃至請求項5の何れか一つに記載の微生物担持水質浄化用焼結体。   The microorganism according to any one of claims 1 to 5, wherein the microorganism for water purification is a microorganism that decomposes water pollutants collected from a water area intended for water purification. Sintered body for water purification. 前記水質浄化用微生物が、硝化細菌及び/又は脱窒細菌であることを特徴とする請求項1乃至請求項6の何れか一つに記載の微生物担持水質浄化用焼結体。   The microorganism-supported water-purifying sintered body according to any one of claims 1 to 6, wherein the water-purifying microorganism is a nitrifying bacterium and / or a denitrifying bacterium. 請求項1乃至請求項7の何れか1項に記載の微生物担持水質浄化用焼結体を製造する方法にして、水系の底部から取り出された底泥に、少なくとも、貝殻の粉砕物及び珪酸ナトリウムが混合されてなる混合物を焼成して、固形の焼結体を調製した後、この得られた焼結体を、水質浄化用微生物の培養液の濃縮物と共に、培地に投入して、更に培養を行うことにより、かかる水質浄化用微生物を該焼結体表面に担持させることを特徴とする微生物担持水質浄化用焼結体の製造方法。   The method for producing a microorganism-supported water purification sintered body according to any one of claims 1 to 7, wherein at least crushed shellfish and sodium silicate are added to the bottom mud taken out from the bottom of the aqueous system. After the solid mixture is prepared by firing the mixture in which the mixture is mixed, the obtained sintered body is put into a medium together with a concentrate of a culture solution for microorganisms for water purification, and further cultured. By carrying out the above, a method for producing a microorganism-supported water-purifying sintered body, wherein the water-purifying microorganism is supported on the surface of the sintered body. 前記焼結体を得るための前記混合物の焼成温度が、200℃〜1800℃であることを特徴とする請求項8に記載の微生物担持水質浄化用焼結体の製造方法。   The method for producing a sintered body for purification of microorganism-supported water according to claim 8, wherein the firing temperature of the mixture for obtaining the sintered body is 200 ° C to 1800 ° C. 請求項1乃至請求項7の何れか1項に記載の微生物担持水質浄化用焼結体を用いて、目的とする水域の水質を浄化するに際して、
該焼結体を与える前記底泥及び貝殻粉砕物が、それぞれ、当該水域の底部の浚渫底泥及び当該水域で生育した貝の貝殻粉砕物であり、且つ前記水質浄化用微生物が、当該水域から採取された微生物であることを特徴とする水域の水質浄化方法。
Using the microorganism-supported water purification sintered body according to any one of claims 1 to 7, when purifying the water quality of a target water area,
The bottom mud and shell pulverized product that give the sintered body are the dredged mud at the bottom of the water area and the shell crushed material of shellfish grown in the water area, respectively, and the microorganism for water purification is from the water area. A method for purifying water quality of a water area, wherein the microorganism is a collected microorganism.
JP2006227904A 2006-08-24 2006-08-24 Microorganism-carrying sintered compact for water purification and its manufacturing method, and method for water purification of water area using this sintered compact Pending JP2008049265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227904A JP2008049265A (en) 2006-08-24 2006-08-24 Microorganism-carrying sintered compact for water purification and its manufacturing method, and method for water purification of water area using this sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227904A JP2008049265A (en) 2006-08-24 2006-08-24 Microorganism-carrying sintered compact for water purification and its manufacturing method, and method for water purification of water area using this sintered compact

Publications (1)

Publication Number Publication Date
JP2008049265A true JP2008049265A (en) 2008-03-06

Family

ID=39233797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227904A Pending JP2008049265A (en) 2006-08-24 2006-08-24 Microorganism-carrying sintered compact for water purification and its manufacturing method, and method for water purification of water area using this sintered compact

Country Status (1)

Country Link
JP (1) JP2008049265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131501A (en) * 2008-12-03 2010-06-17 Nihonkai Gijutsu Consultants:Kk Method for burning sludge granulated product, use method thereof
JP2011212640A (en) * 2010-04-02 2011-10-27 Ihi Corp Water clarifying method, water clarifying agent and method for producing water clarifying agent
JP2012125741A (en) * 2010-12-17 2012-07-05 Komatsu Seiren Co Ltd Water purification material
EP3789351A1 (en) * 2019-09-04 2021-03-10 Wen-Lung Chin Water deodorizer and method for making it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131501A (en) * 2008-12-03 2010-06-17 Nihonkai Gijutsu Consultants:Kk Method for burning sludge granulated product, use method thereof
JP2011212640A (en) * 2010-04-02 2011-10-27 Ihi Corp Water clarifying method, water clarifying agent and method for producing water clarifying agent
JP2012125741A (en) * 2010-12-17 2012-07-05 Komatsu Seiren Co Ltd Water purification material
EP3789351A1 (en) * 2019-09-04 2021-03-10 Wen-Lung Chin Water deodorizer and method for making it

Similar Documents

Publication Publication Date Title
Flemming Biofilms and environmental protection
CN101648745B (en) Magnetic seed filler taking sludge as main raw material and preparation method thereof
CN110078329A (en) A kind of sediment in-situ is biological reinforced with benthic environment ecological restoring method
JP4032199B2 (en) Nitrate nitrogen denitrification substrate
CN102603359B (en) Coal ash biological filter material and preparation method thereof
CN110845020B (en) Eutrophic water body remediation agent and preparation method thereof
KR101438380B1 (en) Concrete block for purifying water
JP2008049265A (en) Microorganism-carrying sintered compact for water purification and its manufacturing method, and method for water purification of water area using this sintered compact
JP2009142783A (en) Method and material for modifying bottom mud in closed water area or tidal flat
JP2009189914A (en) Microorganism-carrying photocatalyst-containing sintered body for water purification and its manufacturing method, and method for purifying water in water area using the sintered body and water purification process of water area using it
Bao et al. Performance and characterization of a non-sintered zeolite porous filter for the simultaneous removal of nitrogen and phosphorus in a biological aerated filter (BAF)
JP2899957B2 (en) Porous ceramic composite and manufacturing method thereof
CN113044961B (en) Carrier with autotrophic denitrification function and preparation method thereof
CN113024052B (en) Method for synchronously removing river sediment and ammonia nitrogen of overlying water body by using ammonia nitrogen release enhancer
JP4474690B2 (en) Porous stone for water purification and water purification method
CN110818094B (en) Method for restoring eutrophic water body
CN114250187A (en) Method for removing TBBPA in water body, microbial strain and microbial agent
JP5134200B2 (en) Underwater soil improver and method for improving underwater soil thereby
CN114890535A (en) Composite environment-friendly water purifying agent suitable for improving water quality of rivers and lakes and preparation method thereof
CN113121080A (en) Biostimulation sediment repairing agent and preparation method thereof
JP5921022B2 (en) Phytoplankton, seaweed and / or seaweed breeding aggregate and cement composition cured body using the same
CN108101227B (en) Sewage treatment agent for solidifying carrier microorganism and preparation method thereof
JP6490774B1 (en) Method of treating organic wastewater and method of producing immobilized microorganism preparation
KR20200068814A (en) Porous sulfur media for removing nitrogen
KR101874750B1 (en) The reactive capping aggregate comprising the bottomash lightweight aggregate and hydroball coated with effective microorganisms and method for manufacturing the same