JP2008047971A - Array-type ultrasonic probe and flaw detecting device - Google Patents

Array-type ultrasonic probe and flaw detecting device Download PDF

Info

Publication number
JP2008047971A
JP2008047971A JP2006218841A JP2006218841A JP2008047971A JP 2008047971 A JP2008047971 A JP 2008047971A JP 2006218841 A JP2006218841 A JP 2006218841A JP 2006218841 A JP2006218841 A JP 2006218841A JP 2008047971 A JP2008047971 A JP 2008047971A
Authority
JP
Japan
Prior art keywords
solder
ultrasonic
array
type
ultrasonic transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006218841A
Other languages
Japanese (ja)
Inventor
Yoshinori Takesute
義則 武捨
Masahiro Koike
正浩 小池
Yoshio Nonaka
善夫 野中
Mitsuru Odakura
満 小田倉
Yasushi Ikeda
靖 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006218841A priority Critical patent/JP2008047971A/en
Publication of JP2008047971A publication Critical patent/JP2008047971A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To weld an ultrasonic vibrator and a front member, and the ultrasonic vibrator and a signal line together at a high yield so as to attain an array-type ultrasonic probe of 300°C or higher for the temperature of the resistance to heat. <P>SOLUTION: Ultrasonic vibrators 1 previously cut in stripes are welded with Zn-Al solder alloy 3 at fusion point of 382°C, and signal lines 5 are welded to the plurality of ultrasonic vibrators 1 with Sn-based lead-free solder 4 including a metallic ball which has a fusion point lower than that of the solder alloy 3. Consequently, welding can be completed at a temperature lower than conventional brazing temperature, influence due to thermal distortions is minimized, and the connections of the signal lines are made at a lower temperature, to improve the yield of the welding of the array type probe. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、超音波の送受信を行うアレイ型の超音波探触子に関し、特に、300℃以上の耐熱性を有するアレイ型の超音波探触子に関するものである。   The present invention relates to an array-type ultrasonic probe that transmits and receives ultrasonic waves, and particularly relates to an array-type ultrasonic probe having heat resistance of 300 ° C. or higher.

従来、発電プラントや化学プラントで使用している高温部材の健全性を評価する超音波検査は、そのプラントの定期検査期間中に検査対象部温度を検査可能温度に低下させるかあるいは低下するのを見はからって実施している。しかし、最近検査効率向上の観点から、プラント稼働時に高温環境下で随時検査したり、高温環境下に超音波センサを設置し長期に亘り連続して対象物の変化を監視(モニタリング)したいとの要望が高まっている。   Conventionally, ultrasonic inspection for evaluating the soundness of high-temperature components used in power plants and chemical plants is to reduce or decrease the temperature of the inspection target part to an inspectable temperature during the periodic inspection period of the plant. We are looking at it. However, recently, from the viewpoint of improving inspection efficiency, it is necessary to inspect at any time in a high temperature environment when the plant is operating, or to install an ultrasonic sensor in a high temperature environment to continuously monitor (monitor) changes in the object over a long period of time. The demand is growing.

常温で使用する単一型(素子が一枚)及びアレイ型(素子が複数)の超音波探触子の構造は、超音波振動子と該超音波振動子の超音波送信面に備える前面部材(保護板)とをエポキシ樹脂などで接着している。また、超音波振動子の背面(超音波送信面の反対側の面)には、超音波振動子の振動をできるだけ早く制動して波数を少なくするためのバッキング材が施されている。このバッキング材も前記と同様のエポキシ樹脂などに金属粉末を混合した物を使用し、超音波の減衰を高めている。特にアレイ型では、大きな面積の超音波振動子と該超音波振動子の超音波送信面に備える前面部材(保護板)とをエポキシ樹脂などで接着した後に、アレイ状(短冊状)に機械的に切断するか、あるいは電極のみをアレイ状にしている。   The structure of single-type (single element) and array-type (multiple elements) ultrasonic probes used at room temperature includes an ultrasonic transducer and a front member provided on the ultrasonic transmission surface of the ultrasonic transducer (Protective plate) is bonded with epoxy resin. In addition, a backing material for reducing the wave number by braking the vibration of the ultrasonic transducer as soon as possible is provided on the back surface of the ultrasonic transducer (the surface opposite to the ultrasonic transmission surface). This backing material also uses a material obtained by mixing a metal powder in the same epoxy resin as described above to enhance the attenuation of ultrasonic waves. In particular, in the array type, an ultrasonic transducer having a large area and a front member (protection plate) provided on the ultrasonic transmission surface of the ultrasonic transducer are bonded with an epoxy resin and then mechanically arranged in an array (strip shape). Or only the electrodes are arrayed.

前述した、常温で使用する単一型及びアレイ型超音波探触子の使用温度上限はせいぜい80℃程度である。これは、振動子と前面部材との接着にエポキシ樹脂を使用しているためで、これ以上の温度では接着面が剥がれ超音波の送受信ができなくなる。   The upper limit of the use temperature of the above-described single-type and array-type ultrasonic probes used at room temperature is about 80 ° C. at most. This is because an epoxy resin is used for bonding between the vibrator and the front member, and at a temperature higher than this, the bonding surface peels off and ultrasonic waves cannot be transmitted / received.

そこで、高温環境下で使用可能な耐熱性の単一型超音波探触子が従来技術として提案されている(例えば、特許文献1,2,3を参照)。この耐熱型の超音波探触子においては、例えば、特許文献1によると、振動子と前面板とをロウ材で接合しており500℃以上の耐熱性を有しているとしている。また、特許文献2によると、振動子と前面部材とをはんだで接合しており良好な感度を得ていて耐熱温度は250℃としている。さらに、引用文献3によると、Zn−Al系のはんだ合金を用いて振動子と前面部材を接合し、耐熱温度を300℃以上としている。   Therefore, a heat-resistant single-type ultrasonic probe that can be used in a high-temperature environment has been proposed as a conventional technique (see, for example, Patent Documents 1, 2, and 3). In this heat-resistant ultrasonic probe, for example, according to Patent Document 1, the vibrator and the front plate are joined with a brazing material and have a heat resistance of 500 ° C. or higher. According to Patent Document 2, the vibrator and the front member are joined by soldering to obtain good sensitivity, and the heat resistant temperature is 250 ° C. Furthermore, according to the cited document 3, the vibrator and the front member are joined using a Zn-Al solder alloy, and the heat resistant temperature is set to 300 ° C. or higher.

また、電子機器のモジュール実装に用いられる高温系はんだについてのはんだ接続の手法が、例えば、特許文献4に提案されている。これによると、CuボールとSnボールを有するはんだを用いてCuボール同士が金属間化合物により結合されることが開示されている。
特開昭62−280649号公報 特開平5−11042号公報 特開2005−308691号公報 特開2002−254194号公報
Also, for example, Patent Document 4 proposes a solder connection technique for high-temperature solder used for module mounting of electronic devices. According to this, it is disclosed that Cu balls are bonded to each other by an intermetallic compound using solder having Cu balls and Sn balls.
JP 62-280649 A Japanese Patent Laid-Open No. 5-11042 JP 2005-308691 A JP 2002-254194 A

しかしながら、従来技術に示されたロウ材を用いて接合するアレイ型探触子では大きな面積の素子を接合し、その後に切断する必要があり、例えば、耐熱性のアレイ型探触子に使用する振動子を、接合した後に切断する製作法によると、接合時の温度を500〜600℃前後と高い温度で接合した場合には、超音波振動子と前面部材の材質によっては、その熱膨張係数の差により振動子が割れたり剥がれたりすることがあり、接合の歩留まりが低下することが考えられる。   However, in an array type probe that is bonded using a brazing material shown in the prior art, it is necessary to bond elements of a large area and then cut them. For example, it is used for a heat resistant array type probe. According to the manufacturing method in which the vibrator is cut after being joined, when the joining temperature is as high as about 500 to 600 ° C., the thermal expansion coefficient depends on the material of the ultrasonic vibrator and the front member. It is considered that the vibrator may be cracked or peeled off due to the difference in bonding, and the yield of bonding is reduced.

また、素子が割れずに接合されて、素子がアレイ状に切断できたとしても、各短冊状の素子に信号線を接続する場合に、この信号線接続部も耐熱性が必要であり、素子と前面部材を接合した方法で信号線を接合しようとすると、同じく高い温度に加熱する必要があり、先の素子と前面部材の接合の信頼性が損なわれることも考えられる。   In addition, even if the elements are joined without being broken and the elements can be cut into an array, when connecting a signal line to each strip-shaped element, the signal line connection portion also needs to have heat resistance. When the signal line is to be joined by the method of joining the front member and the front member, it is necessary to heat the same to a high temperature, and the reliability of joining the previous element and the front member may be impaired.

本発明の目的は、上述した課題に鑑みてなされたものであり、耐熱温度が300℃以上で超音波振動子と前面部材との接合の歩留まりが良く、かつ信号線を安全に接続できる構成のアレイ型超音波探触子を提供することにある。   The object of the present invention has been made in view of the above-mentioned problems, and has a structure in which the heat resistance is 300 ° C. or higher, the yield of bonding between the ultrasonic transducer and the front member is good, and the signal line can be safely connected. An object is to provide an array-type ultrasonic probe.

前記課題を解決するために、本発明は主として次のような構成を採用する。
複数の超音波振動子を備えたアレイ型探触子において、前記複数の超音波振動子と前記超音波振動子の超音波送信面に設けられる前面部材との第一の接合と、前記複数の超音波振動子と前記超音波振動子にそれぞれ接続する信号線との第二の接合とをロウ材またははんだを用いて行い、前記第二の接合に用いるロウ材又ははんだは、前記第一の接合に用いるロウ材又ははんだよりも融点が低いはんだであるアレイ型超音波探触子。
In order to solve the above problems, the present invention mainly adopts the following configuration.
In an array-type probe including a plurality of ultrasonic transducers, a first joint between the plurality of ultrasonic transducers and a front member provided on an ultrasonic transmission surface of the ultrasonic transducer; The second bonding of the ultrasonic transducer and the signal line connected to the ultrasonic transducer is performed using a brazing material or solder, and the brazing material or solder used for the second bonding is the first bonding An array type ultrasonic probe which is a solder having a melting point lower than that of a brazing material or solder used for bonding.

また、複数の超音波振動子を備えたアレイ型探触子において、前記複数の超音波振動子と前記超音波振動子の超音波送信面に設けられる前面部材との第一の接合と、前記複数の超音波振動子と前記超音波振動子にそれぞれ接続する信号線との第二の接合とを同一のロウ材またははんだを用いて行い、前記第二の接合は、前記第一の接合に対して経時的に処理されたものであるアレイ型超音波探触子。   Further, in an array-type probe including a plurality of ultrasonic transducers, a first joint between the plurality of ultrasonic transducers and a front member provided on an ultrasonic transmission surface of the ultrasonic transducer, The second bonding of the plurality of ultrasonic transducers and the signal lines connected to the ultrasonic transducers is performed using the same brazing material or solder, and the second bonding is performed on the first bonding. In contrast, an array-type ultrasonic probe that has been processed over time.

また、前記アレイ型超音波探触子において、前記第一の接合に用いるロウ材又ははんだは、融点が382度のZn−Al系はんだであり、前記第二の接合に用いるロウ材又ははんだは、前記Zn−Al系はんだより融点が低いSn系の鉛フリーはんだに金属ボールを含むはんだであるアレイ型超音波探触子。   In the array-type ultrasonic probe, the brazing material or solder used for the first joining is a Zn-Al solder having a melting point of 382 degrees, and the brazing material or solder used for the second joining is An array-type ultrasonic probe, which is a Sn-based solder having a melting point lower than that of the Zn-Al solder, including a metal ball.

また、前記アレイ型超音波探触子において、前記複数の超音波振動子はニオブ酸リチウム素子のXカット素子又はYカット素子であり、前記超音波振動子の前記Xカット素子又は前記Yカット素子の一方の軸方向と前記一方の軸方向と直交する方向の軸方向のそれぞれの熱膨張係数のうちで熱膨張係数が大きい方向を短軸方向にし、熱膨張係数が小さい方向を長軸方向にして、前記矩形状又は前記短冊状の超音波振動子に切断し、前記切断した前記矩形状又は前記短冊状の超音波振動子を前記前面部材に接合するものであるアレイ型超音波探触子。   In the array-type ultrasonic probe, the plurality of ultrasonic transducers are X-cut elements or Y-cut elements of lithium niobate elements, and the X-cut elements or Y-cut elements of the ultrasonic transducers Of the thermal expansion coefficients in the axial direction of one axial direction and the direction perpendicular to the one axial direction, the direction with the larger thermal expansion coefficient is the minor axis direction, and the direction with the smaller thermal expansion coefficient is the major axis direction. An array-type ultrasonic probe that cuts into the rectangular or strip-like ultrasonic transducer and joins the cut rectangular or strip-like ultrasonic transducer to the front member. .

本発明によると、超音波振動子と前面部材との第一の接合と超音波振動子と信号線との第二の接合における接合部の耐熱性と信頼性を確保することができる。   According to the present invention, it is possible to ensure the heat resistance and reliability of the joint in the first joint between the ultrasonic vibrator and the front member and the second joint between the ultrasonic vibrator and the signal line.

また、耐熱性と信頼性を確保すると同時に、接合時の熱歪みによる振動子の割れや剥離を防止し、接合の信頼性や歩留まりを向上することができる。   In addition, heat resistance and reliability can be ensured, and at the same time, the vibrator can be prevented from cracking or peeling due to thermal strain during bonding, and the reliability and yield of bonding can be improved.

本発明の実施形態に係るアレイ型超音波探触子について、図1〜図9を参照しながら以下詳細に説明する。図1は本発明の実施形態に係るアレイ型超音波探触子における超音波振動子と金属製前面部材との接合と超音波振動子と信号線との接合とを示す断面図である。図2は本実施形態に係るアレイ型超音波探触子における超音波振動子と信号線の接合面に制動効果用のバッキング材を設けることを示す断面図である。図3は従来技術に関する超音波振動子と前面部材との接合状態を説明する図である。図4は本実施形態に係るアレイ型超音波探触子における超音波振動子と金属製前面部材との接合手順の具体例を示す図である。図5は本実施形態に係るアレイ型超音波探触子における超音波振動子と信号線との接合手順の具体例を示す図である。   An array-type ultrasonic probe according to an embodiment of the present invention will be described in detail below with reference to FIGS. FIG. 1 is a cross-sectional view showing bonding of an ultrasonic transducer and a metal front member and bonding of an ultrasonic transducer and a signal line in an array-type ultrasonic probe according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing that a backing material for a braking effect is provided on the joint surface between the ultrasonic transducer and the signal line in the array-type ultrasonic probe according to the present embodiment. FIG. 3 is a view for explaining a joining state of the ultrasonic transducer and the front member relating to the conventional technology. FIG. 4 is a diagram showing a specific example of a joining procedure between the ultrasonic transducer and the metal front member in the array-type ultrasonic probe according to the present embodiment. FIG. 5 is a diagram showing a specific example of a procedure for joining the ultrasonic transducer and the signal line in the array-type ultrasonic probe according to the present embodiment.

また、図6は本実施形態に関する超音波振動子と信号線との接合における、金属ボールとSn系鉛フリーはんだボールによるはんだ溶融課程を説明する図である。図7は本実施形態に係るアレイ型超音波探触子をケースに収納した状態を示す図である。図8は本実施形態に係るアレイ型超音波探触子を斜角探傷に適するようにケースに収納した状態を示す図である。図9は本実施形態に係るアレイ型超音波探触子を高温部材の探傷に適用した探傷装置の全体構成を示す図である。   FIG. 6 is a diagram for explaining a solder melting process using a metal ball and a Sn-based lead-free solder ball in the joining of the ultrasonic transducer and the signal line according to this embodiment. FIG. 7 is a view showing a state in which the array type ultrasonic probe according to the present embodiment is housed in a case. FIG. 8 is a view showing a state in which the array-type ultrasonic probe according to the present embodiment is housed in a case so as to be suitable for oblique flaw detection. FIG. 9 is a diagram showing an overall configuration of a flaw detection apparatus in which the array type ultrasonic probe according to the present embodiment is applied to flaw detection of a high temperature member.

図1において、超音波は超音波振動子1からA側(矢印)の方向に送受信される。板状のニオブ酸リチウム素子からなる超音波振動子1は両面に金属の電極6a,6bを備えている。また、超音波振動子1の電極6bとチタン材からなる前面部材2は、例えば、融点382℃のZn−Al合金(組成Zn−95%、Al−5%の共晶はんだ合金)3で接合している。さらに、各超音波振動子1の電極6aには、信号線5が、融点が232℃のSn系鉛フリーはんだ4で接合している。   In FIG. 1, ultrasonic waves are transmitted and received from the ultrasonic transducer 1 in the direction of the A side (arrow). The ultrasonic transducer 1 made of a plate-like lithium niobate element has metal electrodes 6a and 6b on both sides. The electrode 6b of the ultrasonic vibrator 1 and the front member 2 made of a titanium material are bonded with, for example, a Zn—Al alloy (composite Zn-95%, Al-5% eutectic solder alloy) 3 having a melting point of 382 ° C. is doing. Further, the signal line 5 is joined to the electrode 6 a of each ultrasonic transducer 1 with Sn-based lead-free solder 4 having a melting point of 232 ° C.

接合は、まず、超音波振動子であるニオブ酸リチウム素子の36Yカットを短冊状に切断する。ニオブ酸リチウム素子は単結晶で、X,Y,Zの3方向の結晶軸を持ち、熱膨張係数は、X,Y軸方向が15×10−6/℃、Z軸方向が2〜7×10−6/℃である。従って、36Yカット素子は、36度のY軸に垂直な面で切出しているので、36Yカット素子の一方の軸(縦軸)がZ軸方向であり、熱膨張係数は2〜7×10−6/℃、また、36Yカット素子の一方の軸と直交する方向の軸(横軸)はX軸方向であって熱膨張係数は15×10−6/℃となり、36Yカット素子の一方の軸方向(縦方向)とこの一方の軸と直交する方向の軸方向(横方向)とで熱膨張係数は2〜3倍異なることになる。   For joining, first, a 36Y cut of a lithium niobate element, which is an ultrasonic transducer, is cut into strips. The lithium niobate element is a single crystal and has crystal axes in three directions of X, Y, and Z. The thermal expansion coefficient is 15 × 10 −6 / ° C. in the X and Y axis directions and 2 to 7 × in the Z axis direction. 10-6 / ° C. Therefore, since the 36Y cut element is cut out by a plane perpendicular to the Y-axis of 36 degrees, one axis (vertical axis) of the 36Y cut element is the Z-axis direction, and the thermal expansion coefficient is 2-7 × 10−. 6 / ° C., and the axis (horizontal axis) perpendicular to one axis of the 36Y cut element is the X axis direction, and the thermal expansion coefficient is 15 × 10 −6 / ° C., and one axis of the 36Y cut element The thermal expansion coefficient differs by 2 to 3 times between the direction (longitudinal direction) and the axial direction (lateral direction) perpendicular to the one axis.

次に、超音波振動子1と前面部材2とを、融点382℃のZn−Al系のはんだ合金3で接合するのであるが、ここで、図3に示すような従来の常温用アレイ製作法のように大きな36Yカットのニオブ酸リチウム素子100を前面部材に接合してからアレイ状に切断しようとすると、接合の時点で前述した縦方向及び横方向の熱膨張係数の差により素子に割れ101が入る恐れがある。   Next, the ultrasonic transducer 1 and the front member 2 are joined with a Zn—Al solder alloy 3 having a melting point of 382 ° C. Here, a conventional room temperature array fabrication method as shown in FIG. When a large 36Y-cut lithium niobate element 100 as described above is bonded to the front member and then cut into an array, the element is cracked 101 due to the difference in the thermal expansion coefficient between the vertical direction and the horizontal direction at the time of bonding. There is a risk of entering.

本発明の実施形態では、予め短冊状に素子を切断し、それを配列して接合する様にした。すなわち、図4に示す様に、前面部材2に融点382℃のZn−Al系のはんだ合金3を載せる。その上に、複数の超音波振動子1を重ね、約数kg/cm程度の重り8で加圧しながら全体を400℃程度に加熱する。超音波振動子1と前面部材2の間のはんだが溶融後、加熱を停止し全体を冷却する。 In the embodiment of the present invention, the elements are cut into strips in advance, and are arranged and joined. That is, as shown in FIG. 4, a Zn—Al solder alloy 3 having a melting point of 382 ° C. is placed on the front member 2. On top of that, a plurality of ultrasonic transducers 1 are stacked, and the whole is heated to about 400 ° C. while being pressurized with a weight 8 of about several kg / cm 2 . After the solder between the ultrasonic vibrator 1 and the front member 2 is melted, heating is stopped and the whole is cooled.

次に、信号線5の取付作業を行う。信号線5は、図5に示すように、配列した超音波振動子の数とアース用信号線の本数を信号線固定治具9a,9bにネジ10により挿み込み、各信号線の先端が超音波振動子1の上面に接する高さになる様に固定する。超音波振動子1と信号線5の接触部分11に、銅ボールと鉛フリーはんだボール(Sn−Ag−Cu)をフラックスで混合したはんだ(ペースト状)を塗布し、これら全体をSnが溶融する温度の232℃以上に加熱する。この時、先に(以前に)接合した超音波振動子1と前面部材2のZn−Al系のはんだ合金3の溶融温度は、Sn系鉛フリーはんだにCuボールを含むはんだよりも高い382℃で有るため、前面部材の接合部には全く影響を与えない。   Next, the signal line 5 is attached. As shown in FIG. 5, the signal line 5 is inserted into the signal line fixing jigs 9a and 9b with screws 10 as the number of arranged ultrasonic transducers and the number of ground signal lines, and the tip of each signal line is The ultrasonic transducer 1 is fixed so as to be in contact with the upper surface. The contact portion 11 between the ultrasonic transducer 1 and the signal line 5 is coated with solder (paste) in which copper balls and lead-free solder balls (Sn—Ag—Cu) are mixed with a flux, and Sn is melted as a whole. Heat to a temperature of 232 ° C or higher. At this time, the melting temperature of the Zn—Al-based solder alloy 3 of the ultrasonic transducer 1 and the front member 2 previously joined is 382 ° C. higher than that of the Sn-based lead-free solder containing Cu balls. Therefore, there is no influence on the joint portion of the front member.

図6に銅ボールと鉛フリーはんだボールを混合したはんだの溶融時の挙動を示す(その詳細は前記の特許文献4に記載している通りである)。図6の(1)で、銅ボール200と鉛フリーはんだボール201が加熱され、接合部の温度が232℃に達するとSnが溶融する。図6の(2)で、銅ボールの周囲は、溶融したSnが広がり、銅とSnとの金属間化合物202が形成される。図6の(3)で、金属間化合物202の形成が進み、これら金属間化合物202同士が互いに連結する。これにより、超音波振動子1と信号線5は結合される(信号線の表面にも金属間化合物が形成されてこの金属間化合物と混合はんだの金属間化合物とが互いに連結されることで信号線が結合されることとなる)。そして、金属間化合物の溶融温度は400℃以上であり、一度結合すると400℃までは結合が保持される。   FIG. 6 shows the behavior at the time of melting of the solder in which the copper ball and the lead-free solder ball are mixed (the details are as described in Patent Document 4). In FIG. 6 (1), when the copper ball 200 and the lead-free solder ball 201 are heated and the temperature of the joint reaches 232 ° C., Sn melts. In (2) of FIG. 6, the molten Sn spreads around the copper ball, and an intermetallic compound 202 of copper and Sn is formed. In (3) of FIG. 6, formation of the intermetallic compound 202 advances and these intermetallic compounds 202 are mutually connected. As a result, the ultrasonic transducer 1 and the signal line 5 are coupled (an intermetallic compound is also formed on the surface of the signal line, and the intermetallic compound and the intermetallic compound of the mixed solder are connected to each other to generate a signal. Line will be joined). The melting temperature of the intermetallic compound is 400 ° C. or higher, and once bonded, the bonding is maintained up to 400 ° C.

従って、信号線結合で用いられるはんだでは、別途、銅ボールと鉛フリーはんだボールを混合したはんだを用いて別の部位の接合作業を行う場合にも、先に銅ボールと鉛フリーはんだボールを混合したはんだで接合した部分に影響を与えることなく、新たな別の部品を接合する温度階層接合(全てを同時に接合せず、各素子と配線とを別々に(経時的に)接合すること)が可能である。また、Sn系鉛フリーはんだにCuボールを含むはんだを用いて、第一と第二の接合を行う際に、信号線配線を別々に(経時的に)ではなくて同時に接合する場合には、第二接合の信号線を先に接合し、その後、第一接合の前面部材を接合しても良い(第二接合における金属間化合物の溶融温度は400℃であり、第一接合のSn溶融は232℃であるから)。   Therefore, in the case of solder used for signal line connection, even when soldering a different part using a mixture of copper balls and lead-free solder balls, the copper balls and lead-free solder balls are mixed first. Temperature hierarchical joining (joining each element and wiring separately (over time) without joining them all at the same time) to join another new part without affecting the soldered part. Is possible. In addition, when the first and second bonding is performed using the Sn-based lead-free solder including the Cu ball, when the signal line wiring is bonded at the same time instead of separately (over time), The signal wire of the second bonding may be bonded first, and then the front member of the first bonding may be bonded (the melting temperature of the intermetallic compound in the second bonding is 400 ° C., the Sn melting of the first bonding is Because it is 232 ° C).

以上の説明で、第一と第二の接合において上述したようなはんだを用いることを記述したが、別のロウ材であっても良い。また、Sn系の鉛フリーはんだボールは、例えば、Sn、Sn−Ag、Sn−Cu、またはSn−Ag−Cuのはんだボールであり、金属ボールは例えばCu、Ag、またはNiであってもよい(Snと金属ボールとが化学反応して図6の(3)に示すような金属間化合物ができる金属であればよい)。   In the above description, it has been described that the solder as described above is used in the first and second joining, but another brazing material may be used. In addition, the Sn-based lead-free solder ball is, for example, a solder ball of Sn, Sn—Ag, Sn—Cu, or Sn—Ag—Cu, and the metal ball may be, for example, Cu, Ag, or Ni. (As long as Sn and a metal ball chemically react to form an intermetallic compound as shown in FIG. 6 (3)).

図2は、信号線5を接続した超音波振動子1の面に、信号線5の固定と超音波振動子1の制動効果を得るためのバッキング材12を備えた図である。バッキング材12は、耐熱有機接着剤(例えば、商品名:Duralco 4700HT、耐熱性:343℃、製造元:Cotronics Corporation、USA )あるいは耐熱無機接着剤(例えば、商品名:セラマボンド、製造元:AREMUCO PRODUCTS INC.、USA)にタングステンあるいは酸化タングステンなどの重密度金属粉を混合したもの等が有る。   FIG. 2 is a diagram in which a backing material 12 for securing the signal line 5 and obtaining the braking effect of the ultrasonic vibrator 1 is provided on the surface of the ultrasonic vibrator 1 to which the signal line 5 is connected. The backing material 12 is a heat-resistant organic adhesive (for example, trade name: Duralco 4700HT, heat resistance: 343 ° C., manufacturer: Cotronics Corporation, USA) or a heat-resistant inorganic adhesive (for example, trade name: Ceramer Bond, manufacturer: AREMUCO PRODUCTS INC.). USA) and heavy density metal powders such as tungsten or tungsten oxide.

図7は、超音波振動子1と前面部材2と信号線5から成るアレイユニットを金属製のケース13に納め、上部の端子板14を介して耐熱性ケーブル15を接続した耐熱性のアレイ型探触子である。端子板14は金属あるいはセラミックス等の耐熱材料であり、ケーブルもMIケーブル(例えば、銅導体を酸化マグネシウムと銅シースで被覆したもの)、耐熱性熱電対ケーブル(例えば、ガラス繊維被覆)、あるいは耐熱性同軸ケーブル(例えば、カプトン被覆)を用いる。   FIG. 7 shows a heat-resistant array type in which an array unit composed of an ultrasonic transducer 1, a front member 2, and a signal line 5 is housed in a metal case 13 and a heat-resistant cable 15 is connected via an upper terminal plate 14. It is a probe. The terminal plate 14 is a heat-resistant material such as metal or ceramics, and the cable is also an MI cable (for example, a copper conductor covered with magnesium oxide and a copper sheath), a heat-resistant thermocouple cable (for example, glass fiber coating), or a heat-resistant material. A coaxial cable (for example, Kapton coating) is used.

また、図8に示すように前面部材16は斜角探傷に好都合なクサビ状とすることもできる。金属製ケース13は前面部材2と機械的、電気的に接続するが本実施形態ではネジ止め18で接続している。また、金属製ケース13から端子板14を介して引き出したケーブル15は、その環境がケーブル15の耐熱温度300℃程度以下になる所まで引き出され超音波送受信装置に接続する。   Further, as shown in FIG. 8, the front member 16 may be wedge-shaped which is convenient for oblique flaw detection. The metal case 13 is mechanically and electrically connected to the front member 2, but is connected by a screw 18 in this embodiment. The cable 15 drawn from the metal case 13 via the terminal plate 14 is drawn out to a place where the environment is about 300 ° C. or less of the cable 15 and connected to the ultrasonic transmitting / receiving device.

図9は、本発明のアレイ型探触子を用いて高温部材303を探傷している図である。アレイ型超音波探触子と、アレイ型探触子を駆動するとともに探傷した超音波信号を受信する超音波送受信部300と、超音波の送受信の遅延時間を制御する遅延時間制御処理部301と、探傷のデータを表示・記録する探傷データ記録・表示部302とを備えている。   FIG. 9 is a view in which a high temperature member 303 is detected using the array type probe of the present invention. An array-type ultrasonic probe, an ultrasonic transmission / reception unit 300 that drives the array-type probe and receives a detected ultrasonic signal, a delay time control processing unit 301 that controls a delay time of ultrasonic transmission / reception, and And a flaw detection data recording / display unit 302 for displaying / recording flaw detection data.

以上説明したように、短冊状の超音波振動子と前面部材とをZn−Alはんだ合金(融点が382℃)で接合すれば、接合時の割れや剥離が発生しないため高温真空炉等の特別な装置を使用することなく、歩留まり良くしかも安価で容易に300℃耐熱のアレイ型の超音波探触子を製作できる。また、短冊状の各超音波振動子に接続する信号線を銅ボールと鉛フリーはんだボールを混合したはんだで接合すれば、先に接合した超音波振動子と前面部材との接合部にダメージを与えることなく容易に接続ができる。また、本実施形態のアレイ型探触子を用いれば、300℃の高温部材を容易に検査することができる。   As described above, if the strip-shaped ultrasonic vibrator and the front member are joined with a Zn—Al solder alloy (melting point is 382 ° C.), cracking and peeling at the time of joining do not occur. Without using a simple apparatus, it is possible to easily manufacture an array-type ultrasonic probe having a high heat resistance and a heat resistance of 300 ° C. without increasing the yield. In addition, if the signal line connected to each strip-shaped ultrasonic transducer is bonded with a mixture of copper balls and lead-free solder balls, damage will be caused to the bonded portion between the previously bonded ultrasonic transducer and the front member. Easy connection without giving. Moreover, if the array type probe of this embodiment is used, a 300 degreeC high temperature member can be test | inspected easily.

このように、本発明の実施形態では、アレイ型の超音波探触子の耐熱性を確保し接合の信頼性、歩留まりを向上するという目的を、ニオブ酸リチウム素子とチタン材(前面部材)との第一の接合をZn−Al系のはんだ合金で接合し、超音波振動子とリード線との第二の接合を、第一の接合に用いたはんだより融点が低い金属ボールを含むSn系鉛フリーはんだで接合することで実現することができる。また、短冊状のニオブ酸リチウム素子は、縦方向及び横方向のそれぞれの熱膨張係数のうち、熱膨張係数が大きい方向を短軸方向に、また、熱膨張係数が小さい方向を長軸方向にして予め短冊状に切断し、その後、前面部材と接合している。   As described above, in the embodiment of the present invention, the purpose of ensuring the heat resistance of the array-type ultrasonic probe and improving the reliability and yield of bonding is to use a lithium niobate element and a titanium material (front member). Sn-based solder alloys including a metal ball having a melting point lower than that of the solder used for the first bonding is bonded to the ultrasonic transducer and the lead wire. It can be realized by joining with lead-free solder. In addition, the strip-shaped lithium niobate element has a longitudinal direction and a lateral direction thermal expansion coefficient in which the direction with the larger thermal expansion coefficient is the minor axis direction, and the direction with the smaller thermal expansion coefficient is the major axis direction. Are cut into strips in advance, and then joined to the front member.

本実施形態に係るアレイ型超音波探触子は、常温から300℃程度の高温環境下まで広く利用可能で、特に原子力、化学プラントなどに設置した高温部位の異常監視用アレイ型センサとして利用可能である。   The array-type ultrasonic probe according to the present embodiment can be widely used from a room temperature to a high-temperature environment of about 300 ° C., and can be used as an array-type sensor for monitoring abnormalities of a high-temperature site installed particularly in a nuclear power plant or a chemical plant. It is.

以上説明したように、本発明の実施形態に係るアレイ型超音波探触子は、次のような構成と作用効果を奏することを特徴とするものである。すなわち、超音波振動子と金属板との第一の接合をはんだ合金を介して接合し、その後、前記はんだより融点が低いはんだで第二の接合である超音波振動子とリード線を接合し、接合部の耐熱性と信頼性を得ている。また、前記はんだとして、融点が382度のZn−Al系はんだと、前記Zn−Al系はんだより融点が低いSn系の鉛フリーはんだに金属ボールを含むはんだの、2種類の内の後者のはんだか、または両方を用いて接合し、接合部の耐熱性と信頼性を得ている。   As described above, the array-type ultrasonic probe according to the embodiment of the present invention is characterized by having the following configuration and operational effects. That is, the first joint between the ultrasonic vibrator and the metal plate is joined via a solder alloy, and then the ultrasonic vibrator and the lead wire, which are the second joint, are joined with a solder having a melting point lower than that of the solder. , Has obtained heat resistance and reliability of the joint. Further, as the solder, the latter of the two types of solders, that is, a Zn-Al solder having a melting point of 382 degrees and a Sn-based lead-free solder having a melting point lower than that of the Zn-Al solder and a solder containing metal balls. Or both are used to obtain the heat resistance and reliability of the joint.

また、複数の超音波振動子は、短冊状のニオブ酸リチウム素子のXカット素子、もしくはYカット素子であり、また、前面部材は金属であり、前記短冊状の超音波振動子の縦方向及び横方向のそれぞれの熱膨張係数のうち、熱膨張係数が大きい方向を短軸方向に、また熱膨張係数が小さい方向を長軸方向にして予め短冊状に切断し、その後前記前面部材と接合したことにより、耐熱性を確保すると同時に、接合時の熱歪みによる振動子の割れや剥離を防止し、接合の信頼性や歩留まりを向上している。また、Sn系の鉛フリーはんだはボール状であり、金属ボールは、前記Sn系の鉛フリーはんだより融点が高い金属であり、また、前面部材はチタン材を用いることにより、耐熱性を確保すると同時に、接合時の熱歪みによる振動子の割れや剥離を防止し、接合の信頼性や歩留まりを向上している。   Further, the plurality of ultrasonic vibrators are X-cut elements or Y-cut elements of a strip-shaped lithium niobate element, and the front member is metal, and the longitudinal direction of the strip-shaped ultrasonic vibrator and Of the respective thermal expansion coefficients in the lateral direction, a direction having a larger thermal expansion coefficient is set to a short axis direction, and a direction having a small thermal expansion coefficient is set to a long axis direction, and then cut into a strip shape, and then joined to the front member. As a result, heat resistance is ensured, and at the same time, the vibrator is prevented from cracking or peeling due to thermal strain during bonding, and the reliability and yield of bonding are improved. The Sn-based lead-free solder is ball-shaped, the metal ball is a metal having a melting point higher than that of the Sn-based lead-free solder, and the front member is made of a titanium material to ensure heat resistance. At the same time, the resonator is prevented from cracking and peeling due to thermal distortion during bonding, and the reliability and yield of bonding are improved.

また、Sn系の鉛フリーはんだボールは、例えばSn、Sn−Ag、Sn−Cu、Sn−Ag−Cuのはんだボールであり、金属ボールは例えばCu、Ag、Niを用いることにより、耐熱性を確保すると同時に、接合時の熱歪みによる振動子の割れや剥離を防止し、接合の信頼性や歩留まりを向上している。   In addition, Sn-based lead-free solder balls are, for example, Sn, Sn-Ag, Sn-Cu, Sn-Ag-Cu solder balls, and metal balls are made of heat resistance by using, for example, Cu, Ag, Ni. At the same time, it prevents cracking and peeling of the vibrator due to thermal distortion during bonding, improving the reliability and yield of bonding.

本発明の実施形態に係るアレイ型超音波探触子における超音波振動子と金属製前面部材との接合と超音波振動子と信号線との接合とを示す断面図である。It is sectional drawing which shows joining of the ultrasonic transducer | vibrator and metal front members, and joining of an ultrasonic transducer | vibrator and a signal wire | line in the array type ultrasonic probe which concerns on embodiment of this invention. 本実施形態に係るアレイ型超音波探触子における超音波振動子と信号線の接合面に制動効果用のバッキング材を設けることを示す断面図である。It is sectional drawing which shows providing the backing material for braking effects in the joint surface of an ultrasonic transducer | vibrator and a signal wire | line in the array type ultrasonic probe which concerns on this embodiment. 従来技術に関する超音波振動子と前面部材との接合状態を説明する図である。It is a figure explaining the joining state of the ultrasonic transducer | vibrator and front member regarding a prior art. 本実施形態に係るアレイ型超音波探触子における超音波振動子と金属製前面部材との接合手順の具体例を示す図である。It is a figure which shows the specific example of the joining procedure of the ultrasonic transducer | vibrator and metal front members in the array type ultrasonic probe which concerns on this embodiment. 本実施形態に係るアレイ型超音波探触子における超音波振動子と信号線との接合手順の具体例を示す図である。It is a figure which shows the specific example of the joining procedure of an ultrasonic transducer | vibrator and a signal wire | line in the array type ultrasonic probe which concerns on this embodiment. 本実施形態に関する超音波振動子と信号線との接合における、金属ボールとSn系鉛フリーはんだボールによるはんだ溶融課程を説明する図である。It is a figure explaining the solder melting process by a metal ball and Sn system lead free solder ball in joining of an ultrasonic transducer and a signal line concerning this embodiment. 本実施形態に係るアレイ型超音波探触子をケースに収納した状態を示す図である。It is a figure which shows the state which accommodated the array type ultrasonic probe which concerns on this embodiment in the case. 本実施形態に係るアレイ型超音波探触子を斜角探傷に適するようにケースに収納した状態を示す図である。It is a figure which shows the state which accommodated the array type ultrasonic probe which concerns on this embodiment in a case so that it may be suitable for an oblique flaw detection. 本実施形態に係るアレイ型超音波探触子を高温部材の探傷に適用した探傷装置の全体構成を示す図である。It is a figure which shows the whole structure of the flaw detection apparatus which applied the array type ultrasonic probe which concerns on this embodiment to flaw detection of a high temperature member.

符号の説明Explanation of symbols

1 超音波振動子
2 前面部材
3 Zn−Alはんだ合金
4a,4b 金属ボールとSn系鉛フリーはんだボールによるはんだ
5 信号線
6a,6b 電極
8 重り
9a,9b 固定治具
10 固定ネジ
11 信号線接合部
12 バッキング材
13 金属製ケース
14 端子板
15 ケーブル
16 斜角シュー
17 信号線中継部
18 ケース固定ネジ
100 大面積の超音波振動子
101 割れ
200 銅ボール
201 Sn系の鉛フリーはんだボール
202 金属間化合物
300 超音波送受信部
301 遅延時間制御処理部
302 探傷データ記録・表示部
303 高温部材
DESCRIPTION OF SYMBOLS 1 Ultrasonic vibrator 2 Front member 3 Zn-Al solder alloy 4a, 4b Solder by a metal ball and Sn system lead free solder ball 5 Signal line 6a, 6b Electrode 8 Weight 9a, 9b Fixing jig 10 Fixing screw 11 Signal line joining Part 12 Backing material 13 Metal case 14 Terminal board 15 Cable 16 Bevel shoe 17 Signal line relay part 18 Case fixing screw 100 Large-area ultrasonic vibrator 101 Crack 200 Copper ball 201 Sn-based lead-free solder ball 202 Between metals Compound 300 Ultrasonic transmission / reception unit 301 Delay time control processing unit 302 Flaw detection data recording / display unit 303 High temperature member

Claims (9)

複数の超音波振動子を備えたアレイ型探触子において、
前記複数の超音波振動子と前記超音波振動子の超音波送信面に設けられる前面部材との第一の接合と、前記複数の超音波振動子と前記超音波振動子にそれぞれ接続する信号線との第二の接合とをロウ材またははんだを用いて行い、
前記第二の接合に用いるロウ材又ははんだは、前記第一の接合に用いるロウ材又ははんだよりも融点が低いはんだである
ことを特徴とするアレイ型超音波探触子。
In an array type probe with multiple ultrasonic transducers,
A first joint between the plurality of ultrasonic transducers and a front member provided on an ultrasonic transmission surface of the ultrasonic transducer, and signal lines connected to the plurality of ultrasonic transducers and the ultrasonic transducer, respectively. And the second joining with the soldering material or solder,
The brazing material or solder used for the second joining is a solder having a melting point lower than that of the brazing material or solder used for the first joining.
複数の超音波振動子を備えたアレイ型探触子において、
前記複数の超音波振動子と前記超音波振動子の超音波送信面に設けられる前面部材との第一の接合と、前記複数の超音波振動子と前記超音波振動子にそれぞれ接続する信号線との第二の接合とを同一のロウ材またははんだを用いて行い、
前記第二の接合は、前記第一の接合に対して経時的に処理されたものである
ことを特徴とするアレイ型超音波探触子。
In an array type probe with multiple ultrasonic transducers,
A first joint between the plurality of ultrasonic transducers and a front member provided on an ultrasonic transmission surface of the ultrasonic transducer, and signal lines connected to the plurality of ultrasonic transducers and the ultrasonic transducer, respectively. And the second bonding with the same brazing material or solder,
The array-type ultrasonic probe characterized in that the second bonding is processed over time with respect to the first bonding.
請求項1において、
前記第一の接合に用いるロウ材又ははんだは、融点が382度のZn−Al系はんだであり、
前記第二の接合に用いるロウ材又ははんだは、前記Zn−Al系はんだより融点が低いSn系の鉛フリーはんだに金属ボールを含むはんだである
ことを特徴とするアレイ型超音波探触子。
In claim 1,
The brazing material or solder used for the first bonding is a Zn-Al solder having a melting point of 382 degrees,
The array-type ultrasonic probe, wherein the brazing material or solder used for the second bonding is a solder containing a metal ball in Sn-based lead-free solder having a melting point lower than that of the Zn-Al solder.
請求項2において、
前記第一と前記第二の接合に用いるロウ材又ははんだは、Sn系の鉛フリーはんだに金属ボールを含むはんだであることを特徴とするアレイ型超音波探触子。
In claim 2,
The array-type ultrasonic probe according to claim 1, wherein the brazing material or solder used for the first and second joining is a solder containing a metal ball in Sn-based lead-free solder.
請求項3または4において、
前記Sn系の鉛フリーはんだはボール状であり、前記金属ボールは前記Sn系の鉛フリーはんだより融点が高い金属であり、前記前面部材はチタン材である
ことを特徴とするアレイ型超音波探触子。
In claim 3 or 4,
The Sn-based lead-free solder is ball-shaped, the metal ball is a metal having a melting point higher than that of the Sn-based lead-free solder, and the front member is a titanium material. Tentacles.
請求項5において、
前記Sn系の鉛フリーはんだボールは、Sn、Sn−Ag、Sn−Cu、又はSn−Ag−Cuのはんだボールであり、前記金属ボールはCu、Ag、又はNiであることを特徴とするアレイ型超音波探触子。
In claim 5,
The Sn-based lead-free solder balls are Sn, Sn-Ag, Sn-Cu, or Sn-Ag-Cu solder balls, and the metal balls are Cu, Ag, or Ni. Type ultrasonic probe.
請求項5に記載の前記Sn系の鉛フリーはんだボールと前記金属ボールをもつはんだを用いて前記超音波振動子に前記信号線を接合することを特徴とするアレイ型超音波探触子。   An array-type ultrasonic probe, wherein the signal line is joined to the ultrasonic transducer using the Sn-based lead-free solder ball according to claim 5 and solder having the metal ball. 請求項1または2において、
前記複数の超音波振動子はニオブ酸リチウム素子のXカット素子又はYカット素子であり、
前記超音波振動子の前記Xカット素子又は前記Yカット素子の一方の軸方向と前記一方の軸方向と直交する方向の軸方向のそれぞれの熱膨張係数のうちで熱膨張係数が大きい方向を短軸方向にし、熱膨張係数が小さい方向を長軸方向にして、前記矩形状又は前記短冊状の超音波振動子に切断し、前記切断した前記矩形状又は前記短冊状の超音波振動子を前記前面部材に接合するものである
ことを特徴とするアレイ型超音波探触子。
In claim 1 or 2,
The plurality of ultrasonic transducers are X-cut elements or Y-cut elements of a lithium niobate element,
Of the thermal expansion coefficients of the X-cut element or the Y-cut element of the ultrasonic transducer and the axial direction in the direction perpendicular to the one axial direction, the direction with the larger thermal expansion coefficient is short. An axial direction, a direction with a small coefficient of thermal expansion as a major axis direction, cut into the rectangular or strip-shaped ultrasonic transducer, and the cut rectangular or strip-shaped ultrasonic transducer An array type ultrasonic probe characterized by being bonded to a front member.
請求項1ないし8のいずれか1つの請求項に記載のアレイ型超音波探触子と、前記アレイ型超音波探触子を駆動し探傷した超音波を受信する超音波送受信部と、受信した探傷の超音波を信号処理する遅延時間制御処理部と、探傷のデータを表示・記録する探傷データ記録表示部と、を備えた探傷装置。   The array-type ultrasonic probe according to any one of claims 1 to 8, an ultrasonic transmission / reception unit that drives the array-type ultrasonic probe and receives flaws detected, and received A flaw detection apparatus comprising: a delay time control processing unit that performs signal processing on flaw detection ultrasonic waves; and a flaw detection data recording / display unit that displays and records flaw detection data.
JP2006218841A 2006-08-10 2006-08-10 Array-type ultrasonic probe and flaw detecting device Pending JP2008047971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006218841A JP2008047971A (en) 2006-08-10 2006-08-10 Array-type ultrasonic probe and flaw detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218841A JP2008047971A (en) 2006-08-10 2006-08-10 Array-type ultrasonic probe and flaw detecting device

Publications (1)

Publication Number Publication Date
JP2008047971A true JP2008047971A (en) 2008-02-28

Family

ID=39181322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218841A Pending JP2008047971A (en) 2006-08-10 2006-08-10 Array-type ultrasonic probe and flaw detecting device

Country Status (1)

Country Link
JP (1) JP2008047971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2525218A1 (en) * 2011-05-19 2012-11-21 Hitachi-GE Nuclear Energy, Ltd. Heat-resistant ultrasonic sensor and installation method thereof
CN112304263A (en) * 2020-10-21 2021-02-02 深圳赛意法微电子有限公司 Soldering tin thickness measuring method of semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927645A (en) * 1995-05-08 1997-01-28 Matsushita Electric Ind Co Ltd Manufacture of composite substrate and piezoelectric element using that
JPH10104387A (en) * 1996-09-30 1998-04-24 Toshiba Corp In-core inspection device
JP2002254194A (en) * 2000-06-12 2002-09-10 Hitachi Ltd Electronic equipment
JP2005308691A (en) * 2004-04-26 2005-11-04 Hitachi Ltd Ultrasonic probe and ultrasonic inspection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927645A (en) * 1995-05-08 1997-01-28 Matsushita Electric Ind Co Ltd Manufacture of composite substrate and piezoelectric element using that
JPH10104387A (en) * 1996-09-30 1998-04-24 Toshiba Corp In-core inspection device
JP2002254194A (en) * 2000-06-12 2002-09-10 Hitachi Ltd Electronic equipment
JP2005308691A (en) * 2004-04-26 2005-11-04 Hitachi Ltd Ultrasonic probe and ultrasonic inspection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2525218A1 (en) * 2011-05-19 2012-11-21 Hitachi-GE Nuclear Energy, Ltd. Heat-resistant ultrasonic sensor and installation method thereof
JP2012244369A (en) * 2011-05-19 2012-12-10 Hitachi-Ge Nuclear Energy Ltd Heat-resistant ultrasonic sensor and installation method therefor
US9304113B2 (en) 2011-05-19 2016-04-05 Hitachi-Ge Nuclear Energy, Ltd. Heat-resistant ultrasonic sensor and installation method thereof
CN112304263A (en) * 2020-10-21 2021-02-02 深圳赛意法微电子有限公司 Soldering tin thickness measuring method of semiconductor device
CN112304263B (en) * 2020-10-21 2022-02-15 深圳赛意法微电子有限公司 Soldering tin thickness measuring method of semiconductor device

Similar Documents

Publication Publication Date Title
JP3039971B2 (en) Bonded piezoelectric device, manufacturing method, and bonded piezoelectric element
JP5406881B2 (en) Heat-resistant ultrasonic sensor and installation method thereof
JP3600549B2 (en) Interconnect structure and method of manufacturing the same
JP2010179336A (en) Joint product, semiconductor module, and method for manufacturing the joint product
JP4388409B2 (en) Ultrasonic inspection equipment
US8810035B2 (en) Semiconductor bonding structure body and manufacturing method of semiconductor bonding structure body
JP2014503803A (en) Ultrasonic transducer assembly and system for monitoring structural integrity
KR20080087290A (en) Shear stress-strain evaluation method for solder joint by micro mechanics test method
JP2012027020A (en) Device and system for measuring material thickness
CN107097012B (en) A kind of consistent banjo fixing butt jointing electro-migration testing method of crystal grain orientation
EP1772225A1 (en) Lead-free solder alloy
JP2008047971A (en) Array-type ultrasonic probe and flaw detecting device
JP2000260894A (en) Semiconductor device and manufacture thereof
US20200164452A1 (en) Method of joining a niobium titanium alloy by using an active solder
CN108663402A (en) A kind of miniature solder joint thermophoresis test method
CN107732629A (en) A kind of hook weldering formula welding method of micro conductive retractor collar
CN107995775A (en) Carry overcurrent protection flexible circuit and manufacturing process
JP4919614B2 (en) Solar cell device and method for manufacturing solar cell device
JP3425903B2 (en) BGA mounting method and mounting structure
US9877399B2 (en) Lead solder joint structure and manufacturing method thereof
EP3167992B1 (en) Lead solder joint structure and manufacturing method thereof
JPH10104387A (en) In-core inspection device
JP2005026594A (en) Peeling test method of solid sample attached to or embedded in substrate
CN108380994B (en) Method for preparing lead-free interconnection welding spots of polycrystalline structure by applying vibration
JP4457893B2 (en) Method for investigating bonding reliability of substrate bonding structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080421

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102