JP2008045150A - Method for heating article under saved energy and heating furnace - Google Patents

Method for heating article under saved energy and heating furnace Download PDF

Info

Publication number
JP2008045150A
JP2008045150A JP2006218707A JP2006218707A JP2008045150A JP 2008045150 A JP2008045150 A JP 2008045150A JP 2006218707 A JP2006218707 A JP 2006218707A JP 2006218707 A JP2006218707 A JP 2006218707A JP 2008045150 A JP2008045150 A JP 2008045150A
Authority
JP
Japan
Prior art keywords
heat
heating
furnace
heating furnace
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006218707A
Other languages
Japanese (ja)
Other versions
JP4325758B2 (en
Inventor
Kenji Suzuki
謙爾 鈴木
Kiyotaka Ito
清隆 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIIGATA FURNACE KOGYO KK
SAN FRONTIER TECHNOLOGY KK
Asahi Seisakusho Co Ltd
Original Assignee
NIIGATA FURNACE KOGYO KK
SAN FRONTIER TECHNOLOGY KK
Asahi Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIIGATA FURNACE KOGYO KK, SAN FRONTIER TECHNOLOGY KK, Asahi Seisakusho Co Ltd filed Critical NIIGATA FURNACE KOGYO KK
Priority to JP2006218707A priority Critical patent/JP4325758B2/en
Publication of JP2008045150A publication Critical patent/JP2008045150A/en
Application granted granted Critical
Publication of JP4325758B2 publication Critical patent/JP4325758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating method, by which the heating/temperature-elevation speed is rapid and the thermal efficiency is high by converting the sensible heat of high-temperature gas in a furnace into the radiant heat without using a large-scaled facility, such as waste heat recovering boiler, to directly utilize this heat into the heating of article, and also to provide a heating furnace in which such heating method can be achieved. <P>SOLUTION: The high-temperature gas having the sensible heat is come into contact with a heat reflector 12 composed of a laminate of Si-C-M-O based fiber in the heating furnace 1. At least a part of the sensible heat is converted into the radiant heat, and the radiant heat is utilized to the heating of the article to be heated. Wherein, the Si-C-M-O based fiber is the ceramic fiber which is contained by atomic ratio of 30-60% Si, 30-70% C, 0-10% M and 0-30% O. Further, M is metallic elements of one or more kinds selected from Al, Ti and Zr. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、物品の加熱方法及び加熱炉に係る。本発明に係る加熱炉及び加熱方法は、加熱形式、加熱対象に特に制限がなく、炉内に高温ガスが存在するあらゆる形式の加熱炉に対して適用でき、たとえば、ごみ焼却炉にも適用することができる。   The present invention relates to a method for heating an article and a heating furnace. The heating furnace and heating method according to the present invention are not particularly limited in the heating type and heating target, and can be applied to any type of heating furnace in which high-temperature gas is present in the furnace, for example, a garbage incinerator. be able to.

鋼材等を熱間加工するに当たっては、事前に所定の高温に加熱する必要があり、そのため、均熱炉や加熱炉が用いられる。また、セラミックの焼成に当たっては、より高温の加熱炉が用いられる。これらの加熱炉の熱源としては、炭化水素ガス、石油、重油等の化石燃料の燃焼熱が利用されるほか、雰囲気制御加熱炉では電気エネルギも利用される。このような加熱炉においては、熱効率の向上が省エネルギの観点から重要であり、従来から排熱回収ボイラなどを利用して発電、温水製造あるいは空気・燃料ガスの予熱等が行われている。   In hot working a steel material or the like, it is necessary to heat it to a predetermined high temperature in advance. For this reason, a soaking furnace or a heating furnace is used. Further, a higher temperature heating furnace is used for firing the ceramic. As the heat source of these heating furnaces, the combustion heat of fossil fuels such as hydrocarbon gas, petroleum, heavy oil, etc. is used, and electric energy is also used in the atmosphere control heating furnace. In such a heating furnace, improvement of thermal efficiency is important from the viewpoint of energy saving, and conventionally, power generation, hot water production, preheating of air / fuel gas, etc. are performed using a waste heat recovery boiler or the like.

しかしながら、排熱回収ボイラは一般に大掛かりな設備が必要であり、設備費が高くつき、比較的小規模の熱処理設備には必ずしも好ましいものとはいえない。また、回収された熱は、排熱利用という形で間接的に利用されるに過ぎず、直接加熱炉に戻すことができないため、炉内において被加熱物の昇温速度を大きくするためには、より高温の燃焼ガスを急速に発生させることが必要になり、操業上の負荷が一時的に過大になるなどの問題もある。   However, the exhaust heat recovery boiler generally requires large-scale equipment, and the equipment cost is high, and it is not necessarily preferable for a relatively small-scale heat treatment equipment. In addition, since the recovered heat is only used indirectly in the form of exhaust heat utilization and cannot be directly returned to the heating furnace, in order to increase the heating rate of the object to be heated in the furnace However, it is necessary to rapidly generate higher-temperature combustion gas, and there is a problem that the operational load temporarily becomes excessive.

そのため、排熱回収ボイラとは異なる機能による熱効率の向上手段が求められてきている。そのような手段として、たとえば、特許文献1には、炉壁が耐火れんがにより形成され炉内の被加熱物を輻射熱により加熱する加熱炉において、前記炉壁のうち少なくとも内壁側が黒色顔料を混入した耐火れんがにより形成することによって、従来の加熱炉に比べて、燃焼排ガス温度を低下させ、被加熱物の昇温速度を向上することができることが記載されている。   Therefore, a means for improving thermal efficiency by a function different from that of the exhaust heat recovery boiler has been demanded. As such means, for example, in Patent Document 1, in a heating furnace in which a furnace wall is formed of refractory bricks and an object to be heated is heated by radiant heat, at least the inner wall side of the furnace wall is mixed with a black pigment. It is described that by forming with refractory bricks, the temperature of combustion exhaust gas can be lowered and the heating rate of the object to be heated can be improved as compared with a conventional heating furnace.

また、特許文献2には、SiO:60%以上、Al:10〜20%、P:5%以下、NaO:10%以下を含有する高熱輻射率の炉壁材を上部一方向焚均熱炉の下部炉壁に適用することにより、炉内下部低温部においても鋼材を均一加熱できることが記載されている。そのほか、特許文献3には、一方向性凝固法で得られた融液成長セラミック複合材料からなる粒状輻射蓄熱部材を炉内加熱室内に分散させ、回収・再循環させることによって燃焼炎で再熱し、供給される熱を十分に利用することができる輻射強化加熱炉を得るという方法が開示されている。 Patent Document 2 discloses a furnace wall having a high heat radiation rate containing SiO 2 : 60% or more, Al 2 O 3 : 10 to 20%, P 2 O 5 : 5% or less, and Na 2 O: 10% or less. It is described that by applying the material to the lower furnace wall of the upper unidirectional averaging furnace, the steel material can be heated uniformly even in the lower low temperature part in the furnace. In addition, Patent Document 3 discloses that a granular radiant heat storage member made of a melt-grown ceramic composite material obtained by a unidirectional solidification method is dispersed in a furnace heating chamber and recovered and recirculated to be reheated by a combustion flame. A method of obtaining a radiation-enhanced heating furnace that can fully utilize the supplied heat is disclosed.

特開平8−210782号公報JP-A-8-210784 特開平7−25667号公報Japanese Patent Laid-Open No. 7-25667 特開平10−267545号公報Japanese Patent Laid-Open No. 10-267545

これらの手段は、炉内高温ガスの顕熱を輻射熱に転換して被加熱物の加熱に利用するものであり、高温ガスの熱伝導、対流伝熱に加え、輻射伝熱をいっそう有効に利用できるようにするものである。これにより被加熱物の昇温速度を大きくすることができ、大掛かりな排熱回収ボイラを備えることなく、熱効率の向上を図ることができる可能性が示唆されている。しかしながら、これらの手段を具現化するためには、たとえば、特許文献1に記載の「黒色顔料を混入した耐火れんが」の具体的設計基準などを明らかにしなければならないが、そのような手段は未だ明らかにされておらず、そのため、実用化の段階にいたっていない。   These means convert the sensible heat of the high-temperature gas in the furnace to radiant heat and use it to heat the object to be heated. In addition to heat conduction and convective heat transfer of the high-temperature gas, radiant heat transfer is used more effectively. It is something that can be done. This suggests that the heating rate of the object to be heated can be increased, and the thermal efficiency can be improved without providing a large exhaust heat recovery boiler. However, in order to implement these means, for example, it is necessary to clarify the specific design criteria of “refractory brick mixed with black pigment” described in Patent Document 1, for example. It has not been clarified, so it has not been put into practical use.

本発明は、排熱回収ボイラなど大掛かりな設備によらず、炉内高温ガスの顕熱を輻射熱に転換してこれを物品の加熱に直接利用することにより、加熱・昇温速度が大きく、熱効率の高い加熱方法及びその加熱方法を実現できる加熱炉を提供することを目的とする。   The present invention does not depend on large-scale equipment such as an exhaust heat recovery boiler, but converts the sensible heat of the high-temperature gas in the furnace into radiant heat and uses it directly for heating the article, thereby increasing the heating / heating rate and increasing the thermal efficiency. An object of the present invention is to provide a high heating method and a heating furnace capable of realizing the heating method.

本発明の物品の加熱方法は、顕熱を有する高温ガスを加熱炉内においてSi−C−M−O系繊維の積層体(不織布、網目状織物あるいは連続多孔体)に接触させて前記顕熱の少なくとも一部を輻射熱に転換し、該輻射熱を被加熱体の加熱に利用するものである。ここに、Si−C−M−O系繊維とは、原子比でSi:30〜60%、C:30〜70%、M:0〜10%、O:0〜30%を含むセラミックス繊維をいう。また、MはAl、Ti及びZrから選んだ1種又は2種以上の金属元素である。   In the method for heating an article of the present invention, the sensible heat is obtained by bringing a high-temperature gas having sensible heat into contact with a laminated body (nonwoven fabric, mesh woven fabric or continuous porous body) of Si—C—M—O fibers in a heating furnace. At least a part of the heat is converted to radiant heat, and the radiant heat is used to heat the object to be heated. Here, the Si-C-M-O-based fiber is a ceramic fiber containing Si: 30 to 60%, C: 30 to 70%, M: 0 to 10%, and O: 0 to 30% in atomic ratio. Say. M is one or more metal elements selected from Al, Ti and Zr.

上記発明において、顕熱から輻射熱への転換を、加熱炉内部の排気口入口を覆って設置されたSi−C−M−O系繊維の積層体からなる熱フィルタに高温ガスを通過させることによって行うことができる。また、加熱炉内部のいずれかの又はすべての壁面を覆って設置されたSi−C−M−O系繊維の積層体からなる熱レフレクタと高温ガスとの接触により行わせることもでき、これら両者を併用することもできる。   In the above invention, the conversion from sensible heat to radiant heat is performed by passing a high-temperature gas through a thermal filter made of a laminate of Si-C-M-O-based fibers installed so as to cover the exhaust port inlet inside the heating furnace. It can be carried out. Moreover, it can also be made to contact by the high temperature gas and the heat reflector which consists of the laminated body of the Si-C-M-O type | system | group fiber installed so that the wall surface in the inside or all of a heating furnace might be covered. Can also be used together.

上記各発明に用いるSi−C−M−O系繊維の積層体は、直径:1〜100μmの繊維を空隙体積率:90〜98%、厚さ:1〜10mmとなるように積層して構成した単層体又はこれら単層体を複数枚重ね合わせたものとすることができる。   The laminate of Si—C—M—O fibers used in each of the above inventions is formed by laminating fibers having a diameter of 1 to 100 μm so that the void volume ratio is 90 to 98% and the thickness is 1 to 10 mm. The single-layer body or a plurality of these single-layer bodies may be superposed.

上記各発明は、排気口入口にSi−C−M−O系繊維の積層体からなる熱フィルタを備える加熱炉によって、又は内壁面の少なくとも一面にSi−C−M−O系繊維の積層体からなる熱レフレクタを備える加熱炉によって実施することができる。さらに、これら両者を併用することもできる。   Each of the above inventions is a heating furnace provided with a thermal filter made of a laminated body of Si-C-MO fibers at the exhaust port inlet or a laminated body of Si-C-MO fibers on at least one surface of the inner wall surface. It can implement by the heating furnace provided with the thermal reflector which consists of. Furthermore, both of these can be used in combination.

本発明により、熱フィルタ効果及び/又は熱レフレクタ効果により、炉内高温ガスの顕熱を輻射熱に転換してこれを物品の加熱に利用することにより、ガス加熱炉の加熱・昇温速度を大きくすることができ、また、熱効率を高くすることができる。また、低発熱燃料を利用して高温加熱することが可能になる。   According to the present invention, due to the heat filter effect and / or the heat reflector effect, the sensible heat of the high temperature gas in the furnace is converted into radiant heat and used for heating the article, thereby increasing the heating / heating rate of the gas heating furnace. In addition, the thermal efficiency can be increased. Moreover, it becomes possible to heat at high temperature using a low exothermic fuel.

(第1実施形態)
図1は、熱フィルタ効果が得られるように設計された第1実施形態に従う加熱炉の基本概念図である。図1に示すように、本発明の第1実施形態にしたがう加熱炉は、耐火物で構築された加熱炉本体1にバーナ2及び煙道4につながる排気口3を備え、この排気口3の炉内側入口(ガス出口)に熱フィルタ11が設置されている。加熱炉1の形式については特に制限する必要はない。この例では炉床5に被加熱物Sが載置されているが、この被加熱物は、たとえば、炉天井6から吊り下げる形式をとることもできる。また、本例では、たとえば重油焚のバーナ2を備えているが、加熱を、たとえば、電気エネルギによるものとし、炉内雰囲気調整を公知の手段によって行うものとしてもよい。また、被加熱物の装入、抽出も公知の手段により行うようにすることができる。
(First embodiment)
FIG. 1 is a basic conceptual diagram of a heating furnace according to a first embodiment designed to obtain a thermal filter effect. As shown in FIG. 1, the heating furnace according to the first embodiment of the present invention includes a heating furnace main body 1 constructed of a refractory, and an exhaust port 3 connected to a burner 2 and a flue 4. A thermal filter 11 is installed at the furnace inner inlet (gas outlet). There is no particular limitation on the type of the heating furnace 1. In this example, the object to be heated S is placed on the hearth 5, but this object to be heated can also take a form suspended from the furnace ceiling 6, for example. Further, in this example, the heavy oil burner 2 is provided, for example, but the heating may be performed by, for example, electric energy and the furnace atmosphere may be adjusted by a known means. In addition, charging and extraction of the object to be heated can also be performed by known means.

熱フィルタ11は、Si−C−M−O系繊維の積層体で構成されており、加熱炉の排気口3を炉内部側から通気可能に完全に塞いでいる。ここに、Si−C−M−O系繊維とは、原子比でSi:30〜60%、C:30〜70%、M:0〜10%、O:0〜30%を含むセラミックス繊維をいい、MはAl、Ti及びZrから選んだ1種又は2種以上の金属元素である。このような繊維は、ポリカルボシランを前駆体として有機−無機変換プロセスにより作成することができ、たとえば宇部興産株式会社製のチラノ繊維(登録商標)あるいは日本カーボン株式会社製のニカロン繊維(登録商標)として知られており、容易に入手することができる。なお、この繊維物質は上記基本成分のほか、骨格形成元素としてB、Nなどを適宜含むことができる。   The thermal filter 11 is composed of a laminated body of Si—C—M—O fibers, and completely closes the exhaust port 3 of the heating furnace so as to allow ventilation from the inside of the furnace. Here, the Si-C-M-O-based fiber is a ceramic fiber containing Si: 30 to 60%, C: 30 to 70%, M: 0 to 10%, and O: 0 to 30% in atomic ratio. M is one or more metal elements selected from Al, Ti and Zr. Such a fiber can be prepared by an organic-inorganic conversion process using polycarbosilane as a precursor. For example, Tyranno Fiber (registered trademark) manufactured by Ube Industries, Ltd. or Nicalon Fiber (registered trademark) manufactured by Nippon Carbon Co., Ltd. ) And is readily available. In addition to the above basic components, this fiber material can appropriately contain B, N, etc. as skeleton forming elements.

このSi-C-M-O系繊維は、ほぼ理想的な黒体スペクトルを発するものであり、大気雰囲気下で1300℃以上の耐熱性を有し、空気中高温においても、酸化、熱分解、焼失することなく、強度と形状を安定に保持できる。また、熱伝導率が3W/m・K以下であり、比熱が小さいことと相俟って、急速な加熱・冷却が可能である。さらに、その繊維径は、1〜100μm程度であり、容易に任意の形状に積層することができる。したがって、かかるSi-C-M-O系繊維を利用して積層体、たとえば不織布とするときは、高温排ガスから回収した熱ネルギーを輻射熱として効率的に放出することが可能である。   This Si—C—M—O-based fiber emits an almost ideal black body spectrum, has a heat resistance of 1300 ° C. or higher in an air atmosphere, and is oxidized, pyrolyzed, The strength and shape can be stably maintained without burning out. In addition, the heat conductivity is 3 W / m · K or less, and coupled with the low specific heat, rapid heating / cooling is possible. Furthermore, the fiber diameter is about 1-100 micrometers, and can be laminated | stacked on arbitrary shapes easily. Accordingly, when such a Si—C—M—O-based fiber is used to form a laminate, for example, a nonwoven fabric, it is possible to efficiently release heat energy recovered from the high-temperature exhaust gas as radiant heat.

本発明の第1実施形態では、このSi−C−M−O系繊維を積層体とし、これを図1に示すように、加熱炉の排気口3の入口(ガス出口)に設置する。積層体とするに当たっては、直径:1〜100μmの繊維を空隙体積率:90〜98%、厚さ:1〜10mmとなるように、たとえば単層の不織布として形成し、これを必要に応じて複数枚重ね合わせればよい。このような単層の積層体は、例えば、宇部興産株式会社製のセラミックスフェルトなどによって調達することができる。また、セラミックスフェルトに代えて、例えば、網目状織物、連続多孔体等に成形したものも利用できる。   In the first embodiment of the present invention, this Si—C—M—O-based fiber is used as a laminate, which is installed at the inlet (gas outlet) of the exhaust port 3 of the heating furnace as shown in FIG. In forming a laminated body, a fiber having a diameter of 1 to 100 μm is formed, for example, as a single-layer nonwoven fabric so as to have a void volume ratio of 90 to 98% and a thickness of 1 to 10 mm. A plurality of sheets may be overlapped. Such a single-layer laminate can be procured by, for example, a ceramic felt manufactured by Ube Industries, Ltd. Further, instead of ceramic felt, for example, one formed into a mesh woven fabric, a continuous porous body or the like can be used.

なお、重ね合わせは、同一の構造を持つ単層体を複数枚重ね合わせてもよいが、互いに空隙体積率及び/又は厚さの異なるものとするのがよい。それにより、加熱炉の特性、操業条件等に合わせて熱フィルタ作用を最適化することができる。また、積層体を作成するに当たっては、加熱炉内のガスが積層体を通過するときの圧力差が2〜50mmAq(20〜500Pa)程度となるようにするのがよい。これにより、加熱炉内におけるガス圧を適正に保つとともに炉内におけるガス循環を行わせて熱効率の一層の向上を図ることができる。さらに、実施形態1においては、加熱炉の排気口3の入口(ガス出口)において排ガス顕熱の輻射熱への転換とその加熱炉内での利用が行われるようにするために、炉内側に相当する部位の空隙率を大きくし、煙道側の空隙率を小さくするのがよい。   In addition, although a plurality of single-layer bodies having the same structure may be overlapped, it is preferable that the void volume ratio and / or the thickness be different from each other. Thereby, the heat filter action can be optimized in accordance with the characteristics of the heating furnace, operating conditions, and the like. Moreover, when producing a laminated body, it is good to make it the pressure difference when the gas in a heating furnace passes a laminated body become about 2-50 mmAq (20-500 Pa). Thereby, while maintaining the gas pressure in a heating furnace appropriately, the gas circulation in a furnace can be performed and the thermal efficiency can be improved further. Furthermore, in the first embodiment, in order to convert the exhaust gas sensible heat into radiant heat and use in the heating furnace at the inlet (gas outlet) of the exhaust outlet 3 of the heating furnace, it corresponds to the inside of the furnace. It is better to increase the porosity of the part to be used and decrease the porosity on the flue side.

なお、上記空隙体積率は、たとえば製造された積層体に静かに樹脂を注入して固化させた後、断面を光学顕微鏡によって観測して繊維の占める面積率を、たとえばリニア・アナリシスによって求めることによって定めることができる。   The void volume ratio is determined by, for example, linearly injecting a resin into the manufactured laminate and solidifying it, then observing the cross section with an optical microscope and determining the area ratio occupied by the fibers by, for example, linear analysis. Can be determined.

本発明の第1実施形態は上記のように構成されているから、加熱炉を操業状態に置くと、ガスバーナ2から燃焼ガスが放出され、その顕熱により加熱炉1の炉壁が加熱されるとともに、排気口3の入口を覆って設置された熱フィルタを高温排ガスが通過する。これにより、高温排ガスの顕熱が熱フィルタに伝熱し、加熱された温度に相応する輻射熱を放散することになる。この輻射熱は、炉内に装入された被加熱物S及び炉壁の加熱に向けられ、炉内温度の昇温速度が大きくなり、炉の加熱性能が向上をもたらす。また、定常操業状態では、炉内温度を一定に保持するための燃料消費量が節約されることになる。   Since 1st Embodiment of this invention is comprised as mentioned above, when a heating furnace is put into the operation state, combustion gas will be discharge | released from the gas burner 2, and the furnace wall of the heating furnace 1 will be heated by the sensible heat. At the same time, the high-temperature exhaust gas passes through a heat filter installed so as to cover the inlet of the exhaust port 3. Thereby, the sensible heat of the high-temperature exhaust gas is transferred to the heat filter, and radiant heat corresponding to the heated temperature is dissipated. This radiant heat is directed to the heating of the article to be heated S and the furnace wall charged in the furnace, the heating rate of the furnace temperature is increased, and the heating performance of the furnace is improved. Further, in the steady operation state, fuel consumption for maintaining the furnace temperature constant is saved.

このような作用・効果は、熱フィルタがSi−C−M−O系繊維の積層体により構成されていることに基づいている。すなわち、熱フィルタを構成するSi−C−M−O系繊維が細繊維であるために高温排ガスとの接触面積が大きく、結果として大きな熱伝達係数をもち、その熱伝導率並びに比熱が極めて小さいことにより、熱フィルタは、通過する排ガスの顕熱によりSi−C−M−O系繊維のみが急速に加熱される。しかも、Si−C−M−O系繊維はほぼ理想的な黒体スペクトルを発するものであることにより、高温排ガスの顕熱の30〜60%程度を輻射熱に転換できる。このことは、後述の実施例に示すように、熱フィルタの入口側(測定点A)と出口側(測定点B)とで400〜500℃の温度低下が生じており、この温度低下分に相当する熱エネルギが炉内に向けて輻射熱として放出されたものに相当しているのである。   Such actions and effects are based on the fact that the thermal filter is composed of a laminate of Si—C—M—O fibers. That is, since the Si—C—M—O fiber constituting the heat filter is a fine fiber, the contact area with the high temperature exhaust gas is large, resulting in a large heat transfer coefficient, and its thermal conductivity and specific heat are extremely small. Thus, in the heat filter, only the Si-C-M-O fiber is rapidly heated by the sensible heat of the exhaust gas passing therethrough. In addition, since the Si—C—M—O based fiber emits an almost ideal black body spectrum, about 30 to 60% of the sensible heat of the high temperature exhaust gas can be converted to radiant heat. As shown in the examples described later, this is caused by a temperature drop of 400 to 500 ° C. at the inlet side (measurement point A) and the outlet side (measurement point B) of the thermal filter. The corresponding thermal energy corresponds to that emitted as radiant heat into the furnace.

なお、熱フィルタを構成するSi−C−M−O系繊維は、その線径が1〜100μmと細く、強度が3GPa超と大きく、かつその耐熱性が大であるので、加熱炉が連続操業であっても、間歇操業であっても長期間に亘って使用することができる。   In addition, since the Si-C-M-O-based fibers constituting the heat filter have a thin wire diameter of 1 to 100 μm, a strength of over 3 GPa and a high heat resistance, the heating furnace operates continuously. Even if it is intermittent operation, it can be used over a long period of time.

(第2実施形態)
図2は、熱レフレクタ効果が得られる場合の第2実施形態に従う加熱炉の基本概念図である。この第2実施形態では、前述の第1実施形態における熱フィルタ11が省略される一方、加熱炉本体1の内面(この場合には側壁7及び天井6)に熱レフレクタ12が取付けられている。熱レフレクタ12の取付け箇所は加熱炉本体1の内面(炉底部、側壁部、天井を含む)の全体とすることができる。また、加熱炉本体1の内面の一部、例えば、側壁7及び天井6の少なくとも1面とすることもできる。さらに、これら取付け面の全体に取付けることもできるが、例えば1側面のうち中央部のみを取付け部とすることもできる。これらは、炉形式、その具体的構造、被加熱体の装入・抽出方法、被加熱体の形状等により任意に設計することができる。
(Second embodiment)
FIG. 2 is a basic conceptual diagram of the heating furnace according to the second embodiment when the thermal reflector effect is obtained. In the second embodiment, the heat filter 11 in the first embodiment described above is omitted, and the heat reflector 12 is attached to the inner surface (in this case, the side wall 7 and the ceiling 6) of the heating furnace body 1. The mounting location of the heat reflector 12 can be the entire inner surface of the heating furnace body 1 (including the furnace bottom, side walls, and ceiling). Further, it may be a part of the inner surface of the heating furnace body 1, for example, at least one surface of the side wall 7 and the ceiling 6. Furthermore, although it can attach to the whole of these attachment surfaces, only the center part can also be made into an attachment part among one side surfaces, for example. These can be arbitrarily designed depending on the furnace type, the specific structure thereof, the method of charging / extracting the heated object, the shape of the heated object, and the like.

熱レフレクタ12も前述の熱フィルタ11と同様にSi−C−M−O系繊維を積層体で構成されており、その構成(繊維の特性、積層厚さ、密度等)もほぼ熱フィルタ用の積層体と同様でよい。ただし、炉本体1の内壁に貼り付けられることと、排ガスとの十分な接触による輻射熱の放散作用が主であり、ガスの通過を必要としないことを考慮して、加熱炉内表面側を含めて空隙率を小さくするのがよい。なお、上記積層体を熱リフレクタとして加熱炉内に設置するためには、既設のアルミナーシリカ系断熱材の上に単純に貼り付けるだけで良く、特別の手段を講じる必要はない。   The thermal reflector 12 is also composed of a laminated body of Si-C-M-O-based fibers in the same manner as the thermal filter 11 described above, and its configuration (fiber characteristics, lamination thickness, density, etc.) is almost the same as that for the thermal filter. It may be the same as the laminate. However, considering that it is affixed to the inner wall of the furnace body 1 and that the radiation heat is dissipated mainly by sufficient contact with the exhaust gas, it does not require the passage of gas. It is better to reduce the porosity. In order to install the laminate as a heat reflector in the heating furnace, it is only necessary to simply attach it on an existing alumina-silica heat insulating material, and no special measures are required.

その他の構成は、実施形態1の場合と同様でよい。   Other configurations may be the same as those in the first embodiment.

本発明の第2実施形態は上記のように構成されているから、加熱炉を操業状態に置くと、ガスバーナ2から燃焼ガスが放出され、その顕熱により加熱炉1の内面が加熱される。その際、上記熱レフレクタ貼付け部では、炉内を循環する高温ガスが熱レフレクタのSi−C−M−O系繊維に接触・浸透し、高温ガスの顕熱が伝熱され、伝熱された熱エネルギは熱レフレクタの表面からが輻射熱に転換されて炉内に向けて反射・放出されることになる。換言すれば、炉内の高温ガスの顕熱の相当部分(後に示す実施例によれば20〜40%程度)が炉内にレフレクション(反射)されて直接に自己回収されることになる。その結果、炉内温度を一定に保持するための燃料消費量が節約されるのみならず、炉内温度の昇温速度が速くなり、炉内ガスの循環が一様になり、炉の加熱性能が向上するという効果が得られる。なお、熱レフレクタの貼付けられない箇所においては、上記顕熱の輻射熱への転換は行われないが、熱レフレクタの貼付部からの放射される輻射熱によって急速に加熱され、それにより加熱速度の向上、炉内温度の均一化等の効果が得られる。   Since 2nd Embodiment of this invention is comprised as mentioned above, when a heating furnace is put into the operation state, combustion gas will be discharge | released from the gas burner 2, and the inner surface of the heating furnace 1 will be heated by the sensible heat. At that time, in the heat reflector pasting part, the high temperature gas circulating in the furnace contacted and permeated the Si-C-M-O fiber of the heat reflector, and the sensible heat of the high temperature gas was transferred and transferred. The heat energy is converted from the surface of the heat reflector into radiant heat, and is reflected and emitted into the furnace. In other words, a substantial portion of the sensible heat of the high-temperature gas in the furnace (about 20 to 40% according to the embodiment described later) is reflected (reflected) in the furnace and directly recovered. As a result, not only fuel consumption for keeping the furnace temperature constant is saved, but also the temperature rise rate of the furnace temperature is increased, the circulation of the furnace gas becomes uniform, and the heating performance of the furnace Is obtained. In the place where the heat reflector is not attached, the conversion of the sensible heat to the radiant heat is not performed, but it is rapidly heated by the radiant heat emitted from the attachment part of the heat reflector, thereby improving the heating rate. Effects such as uniformity of the furnace temperature can be obtained.

(第3実施形態)
図3は、熱フィルタ効果及び熱レフレクタ効果が得られる第3実施形態に従う加熱炉の基本概念図である。この第3実施形態では、前述の第1実施形態における熱フィルタ11とともに、第2実施形態における熱レフレクタ12がともに利用される。これら熱フィルタ11及び熱レフレクタ12の構成及び取付け箇所、取付け方法等は、前記第1実施形態及び第2実施形態の例にしたがえばよい。
(Third embodiment)
FIG. 3 is a basic conceptual diagram of a heating furnace according to the third embodiment in which a thermal filter effect and a thermal reflector effect are obtained. In the third embodiment, the thermal reflector 12 in the second embodiment is used together with the thermal filter 11 in the first embodiment. The configuration, attachment location, attachment method, and the like of the thermal filter 11 and the thermal reflector 12 may be the same as those in the first and second embodiments.

その作用メカニズムは、それぞれ第1実施形態(熱フィルタ効果)及び第2実施形態(熱レフレクタ効果)に記載したとおりであり、これらにおいて得られる効果が重畳して得られる。さらに、炉内ガス循環作用により高温となったガスにより熱レフレクタ作用が行われる結果、一層の加熱速度の向上、炉内温度の均一化等の効果が得られる。   The working mechanism is as described in the first embodiment (thermal filter effect) and the second embodiment (thermal reflector effect), and the effects obtained in these are superimposed. Furthermore, as a result of the thermal reflector action being performed by the gas that has become hot due to the gas circulation action in the furnace, effects such as further improvement in the heating rate and uniformity of the furnace temperature can be obtained.

(実施例1)
表1に諸元を示す中型実用熱処理炉を利用し、これに熱フィルタ及び/又は熱レフレクタとして宇部興産株式会社製のSi−C−Zr−O系繊維(商品名:チラノZM(登録商標))の不織布マットを施工した。チラノZMの諸特性は表2に示す。
(Example 1)
A medium-sized practical heat treatment furnace whose specifications are shown in Table 1 is used, and a Si—C—Zr—O fiber (trade name: Tyranno ZM (registered trademark)) manufactured by Ube Industries, Ltd. is used as a heat filter and / or a heat reflector. ) Non-woven mat. The properties of Tyranno ZM are shown in Table 2.

Figure 2008045150
Figure 2008045150

Figure 2008045150
Figure 2008045150

表1に示す諸元を有する加熱炉に表2に示す特性を有するマットを積層体として利用し、これを熱フィルタ及び熱レフレクタとして表3に示すように組み合わせて貼り付けた。なお、熱レフレクタは四方の炉内壁の下半分に貼り付けた。   A mat having the characteristics shown in Table 2 was used as a laminate in a heating furnace having the specifications shown in Table 1, and these were combined and pasted as thermal filters and thermal reflectors as shown in Table 3. The heat reflector was affixed to the lower half of the inner wall of the furnace.

Figure 2008045150
Figure 2008045150

上記のように構成した加熱炉を用いて、燃焼時間2時間、加熱温度1100℃とする操業を行った。操業に当たっては、加熱炉の炉床中央に被加熱物体として普通鋼ブロック試料(幅:65mm×高:65mm×長:220mm)を設置し、その内部中心に熱電対を挿入して温度上昇の時間経過を測設置した熱電対により炉内温度を測定し、高温排ガスの顕熱の輻射熱への転換・回収状況を検証した。実験結果を表4にまとめて示す。   Using the heating furnace configured as described above, an operation was performed at a heating temperature of 1100 ° C. for a combustion time of 2 hours. During operation, an ordinary steel block sample (width: 65 mm x height: 65 mm x length: 220 mm) is installed as an object to be heated in the center of the hearth of the heating furnace, and a thermocouple is inserted in the center of the specimen to raise the temperature. The temperature inside the furnace was measured with a thermocouple that had been installed, and the status of conversion and recovery of sensible heat from high-temperature exhaust gas to radiant heat was verified. The experimental results are summarized in Table 4.

Figure 2008045150
Figure 2008045150

上記の試験結果から下記の結論が要約される。
(1)熱フィルタ作用と熱レフレクタ作用の相乗効果により、30%に近い顕著な燃料節約が可能になった。
(2)熱フィルタ作用と熱レフレクタ作用による省エネルギ効果は、ほぼ2:1であった。
(3)所定温度までの炉内温度上昇時間は、熱フィルタならびに熱フィルタの設置により40%程度の大幅短縮が可能であった。
The following conclusions are summarized from the above test results.
(1) Thanks to the synergistic effect of the heat filter action and the heat reflector action, a remarkable fuel saving of nearly 30% has become possible.
(2) The energy saving effect by the heat filter action and the heat reflector action was almost 2: 1.
(3) The furnace temperature rise time up to the specified temperature could be reduced by about 40% by installing a heat filter and a heat filter.

本発明の熱フィルタ作用及び/又は熱レフレクタ作用により省エネルギ化は、ガス燃焼炉のみならず雰囲気ガスを用いる電気炉にも適用可能である。要するに、炉内に高温ガスが存在するあらゆる種類の加熱炉に対して、本発明により省エネルギ化ならびに加熱の高性能化が実現できる。さらに、本発明を適用することにより、ゴミ焼却炉の助燃バーナ用燃料の節約、低発熱量ゴミの自己燃焼、低カロリー燃料の使用等も可能になる。   The energy saving by the heat filter action and / or the heat reflector action of the present invention can be applied not only to a gas combustion furnace but also to an electric furnace using atmospheric gas. In short, energy saving and high performance of heating can be realized by the present invention for all kinds of heating furnaces in which high temperature gas exists in the furnace. Further, by applying the present invention, it becomes possible to save fuel for an auxiliary burner of a garbage incinerator, self-combustion of low calorific value garbage, use of low calorie fuel, and the like.

本発明の第1実施形態に従う加熱炉の基本概念図である。1 is a basic conceptual diagram of a heating furnace according to a first embodiment of the present invention. 本発明の第2実施形態に従う加熱炉の基本概念図である。It is a basic conceptual diagram of the heating furnace according to 2nd Embodiment of this invention. 本発明の第3実施形態に従う加熱炉の基本概念図である。It is a basic conceptual diagram of the heating furnace according to 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1:加熱炉本体
2:バーナ
3:排気口
4:煙道
5:炉床
6:天井
7:側壁
11:熱フィルタ
12:熱レフレクタ
A:炉内側温度測定点
B:炉外側温度測定点
S:被加熱体(鋼材ブロック)
1: heating furnace body 2: burner 3: exhaust port 4: flue 5: hearth 6: ceiling 7: side wall 11: thermal filter 12: thermal reflector A: furnace inner temperature measurement point B: furnace outer temperature measurement point S: Heated object (steel block)

Claims (8)

顕熱を有する高温ガスを加熱炉内においてSi−C−M−O系繊維の積層体に接触させて、前記顕熱の少なくとも一部を輻射熱に転換させ、該輻射熱を被加熱体の加熱に利用することを特徴とする物品の加熱方法。
ここに、Si−C−M−O系繊維とは、原子比でSi:30〜60%、C:30〜70%、M:0〜10%、O:0〜30%を含むセラミックス繊維をいう。また、MはAl、Ti及びZrから選んだ1種又は2種以上の金属元素である。
A high-temperature gas having sensible heat is brought into contact with the Si—C—M—O-based fiber laminate in a heating furnace to convert at least a part of the sensible heat into radiant heat, and the radiant heat is used to heat the object to be heated. A method of heating an article characterized by being used.
Here, the Si-C-M-O-based fiber is a ceramic fiber containing Si: 30 to 60%, C: 30 to 70%, M: 0 to 10%, and O: 0 to 30% in atomic ratio. Say. M is one or more metal elements selected from Al, Ti and Zr.
顕熱から輻射熱への転換が、加熱炉内部の排気口入口を覆って設置されたSi−C−M−O系繊維の積層体からなる熱フィルタを高温ガスが通過することにより行われることを特徴とする請求項1記載の物品の加熱方法。   The conversion from sensible heat to radiant heat is performed by passing a high-temperature gas through a thermal filter made of a laminate of Si-C-M-O fibers installed so as to cover the exhaust port inlet inside the heating furnace. The method for heating an article according to claim 1. 顕熱から輻射熱への転換が、加熱炉内部のいずれかの又はすべての壁面に設置されたSi−C−M−O系繊維の積層体からなる熱レフレクタと高温ガスとの接触により行われることを特徴とする請求項1記載の物品の加熱方法。   Conversion from sensible heat to radiant heat is performed by contact between a high-temperature gas and a heat reflector made of a laminate of Si-C-M-O fibers installed on any or all of the walls inside the furnace. The method for heating an article according to claim 1. 請求項2及び請求項3記載の物品の加熱方法をともに行うことを特徴とする請求項1記載の物品の加熱方法。   The method for heating an article according to claim 1, wherein the method for heating an article according to claim 2 is performed together. Si−C−M−O系繊維の積層体は、直径:1〜100μmの繊維を空隙体積率:90〜98%、厚さ:1〜10mmとなるように積層した単層体又は該単層体を複数枚重ね合わせたものであることを特徴とする請求項1〜4のいずれかに記載の物品の加熱方法。   A layered product of Si-C-M-O fibers is a monolayer in which fibers having a diameter of 1 to 100 μm are laminated so as to have a void volume ratio of 90 to 98% and a thickness of 1 to 10 mm, or the single layer The method for heating an article according to any one of claims 1 to 4, wherein a plurality of bodies are superposed. 排気口入口にSi−C−M−O系繊維の積層体からなる熱フィルタを備えることを特徴とする加熱炉。   A heating furnace comprising a heat filter made of a laminate of Si-C-M-O fibers at an exhaust port inlet. 内壁面の少なくとも一面にSi−C−M−O系繊維の積層体からなる熱レフレクタを備えることを特徴とする加熱炉。   A heating furnace comprising a thermal reflector made of a laminate of Si—C—M—O fibers on at least one of the inner wall surfaces. 内壁面の少なくとも一面にSi−C−M−O系繊維の積層体からなる熱レフレクタを備えることを特徴とする請求項6記載の加熱炉。
The heating furnace according to claim 6, further comprising a thermal reflector made of a laminate of Si—C—M—O based fibers on at least one of the inner wall surfaces.
JP2006218707A 2006-08-10 2006-08-10 Energy-saving heating method and heating furnace for articles Active JP4325758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006218707A JP4325758B2 (en) 2006-08-10 2006-08-10 Energy-saving heating method and heating furnace for articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218707A JP4325758B2 (en) 2006-08-10 2006-08-10 Energy-saving heating method and heating furnace for articles

Publications (2)

Publication Number Publication Date
JP2008045150A true JP2008045150A (en) 2008-02-28
JP4325758B2 JP4325758B2 (en) 2009-09-02

Family

ID=39179178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218707A Active JP4325758B2 (en) 2006-08-10 2006-08-10 Energy-saving heating method and heating furnace for articles

Country Status (1)

Country Link
JP (1) JP4325758B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4801789B1 (en) * 2010-10-07 2011-10-26 株式会社超高温材料研究センター Heating furnace thermal efficiency improvement method and heating furnace thermal efficiency improvement apparatus
JP2011231959A (en) * 2010-04-26 2011-11-17 Japan Ultra-High Temperature Materials Research Center Air-permeable radiant heat reflector and method for producing the same
CN102636020A (en) * 2012-05-07 2012-08-15 苏州罗卡节能科技有限公司 Ore heating furnace
JP2012247108A (en) * 2011-05-26 2012-12-13 Japan Ultra-High Temperature Materials Research Center Thermal efficiency improvement method of heat treatment furnace, and heat treatment furnace
JP5640123B1 (en) * 2013-08-09 2014-12-10 株式会社超高温材料研究センター Heat efficiency improvement method for heating equipment and heat efficiency improvement device for heating equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231959A (en) * 2010-04-26 2011-11-17 Japan Ultra-High Temperature Materials Research Center Air-permeable radiant heat reflector and method for producing the same
JP4801789B1 (en) * 2010-10-07 2011-10-26 株式会社超高温材料研究センター Heating furnace thermal efficiency improvement method and heating furnace thermal efficiency improvement apparatus
WO2012046515A1 (en) * 2010-10-07 2012-04-12 株式会社超高温材料研究センター Thermal efficiency improvement method for heating furnace and thermal efficiency improvement device for heating furnace
CN103201579A (en) * 2010-10-07 2013-07-10 宇部兴产株式会社 Thermal efficiency improvement method for heating furnace and thermal efficiency improvement device for heating furnace
CN103201579B (en) * 2010-10-07 2015-04-15 宇部兴产株式会社 Thermal efficiency improvement method for heating furnace and thermal efficiency improvement device for heating furnace
JP2012247108A (en) * 2011-05-26 2012-12-13 Japan Ultra-High Temperature Materials Research Center Thermal efficiency improvement method of heat treatment furnace, and heat treatment furnace
CN102636020A (en) * 2012-05-07 2012-08-15 苏州罗卡节能科技有限公司 Ore heating furnace
JP5640123B1 (en) * 2013-08-09 2014-12-10 株式会社超高温材料研究センター Heat efficiency improvement method for heating equipment and heat efficiency improvement device for heating equipment

Also Published As

Publication number Publication date
JP4325758B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
Gianella et al. High Temperature Applications of Si SiC Cellular Ceramics
JP4325758B2 (en) Energy-saving heating method and heating furnace for articles
JPS63153388A (en) Heat treating furnace
Füssel et al. Cellular ceramics in combustion environments
US9988577B2 (en) Sleeve-type coal material decomposition apparatus
CN1963334A (en) A gas heating apparatus by microwave
CN201032141Y (en) Yellow phosphorus tail gas combustion utilizing boiler
US11247188B2 (en) Reaction device with heat exchanger and use thereof
US20160195269A1 (en) Combustion system
CN102853661A (en) Energy-saving and consumption-reducing biomass crucible furnace
CN101967386A (en) Self-combustion biomass char production furnace
RU2536719C2 (en) Method of enrichment of alternative, carbon-containing, low calorie wastes for use in furnace plants
CN204593396U (en) A kind of refuse disposal installation
CN104131849A (en) Combined circulating power generating system and method combining natural gas, oxygen and pulverized coal combustion
JP3136873U (en) Hot gas sensible heat recovery mat
CN106524144B (en) A kind of micro combustor for micro thermo optoelectronic system
CN206191585U (en) Be applied to low -grade fever optoelectronic system&#39;s combustor
CN103408008A (en) Activation furnace
CN201241076Y (en) Cleaning type thermal recovery coke oven gas collecting tube
CN205747455U (en) A kind of Multi-layer warming oil burning boiler
CN108926996A (en) A kind of cyclone type coal mine methane catalyst oxidation reactor
CN101338202A (en) Cleaning type gas collecting pipe for thermal recovery coke oven
CN110923011A (en) Coal grading conversion gasification method and device
CN205137518U (en) Combustion area structure of brickwork
CN219174977U (en) Novel road surface heating device based on carborundum fiber cloth

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080825

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4325758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140619

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250