JP2008045622A - Pre-load adjusting structure for rolling bearing - Google Patents

Pre-load adjusting structure for rolling bearing Download PDF

Info

Publication number
JP2008045622A
JP2008045622A JP2006220251A JP2006220251A JP2008045622A JP 2008045622 A JP2008045622 A JP 2008045622A JP 2006220251 A JP2006220251 A JP 2006220251A JP 2006220251 A JP2006220251 A JP 2006220251A JP 2008045622 A JP2008045622 A JP 2008045622A
Authority
JP
Japan
Prior art keywords
outer ring
bearing
rotor
rolling bearing
preload
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006220251A
Other languages
Japanese (ja)
Inventor
Itsuo Watanabe
逸男 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006220251A priority Critical patent/JP2008045622A/en
Publication of JP2008045622A publication Critical patent/JP2008045622A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/077Fixing them on the shaft or housing with interposition of an element between housing and outer race ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/361Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with cylindrical rollers
    • F16C19/362Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with cylindrical rollers the rollers being crossed within the single row
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/20Thermal properties
    • F16C2202/22Coefficient of expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/20Application independent of particular apparatuses related to type of movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low cost and lightweight pre-load adjusting structure for a rolling bearing, which maintains a stable action by suppressing a change in mechanical precision. <P>SOLUTION: A direct drive motor 100 consists of: a cross roller bearing 14; a housing inner 22 supported by an inner ring 14a; a rotor 12 supported by an outer ring 14b made of a material having a thermal expansion coefficient higher than the cross roller bearing 14; and an outer ring retainer 28 for fixing the cross roller bearing 14 with pre-load applied thereto. An annular member 30 is interposed between the rotor 12 and outer ring 14b, which is formed of a material having a thermal expansion coefficient lower than the cross roller bearing 14. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、転がり軸受の予圧を調整する構造に係り、特に、機械的精度の変化を抑えて安定した動作を維持することが可能な低価格で軽量の転がり軸受の予圧調整構造に関する。   The present invention relates to a structure for adjusting the preload of a rolling bearing, and more particularly to a low-cost and lightweight rolling bearing preload adjusting structure capable of maintaining a stable operation while suppressing a change in mechanical accuracy.

従来、転がり軸受を備える軸受装置としては、例えば、特許文献1記載の軸受装置が知られている。
図3は、従来の軸受装置の軸方向の部分断面図である。
軸受装置200は、図3に示すように、固定子であるハウジングインナ22と、回転子であるロータ12と、ロータ12とハウジングインナ22の間に介在してロータ12を回転可能に支持するクロスローラ軸受14とを有して構成されている。
Conventionally, as a bearing device provided with a rolling bearing, for example, a bearing device described in Patent Document 1 is known.
FIG. 3 is a partial cross-sectional view in the axial direction of a conventional bearing device.
As shown in FIG. 3, the bearing device 200 includes a housing inner 22 that is a stator, a rotor 12 that is a rotor, and a cross that is interposed between the rotor 12 and the housing inner 22 to rotatably support the rotor 12. And a roller bearing 14.

ハウジングインナ22の外周面には、環状のベアリングサポート24が嵌合されている。
クロスローラ軸受14は、内輪14aおよび外輪14bを有して構成されている。内輪14aは、ホルダシンクロステータ26によりベアリングサポート24に軸方向に押圧された状態でベアリングサポート24に固定され、外輪14bは、外輪押え28によりロータ12に軸方向に押圧された状態でロータ12に固定されている。
An annular bearing support 24 is fitted on the outer peripheral surface of the housing inner 22.
The cross roller bearing 14 has an inner ring 14a and an outer ring 14b. The inner ring 14a is fixed to the bearing support 24 in a state where the inner ring 14a is axially pressed against the bearing support 24 by the holder synchro stator 26, and the outer ring 14b is fixed to the rotor 12 while being pressed against the rotor 12 by the outer ring presser 28 in the axial direction. It is fixed.

ここで、ベアリングサポート24の外径の大きさと、内輪14aの内径の大きさとの関係は、両者間のすきまの大きさが所定の温度において所定の最大値と最小値との間の値となるように選定されている。同様に、ロータ12の外輪14bが嵌合する部分の内径の大きさと、外輪14bの外径の大きさとの関係も、両者間のすきまの大きさが所定の温度において所定の範囲内となるように選定されている。そのため、外輪押え28をボルト28aにより所定の締結トルクで固定することにより、クロスローラ軸受14に所定の温度において所望の予圧を付与することができる。
特開2004−190734号公報
Here, the relationship between the size of the outer diameter of the bearing support 24 and the size of the inner diameter of the inner ring 14a is such that the size of the gap between the two is a value between a predetermined maximum value and a minimum value at a predetermined temperature. It is selected as follows. Similarly, the relationship between the size of the inner diameter of the portion where the outer ring 14b of the rotor 12 is fitted and the size of the outer diameter of the outer ring 14b is such that the size of the gap between the two is within a predetermined range at a predetermined temperature. Has been selected. Therefore, a desired preload can be applied to the cross roller bearing 14 at a predetermined temperature by fixing the outer ring retainer 28 with the bolt 28a with a predetermined fastening torque.
JP 2004-190734 A

ところで、従来の軸受装置200では、モータ駆動時における軸受まわりの温度変化により軸受装置200の予圧の変化により、起動摩擦トルクが変化し、ロータ12を高精度に位置決めした状態で動作(回転)させることが困難になってしまったり、予圧抜けにより回転振れ精度が低下してしまったりする場合がある。なお、軸受まわりとは、クロスローラ軸受14の周囲に配置された構成部材(例えば、ベアリングサポート24またはホルダシンクロステータ26のうち内輪14aに臨む側の部材、ロータ12または外輪押え28のうち外輪14bに臨む側の部材)の総称である。   By the way, in the conventional bearing device 200, the starting friction torque changes due to the change in the preload of the bearing device 200 due to the temperature change around the bearing when the motor is driven, and the rotor 12 is operated (rotated) in a state of being positioned with high accuracy. In some cases, it may be difficult, or the rotational runout accuracy may be reduced due to preload loss. Note that the bearing periphery means a component disposed around the cross roller bearing 14 (for example, a member on the side of the bearing support 24 or the holder synchro stator 26 facing the inner ring 14a, the outer ring 14b of the rotor 12 or the outer ring retainer 28). Is the generic name of the member facing the surface.

また、モータの軽量化を図るために、ロータ12をアルミで構成することを考える。これに対し、他の構成品(ハウジングインナ22、ベアリングサポート24、クロスローラ軸受14、ホルダシンクロステータ26および外輪押え28)は、機械的強度、耐熱性、寸法安定性等を確保するため、例えば、鉄やステンレス鋼で構成される。この場合、ロータ12の熱膨張率が他の構成品よりも高くなるため、温度変化により軸受まわりに次のような機械的精度の変化が生じる。   Further, in order to reduce the weight of the motor, consider that the rotor 12 is made of aluminum. On the other hand, other components (housing inner 22, bearing support 24, cross roller bearing 14, holder synchro stator 26 and outer ring retainer 28) have mechanical strength, heat resistance, dimensional stability, etc. Consists of iron and stainless steel. In this case, since the coefficient of thermal expansion of the rotor 12 is higher than that of the other components, the following change in mechanical accuracy occurs around the bearing due to the temperature change.

第1に、軸受まわりの温度が上昇すると、ロータ12および外輪14bが軸方向に伸長するが、両者の熱膨張率の差によりロータ12の熱膨張量に対して外輪14bの熱膨張量が小さいため、ボルト28aの締結力が低下し、クロスローラ軸受14の予圧が低下する。
第2に、軸受まわりの温度が上昇すると、ロータ12が径方向外側に伸長するが、これに伴って外輪14bも径方向外側に広がるため、クロスローラ軸受14の予圧が低下する。
First, when the temperature around the bearing rises, the rotor 12 and the outer ring 14b extend in the axial direction, but due to the difference in thermal expansion coefficient between them, the thermal expansion amount of the outer ring 14b is smaller than the thermal expansion amount of the rotor 12. Therefore, the fastening force of the bolt 28a is reduced, and the preload of the cross roller bearing 14 is reduced.
Secondly, when the temperature around the bearing rises, the rotor 12 extends radially outward, and the outer ring 14b also spreads radially outward in accordance with this, so the preload of the cross roller bearing 14 decreases.

この問題を解決するため、例えば、耐熱性、寸法安定性に優れた金属材料でクロスローラ軸受14の周囲を被覆することが考えられるが、こうすると、軸受装置200を構成する部品点数が増加してしまう。その結果、製造コストの上昇を招くばかりか、モータの軽量化を図ることが困難となる。
なお、このような問題は、ロータ12をアルミで構成する場合に限らず、ロータ12をクロスローラ軸受14よりも熱膨張率が高い材質で構成する場合には同様に想定される。
In order to solve this problem, for example, it is conceivable to cover the periphery of the cross roller bearing 14 with a metal material having excellent heat resistance and dimensional stability. However, this increases the number of parts constituting the bearing device 200. End up. As a result, the manufacturing cost increases, and it becomes difficult to reduce the weight of the motor.
Such a problem is not limited to the case where the rotor 12 is made of aluminum, but is similarly assumed when the rotor 12 is made of a material having a higher thermal expansion coefficient than that of the cross roller bearing 14.

そこで、本発明は、このような従来の技術の有する未解決の課題に着目してなされたものであって、機械的精度の変化を抑えて安定した動作を維持することが可能な低価格で軽量の転がり軸受の予圧調整構造を提供することを目的としている。   Therefore, the present invention has been made paying attention to such an unsolved problem of the conventional technology, and is low-cost capable of suppressing a change in mechanical accuracy and maintaining a stable operation. It aims at providing the preload adjustment structure of a lightweight rolling bearing.

〔発明1〕 上記目的を達成するために、発明1の転がり軸受の予圧調整構造は、内輪および外輪を有する転がり軸受と、前記内輪に支持される内輪被支持体と、前記転がり軸受よりも熱膨張率が高い材質で構成されて前記外輪に支持される外輪被支持体と、前記転がり軸受に予圧を付与した状態で前記転がり軸受を固定する軸受固定手段とを備え、前記転がり軸受の予圧を調整する構造であって、前記外輪被支持体と前記外輪の間に前記転がり軸受よりも熱膨張率が低い材質で構成される低膨張率部材を介挿した。   [Invention 1] In order to achieve the above object, a preload adjusting structure for a rolling bearing according to Invention 1 includes a rolling bearing having an inner ring and an outer ring, an inner ring supported body supported by the inner ring, and a heat that is higher than that of the rolling bearing. An outer ring supported body made of a material having a high expansion rate and supported by the outer ring, and a bearing fixing means for fixing the rolling bearing in a state where a preload is applied to the rolling bearing, the preload of the rolling bearing is provided. A low expansion coefficient member made of a material having a thermal expansion coefficient lower than that of the rolling bearing is interposed between the outer ring supported body and the outer ring.

このような構成であれば、軸受固定手段により、転がり軸受に予圧を付与した状態で転がり軸受が固定され、転がり軸受により、内輪被支持体および外輪被支持体が相対的に回転可能に支持される。
軸受まわりの温度が上昇すると、外輪被支持体が径方向外側に伸長するが、低膨張率部材の熱膨張量が転がり軸受よりも小さいため、外輪被支持体と外輪の間に介挿された低膨張率部材によって外輪の広がりが抑制される。そのため、転がり軸受の予圧が低下することが抑制される。
With such a configuration, the rolling bearing is fixed by the bearing fixing means in a state in which a preload is applied to the rolling bearing, and the inner ring supported body and the outer ring supported body are relatively rotatably supported by the rolling bearing. The
When the temperature around the bearing rises, the outer ring supported body expands radially outward, but since the thermal expansion amount of the low expansion coefficient member is smaller than that of the rolling bearing, the outer ring supported body is inserted between the outer ring supported body and the outer ring. The expansion of the outer ring is suppressed by the low expansion coefficient member. Therefore, it is suppressed that the preload of a rolling bearing falls.

ここで、低膨張率部材は、外輪被支持体および外輪とは別体に構成してもよいし、外輪被支持体または外輪の一部として構成してもよい。外輪被支持体の一部として構成する場合は、外輪被支持体のうち外輪に臨む側の部材を低膨張率部材で構成し、外輪の一部として構成する場合は、外輪のうち外輪被支持体に臨む側の部材を低膨張率部材で構成すればよい。   Here, the low expansion coefficient member may be configured separately from the outer ring supported body and the outer ring, or may be configured as a part of the outer ring supported body or the outer ring. When configured as a part of the outer ring supported body, the member facing the outer ring of the outer ring supported body is configured with a low expansion coefficient member, and when configured as a part of the outer ring, the outer ring supported of the outer ring is supported. What is necessary is just to comprise the member of the side which faces a body with a low expansion coefficient member.

また、外輪被支持体は、外輪に支持されていればよく、外輪被支持体と外輪の間に、低膨張率部材のほか1または複数の部材が介挿されていてもよい。この場合、外輪被支持体が外輪に直接支持されるか、低膨張率部材および介挿される部材のいずれかを介して外輪被支持体が外輪に支持(間接支持)されればよい。また、介挿される部材は、低膨張率部材の場合と同様に、外輪被支持体、低膨張率部材および外輪とは別体に構成してもよいし、外輪被支持体、低膨張率部材または外輪の一部として構成してもよい。   Further, the outer ring supported body only needs to be supported by the outer ring, and one or more members other than the low expansion coefficient member may be interposed between the outer ring supported body and the outer ring. In this case, the outer ring supported body may be directly supported by the outer ring, or the outer ring supported body may be supported (indirectly supported) by the outer ring via either the low expansion coefficient member or the inserted member. Further, as in the case of the low expansion coefficient member, the inserted member may be configured separately from the outer ring supported body, the low expansion coefficient member, and the outer ring, or the outer ring supported body, the low expansion coefficient member. Or you may comprise as a part of outer ring.

また、内輪被支持体は、内輪に支持されていればよく、内輪被支持体と内輪の間に1または複数の部材が介挿されていてもよい。内輪被支持体と内輪の間に部材が介挿されていない場合は、内輪被支持体が内輪に直接支持され、内輪被支持体と内輪の間に部材が介挿されている場合は、直接支持されるか、介挿される部材のいずれかを介して内輪被支持体が内輪に支持(間接支持)されればよい。また、介挿される部材は、低膨張率部材の場合と同様に、内輪被支持体および内輪とは別体に構成してもよいし、内輪被支持体または内輪の一部として構成してもよい。   Further, the inner ring supported body may be supported by the inner ring, and one or a plurality of members may be interposed between the inner ring supported body and the inner ring. When no member is inserted between the inner ring supported body and the inner ring, the inner ring supported body is directly supported by the inner ring, and when a member is inserted between the inner ring supported body and the inner ring, The inner ring supported body may be supported (indirectly supported) by the inner ring via any of the members that are supported or inserted. Further, as in the case of the low expansion coefficient member, the inserted member may be configured separately from the inner ring supported body and the inner ring, or may be configured as a part of the inner ring supported body or the inner ring. Good.

また、内輪被支持体および外輪被支持体は、転がり軸受により相対的に回転可能に支持されていればよく、内輪被支持体が固定されて外輪被支持体が回転可能に支持されていてもよいし、外輪被支持体が固定されて内輪被支持体が回転可能に支持されていてもよいし、両者が回転可能に支持されていてもよい。   Further, the inner ring supported body and the outer ring supported body only need to be relatively rotatably supported by the rolling bearing, and even if the inner ring supported body is fixed and the outer ring supported body is rotatably supported. Alternatively, the outer ring supported body may be fixed and the inner ring supported body may be rotatably supported, or both may be rotatably supported.

〔発明2〕 さらに、発明2の転がり軸受の予圧調整構造は、発明1の転がり軸受の予圧調整構造において、前記低膨張率部材は、前記外輪の外周面に嵌合する環状の環状部材である。
このような構成であれば、低膨張率部材である環状部材が外輪に隣接しているので、環状部材により外輪の広がりを効果的に抑制することができる。
[Invention 2] Furthermore, the preload adjusting structure for a rolling bearing according to Invention 2 is the preload adjusting structure for a rolling bearing according to Invention 1, wherein the low expansion coefficient member is an annular annular member fitted to the outer peripheral surface of the outer ring. .
With such a configuration, since the annular member which is a low expansion coefficient member is adjacent to the outer ring, the annular member can effectively suppress the spread of the outer ring.

〔発明3〕 さらに、発明3の転がり軸受の予圧調整構造は、発明2の転がり軸受の予圧調整構造において、前記環状部材を前記外輪に中間ばめで固定した。
このような構成であれば、低膨張率部材である環状部材が外輪に中間ばめで固定されているので、環状部材により外輪の広がりを効果的に抑制することができる。
[Invention 3] Further, the preload adjusting structure for a rolling bearing according to Invention 3 is the preload adjusting structure for a rolling bearing according to Invention 2, wherein the annular member is fixed to the outer ring with an intermediate fit.
With such a configuration, since the annular member that is a low expansion coefficient member is fixed to the outer ring with an intermediate fit, the annular member can effectively suppress the spread of the outer ring.

以上説明したように、発明1の転がり軸受の予圧調整構造によれば、温度の上昇により外輪が径方向外側に広がって転がり軸受の予圧が低下するところ、外輪被支持体と外輪の間に介挿された低膨張率部材が外輪の広がりを抑制するため、従来に比して、転がり軸受の予圧が低下することを抑制することができるという効果が得られる。また、低膨張率部材を介挿するだけなので、部品点数の増加を抑え、低コスト化および軽量化を図ることができるという効果も得られる。   As described above, according to the preload adjusting structure for a rolling bearing of the first aspect, the outer ring spreads radially outward due to an increase in temperature and the preload of the rolling bearing decreases, so that the intermediate ring is interposed between the outer ring supported body and the outer ring. Since the inserted low expansion coefficient member suppresses the spread of the outer ring, an effect that it is possible to suppress a decrease in the preload of the rolling bearing is obtained as compared with the related art. In addition, since only the low expansion coefficient member is inserted, an increase in the number of parts can be suppressed, and the cost and weight can be reduced.

さらに、発明2の転がり軸受の予圧調整構造によれば、外輪の広がりを効果的に抑制することができるので、転がり軸受の予圧が低下することをさらに抑制することができるという効果が得られる。
さらに、発明3の転がり軸受の予圧調整構造によれば、外輪の広がりを効果的に抑制することができるので、転がり軸受の予圧が低下することをさらに抑制することができるという効果が得られる。
Furthermore, according to the preload adjusting structure of the rolling bearing of the invention 2, since the outer ring can be effectively prevented from spreading, it is possible to further suppress the reduction of the preload of the rolling bearing.
Furthermore, according to the preload adjusting structure for a rolling bearing of the invention 3, the spread of the outer ring can be effectively suppressed, so that the effect that the preload of the rolling bearing can be further reduced can be obtained.

以下、本発明の実施の形態を図面を参照しながら説明する。図1および図2は、本発明に係る転がり軸受の予圧調整構造の実施の形態を示す図である。
まず、本発明を適用するダイレクトドライブモータの構成を説明する。
図1は、ダイレクトドライブモータの軸方向の断面図である。
ダイレクトドライブモータ100は、図1に示すように、固定子であるハウジングインナ22と、回転子であるロータ12と、ロータ12とハウジングインナ22の間に介在してロータ12を回転可能に支持するクロスローラ軸受14とを有して構成されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are views showing an embodiment of a preload adjusting structure for a rolling bearing according to the present invention.
First, the configuration of a direct drive motor to which the present invention is applied will be described.
FIG. 1 is an axial sectional view of a direct drive motor.
As shown in FIG. 1, the direct drive motor 100 supports a rotor 12 rotatably by being interposed between a housing inner 22 that is a stator, a rotor 12 that is a rotor, and the rotor 12 and the housing inner 22. And a cross roller bearing 14.

ロータ12とハウジングインナ22の間には、ロータ12に回転トルクを付与するコイル16が設けられ、ロータ12には、パルサーリング18が一体に取り付けられている。そして、コイル16に通電することにより、ロータ12およびパルサーリング18が一体に回転し、位置検出器20によりパルサーリング18の凹凸を検出し、制御器(不図示)により回転速度や位置決めの制御を行う構造となっている。本実施の形態では、モータの外側が回転するアウターロータ型にて説明しているが、モータの内側が回転するインナーロータ型に採用しても何等問題はない。ダイレクトドライブモータ100は、軸受構成部分を除いて従来のダイレクトドライブモータと同一の周知構成であるため、以下、本発明の特徴的部分である軸受構成について説明する。なお、ダイレクトドライブモータ100の軸受構成部分を除いた構成にあっては、特に図示例に限定されるものではなく、他の周知構成が本発明の範囲内で適宜設計変更可能である。   A coil 16 that applies rotational torque to the rotor 12 is provided between the rotor 12 and the housing inner 22, and a pulsar ring 18 is integrally attached to the rotor 12. Then, when the coil 16 is energized, the rotor 12 and the pulsar ring 18 rotate together, the position detector 20 detects irregularities of the pulsar ring 18, and the controller (not shown) controls the rotational speed and positioning. It has a structure to do. Although the outer rotor type in which the outer side of the motor rotates is described in the present embodiment, there is no problem even if it is adopted in the inner rotor type in which the inner side of the motor rotates. Since the direct drive motor 100 has the same well-known configuration as the conventional direct drive motor except for the bearing components, the bearing configuration which is a characteristic part of the present invention will be described below. The configuration excluding the bearing components of the direct drive motor 100 is not particularly limited to the illustrated example, and other well-known configurations can be appropriately modified within the scope of the present invention.

図2は、ダイレクトドライブモータ100の軸方向の部分断面図である。
クロスローラ軸受14は、図2に示すように、内輪14aと、外輪14bと、内輪14aおよび外輪14bの間で転動可能に設けられた複数のクロスローラ(ころ)14cとを有して構成されている。クロスローラ14cは、直径が長さよりわずかに大きな略円筒状で、軌道上偶数番目の回転軸と、軌道上奇数番目の回転軸が互いに90°傾斜している。
FIG. 2 is a partial cross-sectional view of the direct drive motor 100 in the axial direction.
As shown in FIG. 2, the cross roller bearing 14 includes an inner ring 14a, an outer ring 14b, and a plurality of cross rollers (rollers) 14c provided so as to roll between the inner ring 14a and the outer ring 14b. Has been. The cross roller 14c has a substantially cylindrical shape whose diameter is slightly larger than the length, and the even-numbered rotation shaft on the track and the odd-numbered rotation shaft on the track are inclined by 90 °.

ハウジングインナ22の外周面には、環状のベアリングサポート24が嵌合されている。
ベアリングサポート24の底部には、径方向外側に突出したフランジ24aが形成され、内輪14aの下面をフランジ24aに接触させてベアリングサポート24の外周面に内輪14aが嵌合されている。そして、ホルダシンクロステータ26の突起部を内輪14aの上面に接触させ、ホルダシンクロステータ26をボルト26aでハウジングインナ22に締結することにより、内輪14aは、ベアリングサポート24に軸方向に押圧された状態でベアリングサポート24に固定される。
An annular bearing support 24 is fitted on the outer peripheral surface of the housing inner 22.
A flange 24a protruding radially outward is formed at the bottom of the bearing support 24, and the inner ring 14a is fitted to the outer peripheral surface of the bearing support 24 with the lower surface of the inner ring 14a contacting the flange 24a. Then, the projection of the holder synchro stator 26 is brought into contact with the upper surface of the inner ring 14a, and the holder synchro stator 26 is fastened to the housing inner 22 with a bolt 26a, whereby the inner ring 14a is pressed in the axial direction by the bearing support 24. To be fixed to the bearing support 24.

内輪14aの内径の大きさと、ベアリングサポート24の外径の大きさとの関係は、両者間のすきまの大きさが所定の温度において所定の最大値と最小値との間の値となるように選定されている。
一方、外輪14bの外周面には、環状部材30が嵌合されている。また、ロータ12には、径方向内側に突出したフランジ12aが形成され、外輪14bの下面をフランジ12aに接触させてロータ12の内周面に環状部材30が嵌合されている。そして、外輪押え28を外輪14bの上面に接触させ、外輪押え28をボルト28aで締結することにより、外輪14bは、ロータ12に軸方向に押圧された状態で環状部材30とともにロータ12に固定される。
The relationship between the size of the inner diameter of the inner ring 14a and the size of the outer diameter of the bearing support 24 is selected so that the size of the clearance between them is a value between a predetermined maximum value and a minimum value at a predetermined temperature. Has been.
On the other hand, the annular member 30 is fitted to the outer peripheral surface of the outer ring 14b. Further, the rotor 12 is formed with a flange 12a protruding radially inward, and the annular member 30 is fitted to the inner peripheral surface of the rotor 12 with the lower surface of the outer ring 14b contacting the flange 12a. Then, the outer ring retainer 28 is brought into contact with the upper surface of the outer ring 14 b and the outer ring retainer 28 is fastened by the bolt 28 a, so that the outer ring 14 b is fixed to the rotor 12 together with the annular member 30 while being pressed against the rotor 12 in the axial direction. The

外輪14bと環状部材30は、中間ばめで固定されている。すなわち、所定の温度において、環状部材30の内径の最小値よりも外輪14bの外径の最大値が大きく、かつ、環状部材30の内径の最大値よりも外輪14bの外径の最小値が小さくなるように選定されている。そのため、外輪押え28をボルト28aにより所定の締結トルクで固定することにより、クロスローラ軸受14に所定の温度において所望の予圧を付与することができる。   The outer ring 14b and the annular member 30 are fixed with an intermediate fit. That is, at a predetermined temperature, the maximum value of the outer diameter of the outer ring 14b is larger than the minimum value of the inner diameter of the annular member 30, and the minimum value of the outer diameter of the outer ring 14b is smaller than the maximum value of the inner diameter of the annular member 30. It is selected to be. Therefore, a desired preload can be applied to the cross roller bearing 14 at a predetermined temperature by fixing the outer ring retainer 28 with the bolt 28a with a predetermined fastening torque.

ロータ12は、ダイレクトドライブモータ100の軽量化を図るため、アルミで構成されている。これに対し、ハウジングインナ22、ベアリングサポート24、クロスローラ軸受14、ホルダシンクロステータ26および外輪押え28は、機械的強度、耐熱性、寸法安定性等を確保するため、鉄やステンレス鋼で構成されている。この場合、ロータ12の熱膨張率が周辺の構成品よりも高く、温度変化により軸受まわりに機械的精度の変化が生じるが、その変化による影響を低減するため、環状部材30は、クロスローラ軸受14よりも熱膨張率が低い材質(例えば、Ni鋼)で構成される。   The rotor 12 is made of aluminum in order to reduce the weight of the direct drive motor 100. On the other hand, the housing inner 22, the bearing support 24, the cross roller bearing 14, the holder synchro stator 26, and the outer ring retainer 28 are made of iron or stainless steel to ensure mechanical strength, heat resistance, dimensional stability, and the like. ing. In this case, the coefficient of thermal expansion of the rotor 12 is higher than that of the surrounding components, and a change in mechanical accuracy occurs around the bearing due to a change in temperature. It is comprised with the material (for example, Ni steel) whose coefficient of thermal expansion is lower than 14.

次に、本実施の形態の動作を説明する。
コイル16に通電すると、ロータ12に回転トルクが付与され、ロータ12が回転する。そして、位置検出器20により、ロータ12と一体に回転するパルサーリング18の凹凸が検出され、制御器(不図示)により回転速度や位置決めの制御が行われる。
駆動中に軸受まわりの温度が上昇すると、ロータ12が径方向外側に伸長するが、環状部材30の熱膨張量がクロスローラ軸受14よりも小さいため、ロータ12と外輪14bの間に介挿された環状部材30によって外輪14bの広がりが抑制される。そのため、クロスローラ軸受14の予圧が低下することが抑制される。また、環状部材30が外輪14bに中間ばめで固定されているので、外輪14bの広がりを効果的に抑制することができる。
Next, the operation of the present embodiment will be described.
When the coil 16 is energized, rotational torque is applied to the rotor 12 and the rotor 12 rotates. The position detector 20 detects irregularities of the pulsar ring 18 that rotates integrally with the rotor 12, and the controller (not shown) controls the rotational speed and positioning.
When the temperature around the bearing rises during driving, the rotor 12 extends radially outward. However, since the thermal expansion amount of the annular member 30 is smaller than that of the cross roller bearing 14, it is inserted between the rotor 12 and the outer ring 14b. The annular member 30 prevents the outer ring 14b from spreading. Therefore, it is possible to suppress a decrease in the preload of the cross roller bearing 14. Further, since the annular member 30 is fixed to the outer ring 14b with an intermediate fit, the spread of the outer ring 14b can be effectively suppressed.

このようにして、本実施の形態では、クロスローラ軸受14よりも熱膨張率が高い材質で構成されて外輪14bに支持されるロータ12と、クロスローラ軸受14に予圧を付与した状態でクロスローラ軸受14を固定する外輪押え28とを備え、ロータ12と外輪14bの間に介挿された環状部材30をクロスローラ軸受14よりも熱膨張率が低い材質で構成した。   In this way, in the present embodiment, the cross roller is configured with a rotor 12 made of a material having a higher thermal expansion coefficient than that of the cross roller bearing 14 and supported by the outer ring 14b, and a preload applied to the cross roller bearing 14. An annular member 30 provided with an outer ring presser 28 for fixing the bearing 14 and interposed between the rotor 12 and the outer ring 14 b is made of a material having a lower thermal expansion coefficient than that of the cross roller bearing 14.

これにより、温度の上昇により外輪14bが径方向外側に広がってクロスローラ軸受14の予圧が低下するところ、ロータ12と外輪14bの間に介挿された環状部材30が外輪14bの広がりを抑制するため、従来に比して、クロスローラ軸受14の予圧が低下することを抑制することができる。また、環状部材30を設けるだけなので、部品点数の増加を抑え、低コスト化および軽量化を図ることができる。   As a result, the outer ring 14b spreads radially outward due to a rise in temperature and the preload of the cross roller bearing 14 decreases, and the annular member 30 inserted between the rotor 12 and the outer ring 14b suppresses the spread of the outer ring 14b. Therefore, it is possible to suppress a decrease in the preload of the cross roller bearing 14 as compared with the conventional case. Moreover, since only the annular member 30 is provided, an increase in the number of parts can be suppressed, and cost reduction and weight reduction can be achieved.

さらに、本実施の形態では、外輪14bに密着嵌合する部材である環状部材30をクロスローラ軸受14よりも熱膨張率が低い材質で構成した。
これにより、外輪14bの広がりを効果的に抑制することができるので、クロスローラ軸受14の予圧が低下することをさらに抑制することができる。
さらに、本実施の形態では、環状部材30を外輪14bに中間ばめで固定した。
Further, in the present embodiment, the annular member 30 that is a member that is closely fitted to the outer ring 14 b is made of a material having a lower coefficient of thermal expansion than the cross roller bearing 14.
Thereby, since the spreading of the outer ring 14b can be effectively suppressed, it is possible to further suppress a decrease in the preload of the cross roller bearing 14.
Furthermore, in the present embodiment, the annular member 30 is fixed to the outer ring 14b with an intermediate fit.

これにより、外輪14bの広がりをさらに効果的に抑制することができるので、クロスローラ軸受14の予圧が低下することをさらに抑制することができる。
上記実施の形態において、ハウジングインナ22は、発明1の内輪被支持体に対応し、ロータ12は、発明1の外輪被支持体に対応し、外輪押え28は、発明1の軸受固定手段に対応し、環状部材30は、発明1または2の低膨張率部材に対応している。
なお、上記実施の形態においては、ロータ12と外輪14bの間に環状部材30を介挿し、環状部材30をクロスローラ軸受14よりも熱膨張率が低い材質で構成したが、これに限らず、次の2つの構成を採用することもできる。
Thereby, since the spread of the outer ring 14b can be more effectively suppressed, it is possible to further suppress a decrease in the preload of the cross roller bearing 14.
In the above embodiment, the housing inner 22 corresponds to the inner ring supported body of the invention 1, the rotor 12 corresponds to the outer ring supported body of the invention 1, and the outer ring presser 28 corresponds to the bearing fixing means of the invention 1. The annular member 30 corresponds to the low expansion coefficient member of the first or second aspect.
In the above embodiment, the annular member 30 is inserted between the rotor 12 and the outer ring 14b, and the annular member 30 is made of a material having a lower thermal expansion coefficient than that of the cross roller bearing 14. The following two configurations can also be adopted.

(1)環状部材30を設けず、ロータのうち外輪14bに臨む側の部材をクロスローラ軸受14よりも熱膨張率が低い材質で構成する。この場合、ロータは、図2において環状部材30およびロータ12を一体化した大きさ・形状となる。
(2)環状部材30を設けず、外輪14bのうちロータに臨む側の部材をクロスローラ軸受14よりも熱膨張率が低い材質で構成する。この場合、ロータは、図2において環状部材30およびロータ12を一体化した大きさ・形状となる。
(1) The annular member 30 is not provided, and the member on the side facing the outer ring 14 b of the rotor is made of a material having a lower thermal expansion coefficient than that of the cross roller bearing 14. In this case, the rotor has a size and shape in which the annular member 30 and the rotor 12 are integrated in FIG.
(2) The annular member 30 is not provided, and the member of the outer ring 14b facing the rotor is made of a material having a lower coefficient of thermal expansion than the cross roller bearing 14. In this case, the rotor has a size and shape in which the annular member 30 and the rotor 12 are integrated in FIG.

また、上記実施の形態においては、クロスローラ軸受14を適用したが、これに限定するものではなく、アンギュラ玉軸受、深溝玉軸受、円筒ころ軸受、円錐ころ軸受などを適用してもよい。
また、上記実施の形態においては、本発明に係る転がり軸受の予圧調整構造を、ハウジングインナ22とロータ12を回転可能に支持する構造に適用したが、これに限らず、2つの部材の間に介在してそれらを相対的に回転可能に支持する構造であればどのような構造にも適用することもできる。
Moreover, in the said embodiment, although the cross roller bearing 14 was applied, it is not limited to this, An angular ball bearing, a deep groove ball bearing, a cylindrical roller bearing, a tapered roller bearing, etc. may be applied.
Moreover, in the said embodiment, although the preload adjustment structure of the rolling bearing which concerns on this invention was applied to the structure which supports the housing inner 22 and the rotor 12 rotatably, it is not restricted to this, Between two members. The present invention can be applied to any structure as long as it is interposed and supports it relatively rotatably.

ダイレクトドライブモータの軸方向の断面図である。It is sectional drawing of the axial direction of a direct drive motor. ダイレクトドライブモータ100の軸方向の部分断面図である。FIG. 2 is a partial cross-sectional view of the direct drive motor 100 in the axial direction. 従来の軸受装置の軸方向の部分断面図である。It is a fragmentary sectional view of the axial direction of the conventional bearing device.

符号の説明Explanation of symbols

100 ダイレクトドライブモータ
12 ロータ
14 クロスローラ軸受
14a 内輪
14b 外輪
14c クロスローラ
16 コイル
18 パルサーリング
20 位置検出器
22 ハウジングインナ
24 ベアリングサポート
26 ホルダシンクロステータ
28 外輪押え
30 環状部材
12a、24a フランジ
26a、28a ボルト
100 Direct Drive Motor 12 Rotor 14 Cross Roller Bearing 14a Inner Ring 14b Outer Ring 14c Cross Roller 16 Coil 18 Pulsar Ring 20 Position Detector 22 Housing Inner 24 Bearing Support 26 Holder Synchro Stator 28 Outer Ring Presser 30 Annular Member 12a, 24a Flange 26a, 28a Bolt

Claims (3)

内輪および外輪を有する転がり軸受と、前記内輪に支持される内輪被支持体と、前記転がり軸受よりも熱膨張率が高い材質で構成されて前記外輪に支持される外輪被支持体と、前記転がり軸受に予圧を付与した状態で前記転がり軸受を固定する軸受固定手段とを備え、前記転がり軸受の予圧を調整する構造であって、
前記外輪被支持体と前記外輪の間に前記転がり軸受よりも熱膨張率が低い材質で構成される低膨張率部材を介挿したことを特徴とする転がり軸受の予圧調整構造。
A rolling bearing having an inner ring and an outer ring; an inner ring supported body supported by the inner ring; an outer ring supported body made of a material having a higher thermal expansion coefficient than that of the rolling bearing and supported by the outer ring; and the rolling Bearing fixing means for fixing the rolling bearing in a state where preload is applied to the bearing, and a structure for adjusting the preload of the rolling bearing,
A preload adjusting structure for a rolling bearing, wherein a low expansion coefficient member made of a material having a lower thermal expansion coefficient than that of the rolling bearing is interposed between the outer ring supported body and the outer ring.
請求項1において、
前記低膨張率部材は、前記外輪の外周面に嵌合する環状の環状部材であることを特徴とする転がり軸受の予圧調整構造。
In claim 1,
The preload adjusting structure for a rolling bearing, wherein the low expansion coefficient member is an annular member that is fitted to the outer peripheral surface of the outer ring.
請求項2において、
前記環状部材を前記外輪に中間ばめで固定したことを特徴とする転がり軸受の予圧調整構造。
In claim 2,
A preload adjusting structure for a rolling bearing, wherein the annular member is fixed to the outer ring with an intermediate fit.
JP2006220251A 2006-08-11 2006-08-11 Pre-load adjusting structure for rolling bearing Pending JP2008045622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006220251A JP2008045622A (en) 2006-08-11 2006-08-11 Pre-load adjusting structure for rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006220251A JP2008045622A (en) 2006-08-11 2006-08-11 Pre-load adjusting structure for rolling bearing

Publications (1)

Publication Number Publication Date
JP2008045622A true JP2008045622A (en) 2008-02-28

Family

ID=39179558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006220251A Pending JP2008045622A (en) 2006-08-11 2006-08-11 Pre-load adjusting structure for rolling bearing

Country Status (1)

Country Link
JP (1) JP2008045622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187741A1 (en) * 2015-12-07 2017-07-05 Hamilton Sundstrand Corporation Bearing liners for use within light alloy housings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187741A1 (en) * 2015-12-07 2017-07-05 Hamilton Sundstrand Corporation Bearing liners for use within light alloy housings
US9874245B2 (en) 2015-12-07 2018-01-23 Hamilton Sundstrand Corporation Bearing liners for use within light alloy housings

Similar Documents

Publication Publication Date Title
JP2006226400A (en) Shaft device
JP2007211793A (en) Support structure of ball screw shaft
JP2012132567A (en) Rolling bearing device and direct drive motor having the same
JP2006226184A (en) Camshaft device and its assembling method
JP2011085239A (en) Bearing device of gear mechanism
JP2008045622A (en) Pre-load adjusting structure for rolling bearing
JP2008045626A (en) Pre-load adjusting structure for rolling bearing
JP2005069252A (en) Rolling bearing unit
JP2008045624A (en) Pre-load adjusting structure for rolling bearing
JP2008045630A (en) Preload adjustment structure of rolling bearing
JP2008045629A (en) Pre-load adjusting structure for rolling bearing
JP2009079696A (en) Mechanism for applying preload to rolling bearing
JP2008045623A (en) Pre-load adjusting structure for rolling bearing
JP2008045620A (en) Pre-load adjusting structure for rolling bearing
JP2008045621A (en) Pre-load adjusting structure for rolling bearing
JP2008045627A (en) Pre-load adjusting structure for rolling bearing
JP2008045628A (en) Pre-load adjusting structure for rolling bearing
JP2008045625A (en) Pre-load adjusting structure for rolling bearing
JP2011112191A (en) Creep prevention rolling bearing
JP2008180347A (en) Rolling bearing device having fixing structure by tapered member
JP2011133078A (en) Radial/thrust bearing device
JP2007146936A (en) Rolling bearing applied with pre-load
JP2002266854A (en) Motor
JP2008196544A (en) Conical roller bearing
JP2008215513A (en) Rolling bearing device with pre-load imparting structure by electromagnet