JP2008049222A - Purification system of storage of water institution - Google Patents

Purification system of storage of water institution Download PDF

Info

Publication number
JP2008049222A
JP2008049222A JP2006225302A JP2006225302A JP2008049222A JP 2008049222 A JP2008049222 A JP 2008049222A JP 2006225302 A JP2006225302 A JP 2006225302A JP 2006225302 A JP2006225302 A JP 2006225302A JP 2008049222 A JP2008049222 A JP 2008049222A
Authority
JP
Japan
Prior art keywords
sodium hypochlorite
water
amount
storage
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006225302A
Other languages
Japanese (ja)
Inventor
Yoshinori Izumi
吉則 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritsu Koki Co Ltd
Original Assignee
Noritsu Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritsu Koki Co Ltd filed Critical Noritsu Koki Co Ltd
Priority to JP2006225302A priority Critical patent/JP2008049222A/en
Publication of JP2008049222A publication Critical patent/JP2008049222A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a purification system of water storage facilities which can stably supply sodium hypochlorite to a storage tank of the water storage facilities despite a change with time of the consumption amount of sodium hypochlorite. <P>SOLUTION: Since the refilled amount of sodium hypochlorite to storage means is determined by setting up the consumption amount of sodium hypochlorite as a standard to keep sodium hypochlorite always stably stored in the storage tank, a storage content in the storage tank is not exhausted and as its result, sodium hypochlorite can stably be supplied to the storage tank of the water storage facilities. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えばプール等の貯水施設の浄化装置に関し、より詳しくは、電解槽中の塩化ナトリウム水溶液(食塩水)に浸漬した電極に所定レベルの電流を流して塩化ナトリウム水溶液を電気分解することにより次亜塩素酸ソーダを生成する電解装置を備えて、この電解装置により生成された電解水を殺菌水として貯水に供給することにより貯水の浄化処理を行う浄化装置に関する。   The present invention relates to a purification device for a water storage facility such as a pool, and more particularly, to electrolyze a sodium chloride aqueous solution by passing a predetermined level of current through an electrode immersed in a sodium chloride aqueous solution (saline solution) in an electrolytic cell. The present invention relates to a purification apparatus that includes an electrolytic device that generates sodium hypochlorite and supplies the electrolytic water generated by the electrolytic device to the stored water as sterilizing water.

貯水施設の一形態である屋内/屋外プールや公衆浴場は、多くの施設利用者が入水や入湯することで、水や湯(以下、貯水という)の中に大腸菌等の雑菌や分泌有機物が含まれた状態になりやすい。従って、施設利用者がこれらの施設を快適に利用できるようにするためには、貯水の浄化処理を定期的に行なう必要が生じる。   Indoor / outdoor pools and public baths, which are one form of water storage facilities, contain various bacteria such as Escherichia coli and secreted organic substances in the water and hot water (hereinafter referred to as water storage) when many facility users enter and enter the water. It is easy to be in a state of being. Therefore, in order for the facility user to be able to use these facilities comfortably, it is necessary to periodically purify the stored water.

この貯水の浄化処理には、次亜塩素酸ソーダを使用するのが一般的である。次亜塩素酸ソーダは、殺菌作用と酸化作用を兼ね備えており、この殺菌作用を利用して貯水中の雑菌を殺菌すると共に、酸化作用を利用して貯水中の分泌有機物を凝集させて貯水の透明度を向上させることができるからである。   It is common to use sodium hypochlorite for the purification treatment of the stored water. Sodium hypochlorite has both a bactericidal action and an oxidative action. This bactericidal action is used to sterilize miscellaneous bacteria in the stored water, and the oxidized organic substance is used to agglomerate secretory organic substances in the stored water. This is because the transparency can be improved.

ところで、本願出願人は、次亜塩素酸ソーダを生成するための装置(電解装置)と、この電解装置により生成された次亜塩素酸ソーダを貯水中に注入する注入手段と、貯水中の残留塩素濃度を測定する測定手段と、測定濃度が所定範囲内に収まるように注入手段を制御する制御手段と、注入手段の制御を時間指定可能にするための時計手段とを備え、時間指定して自動的且つ正確に貯水の濃度調整を行うことができる浄化装置を提供している(特許文献1)。
特開2001−232371号公報
By the way, the applicant of the present application provides an apparatus (electrolyzer) for producing sodium hypochlorite, an injection means for injecting sodium hypochlorite produced by this electrolyzer into the stored water, and a residual in the stored water. A measuring means for measuring the chlorine concentration, a control means for controlling the injecting means so that the measured concentration falls within a predetermined range, and a clock means for making the control of the injecting means time-designable, specify the time. A purification device capable of adjusting the concentration of stored water automatically and accurately is provided (Patent Document 1).
JP 2001-232371 A

また、気候変化、突発的な集団客の来場、営業上のサービスキャンペーン等、種々の理由で施設利用者が予定利用者数を上回るような混雑時を迎えると、次亜塩素酸ソーダの消費量が増えて電解装置の能力が追いつかなくなることも考えられるため、上記特許文献1に係る浄化装置は、電解装置により生成された次亜塩素酸ソーダを貯蔵しておくための貯蔵タンクも備えている。   In addition, consumption of sodium hypochlorite will occur when the facility users exceed the planned number of users due to various reasons such as climate change, sudden group visits, and sales service campaigns. Therefore, the purification device according to Patent Document 1 also includes a storage tank for storing sodium hypochlorite generated by the electrolysis device. .

しかしながら、従来は、貯蔵タンクに液面センサを設け、貯蔵タンク内の次亜塩素酸ソーダの液面が一定高さを下回る(貯蔵タンク内の次亜塩素酸ソーダの貯蔵量が一定レベルを下回る)と、そこから次亜塩素酸ソーダの生成を開始するといった運転方法を採っていたため、電解装置による次亜塩素酸ソーダの生成量よりも次亜塩素酸ソーダの消費量が大きく上回るような消費ピークが長く続くと、貯蔵タンク内の貯蔵分が枯渇して次亜塩素酸ソーダの供給に滞りが生じる事態が発生し得る(図4参照)。   However, conventionally, a liquid level sensor is provided in the storage tank, and the liquid level of sodium hypochlorite in the storage tank is below a certain level (the amount of sodium hypochlorite in the storage tank is below a certain level) ), And so on, so that the production of sodium hypochlorite was started, so that consumption of sodium hypochlorite greatly exceeded the amount of sodium hypochlorite produced by the electrolyzer. If the peak continues for a long time, the storage in the storage tank may be depleted and the supply of sodium hypochlorite may be delayed (see FIG. 4).

また、このような事態を未然に防ぐためには、大きめの貯蔵タンクを用意しておくと共に、次亜塩素酸ソーダの消費量が少ない例えば夜間に次亜塩素酸ソーダを多量に生成・貯蔵しておくといった施策を講じる必要がある。   In addition, in order to prevent such a situation, a large storage tank is prepared, and sodium hypochlorite consumption is low. For example, a large amount of sodium hypochlorite is generated and stored at night. It is necessary to take measures such as

あるいは、電解槽に塩化ナトリウム水溶液を滞留させた状態で電気分解を行うバッチ式の電解装置によらず、電解槽に塩化ナトリウム水溶液を順次供給しながら電気分解を行う連続式の電解装置を採用し、且つ、貯水中の残留塩素濃度の測定濃度に応じて電解装置に供給する電流値を可変して次亜塩素酸ソーダの単位時間当たりの生成量を調整する方法も提供されている(特許文献2)が、この方法では、やはり次亜塩素酸ソーダの生成量に限界があり、上記した消費ピークには対応できないおそれがある。
特開平11−90447号公報
Alternatively, instead of a batch-type electrolyzer that performs electrolysis with a sodium chloride aqueous solution retained in the electrolytic cell, a continuous electrolyzer that performs electrolysis while sequentially supplying the sodium chloride aqueous solution to the electrolyzer is adopted. In addition, there is also provided a method for adjusting the amount of sodium hypochlorite produced per unit time by varying the current value supplied to the electrolysis apparatus in accordance with the measured concentration of residual chlorine concentration in the stored water (Patent Document). 2) However, this method still has a limit in the amount of sodium hypochlorite produced, and may not be able to cope with the above consumption peak.
JP-A-11-90447

そこで、本発明は、上記問題に鑑みてなされたもので、次亜塩素酸ソーダの消費量の計時的な変化に関わらず、貯水施設の貯水槽に対して次亜塩素酸ソーダを安定供給することができる貯水施設の浄化装置を提供することを課題とする。   Therefore, the present invention has been made in view of the above problems, and stably supplies sodium hypochlorite to the water storage tank of the water storage facility regardless of the temporal change in the consumption of sodium hypochlorite. It is an object of the present invention to provide a purification device for a water storage facility.

本発明に係る貯水施設の浄化装置は、上記課題を解決するためになされたもので、食塩水を電気分解して次亜塩素酸ソーダを生成する電解装置と、得られた次亜塩素酸ソーダを一旦貯蔵しておく貯蔵手段と、該貯蔵手段から次亜塩素酸ソーダを貯水槽に注入する注入手段と、貯水槽に貯えられた貯水中の残留塩素濃度を測定する測定手段と、測定濃度が所定範囲内に収まるように注入手段を制御する制御手段とを備える貯水施設の浄化装置において、前記貯蔵手段により貯蔵されている次亜塩素酸ソーダの貯蔵量を検出する第一の検出手段と、前記貯水槽に注入される次亜塩素酸ソーダの注入量を貯水槽による次亜塩素酸ソーダの消費量として検出する第二の検出手段とをさらに備え、前記制御手段は、前記第二の検出手段からの情報を用いて前記貯蔵手段に補充すべき次亜塩素酸ソーダの生成量を決定し、且つこれに基づいて前記電解装置を運転制御することを特徴とする。   The purification apparatus for a water storage facility according to the present invention is made to solve the above-mentioned problems, and is an electrolysis apparatus that electrolyzes saline to produce sodium hypochlorite, and the obtained sodium hypochlorite. Storage means for temporarily storing, injection means for injecting sodium hypochlorite from the storage means into the water storage tank, measurement means for measuring the residual chlorine concentration in the storage water stored in the water storage tank, and measurement concentration And a control means for controlling the injection means so that the water content falls within a predetermined range, the first detection means for detecting the amount of sodium hypochlorite stored by the storage means, And second detecting means for detecting the amount of sodium hypochlorite injected into the water storage tank as the amount of sodium hypochlorite consumed by the water storage tank, and the control means comprises the second Using information from detection means The production amount of sodium hypochlorite to be replenished to determine the storage means, and characterized by operation control of the electrolysis device based on this.

かかる構成によれば、次亜塩素酸ソーダの消費が進み、貯蔵手段により貯蔵されている次亜塩素酸ソーダの貯蔵量が減少すると、制御部は、電解装置を運転駆動して、貯蔵手段へ必要量の次亜塩素酸ソーダを補充するようになっている。即ち、貯蔵手段における次亜塩素酸ソーダの貯蔵量が大きく無くなる前に次亜塩素酸ソーダが早期に生成されるようになっているので、貯蔵手段には、次亜塩素酸ソーダが常に安定的に貯蔵されることになり、突発的な消費ピークを迎えたとしても、貯蔵分が枯渇して次亜塩素酸ソーダの供給に滞りが生じるといったことはない。   According to such a configuration, when consumption of sodium hypochlorite proceeds and the amount of sodium hypochlorite stored in the storage means decreases, the control unit operates the electrolyzer to drive the storage means. The required amount of sodium hypochlorite is replenished. That is, since sodium hypochlorite is generated early before the amount of sodium hypochlorite stored in the storage means disappears greatly, sodium hypochlorite is always stable in the storage means. Even if a sudden consumption peak is reached, the supply will not be depleted and the supply of sodium hypochlorite will not be delayed.

また、本発明に係る貯水施設の浄化装置は、前記制御手段は、前記第一の検出手段からの情報を補完的に用いて前記貯蔵手段に補充すべき次亜塩素酸ソーダの生成量を決定し、前記電解装置を運転制御する構成を採用するのがより好ましい。即ち、従来の方式を併用することにより、次亜塩素酸ソーダの供給安定性をより確実にすることができる。   Further, in the water storage facility purification apparatus according to the present invention, the control means determines the amount of sodium hypochlorite to be supplemented to the storage means by using the information from the first detection means in a complementary manner. It is more preferable to employ a configuration for controlling the operation of the electrolyzer. That is, by using the conventional method in combination, the supply stability of sodium hypochlorite can be further ensured.

また、本発明に係る貯水施設の浄化装置は、前記制御手段は、前記第一の検出手段及び/又は前記第二の検出手段からの情報を用いて貯蔵量の減少傾向を把握し、前記貯蔵手段に補充すべき次亜塩素酸ソーダの生成量を決定するに際し、単位時間当たりの生成量を可変に設定する構成を採用することができる。かかる構成によれば、貯蔵量の減少傾向(次亜塩素酸ソーダの消費傾向)が大きい場合は、電解装置における電気分解用の電極に通電される電流値を上げたり、電解装置に供給される食塩水の濃度を上げて、単位時間当たりの次亜塩素酸ソーダの生成量を増加させることができ、また、これにより、安定貯蔵量への回復を迅速に行わせることが可能となる。   Further, in the water storage facility purification apparatus according to the present invention, the control means grasps the decreasing tendency of the storage amount using the information from the first detection means and / or the second detection means, and the storage When determining the production amount of sodium hypochlorite to be supplemented to the means, a configuration in which the production amount per unit time is variably set can be employed. According to such a configuration, when the storage amount tends to decrease (consumption tendency of sodium hypochlorite), the value of the current supplied to the electrode for electrolysis in the electrolysis apparatus is increased or supplied to the electrolysis apparatus. By increasing the concentration of the saline solution, it is possible to increase the amount of sodium hypochlorite produced per unit time, and this makes it possible to quickly recover the stable storage amount.

以上の如く、本発明によれば、次亜塩素酸ソーダの消費量を目安として貯蔵手段への次亜塩素酸ソーダの補充量が決定されるようになっており、貯蔵手段には、次亜塩素酸ソーダが常に安定的に貯蔵される状態となるため、次亜塩素酸ソーダの消費量の計時的な変化に関わらず、貯蔵手段における次亜塩素酸ソーダの貯蔵分が枯渇することはなく、その結果、貯水施設の貯水槽に対して次亜塩素酸ソーダを安定供給することができる。   As described above, according to the present invention, the amount of sodium hypochlorite supplemented to the storage means is determined based on the consumption of sodium hypochlorite as a guide. Since sodium chlorate is always stored stably, the amount of sodium hypochlorite stored in the storage means will not be depleted regardless of the temporal change in consumption of sodium hypochlorite. As a result, sodium hypochlorite can be stably supplied to the water storage tank of the water storage facility.

以下、本実施形態に係る浄化装置の概略構成について説明する。該浄化装置は、図1に示す如く、大別すると、食塩水を電気分解して次亜塩素酸ソーダの電解水を生成するバッチ式の電解装置1と、該電解装置1により得られた電解水を貯水槽(浴槽)25に注入する注入装置20とで構成されている。   Hereinafter, a schematic configuration of the purification device according to the present embodiment will be described. As shown in FIG. 1, the purification apparatus is roughly classified into a batch type electrolysis apparatus 1 that electrolyzes salt water to generate sodium hypochlorite electrolyzed water, and an electrolysis obtained by the electrolysis apparatus 1. And an injection device 20 for injecting water into a water storage tank (tub) 25.

電解装置1は、供給された水道水を貯留する給水タンク3と、食塩水を生成する塩溶解槽8と、次亜塩素酸ソーダの電解水を生成する無隔膜の電解槽11と、供給された貯水(浴槽水)を貯留する定水槽13とを備えている。   The electrolysis apparatus 1 is supplied with a water supply tank 3 for storing the supplied tap water, a salt dissolution tank 8 for generating a saline solution, and a diaphragmless electrolytic tank 11 for generating an electrolyzed water of sodium hypochlorite. And a constant water tank 13 for storing the stored water (tub water).

そして、給水タンク3と塩溶解槽8とは、配管5を介して接続され、給水タンク3と電解槽11とは、配管6を介して接続され、塩溶解槽8と電解槽11とは、配管9を介して接続されている。また、配管6の途中位置には、定量性を有するポンプ(給水手段)7が介装されており、給水タンク3内の水道水を電解槽11に供給可能となっている。さらに、配管9の途中位置には、定量性を有するポンプ(食塩水供給手段)10が介装されており、塩溶解槽8内の食塩水を電解槽11に供給可能となっている。   The water supply tank 3 and the salt dissolution tank 8 are connected via a pipe 5, the water supply tank 3 and the electrolytic tank 11 are connected via a pipe 6, and the salt dissolution tank 8 and the electrolytic tank 11 are It is connected via a pipe 9. Further, a pump (water supply means) 7 having a quantitative property is interposed in the middle of the pipe 6 so that tap water in the water supply tank 3 can be supplied to the electrolytic cell 11. Further, a pump (saline solution supply means) 10 having a quantitative property is interposed in the middle of the pipe 9 so that the salt solution in the salt dissolution tank 8 can be supplied to the electrolytic cell 11.

また、定水槽13内には、残留塩素濃度計(測定手段)14が配設されており、該定水槽13内に供給された貯水中の残留塩素濃度を測定することが可能である。   Further, a residual chlorine concentration meter (measuring means) 14 is provided in the constant water tank 13, and the residual chlorine concentration in the stored water supplied into the constant water tank 13 can be measured.

尚、電解装置1において、2は、図示しない水道配管に接続され、水道水を給水タンク3内に供給するための配管であり、4は、給水タンク3内に貯留された水道水を外部に排出するための排水管であり、15は、定水槽13内に貯留された貯水を貯水槽25に戻すための返送管であり、17は、電解槽11内で発生したガスを外部に排出するための排気管である。   In the electrolysis apparatus 1, 2 is connected to a not-shown water pipe and is a pipe for supplying tap water into the water supply tank 3, and 4 is a tap water stored in the water supply tank 3. A drain pipe for discharging, 15 is a return pipe for returning the water stored in the constant water tank 13 to the water tank 25, and 17 discharges the gas generated in the electrolytic tank 11 to the outside. It is an exhaust pipe for.

一方、注入装置20は、電解装置1の電解槽11と配管16を介して接続され、該電解槽11から送られてくる電解水を貯蔵する貯蔵タンク(貯蔵手段)21と、該貯蔵タンク21内に一端が挿入された供給管22と、該供給管22の途中位置に介装された定量性を有する注入ポンプ23と、貯蔵タンク21内の次亜塩素酸ソーダの電解水の液面高さを検出する(即ち、貯蔵タンク21の容積寸法が規定されていることから把握される、貯蔵タンク21内の次亜塩素酸ソーダの電解水の貯蔵量を検出する)液面センサ(第一の検出手段)24とを備えており、該注入ポンプ(注入手段)23を作動させることで、供給管22の他端側から電解水を吐出させることが可能である。   On the other hand, the injection device 20 is connected to the electrolytic cell 11 of the electrolytic device 1 via a pipe 16, and stores a storage tank (storage means) 21 for storing electrolytic water sent from the electrolytic cell 11, and the storage tank 21. A supply pipe 22 having one end inserted therein, a quantitative injection pump 23 interposed in the middle of the supply pipe 22, and the level of electrolytic water of sodium hypochlorite in the storage tank 21 Liquid level sensor (first detecting the amount of sodium hypochlorite electrolytic water stored in the storage tank 21, which is grasped from the fact that the volume size of the storage tank 21 is defined) ) 24, and by operating the injection pump (injection means) 23, the electrolyzed water can be discharged from the other end side of the supply pipe 22.

そして、上述したポンプ7,10,23、配管5上に設けられた電磁弁、電解槽11における電極に流す電流値、その他の構成要素は、制御部(制御手段)18によって制御が行なわれるようになっている(尚、図1においては、制御部18と所定の構成要素との結線は図示を省略している)。   The control unit (control means) 18 controls the above-described pumps 7, 10, 23, solenoid valves provided on the pipe 5, current values flowing through the electrodes in the electrolytic cell 11, and other components. (In FIG. 1, the connection between the control unit 18 and predetermined components is not shown).

以上の構成からなる浄化装置は、浴場に設けられた循環装置28に接続される。具体的には、循環装置28は、貯水槽25の底部の一端側と他端側とを連絡する配管29と、該配管29の途中位置に介装された循環ポンプ30及び該循環ポンプ30よりも下流側の濾過器31とから構成されているが、定水槽13に接続された配管12が循環ポンプ30と濾過器31との間における配管29に接続されると共に、同じく定水槽13に接続された配管15が濾過器31よりも下流側における配管29に接続される一方、貯蔵タンク21に接続された配管22が濾過器31よりも上流側(より詳しくは、循環ポンプ30と濾過器31との間における配管29)における配管29に接続されている。   The purification device having the above configuration is connected to a circulation device 28 provided in the bath. Specifically, the circulation device 28 includes a pipe 29 that connects one end side and the other end side of the bottom of the water storage tank 25, a circulation pump 30 interposed in the middle of the pipe 29, and the circulation pump 30. Also, the pipe 12 connected to the constant water tank 13 is connected to the pipe 29 between the circulation pump 30 and the filter 31 and is also connected to the constant water tank 13. The pipe 15 connected to the pipe 29 on the downstream side of the filter 31 is connected to the pipe 22 connected to the storage tank 21 on the upstream side of the filter 31 (more specifically, the circulation pump 30 and the filter 31). Is connected to the pipe 29 in the pipe 29) between the two.

浄化装置の構成の説明は以上の如くであり、次に、浄化装置における流体の流通態様について説明する。浴場施設において、循環ポンプ30が作動し、貯水槽25に貯えられる貯水は、貯水槽25の底部の一端側から抜かれて配管29を通り、濾過器31で濾過されてから貯水槽25の底部の他端側に戻される。この時、配管29内を流通する貯水の一部は、配管29から分岐する配管12に流入し、しかる後、定水槽13に貯留される。定水槽13内では、残留塩素濃度計14によって貯水中の残留塩素濃度が測定される。   The configuration of the purification device has been described above. Next, the flow mode of the fluid in the purification device will be described. In the bath facility, the circulating pump 30 is activated, and the water stored in the water tank 25 is drawn from one end of the bottom of the water tank 25, passes through the pipe 29, is filtered by the filter 31, and then is stored at the bottom of the water tank 25. Returned to the other end. At this time, a part of the water stored in the pipe 29 flows into the pipe 12 branched from the pipe 29 and then stored in the constant water tank 13. In the constant water tank 13, the residual chlorine concentration meter 14 measures the residual chlorine concentration in the stored water.

一方、電解装置1において、配管2を介して給水タンク3に貯留された水道水は、所望量分が配管5を通って塩溶解槽8内に送られる。従って、塩溶解槽8内に投入された食塩はこの水道水に溶解され、得られた食塩水は、配管9を通って電解槽11に定量供給される。さらに、電解槽11内では、食塩水が電気分解されて電解水が生成され、得られた電解水は、配管16を介して注入装置20の貯蔵タンク21に送られる。   On the other hand, in the electrolysis apparatus 1, a desired amount of tap water stored in the water supply tank 3 through the pipe 2 is sent into the salt dissolution tank 8 through the pipe 5. Therefore, the salt put into the salt dissolution tank 8 is dissolved in this tap water, and the obtained salt solution is supplied to the electrolytic cell 11 through the pipe 9 in a fixed amount. Further, in the electrolytic bath 11, the salt water is electrolyzed to generate electrolyzed water, and the obtained electrolyzed water is sent to the storage tank 21 of the injection device 20 through the pipe 16.

そして、注入装置20において、制御部18から送られた信号を注入ポンプ23が受信したならば、この注入ポンプ23が作動し、貯蔵タンク21内の電解水は、配管22を通って循環装置28の配管29(より詳しくは、濾過器31の上流側における配管29)に送られる。そこで、貯水は、次亜塩素酸ソーダの添加によってその残留塩素濃度が上昇することとなる。   In the injection device 20, if the injection pump 23 receives the signal sent from the control unit 18, the injection pump 23 is activated, and the electrolyzed water in the storage tank 21 passes through the piping 22 and the circulation device 28. To the pipe 29 (more specifically, the pipe 29 on the upstream side of the filter 31). Therefore, the residual chlorine concentration of the stored water is increased by the addition of sodium hypochlorite.

浄化装置における流体の流通態様の説明は以上の如くであり、次に、貯蔵タンク21内に電解水を安定的に貯蔵しておくための電解装置1の運転方法について説明する。特徴的なことは、注入ポンプ23の定量性を利用して(即ち、注入ポンプ23が定量ポンプであることを利用して)、貯蔵タンク21内の電解水の貯水槽25への注入量(即ち、次亜塩素酸ソーダの消費量)を把握し(第二の検出手段)、これに応じて次亜塩素酸ソーダの電解水の生成量を決定する点である。かかる場合の運転方法によるシミュレーションのタイミングチャートを図2に示す。   The description of the flow mode of the fluid in the purification apparatus is as described above. Next, an operation method of the electrolysis apparatus 1 for stably storing electrolyzed water in the storage tank 21 will be described. Characteristically, by using the quantitative property of the injection pump 23 (that is, by using the injection pump 23 being a metering pump), the injection amount of the electrolytic water in the storage tank 21 into the water storage tank 25 ( That is, the amount of sodium hypochlorite consumption) is grasped (second detection means), and the amount of electrolytic water produced by sodium hypochlorite is determined accordingly. FIG. 2 shows a timing chart of the simulation by the driving method in such a case.

即ち、貯蔵タンク21内の次亜塩素酸ソーダの電解水の貯蔵量は、液面センサ24により把握され、この情報が制御部18に送信され、また、貯蔵タンク21内の次亜塩素酸ソーダの電解水の貯水槽25への注入量は、注入ポンプ23により把握され、この情報が制御部18に送信され、制御部18は、電解水の貯蔵量と注入量(消費量)とを総合的に勘案して生成量(補充量)を決定する。尚、「生成量を決定する」ことは、単位時間当たりの生成量を可変に設定すること、即ち、電解装置1の電解槽内の電気分解用の電極に流す電流値を可変に設定すること、及び/又は、電解装置1の運転時間を可変に設定すること、即ち、電解装置1の電解槽内の電気分解用の電極に電流を流す時間を可変に設定すること、である。   That is, the storage amount of the electrolyzed water of sodium hypochlorite in the storage tank 21 is grasped by the liquid level sensor 24, and this information is transmitted to the control unit 18, and the sodium hypochlorite in the storage tank 21. The injection amount of the electrolytic water into the water storage tank 25 is grasped by the injection pump 23, and this information is transmitted to the control unit 18. The control unit 18 comprehensively stores the storage amount of the electrolytic water and the injection amount (consumption amount). The generation amount (replenishment amount) is determined in consideration of the above. Note that “determining the generation amount” means setting the generation amount per unit time variably, that is, setting the current value flowing through the electrode for electrolysis in the electrolytic cell of the electrolysis apparatus 1 variably. And / or setting the operation time of the electrolysis apparatus 1 variably, that is, setting the time for flowing a current to the electrode for electrolysis in the electrolytic cell of the electrolysis apparatus 1 variably.

図2に基づき説明すると、消費量が増える(A点)ことによって、貯蔵量の減少率が増えると、まず、制御部18は、電解装置1を運転し(所定電流値での電極への通電を開始し)、次亜塩素酸ソーダの電解水の生成を開始する(B点)。それでも、次亜塩素酸ソーダは消費され続けて貯蔵量が減少していくと、次に、制御部18は、電極への通電量を前記所定電流値よりも増やし、次亜塩素酸ソーダの電解水の生成量を増加させる(C点)。   Referring to FIG. 2, when the consumption rate increases (point A) and the reduction rate of the storage amount increases, first, the control unit 18 operates the electrolysis apparatus 1 (energization of the electrode at a predetermined current value). And generation of electrolyzed water of sodium hypochlorite is started (point B). Still, when sodium hypochlorite continues to be consumed and the storage amount decreases, the control unit 18 then increases the amount of current applied to the electrode above the predetermined current value, and electrolysis of sodium hypochlorite. Increase the amount of water produced (point C).

従って、貯蔵タンク21内には、次亜塩素酸ソーダの電解水が常に安定的に貯蔵されることになり、突発的な消費ピークを迎えたとしても(D点〜)、貯蔵タンク21内の貯蔵分が枯渇して次亜塩素酸ソーダの供給に滞りが生じるといったことはない。即ち、上記した電解装置1の運転方法によれば、次亜塩素酸ソーダの消費量の計時的な変化に関わらず、貯蔵タンク21内に安定量を貯蔵しておくことができるため、貯水槽25に対して次亜塩素酸ソーダを安定供給することができる。   Therefore, the electrolyzed water of sodium hypochlorite is always stably stored in the storage tank 21, and even if a sudden consumption peak is reached (from point D), There will be no stagnation in the supply of sodium hypochlorite due to the depleted stock. That is, according to the operation method of the electrolyzer 1 described above, a stable amount can be stored in the storage tank 21 regardless of the time-dependent change in the consumption amount of sodium hypochlorite. 25 can be stably supplied with sodium hypochlorite.

ところで、次亜塩素酸ソーダの生成量を増やすことの基本的な考え方は、上述したとおり、電極に対する電流値を上げることである。しかし、それだけならば、電極表面での電流密度が上がり、電極の寿命低下に繋がる。本願出願人は、先の出願である特願2005−21154で開示したとおり、電解槽に供給する食塩の量を増やせば、電極の寿命低下を阻止できることを知見している。   By the way, the basic idea of increasing the production amount of sodium hypochlorite is to increase the current value for the electrode as described above. However, if only that, the current density on the electrode surface is increased, leading to a reduction in the life of the electrode. As disclosed in Japanese Patent Application No. 2005-2154, the applicant of the present application has found that if the amount of sodium salt supplied to the electrolytic cell is increased, a decrease in the life of the electrode can be prevented.

そこで、本実施形態においては、次亜塩素酸ソーダの単位時間当たりの生成量を上げるに際しては、電流値を上げると共に、通常ON−OFFの切換により流量調整している給水用のポンプ7及び食塩供給用のポンプ10のそれぞれON時間を長く且つ給水用のポンプ7のON時間に対する食塩供給用のポンプ10のON時間の比率を大きくするようにしている。これらの制御は、上述の如く、制御部18が行う。   Therefore, in this embodiment, when increasing the production amount of sodium hypochlorite per unit time, the current value is increased and the water supply pump 7 and salt that are normally adjusted in flow rate by ON-OFF switching are used. The ON time of each of the supply pumps 10 is increased, and the ratio of the ON time of the salt supply pump 10 to the ON time of the water supply pump 7 is increased. These controls are performed by the control unit 18 as described above.

電解装置1の運転方法の説明は以上の如くであり、次に、貯水中の残留塩素濃度を濃度管理するための注入ポンプ23の注入制御方法について説明する。より詳しくは、貯水中の残留塩素濃度を法規に定められた規定値(0.4〜1ppm)の範囲内に収めるべく、かかる場合の注入制御方法によるシミュレーションのタイミングチャートを図3に示す。   The operation method of the electrolyzer 1 is as described above. Next, an injection control method of the injection pump 23 for managing the concentration of residual chlorine in the stored water will be described. More specifically, FIG. 3 shows a timing chart of the simulation by the injection control method in such a case in order to keep the residual chlorine concentration in the stored water within the range of the specified value (0.4 to 1 ppm) stipulated by the law.

即ち、制御部18の記憶部(図示しない)に、上限濃度値を0.6ppm、下限濃度値を0.5ppmに設定すると、残留塩素濃度計14により測定された貯水中の残留塩素濃度が、低い状態(A点)から下限濃度値(B点)に至るまで、注入ポンプ23が作動して、貯蔵タンク21に貯蔵されている次亜塩素酸ソーダの電解水が貯水中に注入される。   That is, when the upper limit concentration value is set to 0.6 ppm and the lower limit concentration value is set to 0.5 ppm in the storage unit (not shown) of the control unit 18, the residual chlorine concentration in the stored water measured by the residual chlorine concentration meter 14 is From the low state (point A) to the lower limit concentration value (point B), the injection pump 23 is operated, and the electrolyzed water of sodium hypochlorite stored in the storage tank 21 is injected into the stored water.

そして、貯水中の残留塩素濃度が下限濃度値を超える(B点〜)と、注入ポンプ23が停止する。この時、次亜塩素酸ソーダが貯水槽25全体に拡散して残留塩素濃度が安定するまでに所定のタイムラグが発生するため、残留塩素濃度が一時的に上限濃度値をも上回る(C点〜)現象が起こり得る。   When the residual chlorine concentration in the stored water exceeds the lower limit concentration value (from point B), the infusion pump 23 is stopped. At this time, since a predetermined time lag occurs until sodium hypochlorite diffuses throughout the water storage tank 25 and the residual chlorine concentration becomes stable, the residual chlorine concentration temporarily exceeds the upper limit concentration value (from C point to ) The phenomenon can occur.

しかる後、貯水中の残留塩素濃度が上限濃度値を下回る(D点〜)と、注入ポンプ23が再び作動する。この時、貯水槽25全体で残留塩素濃度が酸化のために減衰することに加え、既に上記した様に投入される次亜塩素酸ソーダが貯水槽25全体に拡散して残留塩素濃度を安定するまでに所定のタイムラグが発生するため、残留塩素濃度が一時的に下限濃度値をも下回る(E点〜)現象が起こる。   Thereafter, when the residual chlorine concentration in the stored water falls below the upper limit concentration value (from point D), the injection pump 23 is activated again. At this time, the residual chlorine concentration in the entire water storage tank 25 is attenuated due to oxidation, and the sodium hypochlorite that has already been introduced diffuses throughout the water storage tank 25 to stabilize the residual chlorine concentration. A predetermined time lag occurs until the residual chlorine concentration temporarily falls below the lower limit concentration value (from point E).

以上のように、注入ポンプ23が作動して貯水中の残留塩素濃度が上昇する場合には、その残留塩素濃度が下限濃度値を上回った時に注入ポンプ23が停止する一方、注入ポンプ23が停止して貯水中の残留塩素濃度が下降する場合には、その残留塩素濃度が上限濃度値を下回った時に注入ポンプ23が作動するという制御を採用することで、残留塩素濃度の上がり過ぎ、下がり過ぎを早めに検知して、残留塩素濃度のバラツキを押さえることができる。   As described above, when the residual chlorine concentration in the stored water rises due to the operation of the injection pump 23, the injection pump 23 stops when the residual chlorine concentration exceeds the lower limit concentration value, while the injection pump 23 stops. Then, when the residual chlorine concentration in the stored water falls, the control that the injection pump 23 operates when the residual chlorine concentration falls below the upper limit concentration value, the residual chlorine concentration is excessively increased or decreased too much. Can be detected early, and variations in residual chlorine concentration can be suppressed.

尚、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。   In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the summary of this invention.

例えば、上記実施形態においては、バッチ式の電解装置1について言及したが、これに限定されず、貯蔵タンクを備える連続式の電解装置にも適用することができる。また、電解装置の具体的な構成についても適宜設計的事項の範囲内で選択可能である。   For example, although the batch type electrolysis apparatus 1 has been described in the above embodiment, the present invention is not limited to this, and the present invention can also be applied to a continuous electrolysis apparatus including a storage tank. The specific configuration of the electrolyzer can also be selected as appropriate within the scope of design matters.

また、上記実施形態においては、注入ポンプ23の定量性を利用して次亜塩素酸ソーダの消費量を把握するようにしているが、注入ポンプとしては定量ポンプを用いず、その代わりに、第二の検出手段として、注入管路に流量計や流量センサを配置するようにしてもよい。   Moreover, in the said embodiment, although the consumption of sodium hypochlorite is grasped | ascertained using the quantitative property of the injection | pouring pump 23, a metering pump is not used as an injection | pouring pump, but a 1st is replaced. As a second detection means, a flow meter or a flow sensor may be disposed in the injection conduit.

また、上記実施形態においては、給水ライン6と食塩水供給ライン9とを分け、電解槽11において所望の濃度に調整するようにしているが、これに限定されず、予め濃度調整された食塩水を電解槽に供給するようにしてもよい。   Moreover, in the said embodiment, although the water supply line 6 and the salt solution supply line 9 are divided | segmented and it is made to adjust to a desired density | concentration in the electrolytic cell 11, it is not limited to this, The salt solution which carried out concentration adjustment beforehand May be supplied to the electrolytic cell.

また、上記実施形態においては、単位時間当たりの生成量を上げるに当たり、食塩水量及び食塩水濃度を上げることにより、電解槽11に供給する食塩の量を増やすようにしているが、これに限定されず、何れか一方だけを上げるようにしてもよい。   Moreover, in the said embodiment, when raising the production amount per unit time, the quantity of the salt supplied to the electrolytic cell 11 is increased by raising the amount of salt solution and the salt concentration, but it is limited to this. Instead, only one of them may be raised.

また、上記実施形態においては、浴場設備について言及したが、プール設備であってもよいし、その他の貯水設備をも対象とする。プール設備であれば、特に規制が無いため、貯蔵タンク21内の電解水を濾過器31の上流側に注入するのでなく、濾過器31の下流側に注入するようにしてもよい。   Moreover, in the said embodiment, although the bath facility was mentioned, a pool facility may be sufficient and other water storage facilities are also made object. If it is a pool facility, since there is no particular restriction, the electrolyzed water in the storage tank 21 may be injected into the downstream side of the filter 31 instead of being injected into the upstream side of the filter 31.

本実施形態に係る浄化装置の概略構成図を示す。The schematic block diagram of the purification apparatus which concerns on this embodiment is shown. 同実施形態に係る浄化装置の運転方法のうち、浄化装置における電解装置の運転方法によるシミュレーションのタイミングチャートを示す。The timing chart of the simulation by the operation method of the electrolyzer in a purification apparatus among the operation methods of the purification apparatus which concerns on the embodiment is shown. 同実施形態に係る浄化装置の運転方法のうち、浄化装置における注入ポンプの注入制御方法によるシミュレーションのタイミングチャートを示す。The timing chart of the simulation by the injection | pouring control method of the injection pump in a purification apparatus is shown among the operating methods of the purification apparatus which concerns on the embodiment. 従来の浄化装置の運転方法のうち、浄化装置における電解装置の運転方法によるシミュレーションのタイミングチャートを示す。The timing chart of the simulation by the operation method of the electrolysis apparatus in a purification apparatus is shown among the operation methods of the conventional purification apparatus.

符号の説明Explanation of symbols

1 電解装置
18 制御部
21 貯蔵タンク
23 注入ポンプ
24 液面センサ
25 貯水槽
DESCRIPTION OF SYMBOLS 1 Electrolyzer 18 Control part 21 Storage tank 23 Injection pump 24 Liquid level sensor 25 Water storage tank

Claims (3)

食塩水を電気分解して次亜塩素酸ソーダを生成する電解装置と、得られた次亜塩素酸ソーダを一旦貯蔵しておく貯蔵手段と、該貯蔵手段から次亜塩素酸ソーダを貯水槽に注入する注入手段と、貯水槽に貯えられた貯水中の残留塩素濃度を測定する測定手段と、測定濃度が所定範囲内に収まるように注入手段を制御する制御手段とを備える貯水施設の浄化装置において、前記貯蔵手段により貯蔵されている次亜塩素酸ソーダの貯蔵量を検出する第一の検出手段と、前記貯水槽に注入される次亜塩素酸ソーダの注入量を貯水槽による次亜塩素酸ソーダの消費量として検出する第二の検出手段とをさらに備え、前記制御手段は、前記第二の検出手段からの情報を用いて前記貯蔵手段に補充すべき次亜塩素酸ソーダの生成量を決定し、且つこれに基づいて前記電解装置を運転制御することを特徴とする貯水施設の浄化装置。   Electrolyzer for electrolyzing salt water to produce sodium hypochlorite, storage means for temporarily storing the obtained sodium hypochlorite, and sodium hypochlorite from the storage means to the water storage tank A purification apparatus for a water storage facility, comprising: injection means for injecting; measurement means for measuring residual chlorine concentration in the stored water stored in the water storage tank; and control means for controlling the injection means so that the measured concentration falls within a predetermined range. The first detection means for detecting the amount of sodium hypochlorite stored in the storage means, and the amount of sodium hypochlorite injected into the water storage tank to determine the amount of sodium hypochlorite injected into the water storage tank. A second detection means for detecting the consumption of acid soda, wherein the control means uses the information from the second detection means to generate sodium hypochlorite to be replenished in the storage means And based on this Purifying device for water storage facility, characterized by operation control of the electrolysis device Te. 前記制御手段は、前記第一の検出手段からの情報を補完的に用いて前記貯蔵手段に補充すべき次亜塩素酸ソーダの生成量を決定し、前記電解装置を運転制御することを特徴とする請求項1に記載の貯水施設の浄化装置。   The control means determines the amount of sodium hypochlorite to be supplemented to the storage means using the information from the first detection means in a complementary manner, and controls the operation of the electrolyzer. The water storage facility purification apparatus according to claim 1. 前記制御手段は、前記第一の検出手段及び/又は前記第二の検出手段からの情報を用いて貯蔵量の減少傾向を把握し、前記貯蔵手段に補充すべき次亜塩素酸ソーダの生成量を決定するに際し、単位時間当たりの生成量を可変に設定することを特徴とする請求項1又は2に記載の貯水施設の浄化装置。   The control means grasps the decreasing tendency of the storage amount using the information from the first detection means and / or the second detection means, and the amount of sodium hypochlorite to be supplemented to the storage means The water storage facility purification apparatus according to claim 1 or 2, wherein the amount of production per unit time is variably set when determining the value.
JP2006225302A 2006-08-22 2006-08-22 Purification system of storage of water institution Withdrawn JP2008049222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006225302A JP2008049222A (en) 2006-08-22 2006-08-22 Purification system of storage of water institution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006225302A JP2008049222A (en) 2006-08-22 2006-08-22 Purification system of storage of water institution

Publications (1)

Publication Number Publication Date
JP2008049222A true JP2008049222A (en) 2008-03-06

Family

ID=39233760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006225302A Withdrawn JP2008049222A (en) 2006-08-22 2006-08-22 Purification system of storage of water institution

Country Status (1)

Country Link
JP (1) JP2008049222A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018001049A (en) * 2016-06-27 2018-01-11 有限会社イシズチコーポレーション Method for sterilizing pool water
KR101840234B1 (en) * 2016-03-08 2018-03-20 주식회사 우진이엔지 Chlorine water electrolysis apparatus capable of regulating chloride dosage and temperature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101840234B1 (en) * 2016-03-08 2018-03-20 주식회사 우진이엔지 Chlorine water electrolysis apparatus capable of regulating chloride dosage and temperature
JP2018001049A (en) * 2016-06-27 2018-01-11 有限会社イシズチコーポレーション Method for sterilizing pool water

Similar Documents

Publication Publication Date Title
US6814858B2 (en) Water treatment system
JP2009072659A (en) Electrolyzed water producing method and apparatus
JP5295753B2 (en) Ozone water generator
JP2006098003A (en) Electrolytic treating method and electrolytic treating device for circulating type cooling water system
JP2006255653A (en) Electrolytic treatment method of water system
JP4571262B2 (en) Water storage equipment purification equipment
JPH06246268A (en) Method and device for producing electrolyte
JP2008049222A (en) Purification system of storage of water institution
KR101840234B1 (en) Chlorine water electrolysis apparatus capable of regulating chloride dosage and temperature
JP6318444B2 (en) Seawater electrolysis system and electrolyte injection method
JP4730258B2 (en) Electrolyzed water generator and sink equipped with the same
JP2000218271A (en) Electrolytic device
WO2006008877A1 (en) Electrolytic water generating, diluting, and supplying apparatus and electrolytic water generating, diluting, and supplying method
KR100767836B1 (en) Electrolyzed oxidizing water making apparatus
JP2004223419A (en) Control device for concentration of chlorine
JP2006198583A (en) Electrolytic treatment method and apparatus for water system
JP3646541B2 (en) Hypochlorous acid concentration control method in electrolyzed water supply device
JP4415444B2 (en) Electrolyzer
JP3612902B2 (en) Electrolyzed water generator
JP2008006347A (en) Electrolytic water generator and sink equipped with this
JP4731172B2 (en) Electrolyzer
JP2007038088A (en) Apparatus for sterilizing drinking water
KR20120000172U (en) Hypochlorite water generator for medical device disinfection
JP4465758B2 (en) Electrolyzer
JP2005058947A (en) Electrolyzing method and electrolysis apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080626

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110