JP2008047791A - Semiconductor device, its manufacturing method, and semiconductor integrated circuit device - Google Patents

Semiconductor device, its manufacturing method, and semiconductor integrated circuit device Download PDF

Info

Publication number
JP2008047791A
JP2008047791A JP2006223881A JP2006223881A JP2008047791A JP 2008047791 A JP2008047791 A JP 2008047791A JP 2006223881 A JP2006223881 A JP 2006223881A JP 2006223881 A JP2006223881 A JP 2006223881A JP 2008047791 A JP2008047791 A JP 2008047791A
Authority
JP
Japan
Prior art keywords
gate
dummy gate
drain region
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006223881A
Other languages
Japanese (ja)
Other versions
JP5092313B2 (en
Inventor
So Kurata
創 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006223881A priority Critical patent/JP5092313B2/en
Publication of JP2008047791A publication Critical patent/JP2008047791A/en
Application granted granted Critical
Publication of JP5092313B2 publication Critical patent/JP5092313B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device and its manufacturing method; and a manufacturing method which elevates a high frequency characteristic of a high dielectric strength transistor having a dummy gate, and improves its variation of manufacture for a semiconductor integrated circuit device. <P>SOLUTION: The dummy gate 5 is located on a first drain area 2 of low concentration; and a second drain area 8 of low concentration which is thinner than the first drain area 2 of low concentration, and self-matches with a main gate 4, at the place between the dummy gate 5 and an adjacent main gate 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は半導体装置、その製造方法、及び、半導体集積回路装置に関するものであり、特に、信号を入力する主ゲートに隣接するダミーゲートをもつ高耐圧トランジスタの高周波特性を向上するための構成に特徴のある半導体装置、その製造方法、及び、半導体集積回路装置に関するものである。   The present invention relates to a semiconductor device, a method for manufacturing the same, and a semiconductor integrated circuit device. In particular, the present invention is characterized by a configuration for improving high-frequency characteristics of a high voltage transistor having a dummy gate adjacent to a main gate for inputting a signal. The present invention relates to a semiconductor device, a manufacturing method thereof, and a semiconductor integrated circuit device.

携帯電話などの移動体通信機器の送信部分で用いられる高周波の電力増幅素子として、高耐圧のMOSFETが用いられているが、このトランジスタでは良好な高周波特性のみならず、ドレイン耐圧が大きいこと、低コストでCMOS集積回路と同一チップに集積化できることを期待されている。   A high voltage MOSFET is used as a high frequency power amplifying element used in a transmission part of a mobile communication device such as a mobile phone. This transistor has not only good high frequency characteristics but also a large drain breakdown voltage, It is expected that it can be integrated on the same chip as the CMOS integrated circuit at low cost.

従来、このような高耐圧のMOSFETは、低濃度のドレイン領域をレジストによってマスクするプロセスを用いて形成していた(例えば、特許文献1参照)。   Conventionally, such a high breakdown voltage MOSFET has been formed using a process of masking a low concentration drain region with a resist (see, for example, Patent Document 1).

このような製造方法では、
a.ゲートに位置あわせするマスク工程が必要でゲートの微細化が困難になる、
b.ゲート注入をソース・ドレイン注入と一括で行えないため工程が増える、
c.低濃度のドレイン領域がシリサイド化されないように追加の工程が必要になる、
などの問題点がある。
In such a manufacturing method,
a. A mask process that aligns with the gate is necessary, making it difficult to make the gate finer.
b. Since gate injection cannot be performed at the same time as source / drain injection, the number of processes increases.
c. An additional step is required to prevent the low concentration drain region from being silicided.
There are problems such as.

一方、このような問題を解決するものとして、ダミーゲートとサイドウォールスペーサによって高濃度のソース・ドレイン注入をマスクすることが提案されている(例えば、特許文献2参照)。
この提案によって、上述のb及びcの問題点を解決することができる。
特開平11−186543号公報 特開2004−235527号公報
On the other hand, as a solution to such a problem, it has been proposed to mask high concentration source / drain implantation by a dummy gate and a sidewall spacer (see, for example, Patent Document 2).
This proposal can solve the above-mentioned problems b and c.
Japanese Patent Laid-Open No. 11-186543 JP 2004-235527 A

しかし、上述の特許文献2の場合には、低濃度のドレイン領域をあらかじめ形成しておいて、その上にダミーゲートを配置し、且つ、主ゲートと前記低濃度ドレイン領域がオーバーラップするように位置あわせをしなければならないため、上記のaの問題点、即ち、ゲートの微細化が困難であるという問題点が依然として解決されないという問題がある。   However, in the case of the above-mentioned Patent Document 2, a low-concentration drain region is formed in advance, a dummy gate is disposed thereon, and the main gate and the low-concentration drain region overlap each other. Since the alignment has to be performed, there is a problem that the problem a described above, that is, the problem that it is difficult to miniaturize the gate is still not solved.

また、ダミーゲートが電気的にフローティングになっているため、寄生容量Cdgが増えてしまうおそれがあり、それによって、高周波特性が悪い、特性のばらつきが大きいなどの問題がある。 Further, since the dummy gate is electrically floating, the parasitic capacitance C dg may increase, thereby causing problems such as poor high frequency characteristics and large variations in characteristics.

したがって、本発明は、ダミーゲートを有する高耐圧トランジスタの高周波特性を向上するとともに製造バラツキを改善することを目的とする。   Accordingly, an object of the present invention is to improve high-frequency characteristics of a high voltage transistor having a dummy gate and to improve manufacturing variations.

図1は本発明の原理的構成図であり、ここで図1を参照して、本発明における課題を解決するための手段を説明する。
なお、図における符号3,6は、それぞれゲート絶縁膜及びサイドウォールである。
図1参照
上記の課題を解決するために、本発明は、半導体装置において、第1の低濃度ドレイン領域2上にダミーゲート5を有するとともに、ダミーゲート5と隣接する主ゲート4との間に第1の低濃度ドレイン領域2より浅く且つ、主ゲート4及びダミーゲート5に自己整合する第2の低濃度ドレイン領域8を有することを特徴とする。
FIG. 1 is a block diagram showing the principle of the present invention, and means for solving the problems in the present invention will be described with reference to FIG.
Reference numerals 3 and 6 in the figure denote a gate insulating film and a sidewall, respectively.
To solve the above-described problem, the present invention provides a semiconductor device having a dummy gate 5 on the first low-concentration drain region 2 and between the dummy gate 5 and the adjacent main gate 4. The second lightly doped drain region 8 is shallower than the first lightly doped drain region 2 and self-aligns with the main gate 4 and the dummy gate 5.

このような構成にすることによって、低濃度ドレイン層と主ゲート4が十分にオーバーラップしないことによる寄生抵抗の増大を回避でき、特性のばらつきも抑制できる。
また、第1の低濃度ドレイン領域2と主ゲート4に位置合わせが不要になるため、主ゲート4のゲート長を短くでき、それによって、高周波特性を改善できる。
By adopting such a configuration, it is possible to avoid an increase in parasitic resistance due to the low-concentration drain layer and the main gate 4 not sufficiently overlapping, and to suppress variation in characteristics.
Further, since it is not necessary to align the first low-concentration drain region 2 and the main gate 4, the gate length of the main gate 4 can be shortened, thereby improving the high frequency characteristics.

この場合、ダミーゲート5が、ソース領域または基板1のいずれかに接続されていることが望ましく、それによって、ダミーゲート5が電気的にフローティングにならないため、寄生容量Cdgが増えることがなく、高周波特性が高周波特性が向上する。 In this case, it is desirable that the dummy gate 5 is connected to either the source region or the substrate 1, and thereby the dummy gate 5 does not float electrically, so that the parasitic capacitance C dg does not increase, High frequency characteristics improve high frequency characteristics.

例えば、ダミーゲート5のソース領域または基板1のいずれかへの接続が、ダミーゲート5へのコンタクトプラグ9と上層配線層10を用いて行われること、特に、上層配線層10が主ゲート4を覆うように配置されていることが望ましく、それによって、主ゲート4の電界をシールドすることができる。   For example, the connection to either the source region of the dummy gate 5 or the substrate 1 is performed using the contact plug 9 and the upper wiring layer 10 to the dummy gate 5, and in particular, the upper wiring layer 10 connects the main gate 4. It is desirable to arrange so that the electric field of the main gate 4 can be shielded.

また、主ゲート4とダミーゲート5の間の間隙は、ゲート側壁に形成するサイドウォールスペーサ7によって埋め込まれていることが望ましく、それによって、高濃度のソース・ドレイン注入工程における注入イオンをマスクすることができ、工程数の低減が可能になる。   The gap between the main gate 4 and the dummy gate 5 is preferably filled with a sidewall spacer 7 formed on the gate sidewall, thereby masking implanted ions in the high concentration source / drain implantation step. And the number of processes can be reduced.

また、製造方法としては、第2の低濃度ドレイン領域8を、主ゲート4とダミーゲート5の形成後に主ゲート4とダミーゲート5に対して自己整合的にイオン注入によって形成すれば良く、それによって、位置合わせが不要になるのでゲートの微細化が可能になる。   As a manufacturing method, the second lightly doped drain region 8 may be formed by ion implantation in a self-aligned manner with respect to the main gate 4 and the dummy gate 5 after the main gate 4 and the dummy gate 5 are formed. This eliminates the need for alignment and enables gate miniaturization.

また、集積化する場合には、第1の低濃度ドレイン領域2を、第1の低濃度ドレインが第1導電型である場合、相補型電界効果型半導体装置(CMOS)プロセスにおける第1導電型ウエル領域の形成工程を利用して同時に形成することが望ましく、それによって、工程数の増大を抑えることができ、低コスト化が可能になる。   In the case of integration, the first low-concentration drain region 2 is used as the first conductive type in the complementary field-effect semiconductor device (CMOS) process when the first low-concentration drain is of the first conductive type. It is desirable to form well regions simultaneously using a well region forming step, whereby the increase in the number of steps can be suppressed and the cost can be reduced.

なお、このような製造工程は、nチャネル型素子或いはpチャネル型素子のいずれかに対して行っても良いし、或いは、nチャネル型素子またはpチャネル型素子の両方について行っても良いものである。   Such a manufacturing process may be performed for either an n-channel element or a p-channel element, or may be performed for both an n-channel element or a p-channel element. is there.

また、半導体集積回路装置を構成する場合には、上述の半導体装置を、相補型電界効果型(CMOS)ロジック、メモリー、及び、アナログ回路と同一基板上にモノリシックに集積化すれば良い。   In the case of configuring a semiconductor integrated circuit device, the above-described semiconductor device may be monolithically integrated on the same substrate as the complementary field effect (CMOS) logic, memory, and analog circuit.

本発明によれば、LDD(Lightly Doped Drain)領域を主ゲートと低濃度ドレイン領域上に設けたダミーゲートに対して自己整合的に形成することによって、製造工程数を増加することなく、高耐圧トランジスタの高周波特性を向上することができるとともに、低コスト化が可能になる。   According to the present invention, an LDD (Lightly Doped Drain) region is formed in a self-aligned manner with respect to a dummy gate provided on a main gate and a lightly doped drain region, thereby increasing the number of manufacturing steps without increasing the number of manufacturing steps. The high frequency characteristics of the transistor can be improved and the cost can be reduced.

本発明は、第1の低濃度ドレイン領域上にダミーゲートを設けるともに、主ゲートとダミーゲートをマスクとしてイオン注入することによって第2の低濃度ドレイン領域、即ち、LDD領域を自己整合的に形成したのち、サイドウォールを形成して主ゲートとダミーゲートの間隙をサイドウォールスペーサで埋め込み、次いで、主ゲート、ダミーゲート及びサイドウォールマスクとしてイオン注入することによって高濃度ソース・ドレイン領域を形成したのち、シリサイドプロセスによって主ゲート、ダミーゲート及び高濃度ソース・ドレイン領域上にシリサイド電極を形成し、次いで、コンタクトプラグ及び上層配線層を利用して主ゲートを覆うように、ダミーゲートと高濃度ソース領域を接続する接続電極を形成するものである。   In the present invention, a dummy gate is provided on the first lightly doped drain region, and a second lightly doped drain region, that is, an LDD region is formed in a self-aligned manner by ion implantation using the main gate and the dummy gate as a mask. After forming the sidewall, the gap between the main gate and the dummy gate is filled with a sidewall spacer, and then ion implantation is performed as the main gate, the dummy gate, and the sidewall mask to form the high concentration source / drain regions. A silicide electrode is formed on the main gate, the dummy gate and the high concentration source / drain region by a silicide process, and then the dummy gate and the high concentration source region are covered with the contact plug and the upper wiring layer so as to cover the main gate. The connection electrode which connects is formed.

この場合、第1の低濃度ドレイン領域のイオン注入工程をCMOSプロセスのNウエル注入と共通の工程とし、LDD注入を、CMOSプロセスのI/O用トランジスタの注入と共通の工程とすれば、CMOSプロセスに対してまったく追加の工程無しで高耐圧トランジスタを作製できる。   In this case, if the ion implantation step of the first low-concentration drain region is a step common to the N well implantation of the CMOS process and the LDD implantation is a step common to the implantation of the I / O transistor of the CMOS process, the CMOS A high voltage transistor can be fabricated without any additional steps to the process.

ここで、図2乃至図5を参照して、本発明の実施例1の高耐圧MOSFETの製造工程を説明する。
図2参照
まず、p型不純物濃度が例えば、1.0×1015cm-3のp型シリコン基板11にシャロートレンチアイソレーション(Shallow Trench Isolation)構造の素子分離領域12を形成したのち、Bをイオン注入することによってB濃度が例えば、1.0×1016cm-3で深さが350nmのp型ウエル領域13を形成する。
Here, with reference to FIG. 2 thru | or FIG. 5, the manufacturing process of the high voltage | pressure-resistant MOSFET of Example 1 of this invention is demonstrated.
See Figure 2
First, an element isolation region 12 having a shallow trench isolation structure is formed on a p-type silicon substrate 11 having a p-type impurity concentration of, for example, 1.0 × 10 15 cm −3 , and then B is ion-implanted. Thus, the p-type well region 13 having a B concentration of, for example, 1.0 × 10 16 cm −3 and a depth of 350 nm is formed.

次いで、レジストパターン14をマスクとして、CMOSプロセスのn型ウエル領域を形成工程を利用してp型ウエル領域13にPをイオン注入してP濃度が例えば、1.0×1016cm-3で深さが300nmのn型ウエル領域15を形成する。 Next, using the resist pattern 14 as a mask, P is ion-implanted into the p-type well region 13 using a process for forming an n-type well region of a CMOS process, and the P concentration is, for example, 1.0 × 10 16 cm −3 . An n-type well region 15 having a depth of 300 nm is formed.

次いで、レジストパターン14を除去したのち、熱酸化を行うことによって、表面に厚さが、例えば、6nmのゲート絶縁膜16を形成する。   Next, after removing the resist pattern 14, thermal oxidation is performed to form a gate insulating film 16 having a thickness of, for example, 6 nm on the surface.

図3参照
次いで、全面に多結晶シリコン膜を堆積させたのち、フォトリソグラフィー工程を利用してパターニングすることによって幅が例えば、300nmのゲート電極17と幅が例えば、300nmのダミーゲート18とを形成するとともに、ゲート絶縁膜16の露出部もエッチング除去する。
なお、ゲート電極17とダミーゲート18との間隙は例えば、200nmとする。
See Figure 3
Next, after depositing a polycrystalline silicon film on the entire surface, patterning is performed using a photolithography process to form a gate electrode 17 having a width of, for example, 300 nm and a dummy gate 18 having a width of, for example, 300 nm, The exposed portion of the gate insulating film 16 is also removed by etching.
Note that the gap between the gate electrode 17 and the dummy gate 18 is, for example, 200 nm.

次いで、ゲート電極17とダミーゲート18をマスクとして、CMOSプロセスのI/O用トランジスタの注入工程を利用してPをイオン注入することによって、P濃度が例えば、1.0×1019cm-3で深さが50nmのn型LDD領域19を形成する。 Next, using the gate electrode 17 and the dummy gate 18 as a mask, P is ion-implanted using an I / O transistor implantation process in a CMOS process, so that the P concentration is, for example, 1.0 × 10 19 cm −3. Thus, an n-type LDD region 19 having a depth of 50 nm is formed.

次いで、CVD法を用いて全面にSiO2 膜20を、ゲート電極17とダミーゲート18との間隙を完全に埋め込むように厚く堆積させる。 Next, the SiO 2 film 20 is deposited thickly on the entire surface by CVD so as to completely fill the gap between the gate electrode 17 and the dummy gate 18.

図4参照
次いで、異方性エッチングを施すことによって、ゲート電極17とダミーゲート18の側壁にサイドウォール21を形成する。
この時、ゲート電極17とダミーゲート18との間隙はサイドウォールスペーサ22で埋め込まれる。
See Figure 4
Next, sidewalls 21 are formed on the side walls of the gate electrode 17 and the dummy gate 18 by performing anisotropic etching.
At this time, the gap between the gate electrode 17 and the dummy gate 18 is filled with the sidewall spacer 22.

次いで、ゲート電極17、ダミーゲート18、サイドウォール21、及び、サイドウォールスペーサ22をマスクとしてイオン注入することによって、P濃度が例えば、5.0×1020cm-3で深さが100nmのn+ 型ドレイン領域23及びn+ 型ソース領域24を形成する。
次いで、活性化アニール処理を行うことによって、注入した各イオンを活性化する。
Next, ion implantation is performed using the gate electrode 17, the dummy gate 18, the side wall 21, and the side wall spacer 22 as a mask, so that the P concentration is, for example, 5.0 × 10 20 cm −3 and the depth is 100 nm. A + type drain region 23 and an n + type source region 24 are formed.
Next, an activation annealing process is performed to activate the implanted ions.

次いで、全面にCo膜を堆積させたのち、熱処理を行うことによってn+ 型ドレイン領域23、n+ 型ソース領域24、ゲート電極17及びダミーゲート18の表面にCoシリサイド膜25,26を形成し、未反応のCo膜をウォッシュアウトしたのち、二次熱処理を行うことによってCoシリサイド膜25,26を低抵抗相のCoシリサイドに変換する。 Next, after depositing a Co film on the entire surface, heat treatment is performed to form Co silicide films 25 and 26 on the surfaces of the n + -type drain region 23, the n + -type source region 24, the gate electrode 17, and the dummy gate 18. After the unreacted Co film is washed out, a secondary heat treatment is performed to convert the Co silicide films 25 and 26 into low resistance phase Co silicide.

図5参照
次いで、全面にSiN膜からなるエッチングストッパー層27、及び、プラズマTEOS−NSG膜からなる層間絶縁膜28を順次形成したのち、層間絶縁膜28の表面を平坦化し、次いで、Coシリサイド膜25,26に達するコンタクトホール29,30を形成する。
See Figure 5
Next, an etching stopper layer 27 made of a SiN film and an interlayer insulating film 28 made of a plasma TEOS-NSG film are sequentially formed on the entire surface, and then the surface of the interlayer insulating film 28 is flattened. Contact holes 29 and 30 reaching to are formed.

次いで、例えば、TiNからなるグルー層31を堆積した後、例えば、W層32をCVD法により堆積してコンタクトホール内を完全に埋め込み、次いで、層間絶縁膜28上の不要な金属層をCMPで除去してプラグ33,34を形成する。   Next, for example, after depositing a glue layer 31 made of TiN, for example, a W layer 32 is deposited by CVD to completely fill the contact hole, and then an unnecessary metal layer on the interlayer insulating film 28 is formed by CMP. The plugs 33 and 34 are formed by removing.

次いで、全面に上層配線を形成するCu膜を堆積させたのち、所定の形状にパターニングすることによって、ダミーゲート18とn+ 型ソース領域24とを接続する内部局所配線35を形成することによって、本発明の実施例1の高耐圧MOSFETの基本構成が完成する。 Next, after depositing a Cu film that forms the upper layer wiring on the entire surface, patterning into a predetermined shape, thereby forming the internal local wiring 35 that connects the dummy gate 18 and the n + type source region 24, The basic configuration of the high voltage MOSFET of Example 1 of the present invention is completed.

このように、本発明においては、ダミーゲートを設けた場合にも、自己整合工程を用いてLDD領域を形成しているので、n型ウエル領域とゲート電極が十分にオーバーラップしないことによる寄生抵抗の増大を回避でき、特性のばらつきも抑制できる。   As described above, in the present invention, even when the dummy gate is provided, the LDD region is formed by using the self-alignment process. Therefore, the parasitic resistance due to the n-type well region and the gate electrode not sufficiently overlapping. Can be avoided, and variations in characteristics can be suppressed.

また、n型ウエル領域とゲート電極の位置合わせが不要になるため、ゲート電極のゲート長を短くでき、それによって、高周波特性を改善できる。   Further, since it is not necessary to align the n-type well region and the gate electrode, the gate length of the gate electrode can be shortened, thereby improving the high frequency characteristics.

さらに、ダミーゲートをn+ 型ソース領域に接続してダミーゲートを電気的にフローティングにしていないので、寄生容量Cdgが増えることがなく、高周波特性が向上する。 Furthermore, since the dummy gate is not electrically floated by connecting the dummy gate to the n + type source region, the parasitic capacitance C dg does not increase and the high frequency characteristics are improved.

特に、ダミーゲートとn+ 型ソース領域を接続する内部局所配線を、ゲート電極を覆うように形成していので、ゲート電極からので電界がシールドされ、それによっても、高周波特性が向上する。 In particular, the internal local wiring that connects the dummy gate and the n + -type source region is formed so as to cover the gate electrode, so that the electric field is shielded from the gate electrode, thereby improving the high-frequency characteristics.

以上、本発明の実施例を説明してきたが、本発明は実施例に記載された構成・条件等に限られるものではなく各種の変更が可能であり、例えば、上記の実施例1に記載した、不純物濃度、深さ、厚さ、ゲート長、間隙長は単なる一例であり、必要とする高耐圧特性及び高周波特性に応じて適宜設定されるものである。   The embodiments of the present invention have been described above, but the present invention is not limited to the configurations and conditions described in the embodiments, and various modifications are possible. For example, the embodiments described in the above-described first embodiment The impurity concentration, depth, thickness, gate length, and gap length are merely examples, and are appropriately set according to the required high breakdown voltage characteristics and high frequency characteristics.

また、上記の実施例においては、ダミーゲートをn+ 型ソース領域に接続しているが、実施例に示したように、p型シリコン基板を用いる場合には、p型シリコン基板にダミーゲートを接続しても良いものである。 In the above embodiment, the dummy gate is connected to the n + type source region. However, as shown in the embodiment, when a p type silicon substrate is used, the dummy gate is formed on the p type silicon substrate. It can be connected.

また、上記の実施例の説明においては、高耐圧MOSFETをCMOSロジック、メモリー、及び、アナログ回路とモノリシックに集積化した半導体集積回路装置を念頭に説明しているが、このような高耐圧MOSFETはディスクリートデバイスとして個別に形成しても良いものである。
この場合には、各領域の不純物濃度や深さを、他の領域や工程の影響を受けることなく任意に設定することができる。
Further, in the description of the above embodiment, the semiconductor integrated circuit device in which the high voltage MOSFET is monolithically integrated with the CMOS logic, the memory, and the analog circuit is described in mind. It may be formed individually as a discrete device.
In this case, the impurity concentration and depth of each region can be arbitrarily set without being affected by other regions and processes.

また、上記の実施例においては、高耐圧MOSFETをnチャネル型MOSFETとして説明しているが、pチャネル型MOSFETとして形成しても良いものであり、その場合には、上述のnチャネル型MOSFETにおける導電型を逆にすれば良い。
さらには、nチャネル型高耐圧MOSFETとpチャネル型高耐圧MOSFETを同一基板に形成しても良いものである。
In the above embodiment, the high-breakdown-voltage MOSFET is described as an n-channel MOSFET. However, the high-voltage MOSFET may be formed as a p-channel MOSFET. What is necessary is just to reverse a conductivity type.
Further, the n-channel high voltage MOSFET and the p-channel high voltage MOSFET may be formed on the same substrate.

ここで、再び図1を参照して、本発明の詳細な特徴を改めて説明する。
再び、図1参照
(付記1) 第1の低濃度ドレイン領域2上にダミーゲート5を有するとともに、前記ダミーゲート5と隣接する主ゲート4との間に前記第1の低濃度ドレイン領域2より浅く且つ前記主ゲート4及びダミーゲート5に自己整合する第2の低濃度ドレイン領域8を有することを特徴とする半導体装置。
(付記2) 上記ダミーゲート5が、ソース領域または基板1のいずれかに接続されていることを特徴とする付記1記載の半導体装置。
(付記3) 上記ダミーゲート5のソース領域または基板1のいずれかへの接続が、前記ダミーゲート5へのコンタクトプラグ9と上層配線層10を用いて行われることを特徴とする付記1または2に記載の半導体装置。
(付記4) 上記ダミーゲート5のソース領域または基板1のいずれかへの接続が、上層配線層10を用いて行われ、前記上層配線層10が上記主ゲート4を覆うように配置されていることを特徴とする付記3記載の半導体装置。
(付記5) 上記主ゲート4とダミーゲート5の間の間隙が、ゲート側壁に形成するサイドウォールスペーサ7によって埋め込まれていることを特徴とする付記1乃至4のいずれか1に記載の半導体装置。
(付記6) 第1の低濃度ドレイン領域2上にダミーゲート5を有するとともに、前記ダミーゲート5と隣接する主ゲート4との間に前記第1の低濃度ドレイン領域2より浅い第2の低濃度ドレイン領域8を有する半導体装置の製造方法であって、前記第2の低濃度ドレイン領域8が、前記主ゲート4とダミーゲート5の形成後に主ゲート4とダミーゲート5に対して自己整合的にイオン注入によって形成することを特徴とする半導体装置の製造方法。
(付記7) 上記第1の低濃度ドレイン領域2を、前記第1の低濃度ドレインが第1導電型である場合、相補型電界効果型半導体装置プロセスにおける第1導電型ウエル領域の形成工程を利用して同時に形成することを特徴とする付記6記載の半導体装置の製造方法。
(付記8) 上記製造工程を、nチャネル型素子或いはpチャネル型素子のいずれか、または、nチャネル型素子またはpチャネル型素子の両方について行うことを特徴とする付記6または7に記載の半導体装置の製造方法。
(付記9) 付記1乃至5のいずれか1に記載の半導体装置が、相補型電界効果型ロジック、メモリー、及び、アナログ回路と同一基板上にモノリシックに集積化されていることを特徴とする半導体集積回路装置。
Here, the detailed features of the present invention will be described again with reference to FIG.
Again see Figure 1
(Supplementary Note 1) A dummy gate 5 is provided on the first low-concentration drain region 2, and the main gate is shallower than the first low-concentration drain region 2 between the dummy gate 5 and the adjacent main gate 4. 4 and a second low-concentration drain region 8 that is self-aligned with the dummy gate 5.
(Supplementary note 2) The semiconductor device according to supplementary note 1, wherein the dummy gate 5 is connected to either the source region or the substrate 1.
(Supplementary Note 3) The supplementary note 1 or 2 is characterized in that the connection of the dummy gate 5 to either the source region or the substrate 1 is performed using the contact plug 9 and the upper wiring layer 10 to the dummy gate 5. A semiconductor device according to 1.
(Supplementary Note 4) The dummy gate 5 is connected to either the source region or the substrate 1 using the upper wiring layer 10, and the upper wiring layer 10 is disposed so as to cover the main gate 4. The semiconductor device as set forth in Appendix 3, wherein
(Supplementary Note 5) The semiconductor device according to any one of Supplementary Notes 1 to 4, wherein a gap between the main gate 4 and the dummy gate 5 is filled with a sidewall spacer 7 formed on a gate sidewall. .
(Appendix 6) A dummy gate 5 is provided on the first low-concentration drain region 2 and a second low depth shallower than the first low-concentration drain region 2 is provided between the dummy gate 5 and the adjacent main gate 4. A method of manufacturing a semiconductor device having a concentration drain region 8, wherein the second low concentration drain region 8 is self-aligned with respect to the main gate 4 and the dummy gate 5 after the formation of the main gate 4 and the dummy gate 5. A method for manufacturing a semiconductor device, characterized by being formed by ion implantation.
(Supplementary Note 7) When the first low-concentration drain region 2 is the first conductivity type when the first low-concentration drain is of the first conductivity type, the step of forming the first conductivity type well region in the complementary field effect semiconductor device process The method of manufacturing a semiconductor device according to appendix 6, wherein the semiconductor devices are simultaneously formed by using them.
(Supplementary Note 8) The semiconductor according to Supplementary Note 6 or 7, wherein the manufacturing process is performed for either an n-channel element or a p-channel element, or for both an n-channel element or a p-channel element. Device manufacturing method.
(Supplementary Note 9) A semiconductor device in which the semiconductor device according to any one of supplementary notes 1 to 5 is monolithically integrated on the same substrate as a complementary field effect logic, memory, and analog circuit. Integrated circuit device.

本発明の活用例としては、携帯電話などの移動体通信機器の送信部分で用いられる高周波の電力増幅素子が典型的なものであるが、他の用途において高耐圧と高周波特性が求められる場合にも適用されるものである。   As an application example of the present invention, a high-frequency power amplifying element used in a transmission part of a mobile communication device such as a mobile phone is typical. However, when high breakdown voltage and high-frequency characteristics are required in other applications. Is also applicable.

本発明の原理的構成の説明図である。It is explanatory drawing of the fundamental structure of this invention. 本発明の実施例1の高耐圧MOSFETの途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle of the high voltage | pressure-resistant MOSFET of Example 1 of this invention. 本発明の実施例1の高耐圧MOSFETの図2以降の途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle after FIG. 2 of the high voltage | pressure-resistant MOSFET of Example 1 of this invention. 本発明の実施例1の高耐圧MOSFETの図3以降の途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle after FIG. 3 of the high voltage | pressure-resistant MOSFET of Example 1 of this invention. 本発明の実施例1の高耐圧MOSFETの図4以降の製造工程の説明図である。It is explanatory drawing of the manufacturing process after FIG. 4 of the high voltage | pressure-resistant MOSFET of Example 1 of this invention.

符号の説明Explanation of symbols

1 基板
2 第1の低濃度ドレイン領域
3 ゲート絶縁膜
4 主ゲート
5 ダミーゲート
6 サイドウォール
7 サイドウォールスペーサ
8 第2の低濃度ドレイン領域
9 コンタクトプラグ
10 上層配線層
11 p型シリコン基板
12 素子分離領域
13 p型ウエル領域
14 レジストパターン
15 n型ウエル領域
16 ゲート絶縁膜
17 ゲート電極
18 ダミーゲート
19 n型LDD領域
20 SiO2
21 サイドウォール
22 サイドウォールスペーサ
23 n+ 型ドレイン領域
24 n+ 型ソース領域
25 Coシリサイド膜
26 Coシリサイド膜
27 エッチングストッパー層
28 層間絶縁膜
29 コンタクトホール
30 コンタクトホール
31 グルー層
32 W層
33 プラグ
34 プラグ
35 内部局所配線
DESCRIPTION OF SYMBOLS 1 Substrate 2 First low concentration drain region 3 Gate insulating film 4 Main gate 5 Dummy gate 6 Side wall 7 Side wall spacer 8 Second low concentration drain region 9 Contact plug 10 Upper wiring layer 11 P-type silicon substrate 12 Element isolation Region 13 p-type well region 14 resist pattern 15 n-type well region 16 gate insulating film 17 gate electrode 18 dummy gate 19 n-type LDD region 20 SiO 2 film 21 side wall 22 side wall spacer 23 n + type drain region 24 n + type Source region 25 Co silicide film 26 Co silicide film 27 Etching stopper layer 28 Interlayer insulating film 29 Contact hole 30 Contact hole 31 Glue layer 32 W layer 33 Plug 34 Plug 35 Internal local wiring

Claims (5)

第1の低濃度ドレイン領域上にダミーゲートを有するとともに、前記ダミーゲートと隣接する主ゲートとの間に前記第1の低濃度ドレイン領域より浅く且つ前記主ゲート及びダミーゲートに自己整合する第2の低濃度ドレイン領域を有することを特徴とする半導体装置。 A second gate having a dummy gate on the first lightly doped drain region and being shallower than the first lightly doped drain region and self-aligned with the main gate and the dummy gate between the dummy gate and the adjacent main gate; A low-concentration drain region. 上記ダミーゲートが、ソース領域または基板のいずれかに接続されていることを特徴とする請求項1記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the dummy gate is connected to either the source region or the substrate. 上記主ゲートとダミーゲートの間の間隙が、ゲート側壁に形成するサイドウォールスペーサによって埋め込まれていることを特徴とする請求項1または2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein a gap between the main gate and the dummy gate is filled with a side wall spacer formed on a gate side wall. 第1の低濃度ドレイン領域上にダミーゲートを有するとともに、前記ダミーゲートと隣接する主ゲートとの間に前記第1の低濃度ドレイン領域より浅い第2の低濃度ドレイン領域を有する半導体装置の製造方法であって、前記第2の低濃度ドレイン領域が、前記主ゲートとダミーゲートの形成後に主ゲートとダミーゲートに対して自己整合的にイオン注入によって形成することを特徴とする半導体装置の製造方法。 Manufacturing of a semiconductor device having a dummy gate on the first lightly doped drain region and a second lightly doped drain region shallower than the first lightly doped drain region between the dummy gate and the adjacent main gate A method of manufacturing a semiconductor device, wherein the second low-concentration drain region is formed by ion implantation in a self-aligned manner with respect to the main gate and the dummy gate after the formation of the main gate and the dummy gate. Method. 請求項1乃至3のいずれか1項に記載の半導体装置が、相補型電界効果型ロジック、メモリー、及び、アナログ回路と同一基板上にモノリシックに集積化されていることを特徴とする半導体集積回路装置。 4. The semiconductor integrated circuit according to claim 1, wherein the semiconductor device according to claim 1 is monolithically integrated on the same substrate as the complementary field effect logic, memory, and analog circuit. apparatus.
JP2006223881A 2006-08-21 2006-08-21 Manufacturing method of semiconductor device Expired - Fee Related JP5092313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006223881A JP5092313B2 (en) 2006-08-21 2006-08-21 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006223881A JP5092313B2 (en) 2006-08-21 2006-08-21 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2008047791A true JP2008047791A (en) 2008-02-28
JP5092313B2 JP5092313B2 (en) 2012-12-05

Family

ID=39181211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006223881A Expired - Fee Related JP5092313B2 (en) 2006-08-21 2006-08-21 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5092313B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004687A (en) * 2011-06-15 2013-01-07 Fujitsu Semiconductor Ltd Semiconductor device manufacturing method and semiconductor device
US10672708B2 (en) 2015-11-30 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. Standard-cell layout structure with horn power and smart metal cut

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134854U (en) * 1981-02-16 1982-08-23
JPS6043861A (en) * 1983-08-19 1985-03-08 Nec Corp Manufacture of semiconductor device
JPH11186543A (en) * 1997-12-24 1999-07-09 Nec Corp High voltage resistant mosfet and manufacture thereof
JP2004235527A (en) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd Insulated gate semiconductor device and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134854U (en) * 1981-02-16 1982-08-23
JPS6043861A (en) * 1983-08-19 1985-03-08 Nec Corp Manufacture of semiconductor device
JPH11186543A (en) * 1997-12-24 1999-07-09 Nec Corp High voltage resistant mosfet and manufacture thereof
JP2004235527A (en) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd Insulated gate semiconductor device and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004687A (en) * 2011-06-15 2013-01-07 Fujitsu Semiconductor Ltd Semiconductor device manufacturing method and semiconductor device
US10672708B2 (en) 2015-11-30 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. Standard-cell layout structure with horn power and smart metal cut
US10923426B2 (en) 2015-11-30 2021-02-16 Taiwan Semiconductor Manufacturing Co., Ltd. Standard-cell layout structure with horn power and smart metal cut
US11437321B2 (en) 2015-11-30 2022-09-06 Taiwan Semiconductor Manufacturing Company, Ltd. Standard-cell layout structure with horn power and smart metal cut

Also Published As

Publication number Publication date
JP5092313B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
KR101674398B1 (en) Semiconductor devices and methods of manufacturing the same
US10804228B2 (en) RF switch on high resistive substrate
KR100319356B1 (en) Semiconductor device and method for manufacturing the same
US7053465B2 (en) Semiconductor varactor with reduced parasitic resistance
KR19980041851A (en) Process for preparing raised source / drain MOSSF using self-aligned phosphorus oxychloride to dope gate / source / drain regions
KR101531882B1 (en) Semiconductor device and method for manufacturing the same
JP5635680B2 (en) Semiconductor device and manufacturing method thereof
US5612240A (en) Method for making electrical connections to self-aligned contacts that extends beyond the photo-lithographic resolution limit
US8053325B1 (en) Body contact structures and methods of manufacturing the same
KR20030050995A (en) Method for fabricating high-integrated transistor
CN111463215A (en) Memory structure and manufacturing method thereof
KR20050091003A (en) Low-gidl mosfet structure and method for fabrication
JP2009055027A (en) Method of manufacturing mos transistor, and mos transistor manufactured by the same
JP5092313B2 (en) Manufacturing method of semiconductor device
JP2004128188A (en) Method of manufacturing semiconductor device
JP5200399B2 (en) Manufacturing method of MOS transistor
JP2014192474A (en) Semiconductor device and semiconductor device manufacturing method
US8664063B2 (en) Method of producing a semiconductor device and semiconductor device
US8198659B2 (en) Semiconductor device and method for fabricating the same
KR20060093180A (en) Method for manufacturing semiconductor device
US11489058B2 (en) Semiconductor structure and associated manufacturing method
KR20090054339A (en) Method for manufacturing sidewall spacer of semiconductor device
WO2013088520A1 (en) Semiconductor device manufacturing method, and semiconductor device
KR100982961B1 (en) Method for fabricating semiconductor device
US9525066B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090601

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Ref document number: 5092313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees